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Abstract

In the past decade, the number of wireless communications users is increasing at

an unprecedented rate. However, limited radio resources must accommodate the

increasing number of users. Hence, the efficient use of radio spectrum is a critical

issue that needs to be addressed. In order to improve the spectral efficiency for

the wireless communication networks, we investigate two promising technologies,

the relaying and the multiple access schemes. In the physical (PHY) layer of

the open systems interconnect (OSI) model, the relaying schemes are capable to

improve the transmission reliability and expand transmission coverage via coop-

erative communications by using relay nodes. Hence, the two-way relay network

(TWRN), a cooperative communications network, is investigated in the first part

of the thesis. In the media access control (MAC) layer of the OSI model, the

multiple access schemes are able to schedule multiple transmissions by efficiently

allocating limited radio resources. As a result, the contention-based multiple ac-

cess schemes for contention resolution are explored in the second part of the thesis.

In order to achieve the optimal decoding at the destination node, one of the

challenges is the estimation of the time-varying channel impairments. In the

first part of the thesis, the channel estimation for the two-way relay networks

(TWRNs) is investigated. Firstly, the channel estimation issue is considered un-

der the assumption of the perfect synchronisation. Then, the channel estimation

is conducted, by relaxing the assumption of perfect synchronisation. Assum-
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ing perfect synchronisation in the TWRNs, most works on channel estimation

problem focus on training-based approaches which impose a significant training

overhead that reduces the spectral efficiency of the system. Some works pro-

pose semi-blind channel estimation algorithms, named the deterministic maxi-

mum likelihood (DML) and modified constrained maximum likelihood (MCML),

which reduce the training overhead of the training-based algorithms. However,

the DML and MCML channel estimators depend on optimisation tools to achieve

the channel estimation. As a result, the computational complexity of the DML

and MCML algorithms are high, which makes them impractical. To make the

blind channel estimation algorithm practical, we propose two low complexity

semi-blind channel estimation algorithms, referred to as the low complexity max-

imum likelihood (LCML) estimator and the modified low complexity maximum

likelihood (MLCML) estimator. The two algorithms estimate non-reciprocal flat-

fading channels by using only one training symbol per estimation in the amplify-

and-forward two-way relay networks (AF-TWRNs). We propose the LCML al-

gorithm with a convex maximum likelihood estimation function that produces

a closed-form channel estimator. By taking into account the modulation struc-

ture, the MLCML channel estimation algorithm with the closed-form channel

estimation is proposed to further improved the mean squared error (MSE) per-

formance of the LCML algorithm in BPSK. The MSE performances evaluation

shows that the derived channel estimators approach the true channel in either

high signal-to-noise ratio (SNR) or large frame length scenarios. Analysis shows

that the LCML channel estimator is consistent and unbiased. Due to the convex

optimisation function and the derived closed-form channel estimation, the com-

putational complexity of the DML and MCML channel estimators is remarkably

reduced to O(N), where N is the frame length of signals. In addition to a lower

computational complexity, the LCML algorithm achieves a better MSE perfor-

mance than the DML algorithm for the BPSK modulation scheme. To relax the

ii



assumption of the perfect synchronisation in the TWRNs, we explored the joint

channel estimation and synchronisation issues in the asynchronous two-way relay

networks, where there are timing offsets between nodes. In the asynchronous

amplify-and-forward (AF) TWRNs, the joint synchronisation and channel esti-

mation algorithm with few training symbols have not been investigated and we

develop a generalised low complexity maximum likelihood (GLCML) algorithm

to perform channel estimation in the presence of a timing offset using one train-

ing symbols per estimation. Then a joint synchronisation and channel estimation

(JSCE) algorithm is proposed to estimate the timing offset, using one training

symbols per estimation. The low computational complexity is achieved by the

GLCML and JSCE algorithms by deriving closed-form solutions. Monte-Carlo

simulations demonstrate that the GLCML algorithm always select the optimal

channel estimation in the cases of varying timing offsets and the JSCE algorithm

is able to achieve accurate timing offset estimations.

Another challenge facing the wireless communication systems is the contention

and interference due to multiple transmissions from multiple nodes, sharing the

common communication medium. To improve the spectral efficiency in the media

access control layer, the backoff algorithm is employed to resolve contention and

mitigate signal interference in the multiple access networks. The challenge here is

to adjust the contention window length according to the average local packet ar-

rival rate and the channel congestion. We propose a self-adaptive backoff (SAB)

algorithm to resolve contention in the contention-based multiple access networks

by deriving the optimal contention window length, which maximises the system

throughput by considering the number of nodes, the average local packet arrival

rate and the channel congestion condition. Given the average local packet ar-

rival rate and the total number of nodes in the network, the expression of the

contention window length is derived from the discrete-time Markov chain model
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and network contention analysis. Then based on the derived contention window

length expression, we formulate the system throughput as the optimisation func-

tion and use it to achieve the optimal contention window length. Thus each node

is able to adjust the contention window (CW) length adaptively to network con-

ditions. Compared with the existing backoff algorithm, the proposed algorithm

significantly saves energy of sensors, while achieving a better system throughput

with a lower collision rate.
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way relay networks (TWRNs), referred to as the generalised low complex-

ity maximum likelihood (GLCML) algorithm and the joint synchronisation

and channel estimation (JSCE) algorithm. The contributions of this chap-

ter include formulating a convex maximum likelihood estimation function

to estimate the channel parameters, the frame offset and the symbol offset

jointly. In the GLCML algorithm, the estimation sample selection crite-
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Chapter 1

Introduction

1.1 Preliminary

In the past decade, the number of wireless communications users is increasing at

an unprecedented rate. However, the radio resources, accommodating the increas-

ing number of users, are limited. Therefore, the efficient use of radio spectrum

is a critical issue that needs to be addressed. The pursuit for spectral efficiency

is always one of the primary goals of wireless communications. A number of

techniques have been proposed or already implemented to improve the spectral

efficiency. Among them, two promising technologies are the relaying schemes [1],

employed in the physical (PYH) layer of the open systems interconnect (OSI)

model [2], and the media access schemes [3], employed in the media access con-

trol (MAC) layer [2] of the OSI model.

In the relay communications networks, data transmission from a source node

can be overheard by other nodes, due to the broadcast nature of the wireless

medium. As a result, it is possible for the source node to cooperate with these

overhearing nodes in transmitting their signals to the destination[4]. As shown

in Fig.1.1, if the destination node is out of the transmission range of the source
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node, the relay can help forward the information from the source to the desti-

nation. Therefore, the relay transmission can effectively extend the transmission

coverage and improve the overall data rate [1]. If the destination node is in the

transmission range of the source node, the combined signal of the relayed signal

and the direct signal is transmitted to the destination node, as shown in Fig.1.2

[5]. In this case, the relay node can cooperate with the source node to transmit

information to the destination node and the transmission reliability can be im-

proved by exploiting the user diversity.

Figure 1.1: Relay assisted communication network that expands the transmission
coverage.

Figure 1.2: Relay assisted communication network that improves the transmission
reliability.

The media access schemes are used in the media access control (MAC) layer [2] for

resource allocation in order to efficiently utilise the resources. For the purpose of

communications, multiple nodes, attempting to utilise common wireless medium,

may transmit simultaneously. Hence, the concurrent transmissions may interfere
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with each other and lead to transmission collisions. To avoid such destructive in-

terference, the primary task of the MAC layer is to coordinate the transmissions

of multiple nodes. The cooperation among multiple nodes, contending for their

access, can be achieved by resource allocation or scheduling. The typical way to

share the wireless medium is channel allocation [6], in which the wireless channel

resource is partitioned in a certain dimension, e.g., time, frequency, or spreading

code. Consequently, there are time division multiple access (TDMA), frequency

division multiple access (FDMA), and code division multiple access (CDMA) [7],

as shown in Fig.1.3.

Figure 1.3: Channel access methods: FDMA, TDMA and CDMA.

1.1.1 Relaying Schemes

Relaying schemes can effectively extend the transmission coverage and reliability

by exploiting the cooperative diversity, which is a cooperative multiple antenna

technique, which exploits user diversity by decoding the combined signal of the

relayed signal and the direct signal in wireless multi-hop networks, for improving

or maximising total network channel capacities for any given set of bandwidths

[8]. Hence, it is expected to play a significant role in the next generation wire-

less cellular systems [9]. In energy constrained wireless sensor networks (WSNs)

[10], relaying schemes can be exploited to extend network lifetime. Moreover,

relay transmission has been incorporated into many wireless standards, such as

IEEE 802.11s (mesh networking) [11], IEEE 802.11j (wireless multi-hop relay)
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[12], 802.16m (WiMAX2) [13], Femtocell [14] and LTE advanced [15, 16, 17].

The relay channel was first introduced in [4], and initial research studied the

rates achieved in relay channels [1, 18]. [19] proposed cooperative protocols, with

amplify-and-forward (AF) and decode-and-forward (DF) being the two basic re-

laying schemes. In AF relaying schemes, the relay node amplifies the received

signal and then forwards the amplified signal to the destination. In DF relaying

schemes, the relay node decodes, re-encodes, and retransmits the received signal.

A spectral efficient relaying technique called two-way relaying has been proposed

in [20], in which two nodes exchange information via the help of a relay node, as

shown in Fig. 1.4 [5]. Two-way relaying method consists of two phases: the mul-

tiple access phase, in which the source nodes simultaneously transmit their signal

to the relay, and the broadcast phase, in which the relay forwards the received

signal to the source nodes. The attractive feature of this two-way relay model

is that it can improve the spectral inefficiency of one-way relaying under a half-

duplex constraint[20, 21, 22, 23, 24]. With one-way relaying, it takes four time

slots to exchange information between two nodes via a half-duplex relay node.

However, the spectral efficiency can be improved by using only two time slots to

exchange information in the two-way relay networks (TWRNs) [25], by exploiting

the knowledge of the nodes’ own transmitted signals and the broadcast nature

of the wireless medium. The two-way relay networks (TWRN) can be applied

in many practical scenarios. In smart grid [26], demand response applications

require high data rate two-way communications between the customers and the

utility’s head-end system [27]. In cellular networks, examples of the TWRNs are

the base station communicates with a mobile user via a dedicated relay, or two

mobile users exchange data via the access point in a WLAN [5].
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Figure 1.4: Relay assisted two-way communication network with two user termi-
nals and a relay.

1.1.2 Multiple Access Schemes

The multiple access schemes allow multiple users to share the available spec-

trum simultaneously. In this way, the spectrum can be effectively utilised. In

local area networks (LANs) [28] and metropolitan area networks (MANs) [29],

multiple access methods enable bus networks, ring networks, hubbed networks,

wireless networks and half duplex point-to-point communication [30, 31, 32, 33].

In satellite communications [34], code-division [35], frequency-division [7], and

time-division [36] multiple access are presently used, which enable the capability

of a communications satellite to function as a portion of a communications link

between more than one pair of satellite terminals concurrently [6].

Multiple access schemes can be classified as reservation-based multiple access

(e.g., FDMA, TDMA, CDMA)[7] and contention-based multiple access, e.g.,

ALOHA and carrier sense multiple access (CSMA)) [37, 38]. The reservation-

based multiple access schemes, which allocate different channel resources to dif-

ferent users, have a disadvantage in that once the channel is assigned, it remains

idle if the user has nothing to transmit, while other users may have data waiting

to be transmitted. This problem is critical when data generation is random. In

this situation, the contention-based multiple access schemes, which allow each

user to access the network whenever the user has information to send, are more

efficient and flexible. This results from the fact that a communication channel is

shared by many users and users transmit their data in a random or partially coor-

dinated fashion [30]. In the wireless sensor networks, the contention-based access
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control scheme has been employed to schedule random traffic. Additionally, the

contention-based multiple access scheme has been incorporated into communica-

tion standards, such as IEEE 802.11s (WiFi) [11], IEEE 802.3(Ethernet) [39] and

IEEE 802.15.4(ZigBee) [40].

1.2 Motivations

1.2.1 Research Problems in TWRNs

In TWRNs, synchronisation [41] and channel estimation [42] are two essential

issues for signal detection. Efficient channel estimation in AF-TWRNs poses a big

challenge in order to do coherent demodulation [43]. In the case of asynchronous

TWRNs, the existence of relative frequency and timing offsets between signals

from two source nodes makes the coherent demodulation more challenging.

1.2.1.1 Channel Estimation

The received signal at the relay node suffers from severe random variations of

signal strength and phase [43], as the two users’ signals undergo different wireless

channels. The channel state information is required not only for data recovery,

but also for self-interference cancellation [44], in which the source nodes subtract

their own forwarded signals from the received signal. As a result, channel esti-

mation for TWRNs is more challenging, compared with the channel estimation

of point-to-point communications [45] and one-way relay networks [46].

Most work on two-way relay channels have assumed the availability of perfect

channel state information at the receivers. Based on the common assumption

that the channel state information (CSI) is perfectly known, the optimal power

allocation of two-way relay systems is explored in [47, 48, 49] and the beam form-

ing designs for multi-antenna two-way relay systems is considered in [50, 51].
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The existing channel estimation methods use either training-based [52, 53, 54]

approaches, which estimate the channel by using training symbols known to both

the transmitter and receiver, or blind [55] approaches, which do not depend on

training symbols.

In [56], a training-based maximum-likelihood (ML) estimator was developed for

the single-antenna single-relay system to estimate the flat-fading channels. In

[57], the relay and the two source nodes are equipped with multiple antennas and

the multi-input multi-output (MIMO) channels were acquired at each node using

a training-based least-squares (LS) algorithm. Channel estimation for TWRNs

in frequency selective environments has also been considered in [58]. It has been

stated in [52, 56, 57] that training-based channel estimation approaches achieve

good performance and are practical. Nevertheless, the spectral efficiency is sig-

nificantly reduced by training overheads.

Unlike training-based channel estimation, blind channel estimation approaches

[59, 60] remarkably decrease undesirable training overheads. Thus, they offer a

superior trade-off between estimation accuracy and spectral efficiency. In [59],

under M-ary phase-shift-keying (MPSK) modulation [43], a semi-blind channel

estimation algorithm, which employs only one training symbol per estimation,

is proposed for estimation of reciprocal flat-fading channels [61] in single-relay

AF-TWRNs. Since reciprocal channels are not always practical, a deterministic

maximum likelihood (DML) channel estimator considering non-reciprocal chan-

nels is proposed in [60]. As the DML estimator is unsuitable for binary phase-

shift-keying (BPSK), an alternative estimator called the modified constrained

maximum likelihood (MCML) estimator is proposed for this case in [60]. The

MCML channel estimator takes into account the BPSK structure and approaches

the true channel with high probability at high SNR. The approaches in [59, 60]
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noticeably reduce training overheads and achieve accurate mean squared error

(MSE) performances. However, the proposed objective functions are non-convex

[62]. Due to the non-convex optimisation function, the DML and MCML algo-

rithms have to rely on numerical solutions by using optimisation tools [62].

In Chapter 3 of the thesis, two semi-blind low complexity channel estimation

algorithms are proposed for the TWRN. The proposed algorithms significantly

reduce the computational complexity of the existing semi-blind channel estima-

tion algorithm by achieving a closed-form channel estimator.

1.2.1.2 Joint Synchronisation and Channel Estimation

In wireless communications, signals pass through a physical channel, where the

signal is distorted and noise is added [61]. In order to recover the transmitted

signal at the receiver, the carrier frequency, the carrier phase, and the symbol

timing [41] of the transmitted signal are required. However, in many practical

situations, a receiver node does not have prior knowledge of the physical wireless

channel or the propagation delay associated with the transmitted signal. More-

over, the low cost oscillators of the receivers inherently have some drift [63, 64].

Therefore, the information of the carrier frequency, the carrier phase, and the

symbol timing of the transmitted signal needs to be estimated for signal recovery.

In the TWRN, due to the superposition of signals at the relay node, the two

users’ signals may not be aligned in time and frequency [65]. Consequently, the

superimposed signal broadcast from the relay node is affected by multiple im-

pairments, e.g., channel gains, timing offsets, and carrier frequency offsets [65].

Therefore, in order to achieve the optimal decoding at the destination node, one

challenge facing the TWRN is the estimation of the time-varying channel impair-

ments such as, channel gains, timing offsets, and carrier frequency offsets.
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Recent research has focused mainly on communication strategies for two-way

relay networks, assuming perfect synchronisation [66, 67]. However the synchro-

nisation techniques, which enable accurate synchronisation among cooperating

nodes, have not been largely addressed. A training-based estimation method

is proposed in [53, 68] to estimate channel parameters and the frequency offset

in OFDM modulated TWRNs. However, the perfect timing synchronisation is

assumed and significant training overheads are still required for the estimation.

