26 research outputs found

    Channel estimation, synchronisation and contention resolution in wireless communication networks

    Get PDF
    In the past decade, the number of wireless communications users is increasing at an unprecedented rate. However, limited radio resources must accommodate the increasing number of users. Hence, the efficient use of radio spectrum is a critical issue that needs to be addressed. In order to improve the spectral efficiency for the wireless communication networks, we investigate two promising technologies, the relaying and the multiple access schemes. In the physical (PHY) layer of the open systems interconnect (OSI) model, the relaying schemes are capable to improve the transmission reliability and expand transmission coverage via cooperative communications by using relay nodes. Hence, the two-way relay network (TWRN), a cooperative communications network, is investigated in the first part of the thesis. In the media access control (MAC) layer of the OSI model, the multiple access schemes are able to schedule multiple transmissions by efficiently allocating limited radio resources. As a result, the contention-based multiple access schemes for contention resolution are explored in the second part of the thesis. In the first part of the thesis, the channel estimation for the two-way relay networks (TWRNs) is investigated. Firstly, the channel estimation issue is considered under the assumption of the perfect synchronisation. Then, the channel estimation is conducted, by relaxing the assumption of perfect synchronisation. Another challenge facing the wireless communication systems is the contention and interference due to multiple transmissions from multiple nodes, sharing the common communication medium. To improve the spectral efficiency in the media access control layer, a self-adaptive backoff (SAB) algorithm is proposed to resolve contention in the contention-based multiple access networks

    Channel estimation, synchronisation and contention resolution in wireless communication networks

    Get PDF
    In the past decade, the number of wireless communications users is increasing at an unprecedented rate. However, limited radio resources must accommodate the increasing number of users. Hence, the efficient use of radio spectrum is a critical issue that needs to be addressed. In order to improve the spectral efficiency for the wireless communication networks, we investigate two promising technologies, the relaying and the multiple access schemes. In the physical (PHY) layer of the open systems interconnect (OSI) model, the relaying schemes are capable to improve the transmission reliability and expand transmission coverage via cooperative communications by using relay nodes. Hence, the two-way relay network (TWRN), a cooperative communications network, is investigated in the first part of the thesis. In the media access control (MAC) layer of the OSI model, the multiple access schemes are able to schedule multiple transmissions by efficiently allocating limited radio resources. As a result, the contention-based multiple access schemes for contention resolution are explored in the second part of the thesis. In the first part of the thesis, the channel estimation for the two-way relay networks (TWRNs) is investigated. Firstly, the channel estimation issue is considered under the assumption of the perfect synchronisation. Then, the channel estimation is conducted, by relaxing the assumption of perfect synchronisation. Another challenge facing the wireless communication systems is the contention and interference due to multiple transmissions from multiple nodes, sharing the common communication medium. To improve the spectral efficiency in the media access control layer, a self-adaptive backoff (SAB) algorithm is proposed to resolve contention in the contention-based multiple access networks

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Cooperative diversity techniques for high-throughput wireless relay networks

    Get PDF
    Relay communications has attracted a growing interest in wireless communications with application to various enhanced technologies. This thesis considers a number of issues related to data throughput in various wireless relay network models. Particularly, new implementations of network coding (NC) and space-time coding (STC) techniques are investigated to offer various means of achieving high-throughput relay communications. Firstly, this thesis investigates different practical automatic repeat request (ARQ) retransmission protocols based on NC for two-way wireless relay networks to improve throughput efficiency. Two improved NC-based ARQ schemes are designed based on go-back-N and selective-repeat (SR) protocols. Addressing ARQ issues in multisource multidestination relay networks, a new NC-based ARQ protocol is proposed and two packet-combination algorithms are developed for retransmissions at relay and sources to significantly improve the throughput. In relation to the concept of channel quality indicator (CQI) reporting in two-way relay networks, two new efficient CQI reporting schemes are designed based on NC to improve the system throughput by allowing two terminals to simultaneously estimate the CQI of the distant terminal-relay link without incurring additional overhead. The transmission time for CQI feedback at the relays is reduced by half while the increase in complexity and the loss of performance are shown to be negligible. Furthermore, a low-complexity relay selection scheme is suggested to reduce the relay searching complexity. For the acknowledgment (ACK) process, this thesis proposes a new block ACK scheme based on NC to significantly reduce the ACK overheads and therefore produce an enhanced throughput. The proposed scheme is also shown to improve the reliability of block ACK transmission and reduce the number of data retransmissions for a higher system throughput. Additionally, this thesis presents a new cooperative retransmission scheme based on relay cooperation and NC to considerably reduce the number of retransmission packets and im- prove the reliability of retransmissions for a more power efficient and higher throughput system with non-overlapped retransmissions. Moreover, two relay selection schemes are recommended to determine the optimised number of relays for the retransmission. Finally, with respect to cognitive wireless relay networks (CWRNs), this thesis proposes a new cooperative spectrum sensing (CSS) scheme to improve the spectrum sensing performance and design a new CSS scheme based on NC for three-hop CWRNs to improve system throughput. Furthermore, a new distributed space-time-frequency block code (DSTFBC) is designed for a two- hop nonregenerative CWRN over frequency-selective fading channels. The proposed DSTFBC design achieves higher data rate, spatial diversity gain, and decoupling detection of data blocks at all destination nodes with a low-complexity receiver structure

    Differential modulation for asynchronous two-way relay systems over frequency-selective fading channels

    Get PDF
    We propose two schemes for asynchronous multi-relay two-way relay (MR-TWR) systems in which neither the users nor the relays know the channel state information. In an MR-TWR system, two users exchange their messages with the help of NR relays. Most of the existing works on MR-TWR systems based on differential modulation assume perfect symbol-level synchronization between all communicating nodes. However, this assumption is not valid in many practical systems, which makes the design of differentially modulated schemes more challenging. Therefore, we design differential modulation schemes that can tolerate timing misalignment under frequency-selective fading. We investigate the performance of the proposed schemes in terms of either probability of bit error or pairwise error probability. Through numerical examples, we show that the proposed schemes outperform existing competing solutions in the literature, especially for high signal-to-noise ratio values. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    corecore