Moreover, the use of training sequences can give rise to significant overhead with

data rate reduction and may become unrealistic or impractical in certain sce-

narios. For instance, no training signal may be available to receivers in military

communication scenarios and defence applications [69]. Consequently, there is a

strong and practical need for blind estimation of channel parameters and time

offsets without training symbols [70]. In [71], a blind joint maximum likelihood

(ML) estimator for time offsets and channel estimation is developed. However, the

ML estimator in [71] requires exhaustive search and is computationally complex.

In order to reduce the complexity of ML estimation, new iterative estimation

schemes are proposed in [72]. Nevertheless, the algorithms in [71, 72] are limited

to DF cooperative networks.

In Chapter 4 of the thesis, a joint synchronisation and channel estimation al-

gorithm is proposed for the AF TWRNs and achieves semi-blind timing offset

and channel estimation.

1.2.2 Research Problems in Media Access

Under the contention-based access methods (e.g. ALOHA and CSMA), each user

has the freedom to gain access to the network, whenever the user has information

to send. Due to the lack of central control, the transmitted signals interfere with
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each other, which leads to packet collisions, if multiple users transmit simulta-

neously over the same channel. As a result, these schemes result in contention

among users accessing the network. Contention may cause collisions and re-

quire retransmission of the information, which decrease the spectral utilisation.

Therefore, the contention resolution algorithm to schedule multiple access in the

contention-based access protocol is essential.

A widely used contention resolution algorithm is the binary exponential back-

off (BEB) algorithm [73], which is employed in ZigBee, WiFi and WiMax for

access control. The basic idea of the BEB algorithm is to delay the transmission

by a random amount of time after a collision, so that individual nodes are able

to access the channel with a lower collision probability. After c times collisions,

a backoff time is chosen randomly from a uniform distribution [1 CW ], where

CW denotes the contention window (CW) length, which is 2c − 1, and the mini-

mum and maximum value of c depend on the network setting. For a new packet

transmission, the CW length is initialised to be the minimum value. The BEB al-

gorithm is widely used due to its simplicity. However, the performance evaluation

in [73] demonstrates that the BEB algorithm incurs a high collision probability

and low channel utilisation in congested networks. To overcome the shortcoming

of BEB, [74] proposes a backoff algorithm, referred to as the exponential increase

and exponential decrease (EIED) algorithm, in which the CW length is doubled

after a collision and halved after a successful transmission. As a result, frequent

collisions are avoided at a cost of a higher latency. As the CW length in [73]

and [74] of a transmission starts from 1, this initial value is set without taking

account the current channel congestion level.

Unlike [73] and [74], the channel congestion level is considered to adjust the

CW length of a transmission in [75, 76, 77, 78]. In [75], the CW length is tuned
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adaptively to the number of contending nodes, which represents the channel con-

gestion level and is estimated from the transmission history. Whereas, simulation

results in [75] show that the estimations of the contending nodes tend to be inac-

curate in the scenario of a large number of nodes. In [76], the backoff window size

is tuned by observing the status of the channel and estimating the network traffic,

in order to improve the efficiency of the BEB and EIED algorithms. However,

the number of active nodes needs to be estimated as well. Without relying on

the estimate of the number of active nodes, each node adjusts its CW based on

the observed average number of idle slots in [77]. In [78], the average contention

window length expression is derived by analysing the transmission collision prob-

ability, which is obtained by letting the node continuously sense the channel.

Although the estimation of the number of the contending nodes in [75] is avoided

by [77, 78], the energy consumption of the node in [77, 78] increases significantly

due to the continuous channel sensing.

In [75, 76, 77, 78], the contention window length is analysed assuming that all

the nodes always have packets to transmit. However, this assumption restricts

their practicality. For most real-time traffic, the demanded transmission rate is

variable with significant idle periods, i.e., nodes are usually far from being satu-

rated [79, 80]. There exist previous modelling works for non saturated operation

[81, 82], but their focus is not on tuning the backoff algorithm. In [82], the queue

model [83] is used to analyse the traffic load in ZigBee network. However, the

expression of the CW length with respect to the traffic load is not available. As

a result, the results in [82] are not adequate to provide specific directions on the

CW length adjustment.

In Chapter 5 of the thesis, a new backoff algorithm is proposed for the contention-

based multiple access networks to resolve contention. Considering the packet
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arrival rate and the number of the nodes in the system, the proposed backoff al-

gorithm obtains the expression of the contention window length, which optimises

the system throughput.

1.3 Contributions

The objective of the thesis is to improve the spectral efficiency of wireless commu-

nication networks, by applying novel signal processing techniques in the physical

(PHY) layer and the media access control (MAC) layer of the open systems in-

terconnect (OSI) model.

The algorithms proposed in the first part of the thesis (Chapters 3 and 4) for

the PHY layer, i.e. the channel estimation and synchronisation algorithms for

two-way relay networks, allow signal collisions to improve the spectral efficiency

of wireless communications. The contributions of the first part include

• formulating a convex maximum likelihood estimation function and deriv-

ing the closed form channel estimation in the synchronous two-way relay

networks,

• formulating a convex maximum likelihood estimation function to estimate

the channel parameters, the frame offset and the symbol offset jointly, in

the asynchronous two-way relay networks,

• providing analysis to verify the performance of the proposed algorithms

theoretically.

The proposed algorithms avoid training symbols and reduce the computational

complexity of other known methods. In addition, the channel estimation and

synchronisation are performed with additional signal processing in a two-time-

slot transmission, without occupying extra time slots.
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The algorithms proposed in the second part of the thesis (Chapter 6) for the

MAC layer, i.e. the self-adaptive backoff algorithm, avoid signal collisions and

resolve contention in the contention-based multiple access networks, in order to

improve the network throughput and spectral efficiency of the wireless commu-

nications. The contributions include

• representing the system and traffic by Markov models,

• deriving the contention window length expression with respect to the aver-

age local packet arrival rate and the number of nodes in the system.

Therefore, the two parts of the thesis contribute to the spectral efficiency improve-

ment, by solving problems from different aspects. Moreover, the two parts are

related in terms of the system models. In particular, the two scenarios share the

common feature in that multiple nodes intend to communicate with one access

point.

1.3.1 Semi-blind Low Complexity Channel Estimation

In Chapter 3 of the thesis, we propose two low complexity semi-blind channel

estimation algorithms, referred to as the low complexity maximum likelihood

(LCML) estimator and modified low complexity maximum likelihood (MLCML)

estimator, in order to make the existing blind channel estimation algorithms prac-

tical. The two algorithms estimate general non-reciprocal flat-fading channels by

using only one training symbol per estimation in AF-TWRNs. Assuming MPSK

modulation, we formulate a convex [62] maximum likelihood estimation function

and derive a closed-form channel estimator in the LCML algorithm. With the

channel state information, only one training symbol is necessary to resolve phase

ambiguity [84] in signal demodulation. To further improve the MSE performance

of the LCML algorithm, we propose the MLCML algorithm by taking into account
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the modulation structure. Compared to the DML and MCML algorithms, which

depends on optimisation tools to derive channel estimation, the computational

complexity of the LCML and MLCML estimation algorithms are O(N), where N

is the frame length of signals. Thus, the computational complexity of the existing

blind channel estimators is remarkably reduced. In addition, the LCML channel

estimator noticeably decreases the average MSE of the DML channel estimator

by 89.84% in BPSK. We analyse the proposed algorithms theoretically and prove

that the LCML channel estimator is consistent and unbiased [85]. The mean

squared error (MSE) performance of the proposed channel estimators are evalu-

ated theoretically and numerically. It has been shown that the derived channel

estimators approach the true channel in either high signal-to-noise ratio (SNR)

or large frame length scenario.

The main contributions of Chapter 3 are as follows,

1. In synchronous AF-TWRNs, a convex optimisation function for blind chan-

nel estimation is not available in the open literature [59, 60]. We propose

the LCML algorithm with a convex optimisation function that produces

a closed-form channel estimator. By taking into account the modulation

structure, a modified LCML(MLCML) channel estimation algorithm with

the closed-form channel estimation is proposed to further improved the MSE

performance of the LCML algorithm in BPSK. Furthermore, the availabil-

ity of the closed-form channel estimation enables us to derive the analytical

estimation MSE;

2. We analyse the performance of the LCML algorithm in the scenarios of high

SNR and large frame length of signals, respectively. In the case of a high

SNR, the LCML and MLCML channel estimation algorithms approach the

real channel parameter values with the probability of 1 −
(

2
M

)N−1
(M − 1)

and 1− 1
MN−1 , respectively, where M is the modulation order and N denotes
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the frame length; we further conclude that the LCML channel estimator is

unbiased. On the other hand, in the case of a large frame length, the LCML

channel estimator is consistent if channel parameters belong to compact sets

(closed and bounded sets) [85];

3. We derive a closed-form MSE expression of the LCML and MLCML chan-

nel estimator with respect to the SNR and N , MSE ∝ 2
SNR N

and MSE ∝
1

SNR N
, respectively, which are consistent with the simulation results. Both

the theoretical and numerical MSE performances demonstrate that the

LCML and MLCML channel estimator approach the true channel for ei-

ther high SNR or in a large frame length scenario;

4. The deterministic maximum likelihood (DML) channel estimator and the

modified constrained maximum likelihood (MCML) estimator in [60] are

the best performing semi-blind channel estimators for TWRNs in the lit-

erature. The LCML algorithm noticeably decreases the average MSE of

the DML channel estimator by 89.84% in BPSK. The DML and MCML al-

gorithms depend on optimisation tools to derive channel estimation, while

the proposed LCML and MLCML estimation algorithms achieve closed-

form channel estimators. The computational complexity of the LCML and

MLCML estimation algorithms are O(N), where N is the frame length of

signals. Hence, the computational complexity of the existing blind channel

estimators is remarkably reduced.

1.3.2 Joint Synchronisation and Channel Estimation

In Chapter 4 of the thesis, we consider the joint synchronisation and channel esti-

mation in the asynchronous AF-TWRNs and propose algorithms to estimate the

timing offsets and channel parameters jointly. In the asynchronous AF-TWRNs,

we develop a generalised low complexity maximum likelihood (GLCML) algo-
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rithm to perform channel estimation in the presence of a timing offset. We derive

two channel estimations from the overlapped and non-overlapped signals, respec-

tively. Then, we devise an estimation sample selection criterion (ESSC) to choose

the channel estimation with the minimum MSE. Then a joint synchronisation and

channel estimation (JSCE) algorithm is proposed to estimate the timing offset.

We firstly propose a sub-algorithm to achieve frame synchronisation, referred to

as the frame asynchronous channel estimation (FACE) algorithm, to estimate the

frame offset (integer timing offset) by energy detection and the cross correlation

of the received and transmitted signals. Then, channel estimation is performed

in the frame asynchronous system. After frame boundaries are determined by the

frame synchronisation algorithm, we propose a sub-algorithm, named the sym-

bol asynchronous channel estimation (SACE) algorithm, to estimate the symbol

offset (fractional timing offset) based on the overlapped signals. In addition, the

SACE algorithm achieves joint symbol synchronisation and channel estimation.

Monte-Carlo simulations are employed to evaluate the MSE performance of the

GLCML and JSCE algorithms. The simulation results demonstrate that the

GLCML algorithm always select the optimal channel estimation in the cases of

varying timing offsets and the JSCE algorithm is able to achieve accurate timing

offset estimations.

The main contributions of Chapter 4 are as follows.

1. Based on the analytical MSE expression, the optimal channel estimation

is achieved in GLCML algorithm by comparing the estimation MSE of the

overlapped and non-overlapped samples. Based on the MSE analysis, we

make the proposed algorithm more practical by relaxing the assumption of

perfect synchronisation and propose the GLCML algorithm for the asyn-

chronous system, where there exists a relative timing offset between both

the source nodes.
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2. We formulate the channel estimation and timing synchronisation as an over-

all maximum likelihood estimation problem, which is solved by the JSCE

algorithm, which includes two sub-algorithms, the FACE and SACE algo-

rithms. The analysis shows that the error probability of the FACE algo-

rithm approaches zero in a large frame length scenario. The symbol offset

is estimated jointly with the channel estimation by the SACE algorithm.

Therefore, the JSCE algorithm is capable to achieve accurate timing offset

estimation and channel estimation even in the absence of perfect timing

synchronisation.

3. Compared with the best known channel estimation algorithm for TWRNs,

the modified constrained maximum likelihood (MCML) estimator in [60],

the proposed GLCML and JSCE algorithm are capable to achieve a sim-

ilar MSE performance of channel parameter estimation in the presence of

the timing offset. Different from the MCML algorithm, which depends on

optimisation tools to derive channel estimation, the GLCML and JSCE

algorithm derive the closed-form channel estimation. Thus, the computa-

tional complexity of the MCML algorithm is reduced. Moreover, the timing

offset and channel parameters can be jointly estimated for the AF-TWRNs

in the proposed GLCML and JSCE algorithms.

1.3.3 Contention Resolution

In Chapter 5, we propose a self-adaptive backoff (SAB) algorithm to resolve con-

tention in the contention-based multiple access networks. We model the states

of a node as a discrete-time Markov chain [86] to derive the contention window

(CW) length, given the local packet arrival rate and the total number of nodes

in the network. In the first step, the mathematical relationship of the contention

window length, the total number of nodes, the Markov state probability and the

Markov transition probability is derived, by analysing the state transitions of
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the Markov chain model. In the second step, the mathematical relationship of

the Markov transition probability, the local packet arrival rate, the contention

window length and the total number of nodes is derived, according to the queue

theory [83]. As a result, we obtain the relationship of the contention window

length, the local packet arrival rate, the total number of nodes in the network

and the Markov state probability. Then based on the derived contention window

length expression, we formulate the system throughput as the optimisation func-

tion and use it to achieve the optimal contention window length. Thus each node

is able to adjust CW length adaptively to network conditions. Compared with

the existing backoff algorithm, the proposed algorithm significantly saves energy

of sensors, while achieving better throughput with a lower collision rate.

The contributions are as follows,

1. The SAB algorithm derives the expression of the CW with respect to the av-

erage local packet arrival rate and the total number of nodes in the network.

This expression provides specific directions on the CW length adjustment.

2. The assumption that all the nodes always have packets to transmit is relaxed

in the proposed algorithm, by considering the packet arrival rate. Hence,

the CW length is adaptive to the traffic load.

3. As the channel congestion condition is analysed according to the Markov

chain model, the CW length increases if channel is estimated to be busy

and decreases when channel is estimated to be idle. Thus, the continuous

channel sensing to detect the channel congestion level in [78] is avoided.

Therefore, the proposed algorithm significantly saves energy consumed by

avoiding continuous channel sensing in [78].

4. Compared with the Avg CW algorithm proposed in [78], the proposed al-

gorithm significantly reduces the collision rate by 37% and the energy con-
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sumption by 50%, when the number of nodes is 40, while achieving an 11%

higher throughput than [78].

1.4 Thesis Outline

This thesis consists of six chapters, presenting the background material, reviews

of the relevant literature, critical analysis and research results, as well as the con-

clusions we reach through the research.

Chapter 1 explains the research motivation, states the research problems and

presents a brief overview of some promising approaches for increasing the spec-

tral efficiency of wireless communication networks.

Chapter 2 introduces the background information to aid the understanding and

analysis in subsequent chapters and presents the system models used in the fol-

lowing chapters.

Chapter 3 presents low complexity semi-blind channel estimation algorithms,

referred to as the low complexity maximum likelihood (LCML) estimator and

modified low complexity maximum likelihood (MLCML) estimator, to estimate

general non-reciprocal flat-fading channels by using only one training symbol per

estimation in AF-TWRNs.

Chapter 4 extends the the low complexity maximum likelihood channel estima-

tion algorithm in Chapter 3 to a generalised low complexity maximum likelihood

(GLCML) algorithm, which performs channel estimation in the presence of a tim-

ing offset. In the asynchronous AF-TWRNs, a joint synchronisation and channel

estimation (JSCE) algorithm is proposed to estimate the timing offset. Two sub-
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algorithms are proposed in the JSCE algorithm. one is the frame asynchronous

channel estimation (FACE) algorithm for the frame offset estimation, the other

is the symbol asynchronous channel estimation (SACE) algorithm for the joint

symbol and channel estimation.

Chapter 5 presents a self-adaptive backoff (SAB) algorithm to resolve contention

in the contention-based multiple access networks. In the proposed algorithm, the

states of a node is modelled as a discrete time Markov chain and the queue theory

is employed to analyse the traffic load. The contention window length is obtained

given the local packet arrival rate and the total number of nodes in the network.

Chapter 6 concludes the thesis by summarising the major findings.
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Chapter 2

System Model

The first part of this chapter provides a brief review of the background of the

investigated system models. The basics of two-way relay networks is introduced

and the multiple access schemes are reviewed.

In the second part of this chapter, the investigated system models, including

synchronous TWRN, asynchronous TWRN and contention-based multiple access

networks, are discussed.

2.1 Background

2.1.1 Two-Way Relay Networks

Relaying technologies have been nominated as a promising solution to spectrum

scarcity issues in the physical (PHY) layer, due to their capability of enhancing

spectral efficiency, as well as channel capacity and coverage. In relay assisted

communication networks, also known as cooperative communication networks, a

relay node helps to forward user information from neighbouring nodes to a local

base station (BS). In doing this, a relay node can effectively extend the signal

and service coverage of a BS and enhance the overall throughput performance of
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a wireless communication system [18]. As a result, the radio spectral resources

can be efficiently utilised in the relay assisted communication networks.

Improving the spectral efficiency is always a major goal of communications. His-

torically, Shannon introduced the two-way communication channel model and

showed how to efficiently design message structures to enable simultaneous bidi-

rectional communication between two terminals at the highest possible data rates

[18]. Recently, this model has regained significant interest by introducing an

additional relay, which is working in amplify-and-forward (AF) mode, to sup-

port the exchange of information between the two communicating terminals.

In the amplify-and-forward two-way relay network (see Fig. 1.4), each terminal

transmits its signal to the relay simultaneously during the first time slot, where

two signals get combined due to the broadcast nature of the wireless medium.

The relay then amplifies the received signals and forwards the scaled version to

both terminals in the second time slot. The two-way relay model is capable

to compensate the spectral inefficiency of one-way relaying under a half-duplex

constraint[20, 21, 22, 23, 24].

In one-way relaying schemes, it takes four time slots to exchange information

between two terminals via a half-duplex relay, i.e., it takes two time slots to send

information from one terminal to the other terminal and two time slots for the

reverse direction (see Fig. 2.1). However, exploiting the knowledge of the nodes’

own transmitted signals and the broadcast nature of the wireless medium, spectral

efficiency can be improved by using only two time slots to exchange information

in the two-way relay networks (TWRNs) [25], as shown in Fig. 2.2. Based on

the channel state information (CSI), each terminal can extract the desired signal

from its own interference upon receiving the combined signals.
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Phase 1 Phase 2 Phase 3 Phase 4

Relay Forwards Relay Forwards

R

user A Transmits user B Transmits

A

B

Figure 2.1: Traditional Four-phase two-way relay communication.

Phase 1 Phase 2

R

Relay Forwardsuser A&B Transmit

B

A

Figure 2.2: Two-phase relay assisted two-way communication.

2.1.2 Contention-Based Multiple Access Network

In response to the increasing size of communication networks and the scarcity of

network resources, the multiple access schemes has emerged and enable multiple

wireless communications users to share the finite physical medium efficiently in

the media access control (MAC) layer. Multiple access schemes can be classi-

fied as reservation-based multiple access (e.g., FDMA, TDMA, CDMA)[7] and

contention-based multiple access (e.g., ALOHA, CSMA) [37, 38].

The family of reservation-based multiple access includes frequency division mul-

tiple access (FDMA) [7], time division multiple access (TDMA)[87], and code

division multiple access (CDMA) [88]. When each user has a steady flow of infor-

mation to transmit, reservation-based access methods are useful as they make an
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efficient use of communication resources. However, once the channel is assigned,

it remains idle if the user has nothing to transmit, while other users may have

data waiting to be transmitted.

In the situation that the data generation is random, the contention-based mul-

tiple access is more efficient, as the communication channel is shared by many

users and users transmit their data in a random or partially coordinated fashion

[30]. However, the schemes result in contentions among users, due to the fact

that each user can access the network whenever it has information to send. Con-

tention may cause collisions and may require retransmission of the information.

The commonly used contention-based access protocols are ALOHA [37] and car-

rier sense multiple access (CSMA) [38].

In the ALOHA scheme, each user transmits information whenever the user has

information to send. After sending a packet, the user waits a length of time equal

to the round-trip delay for an acknowledgement (ACK) of the packet from the

receiver. If no ACK is received, the packet is assumed to be lost in a collision and

it is retransmitted with a randomly selected delay to avoid repeated collisions.

The ALOHA scheme is widely used in wireless communications networks due to

its simplicity. However, the main drawback of the ALOHA scheme is the lack of

efficiency caused by the collision and retransmission process. This disadvantage

results from the fact that, users do not take into account the actions of the other

users when they attempt to transmit data packets and there are no mechanisms

to avoid collisions [38].

To decrease the probability of collisions, the carrier sense multiple access (CSMA)

[89] protocols provide enhancements over the ALOHA protocol. The enhance-

ments are achieved through the use of the additional capability at each user to
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sense the transmissions of other users. In CSMA, the transmitting node senses

the channel before sending a packet. If the channel is idle (i.e., no user is trans-

mitting), the packet is transmitted. If the channel is busy (i.e., some other user is

transmitting), the backoff mechanism is employ to delay the packet transmission

for a random amount of time to avoid collisions [38].

The contention-based multiple access scheme allows many users to use the same

radio channel without pre-coordination, which has been incorporated into commu-

nication standards, such as IEEE 802.11s (WiFi) [11], IEEE 802.3(Ethernet) [39]

and IEEE 802.15.4(ZigBee) [40]. In the wireless sensor networks, the contention-

based access control scheme has been employed to schedule random traffic with

low energy consumption. In Chapter 5 of the thesis, the contention-based multi-

ple access network is considered.

2.2 System Model

Multiple access networks are widely deployed in modern wireless and wire line

telecommunications networks, to enable multiple users to share the limited spec-

tral resources effectively. In these scenarios, multiple nodes intend to communi-

cate with one access point, as shown in Fig. 2.3.

We consider two cases of multiple access networks in subsequent chapters. In

Chapter 3 and Chapter 4, we consider a two-way relay network, which is a spe-

cial case of the multiple access networks. In the TWRN, two nodes exchange

information via a relay node and the relay node can be considered as the access

point in phase 1 (the multiple access phase). In Chapter 5, we consider a typical

multiple access network with N nodes communicating with one access point.
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Figure 2.3: Multiple Access Network.

2.2.1 TWRN Model

The two-way relay network is considered as the system model in Chapter 3. The

system shown in Fig. 2.4 is composed of three nodes, two source nodes T1 and

T2 and one relay node R. Each node is equipped with a single antenna. Two

source nodes are out of each other’s transmission range. In the TWRNs, the relay

node assists both source nodes to exchange messages in two phases. In phase 1,

also known as the multiple access phase, both source nodes send their messages

simultaneously to the relay node. In phase 2, also known as the broadcasting

phase, the relay sends back the overheard messages to the source nodes.

The following assumptions have been made throughout Chapter 3 of the the-

sis:

1. Amplify-and-Forward relaying scheme: The relaying scheme employed in

the system is the amplify-and-forward (AF) relaying scheme. In the AF

relaying scheme, the relay transmits an amplified version of its received

signal from the source to the destination. This leads to low-complexity

relay transceivers and low processing power consumption at the relay, since

there is no need for decoding at the relay. Furthermore, AF relaying schemes

are transparent to modulation and coding techniques which are employed
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at the source nodes[5].

2. MPSK: In the AF-TWRN, we employ MPSK modulation and demodulation

schemes.

3. Channel Model: Quasi-static and frequency flat-fading channels are con-

sidered and the channel is assumed to be fixed and flat over one frame.

The quasi-static flat-fading channel model is commonly assumed in the

literature. However, the proposed algorithms can still be applied to the

time-varying channel scenarios. In the scenario of a frequency selective

channel, the proposed channel estimation algorithms can be applied to es-

timate channel parameters of different frequency sub-bands one by one.

4. We assume three nodes are perfectly synchronised in the AF-TWRN. The

perfect synchronisation means that there is no carrier frequency offset and

carrier phase offset among all the nodes. Moreover, all the nodes are time

synchronised, that is, they can transmit simultaneously without the timing

offset and they know when to sample the received signal. The synchro-

nisation among nodes in the TWRNs is often assumed in the literature.

However, this assumption will be relaxed in Chapter 4.

RT1 T2

Time Slot 1 Time Slot 2

Figure 2.4: The two-time-slot two-way relay network with two source nodes and
one relay node

2.2.2 Asynchronous TWRN model

The asynchronous TWRN is studied in Chapter 4, where we assume perfect

carrier frequency synchronisation and focus on the carrier phase and timing syn-
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chronisation in the AF-TWRNs. The asynchronous TWRN model is illustrated

in Fig. 2.5. Due to the lack of synchronisation, signals transmitted by source

nodes do not perfectly align. One signal starts first with a few symbols that do

not interfere with the other signal, while the second signal ends last with a few

symbols that do not interfere with the first signal. As shown in Fig. 2.5, there

are overlapped and non-overlapped symbols in the received signal at relay. The

carrier phase synchronisation is performed based on the whole signal in Chapter

4. In addition, the symbols of each signal do not perfectly align in the asyn-

chronous TWRNs. As a result, there exists a symbol offset and the estimation of

this symbol offset is known as symbol synchronisation. In the special case, where

the symbols of each signal align, there only exists a frame offset between signals.

This case is referred to as the frame asynchronous TWRNs, as shown in Fig. 2.6.

The estimation of the frame offset is known as frame synchronisation.

The following assumptions have been made throughout Chapter 4 of the the-

sis:

1. Amplify-and-Forward relaying scheme at relay node.

2. MPSK: In the asynchronous AF-TWRN, we employ MPSK modulation and

demodulation schemes.

3. Channel Model: Quasi-static and frequency flat-fading channels are con-

sidered and the channel is assumed to be fixed and flat over one frame.

For frequency-selective fading channel, orthogonal-frequency-division mul-

tiplexing (OFDM) technique effectively converts a single frequency-selective

fading channel into multiple parallel quasi-static flat fading sub-channels.

The proposed synchronisation and channel estimation algorithms can be

applied to estimate channel parameters and the time offset of different fre-

quency sub-bands one by one;
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RT1 T2

Time Slot 1 Time Slot 2

Figure 2.5: Asynchronous two-way relay network.

RT1 T2

Time Slot 1 Time Slot 2

Figure 2.6: Frame asynchronous two-way relay network.

4. Over one frame, the timing offsets are modelled as deterministic but un-

known parameters. Perfect carrier frequency synchronised is assumed. Typ-

ically, carrier frequency can be recovered from the received noisy signal by

means of a suppressed carrier phase-locked loop (PLL) [84].

2.2.3 Contention-Based Multiple Access Network

The contention-based multiple access network considered in Chapter 5 has N

nodes, contending to communicate with the access point over a single communi-

cation channel, as shown in Fig. 2.7. We study the local medium access process

of a node under the carrier sense multiple access (CSMA) random access mecha-

nism, given the local packet arrival rate λ and the total number of nodes N .

The following assumptions have been made throughout Chapter 5 of the the-

sis:

1. There is no communication between N nodes, which only transmit to the

access point under contention-based media access scheme CSMA. Under

CSMA access scheme, each user performs carrier sensing before sending a

29



2.2. System Model

packet, in order to sense the actions of other users. If the channel is sensed

idle (i.e., no user is transmitting), the packet is transmitted. If the channel

is busy (i.e., some other user is transmitting), the backoff mechanism is

employed to delay the packet transmission for a random amount of time to

avoid collisions.

2. The backoff algorithm is employed to resolve contention among transmitting

nodes. If the node senses a busy channel or has a transmission failure, it

waits a random amount of time before the next channel access in order to

avoid repeated collisions. However, the binary exponential backoff (BEB)

algorithm is not considered and we employ the proposed backoff algorithm

for contention resolution.

3. The total number of the nodes in the network is assumed known to all the

nodes and all the nodes share the same average packet arrival rate λ.

R
T1

T2 Ti

TN

Figure 2.7: Multiple Access Model with N nodes transmitting to one Access Point.
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Chapter 3

Semi-Blind Low Complexity

Channel Estimation Algorithms

in AF-TWRNs

In order to improve the spectral efficiency in the physical (PHY) layer of the open

systems interconnect (OSI) model, the relay schemes are considered in this chap-

ter. Under the assumption that the carrier frequency, carrier phase and timing are

synchronised among all the nodes, we investigate the channel estimation issues

in the amplify-and-forward two-way relay networks (AF-TWRNs). To our best

knowledge, a deterministic maximum likelihood (DML) channel estimator and

a modified constrained maximum likelihood (MCML) estimator are proposed in

[60] for semi-blind channel estimation in the synchronous AF-TWRNs. However,

the DML and MCML algorithms have to rely on numerical solutions by using

optimisation tools, due to the non-convex optimisation functions for channel es-

timation. In order to make the existing semi-blind channel estimators practical,

we propose a low complexity semi-blind channel estimation algorithm, referred

to as the low complexity maximum likelihood (LCML) estimator, to estimate

general non-reciprocal flat-fading channels by using only one training symbol per
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estimation in AF-TWRNs. We formulate a convex maximum likelihood estima-

tion function and derive a closed-form channel estimator. Then we propose the

modified low complexity maximum likelihood (MLCML) channel estimator, by

employing the BPSK modulation structures, to improve the MSE performance

of the LCML channel estimator in the case of BPSK. The MLCML channel es-

timator not only achieves a closed-form channel estimation, but also improves

the MSE performance of the LCML estimator for BPSK. We analyse the pro-

posed LCML and MLCML algorithms theoretically and prove that the LCML

channel estimator is consistent and unbiased. The MSE performance evaluation

shows the derived channel estimators approach the true channel in either high

signal-to-noise ratio (SNR) or large frame length scenario.

3.1 System Model

A typical half-duplex TWRN over quasi-static flat-fading [90] channels is consid-

ered in this chapter. The system is composed of three nodes, two source nodes

T1 and T2 and one relay node R. Each node is equipped with a single antenna.

Two source nodes are out of each other’s transmission range. We assume perfect

frequency and timing synchronisation [84] among these nodes. In the scenario of

a frequency selective channel, the proposed channel estimation algorithms can be

applied to estimate channel parameters of different frequency sub-bands one by

one.

Each signal transmission process occupies two time slots. In the first time slot,

two source nodes T1 and T2 simultaneously transmit signals to the relay node

R. As MPSK modulation and demodulation are employed, the transmitted base

band signals are s1 =
√

P1e
jϕ1 and s2 =

√
P2e

jϕ2 , respectively. P1 and P2 are

transmit powers of T1 and T2, respectively. In TWRNs, the most common con-
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vention is to set P1 = P2. ϕ1 and ϕ2 are MPSK modulated phases, which are

independent and uniformly distributed in the set SM = {2π(l−1)
M

, l = 1, ..., M}

where M is the modulation order and j
∆=

√
−1.

In the first time slot, the received signal at the relay node is given by

r1 = h1s1 + g1s2 + n1. (3.1)

In (3.1), n1 is additive white Gaussian noise (AWGN) distributed in CN (0, σ2
n),

which represents the complex normal distribution with zero mean and variance

σ2
n. h1 and g1 are complex coefficients of flat-fading channels T1 → R and T2 → R,

respectively. Since non-reciprocal channels are considered in this paper, the com-

plex channel coefficients of R → T1 and R → T2 are denoted as h2 and g2,

respectively. Channel coefficients h1, h2, g1 and g2 are modelled as independent

and identically distributed (i.i.d) in CN (0, σ2
c ) and remain fixed during one esti-

mation process.

In the second time slot, the relay node purely amplifies the received signal r1

and then broadcasts the amplified signal Ar = Kr1, where K is the power scaling

factor. To maintain an average power of Pr at the relay node over a long term,

the expression K =
√

Pr

σ2
c P1+σ2

c P2+σ2
n

is used in this chapter, where Pr denotes the

transmit power of R. Here, we assume P1, P2, σ2
c and σ2

n are prior known to

R. Without loss of generality, channel estimation and signal detection at T1 are

studied. The received signal at T1 is obtained as

r = Kh1h2s1 + Kg1h2s2 + Kh2n1 + n2, (3.2)

where n2 is AWGN distributed in CN (0, σ2
n).

33



3.2. Maximum Likelihood Channel Estimation Algorithm

Due to the fact that T1 knows its own transmitted signal s1 and the phase mod-

ulation scheme, as long as the power scaling factor K and channel coefficients h1,

h2, g1 and g2 are perfectly known to T1, demodulation of s2 can be conducted

after cancelling self-interference term Kh1h2s1 from r. However, it is complicated

to get the knowledge of these unknown variables individually. By inspecting (3.2),

it is sufficient for signal demodulation purpose to estimate the composite channel

parameters H
∆= Kh1h2, G

∆= Kg1h2 and σ2 ∆=
(
K2 |h2|2 + 1

)
σ2

n jointly under

MPSK modulation scheme.

3.2 Maximum Likelihood Channel Estimation

Algorithm

Channel estimation is performed at source node T1 using N received samples

ri, i = 1, ..., N , of the form given by (3.2). The time index i is used to indicate

the realisations of s1, s2, ϕ1, ϕ2, n1 and n2 that give rise to each sample ri. Let

r ∆= [r1, r2, ..., rN ]T be the vector of the received samples. It is expressed as,

r = Hs1 + Gs2 + n, (3.3)

where s1
∆= [s11, s12, ..., s1N ]T , s2

∆= [s21, s22, ..., s2N ]T and n ∆= [n(1), n(2), ..., n(N)]T .

The noise term n is distributed as CN (0, σ2) where σ2 = (K2|h2|2 + 1)σ2
n.

Assuming s2 is deterministic unknown, the vector of unknown parameters Θ ∆=

[H, G, σ2, ϕ21, ..., ϕ2N ]T can be estimated by the maximum likelihood estimation

method. Since s1 is a known vector, the received vector r follows the com-

plex Gaussian distribution with expectation E {r} = Hs1 + Gs2 and variance

Var {r} = σ2I. The log likelihood function of the received signal r is,

L(r; Θ) = −∥r−Hs1−Gs2∥2

σ2 − N log(πσ2), (3.4)
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= −N ln(πσ2) −
∑N

i=1

∣∣∣ri−Hs1i−A|G|ej(ϕg+ϕ2i)
∣∣∣2

σ2 .

Without loss of generality, the amplitude of s1 and s2 are assumed equal to A

and ϕg is the phase of G. The estimated parameters Ĥ, Ĝ and σ̂ corresponding

to H, G and σ, respectively, can be obtained by maximising the log likelihood

function (3.4).

The log likelihood function (3.4) could be maximised, if
∣∣∣ri − Hs1i − A |G| ej(ϕg+ϕ2i)

∣∣∣ ,i =

1, ..., N is minimised. Since
∣∣∣ri − Hs1i − A |G| ej(ϕg+ϕ2i)

∣∣∣ represents the Euclidean

Distance between ri − Hs1i and A |G| ej(ϕg+ϕ2i), the minimum distance could be

achieved if (3.5) is met.

∠ {ri − Hs1i} = ∠
{
A |G| ej(ϕg+ϕ2i)

}
, i = 1, ..., N, (3.5)

While (3.5) is not always true, as the modulated phases ϕ1 and ϕ2 ∈ SM and they

can’t take continuous values in [0, 2π). Therefore, it is assumed in [60] that ϕ1

and ϕ2 are continuously valued in [0, 2π), that is, M→ ∞. Then, the condition

(3.5) is met and Eq.(3.4) is approximated as,

L(r; Θ) = −N ln(πσ2) −
∑N

i=1 (|ri − Hs1i| − A |G|)2

σ2 . (3.6)

Maximizing (3.6), Ĝ is estimated as

ˆ|G| =
∑N

i=1 |ri − Hs1i|
AN

, ϕ̂g = ∠
l∑

i=1
(ri − Hs1i) s∗

2i, (3.7)
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where l is the number of training symbols. As the channel is assumed to be fixed

and flat over one frame, the channel fading and phase shift are the same for each

symbol. In the proposed algorithms, we use only one training symbol to find ϕ̂g,

which will be applied to resolve the phase ambiguity [84] in the signal demodu-

lation. It will be shown in Section 3.4 that one training symbol is sufficient to

achieve a near optimal symbol error rate (SER).

Substituting (3.7) into (3.4), the log likelihood function reduces to,

L(r; H, σ) = −N ln(πσ2) − 1
σ2
∑N

i=1

(
|ri − Hs1i| −

∑N

k=1|rk−Hs1k|
N

)2
. (3.8)

Since Eq.(3.8) is differentiable with respect to σ2, let ∂L(r;H,σ)
∂σ2 = 0, σ̂2 is obtained

as,

σ̂2 =

∑N
i=1

(
|ri − Hs1i| −

∑N

k=1|rk−Hs1k|
N

)2

N
. (3.9)

Substituting (3.9) into (3.8), the channel estimate Ĥ is obtained as,

Ĥ = argmin
u∈C

L(r; u),

L(r; u) = 1
N

∑N
i=1

(
|ri − us1i| −

∑N

k=1|rk−us1k|
N

)2
. (3.10)

In the literature, [60] proposed a semi-blind channel estimation method named the

deterministic maximum likelihood (DML) algorithm to estimate Θ. In the DML

algorithm, channel parameter H is estimated by solving (3.10). As (3.10) is a

non-convex function and its analytical solution is not available, a two-dimensional

grid-search [91] is employed to solve Ĥ in [60]. It is possible to obtain an accurate

estimate of H when the grid-search range is asymptotically infinite and the search
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step-size is sufficiently small. However, the exhaustive grid-search algorithm leads

to an extremely high computational complexity. In most realistic applications,

the high computational complexity is unacceptable.

3.2.1 Low Complexity Maximum Likelihood Channel Es-

timator

To our best knowledge, all the existing semi-blind channel estimators [59] [60]

in TWRNs produce fairly high complexity, due to the unavailability of a convex

estimation function. Therefore, we propose a convex optimisation function to

estimate non-reciprocal channels in TWRNs. The proposed LCML channel esti-

mator achieves a closed-form channel estimator of H.

We still assume s2 is a deterministic unknown. Nevertheless, the actual statistics

of s2 are considered in analysing the behaviour of the LCML channel estimator

theoretically in Section 3.3. Under the assumption M → ∞, Ĝ and σ̂2 are ob-

tained as (3.7) and (3.9), respectively. In the LCML channel estimator, we use

only one training symbol to solve ϕ̂g, which will be used to resolve the phase am-

biguity [84] in signal demodulation. It will be shown in Section 3.4, one training

symbol is sufficient to achieve near optimal symbol error rate (SER).

Letting yi(u) ∆= ri − us1i, i = 1, ..., N and we find the presence of |yi(u)| makes

(3.10) non-convex. Replace |yi(u)| by |yi(u)|2, we formulate a convex objective

function to estimate H,

Ĥ = argmin
u∈C

f(r; u),

f(r; u) = 1
N

∑N
i=1

(
|yi(u)|2 −

∑N

k=1|yk(u)|2

N

)2
. (3.11)
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The theoretical analysis in Section 3.3 demonstrates that Ĥ is the critical point

[85] of the differentiable function f(r; u). Letting the first partial derivative
∂f(r;u)
∂ℜ{û} = 0, we get,

ℜ{Ĥlcml} = jℑ{Ĥlcml}
(CT

2 C2−CT
3 C3)

(C2+C3)T (C2+C3) − CT
1 C2+CT

1 C3
(C2+C3)T (C2+C3) . (3.12)

Substituting (3.12) into (3.11), we derive a closed-form ℑ{Ĥ} from ∂f(r;u)
∂ℑ{û} = 0,

ℑ{Ĥlcml} = CT
1 C2(CT

3 C3+CT
2 C3)

2j

(
CT

2 C2CT
3 C3−(CT

2 C3)2
) − CT

1 C3(CT
2 C2+CT

2 C3)
2j

(
CT

2 C2CT
3 C3−(CT

2 C3)2
) . (3.13)

where



C1
∆= [C11, ..., C1N ]T , C1i = |ri|2 − ∥r∥2

N
,

C2
∆= [C21, ..., C2N ]T , C2i = sH

1 r
N

− s∗
1iri,

C3
∆= [C31, ..., C3N ]T , C3i = sT

1 r∗

N
− s1ir

∗
i , i = 1, .., N.

The channel estimation in AF-TWRNs is obtained as Ĥlcml = ℜ{Ĥlcml+jℑ{Ĥlcml},

where j
∆=

√
−1.

3.2.2 Modified LCML Channel Estimator

As we will see shortly, the MSE performance of the proposed LCML algorithm

hits an error floor in high SNR scenario for BPSK (M = 2). In this section, we

propose the modified LCML (MLCML) channel estimation algorithm in the case

of BPSK (M = 2) to remove the error floor.

The log likelihood function is obtained by the maximum likelihood estimation
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method as

L(r; Θ) = −
∑N

i=1|ri−Hs1,i−Gs2,i|2

σ2 − N log (πσ2). (3.14)

By inspecting (3.14), the estimated parameters that satisfy the following condi-

tion

ri − Hs1,i − Gs2,i = 0, for i = 1, ..., N (3.15)

will definitely maximise the log likelihood function (3.14). Based on this fact, we

make some approximations and propose a modified low complexity maximum like-

lihood (MLCML) channel estimation algorithm. In [60], a modified constrained

maximum likelihood (MCML) estimator is proposed for BPSK. Different from

the MCML estimator, the MLCML estimator produces closed-form channel esti-

mations.

Since s2,i = ±1 in BPSK, we obtain ŝ2,i = Sign{(ri − Hs1,i) e−jϕg}, where Sign(x)

denotes the sign function and ϕg is the phase of G. Therefore, the signal detection

of s2,i depends on the availability of Ĥ and ϕ̂g. Then we propose a convex op-

timisation function to estimate channel parameters Ĥ and ϕ̂g. As the estimated

parameters satisfying condition (3.15) also make (ri − Hs1,i)2 − (Gs2,i)2 = 0 hold

for i = 1, ..., N , we eliminate s2,i in (3.14) and obtain the optimisation function

LBPSK
sync (r; Θ) = −

∑N

i=1|(ri−Hs1,i)2−G2|2

σ2 − N log (πσ2). (3.16)

As the proposed optimisation function (3.16) is convex, we derive Ĝ and σ̂ by

letting the first partial derivative ∂LBPSK
sync

∂G2 = 0 and ∂LBPSK
sync

∂σ2 = 0 and obtain

Ĝ2 =
∑N

i=1(ri−Hs1,i)2

N
, (3.17)
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σ̂2 =

∑N

i=1

∣∣∣∣∣(ri−Hs1,i)2−
∑N

k=1(rk−Hs1,k)2

N

∣∣∣∣∣
2

N
. (3.18)

Substituting Eqs. (3.17) and (3.18) into (3.16), Ĥ can be obtained by minimizing

the following objective function,

Fmlcml(H) =

∑N
i=1

∣∣∣∣∣(ri − Hs1,i)2 −
∑N

k=1(rk−Hs1,k)2

N

∣∣∣∣∣
2

N
. (3.19)

Letting ∂F BPSK
sync (H)

∂H
= 0, the closed-form channel estimation is obtained as

Ĥmlcml =

∑N

i=1

(
r2

i −
∑N

k=1 r2
k

N

)(
r∗

i s∗
1,i−

∑N

k=1 r∗
k

s∗
1,k

N

)
2
∑N

i=1

∣∣∣∣ris1,i−
∑N

k=1 rks1,k

N

∣∣∣∣2 . (3.20)

To estimate ϕ̂g, we use l training symbols and obtain

ϕ̂mlcml
g = ∠∑l−1

i=1 (ri − Hs1,i) s∗
2i. (3.21)

As the channel is assumed to be fixed and flat over one frame, the channel fading

and phase shift are the same for each symbol. In the proposed algorithms, we

use only one training symbol to find ϕ̂g, which will be applied to resolve the

phase ambiguity [84] in the signal demodulation. It will be shown in Section 3.4

that one training symbol is sufficient to achieve a near optimal symbol error rate

(SER).

3.3 Analysis of Low Complexity Channel Esti-

mator

In this section, we will analyse the computational complexity of the LCML and

MLCML algorithms and their behaviours in the cases of high SNR and large
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frame length, as well as its MSE performance.

3.3.1 Computational Complexity Analysis

To achieve the objective of the signal demodulation of s2 from (3.3) in synchronous

AF-TWRNs, we first cancel the self-interference term Hs1 in (3.3) with the chan-

nel state information of Ĥlcml, derived in Eqs.(3.12), (3.13), and Ĥmlcml derived in

Eq.(3.20), and the transmitted signal s1. Then, ϕ̂g is obtained from (3.7) with the

help of only one training symbol, so that the phase ambiguity in MPSK demodu-

lation could be resolved. Due to the phase modulation,
∣∣∣Ĝ∣∣∣ and σ̂2 are not needed

for the signal demodulation [84]. Therefore, the demodulation of s2 depends only

on the availability of Ĥ and the training symbol. Eqs.(3.12) and (3.13) indicate

that the calculation of the closed-form expression of channel estimation involves

summation and multiplication operations. The computational complexity is con-

sidered in terms of the number of samples N . The summation operation leads to

a computational complexity of O(N) and the multiplication operation results in

a constant complexity. As a result, the computational complexity of the LCML

estimation algorithm is O(N) in the case of M > 2. Similarly, from Eq.(3.20) we

obtain that the computational complexity of the MLCML estimation algorithm

as O(N) in the case of M = 2.

Since the signal demodulation only depends on the availability of Ĥ and the

training symbol, the following analysis focuses on the channel estimation Ĥlcml

and Ĥmlcml. Hereafter, we denote Ĥlcml as Ĥ for simplicity.

3.3.2 Large Sample Size

In the large frame length scenario, we will prove that when the channel param-

eter spaces of H and G are restricted to compact sets [85], the LCML channel

estimator is consistent [85]. In other words, if channel parameters H and G are
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bounded, Ĥ converges in probability to the real channel value H as the frame

length N gets larger.

For simplicity, we define the estimation error v
∆= H −Ĥ and VN(v) ∆= f(r; H −v).

Then (3.11) is expressed as,

VN(v) = 1
N

∑N
i=1

(
|zi(v)|2 −

∑N

k=1|zk(v)|2

N

)2
, (3.22)

where zi(v) ∆= vs1i +Gs2i +ni, i = 1, ..., N . In (3.22), VN(v) represents the sample

variance of random variable |zi(v)|2.

Since the channel estimator (3.22) belongs to the class of extremum estimators

[92], we use the fundamental lemma for the consistency of extremum estima-

tors, Lemma 3.1 [92], to prove the consistency of the proposed LCML channel

estimator.

Lemma 3.1. If v belongs to a compact set Ω and VN(v) converges uniformly

to F (v), where F (v) is continuous and uniquely minimised at v = vo, then v̂

converges in probability to vo, where v̂ = argmin
v∈Ω

VN(v).

In Eq. (3.22), signal terms s1i, s2i and noise term ni are i.i.d for each index

i = 1, ..., N . As a result, zi(v) is i.i.d and we define V(v) as the true variance of

|zi(v)|2. V(v) is considered as the function F (v) in Lemma 3.1. If Conditions

[1.1, 1.2, 1.3] are satisfied,

Conditions

1.1 The channel parameter H, G ∈ compact set Ω,

1.2 The optimisation function VN(v) converges uniformly [93] to V(v),

1.3 V(v) is continuous and has a unique global minimum at vo = 0.
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then Lemma 3.1 could be applied to the LCML channel estimator, which implies

that v̂ converges in probability to vo. Condition 1.3 shows that estimation error

vo = 0. Then we could conclude that Ĥ converges in probability to the real

channel value H (See Theorem 3.1), that is, the LCML channel estimator is

consistent.

Theorem 3.1. If H and G ∈ Ω, the following channel estimator

Ĥ = argmin
u∈C

1
N

∑N
i=1

(
|ri − us1i|2 − ∥r−us1∥2

N

)2
,

is consistent.

Proof. See Appendix D.

The consistency of the LCML channel estimator suggests that in each estima-

tion process, the estimation gets more accurate with larger frame length N .

3.3.3 High SNR

Theorem 3.2. For a fixed finite frame length N , the proposed LCML channel

estimator approaches the true channel as SNR → ∞ with probability 1 − 1
2N−1 for

BPSK (M = 2) and 1 − (M − 1)
(

2
M

)N−1
for MPSK (M > 2).

Proof. It has been proved in Appendix D of [60] that the DML algorithm ap-

proaches the true channel with the probability 1 −
(

2
M

)N−1
(M − 1) in the sce-

nario of high SNR. As the proposed LCML algorithm for MPSK(M > 2) behaves

exactly the same as the DML estimator, we use the conclusion of [60] and obtain

that the LCML algorithm for MPSK(M > 2) approaches the true channel with

the probability 1 −
(

2
M

)N−1
(M − 1) in the scenario of high SNR. The LCML

algorithm for BPSK (M = 2) is different from that for MPSK (M > 2). Hence,

we analyse the behaviour of the LCML channel estimator for BPSK (M = 2) in

high SNR scenarios in Appendix E and conclude that the LCML algorithm for
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BPSK approaches the true channel with the probability 1 − 1
2N−1 in the scenario

of a high SNR.

3.3.4 MSE Performance

In this section, the MSE performance of the proposed LCML channel estimator

will be assessed analytically. We derive the expression for the MSE in terms of

the SNR and frame length N . The definition of the channel estimation MSE is

MSEĤ = E
{∣∣∣Ĥ − H

∣∣∣2} = MSEℜ{Ĥ} + MSEℑ{Ĥ},

MSEℜ{Ĥ} = E
{(

ℜ
{
Ĥ
}

− ℜ {H}
)2
}

,

MSEℑ{Ĥ} = E
{(

ℑ
{
Ĥ
}

− ℑ {H}
)2
}

. (3.23)

We begin with the calculation of MSEℑ{Ĥ}. By expanding (3.13), we obtain

ℑ
{
Ĥ
}

= f(x, y) ∆= x
y
, where



x =
N∑

i=1
C1iC2i

(
N∑

i=1
C2

3i +
N∑

i=1
C2iC3i

)
−

N∑
i=1

C1iC3i

(
N∑

i=1
C2

2i +
N∑

i=1
C2iC3i

)
,

y = 2j

 N∑
i=1

C2
2i

N∑
i=1

C2
3i −

(
N∑

i=1
C2iC3i

)2.

(3.24)

Eq. (3.24) shows that x and y are the summations of N terms. According to

the Central Limit Theorem [93], x and y are asymptotically complex normal dis-

tributed random variables with expectations µx and µy and variances σ2
x and σ2

y,

respectively.

For the simplicity of MSEℑ{Ĥ} calculation, we approximate ℑ
{
Ĥ
}

as its first

degree Taylor polynomial representation [94] µx

µy
+ x

µy
− µxy

µ2
y

at the point (µx, µy)

(See Lemma 3.2).
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Lemma 3.2. If SNR → ∞, f(x, y) = x
y

equals its first degree Taylor polynomial

approximation at the point (µx, µy), namely,

f(x, y) = µx

µy

+ x

µy

− µxy

µ2
y

.

Proof. See Appendix F.

As proved in Lemma 3.2, under the condition SNR → ∞,

ℑ
{
Ĥ
}

= µx

µy

+ x

µy

− µxy

µ2
y

. (3.25)

After calculating the expectation of (3.25), we obtain the first moment of ℑ
{
Ĥ
}

as,

E
{
ℑ
(
Ĥ
)}

= µx

µy
. (3.26)

The expectations of x and y are calculated from (F.5) and we obtain µx

µy
= ℑ {H}.

That is, E
{
ℑ
(
Ĥ
)}

= ℑ {H}. Similarly, we derive E
{
ℜ
(
Ĥ
)}

= ℜ {H}. There-

fore, E
{
Ĥ
}

= H, which suggests that the LCML channel estimator is unbiased

if SNR → ∞ and this helps to proves the following theorem,

Theorem 3.3. If SNR → ∞, the following channel estimator

Ĥ = argmin
u∈C

1
N

∑N
i=1

(
|ri − us1i|2 − ∥r−us1∥2

N

)2
,

is unbiased.

It has been proved that E
{
ℑ
(
Ĥ
)}

= ℑ {H} on the condition SNR → ∞,

replacing ℑ {H} with E
{
ℑ
(
Ĥ
)}

in (3.23), we obtain MSEℑ{Ĥ} as,

MSEℑ{Ĥ} = E
{[

ℑ
(
Ĥ
)

− E
{
ℑ
(
Ĥ
)}]2}

. (3.27)
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Substituting (3.25) and (3.26) into (3.27), MSEℑ{Ĥ} is expressed as

MSEℑ{Ĥ} = E{x2}
µ2

y
− 2µx

µy

E{xy}
µ2

y
+
(

µx

µy

)2
E{y2}

µ2
y

.

Likewise, we derive MSEℜ{Ĥ} and then obtain the expression of MSEĤ by

analysing the moments of x and y from (F.5),

MSEĤ = σ2

A2N
κ, (3.28)

where

κ = 4A2|G|2(N4−8N3+8N2−4N+1)(σ4+A2|G|2)2

(N2−3N+2)2(|G|2A2+σ2)4 +

2(N−1)(N3−3N2+N−1)(|G|4A4+σ4)(σ4+A2|G|2)2

(N2−3N+2)2(|G|2A2+σ2)4 .

Eq. (3.28) shows κ ∝ 2 + σ2

A2N
and MSEĤ ∝ 2σ2

A2N
, which implies that the LCML

channel estimations approach the true channel parameter values in either high

SNR or large frame length scenario. In the TWRNs, if channel parameter G = 0,

source node T1 could estimate the non-reciprocal channel parameter H without

interference from the source node T2. Based on the received signal r in (3.3) with

G = 0 and its transmitted signal s1, channel parameter H can be estimated as

Ĥopt = rT s∗
1

A2N
. By taking into account of the statistics of s1, the estimation MSE

of Ĥopt is derived as,

MSEĤopt
= σ2

A2N
. (3.29)

With no interference and prior known signal s1, this estimation is optimal. On

the other hand, in the TWRNs with G ̸= 0, the presence of source node T2

causes interference to signal detection at source node T1. Comparing (3.28) with

the optimal estimation (3.29), γ in (3.28) represents the performance penalty
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produced by interference signal s2 and the MSE performance degradation is 50%.

Furthermore, we derive the MSE expression of the LCML algorithm in the case

of BPSK (M = 2) from the closed-form channel estimation (3.20) as

MSEHBP SK
lcml

= σ2

A2N
. (3.30)

3.4 Simulation Results

In this section, we evaluate the performance of the proposed LCML and MLCML

algorithms numerically using Monte Carlo simulations over flat-fading channels.

In the simulations, we employ MPSK signal modulation and assume Pr = P1 =

P2 = P . Power scaling factor K =
√

Pr

P1+P2+σ2
n

and SNR is defined as P
σ2

n
, where

σ2
n denotes the AWGN noise power. All the simulation results are averaged over

100 independent realisations of the channel parameters h1, h2, g1 and g2, which

are modelled as i.i.d in CN (0, 1) and remain fixed during one channel estimation

process.

The commonly adopted Estimation Theoretic Performance Metrics are: Mean

Squared Error (MSE) of channel estimation. The expression for MSE depends on

the specific channel estimation algorithm employed at the receiver. When using

this metric to measure the system performance, the goal of the system designer

is to minimise this metric.

We begin by comparing the MSE performance of the DML and LCML chan-

nel estimator and the theoretical MSE performance derived in Section 3.3.4 is

included as a reference. The MSE performance comparison in different modula-

tion orders is plotted versus SNR for sample size N = 45 in Fig. 3.1, which shows
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the LCML channel estimator noticeably decreases the average MSE by 89.84%

in BPSK and is slightly superior to the DML channel estimator in QPSK and

8-PSK. Actually, there is no performance guarantee for the DML estimator when

the modulation order M=2. This verifies the analytical results that the DML

channel estimator produces infinite number of channel estimates with probabil-

ity 1 when M=2 [60], while the LCML estimator is capable to achieve a unique

estimate in BPSK. However, the MSE performance hits an error floor in the case

of a high SNR as shown in Fig. 3.1.

Fig. 3.2 shows the MSE performance of the DML and LCML channel estimators

versus sample size N for SNR=20 dB. As mentioned before, the DML channel

estimator is invalid in BPSK. In contrast, the LCML channel estimator achieves

an accurate estimation and its MSE performance is improved steadily with in-

creasing sample size in BPSK. In the cases of M≥ 4, the MSE performance of the

DML estimator is improved by the LCML channel estimator, whose MSE perfor-

mance approaches the theoretical MSE, derived in Section 3.3.4, with increasing

N , which verifies Theorem 3.1 that the LCML is consistent.

The MSE performance illustrated in Figs. 3.1 and 3.2 are consistent with the

theoretical analysis in Section 3.3 and MSE analysis in Section 3.3.4. Both of the

figures show, in QPSK and 8-PSK, the MSE performance of the LCML channel

estimator versus SNR or N outperforms that in the case of BPSK. This results

from the fact that the assumption of the proposed algorithm is the modulation

order M → ∞. Obviously, the curves approach the theoretical MSE when M ≥ 4,

which indicates that the estimation is accurate even though the assumption of

M→ ∞ is not satisfied.

In QPSK and 8-PSK, the MSE performance of the LCML channel estimator
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versus SNR or N improves with increasing SNR or N . This verifies Theorem

3.1 and Theorem 3.2 that the proposed LCML channel estimator approaches

the true channel in the case of high SNR or large sample size under the assumption

M → ∞. In high modulation orders, the numerical MSE performance approaches

the theoretical MSE, which verifies the MSE analysis in Section 3.3.4 that the

analytical expression of MSE is inversely proportional to SNR and N .

The MSE performance of the LCML algorithm presents different patterns versus

SNR and N , it improves rapidly with increasing SNR in Figs. 3.1, while, steadily

when N gets larger in Fig. 3.2. The analytical result in (3.28) gives a specific

expression of MSE in terms of SNR and N , which implies MSEĤ ∝ 2
SNR2N

. Both

of the results show the MSE performance is more sensitive to SNR than sample

size N .

The symbol error rate (SER) performance is compared between the LCML and

DML channel estimator in Fig. 3.3. After cancelling the self-interference term

by Ĥ as derived in (3.12) and (3.13), we use only one training symbol to recover

the phase ambiguity according to (3.7). Fig. 3.3 shows that one training sym-

bol is sufficient to achieve a near optimal SER. It has been concluded that the

DML channel estimator offers a better tradeoff between estimation accuracy and

spectral efficiency than the Least-Squares channel estimator [60]. In addition to

a much lower computational complexity than the DML estimator, the proposed

LCML channel estimator remarkably improves the SER performance in BPSK

and in QPSK its SER performance approaches the case with perfect channel state

information.

Regarding the computational complexity, the DML estimator has to rely on the

two-dimensional grid-search algorithm to derive the channel estimation. In con-
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trast, the LCML algorithm proposes a closed-form channel estimator and com-

pletely avoids the grid-search algorithm, so that it significantly reduces the com-

putational complexity.

Therefore, the LCML channel estimator outperforms the DML channel estima-

tor by offering even better tradeoff between accuracy and spectral efficiency, as

well as a much lower computational complexity. Next, we compare the MSE

performance of the MLCML, LCML and MCML channel estimators. Figs. 3.4

and 3.5 show the MSE performance comparison of the three channel estimators

versus SNR for frame length N = 45 and versus N for SNR=20 dB, respectively.

The analytical MSE performance of the MLCML channel estimator is included

as a reference in both figures. The MSE performance of the MLCML channel

estimator improves with increasing SNR or N , as shown in Figs. 3.4 and 3.5.

The MSE performance of the LCML channel estimator is improved significantly

by the MLCML channel estimator, which achieves as good MSE performances as

the MCML estimator. Due to the non-convex optimisation function, the DML

and MCML algorithms have to rely on numerical solutions by using optimisation

tools. In contrast, the LCML and MLCML algorithms are based on a closed-form

channel estimator.

The symbol error rate (SER) performance of the MLCML is shown in Fig. 3.6.

In the proposed algorithms, we use only one training symbol to find ϕ̂g, which

will be applied to resolve the phase ambiguity [16] in the signal demodulation.

Fig. 3.6 shows that one training symbol is sufficient to achieve a near optimal SER.

In the scenarios of time-varying channels, the MSE performance of the proposed

algorithm versus SNR is shown in Fig. 3.7. The Jakes’ channel model [95] is used

to simulate the time-varying channel with the normalised Doppler frequency fdT ,
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where fd is the Doppler shift and T is the input symbol period. In Fig. 3.7, the

channel is static when fdT = 0, which is the channel model assumed in this pa-

per. In the case of time-varying channels, the MSE performance degrades, as the

LCML algorithm is not designed for time-varying channels. However, in the case

where fade rate fdT is 0.0005, the LCML algorithm achieves a similar MSE per-

formance as in the static channel scenario. This demonstrates that the proposed

LCML algorithm is applicable to some slow time-varying channels.
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Figure 3.1: The comparison of MSE performance of the LCML and DML channel
estimator VS. SNR for N=45

3.5 Conclusion

In this chapter, we proposed two low complexity semi-blind channel estimators,

referred to as the low complexity maximum likelihood (LCML) channel estima-

tors and the modified low complexity maximum likelihood (MLCML) channel
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Figure 3.2: The comparison of MSE performance of the LCML and DML channel
estimator VS. N for SNR=20dB

estimator. Both channel estimators employ only one training symbol in each

channel estimation to estimate general non-reciprocal flat-fading channels in AF-

TWRNs. We formulate a convex objective function for the LCML channel esti-

mator, by maximising the log-likelihood function of the received interfered signal.

As a result, the closed-form channel estimate is obtained. To remove the mean

squared error (MSE) performance error floor of the LCML channel estimator,

we proposed the MLCML algorithm by taking into account the modulated signal

structure. The MLCML achieves closed-form channel estimation and better MSE

performance than the LCML channel estimator. The computational complexity

of the LCML and MLCML estimation algorithms are O(N), where N is the frame

length. Theoretical analysis proves that the derived channel estimates approach

the true channels in high SNR or large frame length scenarios. We analysed the

MSE performance theoretically and numerically. Both the analytical MSE ex-
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Figure 3.3: The comparison of SER performance of the LCML and DML channel
estimator VS. SNR for N=20 with 1 training symbol

pression and Monte-Carlo simulations show that the average MSE performance

of the LCML channel estimator improves as either SNR, frame length or modu-

lation order increases. Compared with the DML and MCML channel estimators

in the literature, the LCML and MLCML estimators not only achieve a better

MSE and SER performance, but also significantly reduce the computational load.

However, the perfect synchronisation is assumed in this chapter. As a result, the

channel impairments result from asynchronization are not considered.
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Chapter 4

Joint Synchronisation and

Channel Estimation in

AF-TWRNs

In order to improve the spectral efficiency in the physical (PHY) layer of the open

systems interconnect (OSI) model, the relay schemes are considered in Chapter

3 and the low complexity semi-blind channel estimation algorithms have been

proposed. As the channel estimation algorithm is proposed assuming the per-

fect synchronisation among all the nodes, the channel impairments resulting from

asynchronisation are not considered. In the asynchronous two-way relay networks

(TWRNs), the existence of relative frequency offsets and timing offsets between

signals from two source nodes will make the channel estimation more challenging.

In the literature, many algorithms have been proposed to estimate the channel

in TWRNs assuming perfect synchronisation, while not much attention has been

paid to study the joint synchronisation and channel estimation problem for the

amplify-and-forward TWRNs.

In this chapter, the assumption of perfect synchronisation is relaxed and we
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study the joint synchronisation and channel estimation in amplify-and-forward

two-way relay networks (AF-TWRNs). We develop a generalised low complex-

ity maximum likelihood (GLCML) algorithm to perform channel estimation in

the asynchronous AF-TWRNs, under the assumption that the time offset is as-

sumed as known to both source nodes. To relax the assumption of the GLCML

algorithm, we propose the frame asynchronous channel estimation (FACE) algo-

rithm and the joint synchronisation and channel estimation (JSCE) algorithm.

The FACE algorithm achieves the frame offset estimation and the JSCE algo-

rithm achieves the symbol offset estimation by performing channel estimate and

synchronisation jointly.

4.1 System Model

A typical half-duplex AF-TWRN over quasi-static flat-fading [90] channels is

considered. The system is composed of three nodes, two source nodes T1 and T2

and one relay node R. Each node is equipped with a single antenna. The two

source nodes are out of each other transmission range. The assumption of perfect

synchronisation among all the nodes is relaxed and the joint synchronisation and

channel estimation in the TWRNs will be studied in this chapter. In the scenario

of a frequency selective channel, the proposed channel estimation algorithms can

be applied to estimate channel parameters of different frequency sub-bands indi-

vidually.

Each signal transmission process consists of two time slots. In the first time

slot, the two source nodes T1 and T2 simultaneously transmit signals to the

relay node. The transmitted signals of source nodes T1 and T2 are s1(t) =∑N
i=1 ejw1T is1,if(t − iT ) and s2(t) = ∑N

i=1 ejw2T is2,if(t − iT ), respectively. With-

out loss of generality, both T1 and T2 are assumed to transmit N symbols in a
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frame. f(t) is the time-invariant pulse shaping transmit filter of source nodes T1

and T2. w1 and w2 are the carrier angular frequencies of the transmitters. The

carrier frequency is assumed perfectly synchronised across two source nodes T1

and T2. T is the symbol time interval and j
∆=

√
−1. As MPSK modulation is

employed, we get,

s1,i =


√

P1e
jϕ1i , i = 1, 2, ..., N,

0, else,

s2,i =


√

P2e
jϕ2i , i = 1, 2, ..., N,

0, else,

P1 and P2 are the transmit powers of T1 and T2, respectively. ϕ1i and ϕ2i are

MPSK modulated phases, which are independent and uniformly distributed in

the set SM = {2π(l−1)
M

, l = 1, ..., M}, where M is the modulation order.

During the first time slot, the overall signal received by the relay node is given

by

r(t) = h1s1(t + τ1) + g1s2(t + τ2) + n1(t).

Due to timing asynchrony, there exist timing offsets τ1 and τ2 of source nodes T1

and T2 relative to the relay node R, respectively. As the relay node only amplifies

the received signal, the timing offsets τ1 and τ2 are not needed for synchronisation

or channel estimation. h1 and g1 are complex coefficients of flat-fading channels

T1 → R and T2 → R, respectively. Since non-reciprocal channels are considered

in this paper, the complex channel coefficients of the links R → T1 and R → T2

are denoted as h2 and g2, respectively. Channel coefficients h1, h2, g1 and g2

are modelled as independent and identically distributed (i.i.d) in CN (0, σ2
c ) and

remain fixed during one frame. Here, CN (0, σ2
c ) represents the complex normal

distribution with a zero mean and the variance of σ2
c . n1(t) is a complex additive

white Gaussian noise (AWGN) distributed in CN (0, σ2
n).
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In the second time slot, the relay node amplifies the received signal r(t) and

then broadcasts the amplified signal Ar(t) = Kr(t), where K is the power scaling

factor. To maintain an average power of Pr at the relay node over a long term,

the power scaling factor K =
√

Pr

σ2
c P1+σ2

c P2+σ2
n

[52] is used in this paper, where

Pr denotes the transmit power of R. Here, we assume P1, P2, σ2
c and σ2

n are a

priori known to the relay node R. However, the rough knowledge of P1 and P2

is sufficient to obtain K. In this work, all the estimations are performed at the

source nodes, rather than at the relay node.

Without loss of generality, signal detection at source node T1 is considered. The

received signal at T1 is obtained as,

r1(t) = h2Kr(t) + n2(t).

where n2(t) is AWGN distributed in CN (0, σ2
n).

Assuming perfect frequency synchronisation, there exists a relative timing off-

set between T1 and T2 in the time asynchronous AF-TWRNs as shown in Fig.

In the timing asynchronous system, the structure of the received signal is shown

in Fig. 4.1. The time offset results in different structures in the received signal.

As shown in Fig. 4.1, there is one overlapped part in the received signal, which

consists of signals s1 and s2 from two source nodes. There are two non-overlapped

parts and each one consists of one signal.

Hereafter, we refer the integral timing offset nt as the frame offset and the frac-

tional timing offset τ as the symbol offset. In the case that the frame offset

nt ̸= 0 and the symbol offset τ = 0, the symbols of two signals transmitted by
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Overlapped

Part

Non-overlapped Part 1

Non-overlapped Part 2
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Figure 4.1: The structure of the received signal in the asynchronous system.
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Figure 4.2: The structure of the received signal in the frame asynchronous system.

both source nodes are still aligned, as shown in Fig. 4.2. We refer this case as

the frame asynchronous system. On the other hand, if the symbol offset τ ̸= 0,

the symbols of two signals are not aligned any more, as shown in Fig. 4.3. This

case is referred to as the symbol asynchronous system.

4.2 Channel Estimation in Asynchronous AF-

TWRNs

In this section, we study channel estimation in asynchronous AF-TWRNs, under

the assumption that both source nodes have the knowledge of the relative time

offset. This assumption will be relaxed. We begin by analysing the received

1, 1i
S

+

2,i
S

1,i
S

Figure 4.3: The structure of the received signal in the symbol asynchronous
system.
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signal model at source node T1. Based on the received signal, channel estimation

is performed by utilising the different signal structures, resulted from the time

offset. Then an Estimation Sample Selection Criterion (ESSC) is proposed to

achieve the optimal channel estimation.

4.2.1 Received Signal Model

In this case, nt ̸= 0 and τ ̸= 0. As s1(t) is the self-transmitted signal of T1,

source node T1 can synchronise with s1(t) by cross-correlation method. Under

the assumption that both source nodes know the time offset nt and τ , T1 can syn-

chronise with s2(t) with the knowledge of the time offset. This assumption will be

relaxed in the following. Hence, T1 is able to synchronise with either s1(t) or s2(t).

T1 performs twice samplings to the received signal. Firstly, T1 synchronises with

s1(t) and obtains the non-overlapped samples of s1(t) as

rasync(i) = Hs1,i + Kh2n1,i + n2,i, i = 1, ..., nt. (4.1)

Then T1 synchronises with s2(t) and obtains the overlapped and non-overlapped

samples of s2(t) as,

rasync(i) = H [f1(τ)s1,i + f2(τ)s1,i+1] + Gs2,i−nt + Kh2n1i + n2i,

i = nt + 1, ..., N, (4.2)

rasync(i) = Gs2,i−nt + Kh2n1,i + n2,i, i = N + 1, ..., N + nt. (4.3)

where n1i and n2i are AWGN distributed in CN (0, σ2
n) and the frame length of

the received samples is N + nt. f1(τ) and f2(τ) are the factors resulting from the

symbol offset τ and the use of a matched filter. The values of f1(τ) and f2(τ) are

related to the filter type and symbol offset τ . The analytical expressions of f1(τ)
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and f2(τ) are derived in Appendix G. Eq. (4.2) implies that the timing offsets τ1

and τ2 between source nodes and relay node are not needed for channel estimation.

Based on the received discrete signal samples, T1 needs to demodulate s2. By

inspecting Eqs. (4.1)(4.2)(4.3), it is sufficient for signal demodulation purpose to

estimate f1(τ), f2(τ) and the composite channel parameters H, G and σ2 jointly

in MPSK modulated AF-TWRNs.

4.2.2 Generalised Low Complexity Maximum Likelihood

Channel Estimation Algorithm

Channel estimation is performed at T1 by using N+nt received samples rasync(i), i =

1, ..., N + nt given by Eqs. (4.1)(4.2)(4.3). Let

r ∆= [rasync(1), ..., rasync(N + nt)]T

be the vector of the received signals. The overlapped part is denoted by rN
nt+1 and

the non-overlapped parts of s1(t) and s2(t) are represented by rnt
1 and rN+nt

N+1 , re-

spectively. Due to the timing offset, we can take advantage of different expressions

of the received signal and obtain channel estimations from the non-overlapped and

overlapped signals, respectively.

4.2.2.1 Channel Estimation Based on Non-overlapped and Overlapped

Signals

Based on the non-overlapped signal rnt
1 , channel parameter H can be estimated

by training-based method [58] since s1(t) is known to T1. Therefore, we obtain

the estimation of H as Ĥno,

Ĥno =
∑nt

i=1 rasync(i)s∗
1(i)

Ant

. (4.4)
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Without loss of generality, the amplitude of s1 and s2 are assumed to be equal to

A.

Overlapped samples in Eq.(4.2) can be expressed in vector form as,

rN
nt+1 = H1s1 + Gs2 + H2s3 + n, (4.5)

where H1
∆= f1(τ)H, H2

∆= f2(τ)H, s1
∆= [s1,nt+1, ..., s1,N ]T , s2

∆= [s2,1, ..., s2,N−nt ]
T

and s3
∆= [s1,nt+2, ..., s1,N , 0]T . The noise term n ∆= [nnt+1, ..., nN ]T , where ni =

Kh2n1i + n2i for i = 1, ..., N + nt.

Assuming that s1, s2 and s3 are deterministic unknown vectors, the actual statis-

tics of s1, s2 and s3 are considered in analysing the behaviour of the proposed

algorithm theoretically in Section 3.3. The received vector rN
nt+1 follows a com-

plex Gaussian distribution with the expectation E
{
rN

nt+1

}
= H1s1 + Gs2 +

H2s3 and variance Var
{
rN

nt+1

}
= σ2I. The vector of unknown parameters Θ ∆=

[H1, H2, G, σ2, ϕ2,1, ..., ϕ2,N−nt ]
T can be estimated by maximising the likelihood

function of rN
nt+1,

Pr(rN
nt+1; Θ) = 1

(πσ2)N−nt
exp

−

∥∥∥rN
nt+1 − H1s1 − Gs2 − H2s3

∥∥∥2

σ2

 , (4.6)

which can be simplified as the log likelihood function,

L(rN
nt+1; Θ) = −(N − nt) log (πσ2)

−

∑N

i=nt+1

∣∣∣∣rasync(i)−H1s1,i−H2s1,i+1−A|G|ej(ϕg+ϕ2,i−nt)
∣∣∣∣2

σ2 , (4.7)

where ϕg is the phase of G. Hereafter, Ĥ, Ĥ1, Ĥ2, Ĝ and σ̂ represent the esti-

mated values of H, H1, H2, G and σ, respectively.

65



4.2. Channel Estimation in Asynchronous AF-TWRNs

With the knowledge of n̂t, the log likelihood function (4.7) could be maximised if∣∣∣∣rasync(i) − H1s1,i − H2s1,i+1 − A |G| ej(ϕg+ϕ2,i−nt)
∣∣∣∣, i = nt + 1, ..., N is minimised.

Since
∣∣∣∣rasync(i) − H1s1,i − H2s1,i+1 − A |G| ej(ϕg+ϕ2,i−nt)

∣∣∣∣ represents the Euclidean

Distance between rasync(i)−H1s1,i−H2s1,i+1 and A |G| ej(ϕg+ϕ2,i−nt), the minimum

distance could be achieved, if Eq. (4.8) is met.

∠ {rasync(i) − H1s1,i − H2s1,i+1} = ∠
{

A |G| ej(ϕg+ϕ2,i−nt)
}

,

∀ i = nt + 1, ..., N. (4.8)

However, in general (4.8) does not hold for all samples, as the modulated phases

ϕ1 and ϕ2 ∈ SM and they cannot take continuous values in [0, 2π). In order to

derive a simple expression of |G|, we assume ϕ1 and ϕ2 are continuously valued

in [0, 2π) [60], that is, M→ ∞. Under the condition (4.8), (4.7) is approximated

as,

L(rN
nt+1; Θ) = −(N − nt) log(πσ2)

− 1
σ2
∑N

i=nt+1 (|rasync(i) − H1s1,i − H2s1,i+1| − A |G|)2. (4.9)

By maximising (4.9), Ĝ is estimated as

ˆ|G| = ∥rN
nt+1−H1s1−H2s3∥

A(N−nt) ,

ϕ̂g = ∠∑l−1
i=0 (rasync(i) − H1s1,i − H2s1,i+1) s∗

2,i−nt
, (4.10)

where l is the number of training symbols. As the channel is assumed to be fixed

and flat over one frame, the channel fading and phase shift are the same for each

symbol. In the proposed algorithms, we use only one training symbol to find ϕ̂g,

which will be applied to resolve the phase ambiguity [84] in the signal demodu-

lation. It will be shown in Section 4.5 that one training symbol is sufficient to
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achieve a near optimal symbol error rate (SER).

Substituting (4.10) into (4.9), the log likelihood function reduces to,

L(rN
nt+1; Θ) = −(N − nt) log(πσ2) − 1

σ2
∑N

i=nt+1 Fi(H1, H2), (4.11)

where

Fi(H1, H2)
∆=
(

|rasync(i) − H1s1,i − H2s1,i+1| −
∑N

k=nt+1 |rasync(k) − H1s1,k − H2s1,k+1|
N − nt

)2

.

Since (4.11) is differentiable with respect to σ2, let ∂L(rN
nt+1;Θ)
∂σ2 = 0, σ̂2 is obtained

as,

σ̂2 =
∑N

i=nt+1 Fi(H1, H2)
N − nt

. (4.12)

Substituting (4.12) into (4.11), we obtain

[Ĥ, f̂1(τ), f̂2(τ)] = argmin
α∈C,0<a<1,0<b<1

∑N
i=nt+1 Fi(aα, bα)

N − nt

. (4.13)

Hence, Ĥ1 = f̂1(τ)Ĥ and Ĥ2 = f̂2(τ)Ĥ. Eqs. (4.10) and (4.12) show that Ĝ and

σ̂ depend on [Ĥ1, Ĥ2]. Hence, the estimation of Θ can be obtained as long as

[Ĥ1, Ĥ2] is available.

To achieve channel estimation from the optimisation function (4.13), we make an

approximation by replacing |rasync(i) − H1s1,i − H2s1,i+1| as |rasync(i) − H1s1,i − H2s1,i+1|2.

Then (4.13) is updated as,

[Ĥo, f̂1(τ), f̂2(τ)] = argmin
α∈C,0<a<1,0<b<1

L(rN
nt+1; α, a, b),

L(rN
nt+1; α, a, b) = (4.14)
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1
N−nt

∑N
i=nt+1

(
|rasync(i) − aαs1,i − bαs1,i+1|2 −

∑N

k=nt+1|rasync(k)−aαs1,k−bαs1,k+1|2

N−nt

)2

.

Note that we get another estimation of parameter H, which is denoted as Ĥo.

Then we obtain Ĥ1 = f̂1(τ)Ĥo and Ĥ2 = f̂2(τ)Ĥo.

4.2.2.2 Estimation Sample Selection Criterion

In the asynchronous system, where nt ̸= 0 and τ ̸= 0, we obtain two estimations

of channel parameter H from the overlapped signal as Ĥo and the non-overlapped

signal as Ĥno. The channel estimation Ĥ is selected from Ĥo and Ĥno as the one

with the minimum MSE by the Estimation Sample Selection Criterion (ESSC).

By taking into account the statistics of s1, the estimation MSE of Ĥno is de-

rived as

MSEĤno
= σ2

A2nt

. (4.15)

Under the condition that symbol offset τ = 0, Ĥo = Ĥmlcml (M = 2) and

Ĥo = Ĥlcml (M > 2). Hence, the estimation MSE of Ĥo is approximated as

Eqs.(3.28) and (3.30) in Section 3.3.

Comparing Eq. (4.15) and Eqs.(3.28) and (3.30), we find that the frame length N

and the frame offset nt affect the MSE performance of the two channel estimators.

Let us define ns
∆= N − nt and we get the ESSC,


nt > ns, M = 2,

nt >
n4

s − 5n3
s + 8n2

s − 4ns

2n3
s − 3n2

s + ns − 1
, M > 2.

(4.16)

If the ESSC (4.16) holds, which is equivalent to MSEĤno
< MSEĤo

, then we use

the non-overlapped samples rnt
1 to estimate the channel parameters as Eq.(4.4),
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i.e., Ĥ = Ĥno. Otherwise, the overlapped samples are selected to obtain the

channel estimations by the GLCML algorithm as Ĥ = Ĥo.

4.3 Frame Synchronisation and Channel Esti-

mation in AF-TWRNs

In this section, we study channel estimation in frame asynchronous AF-TWRNs,

where there exist a frame offset between source nodes T1 and T2. In this case,

the frame offset nt ̸= 0 and the symbol offset τ = 0. First, we analyse the

received signal model at source node T1. Based on the received signal, a frame

synchronisation algorithm is proposed in Section to estimate the integral timing

offset, that is, the frame offset nt. Then, we propose the frame asynchronous

channel estimation (FACE) algorithm in Section, which achieves the channel

estimation in the presence of a frame offset.

4.3.1 Received Signal Model

In the frame asynchronous system, the transmitted signals s1(t) and s2(t) are

not aligned due to the frame offset. As a result, there is one overlapped part

and two non-overlapped parts in the received signal as shown in Fig. 4.1. The

overlapped part consists of two signals and the non-overlapped parts consist of

only one signal. However, each symbol of the transmitted signals s1(t) and s2(t)

are aligned, as shown in Fig. 4.2.

As s1(t) is the self-transmitted signal of source node T1, T1 can synchronise

with s1(t) by a cross-correlation method [96] even without the knowledge of the

frame offset. Then it filters r1(t) with a matched filter and samples it every T

period. The frame length of the resulting signal samples is N + nt due to the

frame offset. As T1 does not know nt and 0 < nt < N , T1 gets 2N samples to
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detect the frame offset. The received 2N samples at T1 are

rf (i) =



Kh1h2s1,i + Kh2n1i + n2i, i = 1, ..., nt,

Kh1h2s1,i + Kg1h2s2,i−nt + Kh2n1i + n2i, i = nt + 1, ..., N,

Kg1h2s2,i−nt + Kh2n1i + n2i, i = N + 1, ..., N + nt,

n2i, i = N + nt + 2, ..., 2N.

(4.17)

where n1i and n2i are AWGN distributed in CN (0, σ2
n).

Based on the received discrete signal samples, T1 needs to demodulate s2. Due to

the fact that T1 knows its self-transmitted signal s1(t) and the employed phase

modulation scheme, signal demodulation of s2(t) can be conducted based on the

power scaling factor K and channel coefficients h1, h2, g1 and g2. However, it is

complicated to estimate these unknown variables individually. By inspecting Eq.

(4.17), it is sufficient for signal demodulation purpose to estimate the composite

channel parameters H
∆= Kh1h2, G

∆= Kg1h2 and σ2 ∆=
(
K2 |h2|2 + 1

)
σ2

n jointly

in MPSK modulated AF-TWRNs. The power scaling factor K is not assumed

known to both the source nodes, but estimated jointly with channel coefficients

at both the source nodes.

4.3.2 Frame Synchronisation Algorithm

Based on the received samples in Eq. (4.17), the frame offset is estimated by

the frame synchronisation algorithm. The frame synchronisation algorithm is de-

scribed in Table 4.1.

In Stage 1, the cross correlation of the received sample r1(t) and transmit-

ted signal s1(t) is calculated and s1(t) begins when xcorr(r1(t), s1(t)) defined

in Table 4.1 reaches its maximum. Under the assumption N → ∞, we get
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Max[xcorr(r1(t), s1(t)] = N |H|2A2.

In Stage 2, the total power of every N received samples is denoted as PR de-

fined in Table 4.1. If N → ∞ and SNR → ∞, the curve of PR is drew in Fig 4.4

and its slope is represented as

slope =
[(

|G|2 − |H|2
)

A2, −
(
|G|2 + |H|2

)
A2
]
, (4.18)

where slope(i) denotes the slope of PR at intervals i and represents the rate at

which signal power changes, where i = 1, 2. By analysing the pattern of PR, we

derive the frame offset nt. The beginning of s1(t) has been found in Stage 1,

whose x-coordinate is L1. Without loss of generality, we assume nt > 0 and a is

assumed as the beginning of s1(t). c is defined as the point whose x-coordinate is

c = L1 + N on curve PR. As illustrated in Fig 4.4, among all the points between

a and c on curve PR, the longest distance to the line ac occurs at b that is the

beginning of s2, whose x-coordinate is L2. As a result, b is found by optimising

D(x, y, z), which calculates the distance from the point x to the line yz. We

obtain the frame offset estimation n̂t = L2 − L1.

The asymptotic performance of the frame synchronisation algorithm is analysed

under the condition N → ∞ and SNR → ∞. In Stage 1, detection error occurs

when |H| is sufficiently small so that the maximum cross correlation could not

be differentiated. In Stage 2, we utilise the PR slope differences to locate the

beginning of s2(t). When |G|2 is sufficiently small, there will be no slope dif-

ference between two intervals. Hence, detection error occurs if |G| → 0. Since

H
∆= Kh1h2 and G

∆= Kg1h2, |H| and |G| are i.i.d with the cumulative proba-

bility function F(u) = 1 − e
−u

σ2
c , u > 0. Obviously, the probability that |H| or

|G| is arbitrarily small approaches zero. Therefore, the error probability of frame
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Table 4.1: Frame Synchronisation Algorithm

Stage 1-Locate the beginning of s1

xcorr(r1(t), s1(t))(x) = |
∫∞

−∞ r1(x), s∗
1(t + x)dx|

L1 = argmax
x

xcorr(r1(t), s1(t))(x),

Stage 2-Locate the beginning of s2

PR(i) = ∑N−1
j=0 |rt(i + j)|2f(j + 1),

f(i) = 1, i = 1, ..., N

a = [L1, PR(L1)],

c = [L1 + N, PR(L1 + N)],

b = argmax
ax≤px≤cx

D(p, a, c)

L2 = bx.

21

1
L

2
L

a

b

c

1
L N+

RP

 Symbol Index

Figure 4.4: The Total Power of N Signals.
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synchronisation algorithm approaches zero under the condition of large N and

SNR.

4.3.3 Channel Estimation In Frame Asynchronous Sys-

tems

Based on the estimation of the frame offset n̂t, we propose the frame asynchronous

channel estimation (FACE) algorithm to obtain the estimation of H. In the FACE

algorithm, the channel estimation of H is denoted as Hf .

Channel estimation is performed at T1 by using 2N received samples rf (i), i =

1, ..., 2N given by Eq. (4.17). Let rf
∆= [rf (1), ..., rf (2N)]T be the vector of

the received signals. Here we denote set v ∆= [v1, v2, ..., vn] and subset vj
i

∆=

[vi, vi+1, ..., vj]. The overlapped part is denoted by rf
N
nt+1 and the non-overlapped

parts of s1(t) and s2(t) are represented by rf
nt
1 and rf

N+nt+1
N+1 , respectively. Due

to the frame offset, we can take advantage of different expressions of the received

signal and obtain channel estimations from the non-overlapped and overlapped

signals, respectively.

By using the non-overlapped signal rf
nt
1 , the channel parameter H can be es-

timated in a similar way as Ĥno derived in Eq.(4.4). The overlapped signal rf
N
nt+1

can be employed to generate the other channel estimation of H as derived in

the LCML and MLCML algorithms. As a result, we obtain two estimations of

channel parameter H from the overlapped signal and the non-overlapped signal.

Then the ESSC algorithm is applied to obtain Hf .

If the ESSC (4.16) holds, then we use the non-overlapped samples rf
nt
1 to es-

timate the channel parameters as Eq.(4.4). Otherwise, the overlapped samples

rf
N
nt+1 are selected to obtain the channel estimations by the LCML and MLCML
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algorithms as Eqs.(3.12), (3.13) and (3.20).

4.4 Channel Estimation in Timing Asynchronous

AF-TWRNs

In this section, we study channel estimation in asynchronous AF-TWRNs without

the assumption of perfect timing synchronisation between source nodes T1 and

T2. In this case, the frame offset nt ̸= 0 and the symbol offset τ ̸= 0. The received

signal model at source node T1 is analysed in. Then the joint synchronisation

and channel estimation (JSCE) algorithm is proposed to jointly estimate channel

and the time offset.

4.4.1 Received Signal Model

In the time asynchronous system, the transmitted signals s1(t) and s2(t) are not

frame-aligned as the frame offset nt ̸= 0. In addition, the transmitted signals

s1(t) and s2(t) are not symbol-aligned due to the symbol offset τ ̸= 0, as shown

in Fig. 4.3.

The source node T1 tries to synchronise with its own transmitted signal s1(t) via

the cross-correlation method. It calculates the cross correlation of the received

sample r1(t) and the self-transmitted signal s1(t). Then it filters r1(t) with a

matched filter f
′(t) = f(T − t) and samples it every T period. As the frame

offset nt is estimated by the frame synchronisation algorithm, T1 gets N + nt + 1
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samples to detect the timing offset. The received samples at T1 are

rt(i) =



Hs1,i + Kh2n1i + n2i, i = 1, ..., nt,

Hs1,i + G1s2,i−nt + G2s2,i−nt−1 + Kh2n1i + n2i,

i = nt + 1, ..., N,

G1s2,i−nt + G2s2,i−nt−1 + Kh2n1i + n2i, i = N + 1, ..., N + nt + 1.

where G1 = f1(τ)G and G2 = f2(τ)G. f1(τ) and f2(τ) are the factors resulting

from the symbol offset τ and the use of a matched filter. The values of f1(τ) and

f2(τ) are related to the filter type and symbol offset τ . The analytical expressions

of f1(τ) and f2(τ) are derived in Appendix G. f1(τ), f2(τ) < 1 regardless of the

type of filters (See Appendix G). Eq. (4.19) implies that the timing offsets τ1

and τ2 between source nodes and relay node are not needed for synchronisation

and channel estimation. The received discrete signal vector at T1 is denoted

as rt
∆= [rt(1), ..., rt(N + nt + 1)]T . The overlapped part is denoted by rt

N
nt+1

and the non-overlapped parts of s1 and s2 are represented by rt
nt
1 and rt

N+nt+1
N+1 ,

respectively.

4.4.2 Joint Synchronisation and Channel Estimation Al-

gorithm

Joint synchronisation and channel estimation is performed at T1 by using N +nt+

1 received samples rt(i), i = 1, ..., N +nt +1 given by Eq. (4.19). As G1 = f1(τ)G

and G2 = f2(τ)G, we estimate symbol offset τ as

τ̂ = argmin
0<µ<T

∣∣∣f1(µ)
f2(µ) − Ĝ1

Ĝ2

∣∣∣ . (4.19)
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If s2,1 and s2,N are the pilot symbol known to both the source nodes. We obtain

the estimation of G1 and G2 from (4.19) as

Ĝ1 = (rt(nt + 1) − Hs1,nt+1) s∗
2,1,

Ĝ2 = rt(N + nt + 1)s∗
2,N . (4.20)

Substituting (4.20) into (4.19) yields,

τ̂ = argmin
0<µ<T

∣∣∣∣f1(µ)
f2(µ) − (rt(nt+1)−Hs1,nt+1)s∗

2,1
rt(N+nt+1)s∗

2,N

∣∣∣∣ , (4.21)

which shows that τ̂ depends on the availability of the estimation of H. Note

(4.21) is applicable to any type of filters.

In the case that frame offset nt ̸= 0, the non-overlapped signal rt
nt
1 can be used

to derive one estimation of H as Ĥf . Then τ̂ is obtained from (4.21) based on

Ĥf . On the other hand, in the case that frame offset nt = 0, the symbol asyn-

chronous channel estimation (SACE) algorithm is proposed to estimate channel

H as Eqs.(4.28) and (4.30) based on the overlapped part rt
N
nt+1 of the received

sample. As a result, the fractional timing offset, that is, the symbol offset τ is

obtained from (4.21).

If the frame offset nt = 0, the vector of unknown parameters

Θs
∆=
[
H, σ2, ϕ2,1, ..., ϕ2,N−nt

]

can be estimated by maximizing the log likelihood function of rt
N
nt+1,

L(rt
N
nt+1; Θs) = −(N − nt) log (πσ2)

−
∑N

i=nt+1|rt(i)−Hs1,i−G1s2,i−nt −G2s2,i−nt−1|2

σ2 . (4.22)
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By inspecting (4.22), the estimated parameters that satisfy the following condi-

tion

rt(i) − Hs1,i − G1s2,i−nt − G2s2,i−nt−1 = 0,

for i = nt + 1, ..., N (4.23)

will definitely maximise the log likelihood function (4.22). Based on this fact, we

make some approximations and propose a symbol asynchronous channel estima-

tion (SACE) algorithm.

4.4.2.1 BPSK (M = 2)

The condition (4.23) implies that the estimated parameters also satisfy

(rt(i) − Hs1,i)2 − (G1s2,i−nt + G2s2,i−nt−1)2 = 0

fori = nt + 1, ..., N.

As s2,i = ±1 in BPSK, the log likelihood function (4.22) can be approximated as,

L(rt
N
nt+1; Θs) = −(N − nt) log (πσ2)

−
∑N

i=nt+1

∣∣∣(rt(i)−Hs1,i)2−(G1s2,i−nt +G2s2,i−nt−1)2
∣∣∣2

σ2
s

,

= −(N − nt) log (πσ2)

−
∑N

i=nt+1|(rt(i)−Hs1,i)2−G2
1−G2

2−2G1G2s2,i−nt s2,i−nt−1|2

σ2 . (4.24)

If channel parameters satisfy

(rt(i) − Hs1,i)2 − G2
1 − G2

2 − 2G1G2s2,i−nts2,i−nt−1 = 0,

i = nt + 1, ..., N, (4.25)
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then the approximated log likelihood function (4.24) is maximised. As condition

(4.25) suggests that channel parameters also make

∠
(
(rt(i) − Hs1,i)2 − G2

1 − G2
2

)
= ∠ (2G1G2s2,i−nts2,i−nt−1) .

hold for i = nt + 1, ..., N , we further approximate (4.24) as

L(rt
N
nt+1; Θs) = −(N − nt) log (πσ2)

−
∑N

i=nt+1(|(rt(i)−Hs1,i)2−G2
1−G2

2|−2|G1G2|)2

σ2 . (4.26)

After two steps of approximations, we eliminate unknown signal s2,i from the

objective function. Therefore, the semi-blind channel estimation is made possible

by these approximations. Maximising the above objective function (4.26) in terms

of σ2 yields,

σ̂2
s =

∑N
i=nt+1

(∣∣∣(rt(i) − Hs1,i)2 − G2
1 − G2

2

∣∣∣− 2 |G1G2|
)2

N − nt

. (4.27)

Substituting (4.20) and (4.27) into (4.26), we obtain Ĥs as,

ĤBPSK
s = argmin

α∈C

∑N

i=nt+1 (|(rt(i)−αs1,i)2−Ĝ2
1−Ĝ2

2|−2|Ĝ1Ĝ2|)2

A(N−nt) . (4.28)

4.4.2.2 MPSK(M > 2)

In this section, we propose the SACE algorithm for MPSK, where modulation

order M > 2. The condition (4.23) implies that the estimated parameters also

make ∠ (rt(i) − Hs1,i) −∠ (G1s2,i−nt + G2s2,i−nt−1) = 0 hold for i = nt + 1, ..., N .
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Therefore, (4.22) is approximated as

L(rt
N
nt+1; Θs) = −(N − nt) log (πσ2)

−
∑N

i=nt+1

(
|rt(i)−Hs1,i|2−|G1e

jϕ2,i−nt +G2e
jϕ2,i−nt−1 |2

)2

σ2 .

The condition (4.23) also suggests that the estimated parameters satisfy |rt(i) − Hs1,i|2 =

|G1s2,i−nt + G2s2,i−nt−1|2 for i = nt + 1, ..., N . We make another approximation

|G1s2,i−nt + G2s2,i−nt−1|2 =
∑N

i=nt+1|rt(i)−Hs1,i|2

N−nt
and obtain

L(rt
N
nt+1; Θs) = −(N − nt) log (πσ2)

−

∑N

i=nt+1

(
|rt(i)−Hs1,i|2−

∑N

k=nt+1|rt(k)−Hs1,k|2

N−nt

)2

σ2 . (4.29)

Maximising the approximate objective function (4.29), we get ĤMPSK
s = ℜ{ĤMPSK

s }+

jℑ{ĤMPSK
s }, where ℜ{ĤMPSK

s } and ℑ{ĤMPSK
s } denote real and imaginary parts

of the complex number ĤMPSK
s , respectively.

ℑ{ĤMPSK
s } = CT

1 C2(CT
3 C3+CT

2 C3)
2j

(
CT

2 C2CT
3 C3−(CT

2 C3)2
)

− CT
1 C3(CT

2 C2+CT
2 C3)

2j

(
CT

2 C2CT
3 C3−(CT

2 C3)2
) ,

ℜ{ĤMPSK
s } = jℑ{ĤMPSK} (CT

2 C2−CT
3 C3)

(C2+C3)T (C2+C3)

− CT
1 C2+CT

1 C3
(C2+C3)T (C2+C3) . (4.30)

where



C1
∆= [C1,nt+1, ..., C1,N ]T , C1i = |rt(i)|2 −

∑N
k=nt+1 |rt(k)|2

N − nt

,

C2
∆= [C2,nt+1, ..., C2,N ]T , C2i =

∑N
k=nt+1 s∗

1krt(k)
N − nt

− s∗
1irt(i),

C3
∆= [C3,nt+1, ..., C3,N ]T , C3i =

∑N
k=nt+1 s1kr∗

t (k)
N − nt

− s1ir
∗
t (i), ∀ i = nt + 1, .., N.
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4.5 Simulation Results

In this section, we will evaluate the performance of the proposed GLCML, FACE

and JSCE algorithms numerically by Monte Carlo simulations over flat-fading

channels. In the simulations, we employ MPSK signal modulation and assume

Pr = P1 = P2 = P . The SNR is defined as P
σ2

n
, where σ2

n denotes the AWGN

power. The channel parameters h1, h2, g1 and g2 are modelled as i.i.d in CN (0, 1)

and remain fixed during one frame.

Fig. 4.5 shows the frame synchronisation error in BPSK and QPSK of the FACE

algorithm, which is defined as |n̂t−nt|
nt

, versus nt

N
for SNR=20dB. The synchronisa-

tion performance improves with the frame length N , which confirms the theoreti-

cal result in Section 4.3.2 that the synchronisation error approaches 0 if N → ∞.

As the signal power detection and the cross-correlation method are employed in

the FACE algorithm to determine the frame offset, the FACE algorithm achieves

the same frame synchronisation error performance in the cases of different mod-

ulation orders.

The MSE performance of the GLCML algorithm with timing offset nt = 5 and

nt = 25 for QPSK is shown in Fig. 4.6. When nt = 25, the ESSC (4.16) holds.

Then the non overlapped signal is selected to obtain channel estimation that

gives a better estimation MSE than the overlapped signal. If nt = 5, (4.16)

does not hold any more. Thus the overlapped signal is used to estimate chan-

nel parameters. Fig. 4.6 shows that the GLCML algorithm always selects the

samples producing a channel estimation with the minimum MSE in the timing

asynchronous system.

The MSE performance of the JSCE algorithm for different modulation orders

is plotted versus SNR for frame length N = 45 in Figs. 4.7 and 4.8. For simplic-

80



4.6. Conclusion

ity, the rectangular pulse shaping filter is used. In both cases where the frame

offset nt = 0 and nt ̸= 0, the JSCE algorithm is able to achieve accurate sym-

bol offset estimations. Figs. 4.5, 4.7 and 4.8 show that the JSCE achieves joint

channel and timing offset estimation in the asynchronous system.
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Figure 4.5: The frame synchronization performance of the FACE algorithm VS.
frame offset for SNR=20dB.

4.6 Conclusion

In this chapter, we proposed channel estimation algorithms, which are referred to

as the generalised low complexity maximum likelihood (GLCML) channel estima-

tion, frame asynchronous channel estimation (FACE) and joint synchronisation

and channel estimation (JSCE) algorithms, for channel estimation in AF-TWRNs

without the assumption of perfect synchronisation among all the nodes. In the

presence of a relative time offset between both source nodes, the GLCML al-

gorithm was proposed for channel estimation in the asynchronous TWRNs by
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Figure 4.6: The MSE performance of the GLCML channel estimator VS. SNR
for N=45 in QPSK.

extending the LCML algorithm. The frame offset is estimated by the FACE al-

gorithm and the JSCE algorithm was proposed to estimate the symbol offset and

channel parameters jointly. The numerical results show that the GLCML algo-

rithm achieves channel estimation performance as good as the LCML algorithm

in the presence of the time offset. The FACE and JSCE algorithms are able to

achieve accurate timing offset and channel estimations jointly. The proposed al-

gorithms in this chapter achieve channel estimation and timing synchronisation.

However, the carrier frequency synchronisation is assumed among all the nodes.

Hence, the joint frequency and timing synchronisation and channel estimation

will be performed in the future work.
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Figure 4.7: The MSE performance of the JSCE channel estimator VS. SNR for
N=45 in the case of frame offset nt ̸= 0.
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Figure 4.8: The MSE performance of the JSCE channel estimator VS. SNR for
N=45 in the case of frame offset nt = 0.
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Chapter 5

Contention Resolution Algorithm

To improve the spectral efficiency in the physical (PHY) layer, the relay schemes

has been considered in Chapters 3 and 4. In the media access control (MAC)

layer, the multiple access schemes are employed to allocate limited resources to

improve the spectral efficiency. One of the challenges facing the multiple access

networks is the contention and interference due to multiple transmissions from

multiple nodes, sharing the common communication medium. In this chapter,

we propose a self-adaptive backoff (SAB) algorithm to resolve contention and

mitigate signal interference by adjusting the contention window length in the

contention-based multiple access networks.

To derive the optimal contention window length, given the average local packet

arrival rate and the total number of nodes in the network, the states of the node is

modelled as a discrete-time Markov chain [86] to analyse the network contention.

Firstly, we derive the mathematical relationship of the contention window length,

the number of nodes in the network, the Markov state probability that a node

performs the channel sensing, which is referred as the channel access probability,

and the buffer condition at the nodes. Secondly, we obtain the mathematical

relationship between the average local packet arrival rate, the number of nodes in
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the network and the buffer condition at the nodes based on the queue theory [83].

Based on the derived mathematical relationships, we achieve a mathematical re-

lationship of the channel access probability, the contention window length, the

average local packet arrival rate and the number of nodes in the network. Then

we formulate the system throughput and optimise it with contention window

length as a variable.

5.1 Network Contention Model

The multiple access network considered in this paper has N nodes, contending to

communicate with one access point over a single communication channel, under

the contention-based access mechanism CSMA. The distance from each node to

the access point is assumed the same, the total number of the nodes in the net-

work is assumed known to all the nodes, and all the nodes share the same average

packet arrival rate λ. In this section, we model the network contention between

nodes in CSMA networks by representing them as the Markov state probability

and the Markov transition probability [86].

The state transition of a node is illustrated in the Markov Chain model shown in

Fig. 5.1. The states of a node are denoted by S1, S2,w, S3,l and S4,l. S1 represents

the state when a node is waiting for packets to arrive to its buffer. S2,w represents

the backoff states, where the node counts down from w to 1, and then performs

channel sensing. The backoff time is w and w = 1, 2, ..., W , where W is the con-

tention window length. w is chosen uniformly from [1 W ] with the probability
1

W
. S3,l and S4,l represent the transmission failure state and transmission success

state in time slot l, respectively, where l = 1, 2, ..., L and L is the packet length.

Here, the packet transmission is assumed to take L time slots.
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In the following, the transitions going out of the waiting state S1 are explained.

If there is no new packet arrival and there is currently no packet in the buffer,

the node remains in the waiting state with a transition probability from S1 back

to S1, Pr(S1|S1) = p0 where p0 denotes the probability that there is no packet

in the buffer and no new packet arrival. Otherwise, the state of the node moves

fromS1 to one of the backoff states, S2,w, w = 1, 2, ..., W with a probability of

Pr(S2,w|S1) = 1−p0
W

, as the node choose the backoff time w uniformly from [1 W ]

with the probability 1
W

.

The transitions going out of the backoff state S2,w are explained in the following.

At the backoff state S2,w, the node waits a backoff time w with the probability
1

W
. The backoff counter decreases by one at a time from w to 1 with a probability

of 1. This is represented by a state transition from S2,w to S2,w−1„...,S2,1. Once

w = 1, the node is in state S2,1 and performs channel sensing to detect if the

channel is occupied or not. We refer to the state S2,1 as the channel access state.

If the channel is busy, the node states will move from S2,1 to one of the backoff

states S2,w, w = 1, ..., W with a probability of Pr(S2,w|S2,1) = α
W

where α denotes

the probability that a node senses the channel and finds it busy. If there is no

transmission when the node stays in S2,1 and performs channel sensing, an idle

channel is detected with the probability 1 − α.

The node then starts packet transmissions. We assume that it takes L time

slot to transmit a packet. If the transmission of a node is successful, its state

goes from S2,1 to S4,1, with a probability of Pr(S4,1|S2,1) = (1 − α)(1 − pc),

where S4,1 represents the first time slot of a successful transmission, and pc and

1 − α represent the probability of collision and an idle channel, respectively. The

node then continues to transmit the remaining L − 1 packets. This success-

ful transmission is represented by the transition probability Pr(S4,l|S4,l−1) = 1,
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where l = 2, 3, ..., L. On the other hand, if the transmission of a node collides

with other nodes’ transmissions, its state goes from S2,1 to S3,1, with a prob-

ability of Pr(S3,1|S2,1) = (1 − α)pc, where S3,1 represents the first time slot of

a fail transmission. The node then continues to transmit the remaining L − 1

packets. This L packet transmission loss is represented by transition probability

Pr(S3,l|S3,l−1) = 1, where l = 2, 3, ..., L. This is shown in Fig. 5.1.

After a packet transmissions in L time slots, regardless it is a success or fail-

ure, if the buffer of the node is empty, the node will move to state S1 from S4,L

or S3,L with a probability of Pr(S1|S3,L) = Pr(S1|S4,L) = π0, where π0 repre-

sents the probability that the queue of a node is empty after a packet departure.

Otherwise, if the node buffer is not empty, the state goes from S1 to one of the

backoff states, S2,w and w = 1, ..., W , with a probability of 1−π0
W

as the node

waits a backoff time w with the probability 1
W

and 1 − π0 is the probability of

non-empty buffer after a packet departure.

(1-α)(1-pc)

π0 π0

p0

1
S2,WS2,W-1S2,2S2,1S4,1

S4,L

S3,1 S3,L

S1

1

1

(1-α)pc

0
1 P

W

-
0
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W

p-

0
1
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a

Figure 5.1: Markov Model
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5.2 Network Contention Analysis

In this section, we derive the expression of the state probability in terms of the

contention window length, W , the number of nodes in the system, N , and the

average local packet arrival rate, λ. First, we derive a mathematical relationship

between contention window length, W , the state probability and the transition

probability by using the Markov based contention model developed in the previ-

ous section. Then, we derive the analytical expression for the average service time

per packet, including the duration of transmission, backoff and channel sensing,

according to the Markov chain model in Fig. 5.1. After that, we use the de-

rived average service time and the derived mathematical relationship to derive

an analytical function that relates the network contention model and the traffic

load.

5.2.1 Contention Window Analysis

In this section, we derive the relation of the contention window length, W , the

state probability and the transition probability based on the Markov model.

We define the state probability [86] as bi,j = Pr(Si,j), where i = 1, 2, 3, 4 and

j = 1, 2, ..., Max(W, L). According to the balance equations, which balance the

probability of leaving and entering a state in equilibrium [86], we can write the

following equations,



b1 =b1p0 + (b3,1 + b4,1)π0, balance equation at b1

b2,w =p(W + 1 − w), w = 1, ..., W, balance equation of Backoff States

b3,l =(1 − α)pcb2,1, l = 1, ..., L, balance equation at b3,l

b4,l =(1 − α)(1 − pc)b2,1, l = 1, ..., L, balance equation at b4,l .

(5.1)
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where p = b1(1−p0)+(b3,1+b4,1)(1−π0)+αb2,1
W

. As the total probability of states is equal

to 1, we get

1 = b1 + b2 + b3 + b4. (5.2)

where b2 = ∑W
w=1 b2,w,b3 = ∑L

i=1 b3,i, and b4 = ∑L
j=1 b4,j.

Based on the Markov model, we derive the expressions of the Markov transi-

tion probabilities α and pc in the following, where α denotes the probability that

a node senses the channel and finds it busy and pc represents the probability that

the transmission of the node collides with other nodes’ transmissions. α and pc

also indicate the observed network condition and the actions of other nodes.

As a node performs channel sensing if it stays in state S2,1, the state proba-

bility b2,1 is defined as the channel access probability. We assume all the nodes

share the same channel access probability b2,1, so that the fairness of channel

access among all the nodes in the network can be guaranteed. If the channel is

observed busy by a node, whose probability is denoted as α, there is at least one

transmission in the channel when the node performs the channel sensing. Hence,

we obtain α as

α =
(
1 − (1 − b2,1)N−1

)
(1 − α) . (5.3)

In Eq.(5.3), the term 1− (1 − b2,1)N−1 represents the probability that at least one

of the remaining N − 1 nodes stay in state S2,1 to sense the channel. And the

term 1 − α is the probability that the remaining N − 1 nodes find the channel

is idle. In the network of a large number of nodes, the channel access proba-

bility b2,1 will be very small relative to N . Hence, we make an approximation
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limb2,1→0 (1 − b2,1)N−1 = 1 − (N − 1)b2,1 [78] and obtain α as

α = (N − 1) b2,1

1 + (N − 1) b2,1
. (5.4)

To derive the collision probability, pc, we use the fact that for the collision to

happen, there must be another packet transmission from other nodes. This is

equivalent with the probability of at least one of the remaining N − 1 nodes stay

in the state S2,1 to sense the channel, described in Eq.(5.3).

pc = 1 − (1 − b2,1)N−1 . (5.5)

Eq.(5.5) means that transmission collisions result from the fact that at least two

nodes perform channel sensing simultaneously and meanwhile the channel is idle.

By using the balance equations described in Eqs.(5.1) and (5.2), the probability

of busy channel in Eq.(5.4) and collision probability in Eq.(5.5), we can express

the state probabilities bi,j in terms of p0, π0, α, pc and the contention window

length W as follows,



b1 =(1 − α) π0

1 − p0
b2,1,

b2,1 =Wp, b2 = W + 1
2

b2,1,

b3,l =(1 − α)pcb2,1, b3 =
Lb2,1

(
1 − (1 − b2,1)N−1

)
1 + (N − 1) b2,1

, l = 1, 2, ..., L,

b4,l =(1 − α)(1 − pc)b2,1, b4 = Lb2,1(1 − b2,1)N−1

1 + (N − 1) b2,1
, l = 1, 2, ..., L.

(5.6)

Based on Eq.(5.6), the mathematical relationship between contention window

length W , the number of nodes N , the probability that the buffer of the node is

empty after a packet transmission and due to no new packet arrival, represented
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by ρ0 and p0, respectively, is given as follows,

(
π0

1 − p0
+ L

)
1

1 + (N − 1) b2,1
+ W + 1

2
− 1

b2,1
= 0. (5.7)

5.2.2 Service Time Analysis

The traffic load is defined as ρ
∆= λE [tservice], which represents the number of

packets arriving during the average service time. Here λ represents the average

local packet arrival rate and the service time tservice is the instant service time

per packet, including backoff, channel sensing and packets transmission durations.

E [tservice] is the average service time per packet, including the duration of trans-

mission, backoff and channel sensing. Here E[x] is defined as the expectation of

the random variable x. In this section, the average service time E [tservice] is de-

rived according to the Markov chain model in Fig. 5.1. As a packet transmission

is either successful or failure, the transmission duration is assumed fixed. There-

fore, the channel sensing and backoff duration mainly affect the service time of a

packet, which is closely related to the contention window length W .

The instant service time per packet is expressed as

tservice = ti + tx,

where ti denotes the instant transmission duration and tx is the instant backoff

and sensing duration. The expressions of E [ti] and E [tx] will be derived in the

following.
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5.2.2.1 Average Transmission Time E [ti]

To analyse ti, we denote ts and tf as the duration of a successful transmission

and a failed transmission, respectively and obtain

ti =


ts, Pr(ti = ts) = b4,

tf , Pr(ti = tf ) = b3.

Therefore, ti follows the Bernoulli distribution [97] and the average duration of a

transmission is

E [ti] = b4ts + b3tf . (5.8)

5.2.2.2 Average Backoff and Sensing Time E [tx]

As tx includes the backoff duration, denoted as tbackoff and sensing duration,

denoted as tcs, we get,

tx = tbackoff + tcs.

For simplicity, it is assumed that the node starts a new backoff process if it senses

busy channel with probability α, until it senses an idle channel with probability

1 − α. Hence, the probability mass function (PMF) [97] of x is

fx
∆= (1 − α)αx−1, x = 1, ..., ∞. (5.9)

Hence, E[x] = ∑∞
x=1 fxx.

If the node performs x times backoff before it transmits the packet, then tbackoff =

wix. wi is the backoff duration, following uniform distribution [97] U[1, W ], where

U denotes the uniform distribution. Hence, E[wi] = W +1
2 . As the number of back-

off process does not affect the each backoff duration, the instant backoff duration

93



5.2. Network Contention Analysis

wi and the number of backoff x are independent variables,

E[tbackoff ] = E[wi]E[x].

The total duration of channel sense is tcs = σcsx, where σcs is the channel sensing

duration, which is a constant.

E[tcs] = E[x]σcs.

As tx = tbackoff + tcs,

E[tx] = E[tbackoff ] + E[tcs].

As the result, the average duration for channel sensing and backoff per transmis-

sion is

E [tx] =
∞∑

x=1
fxσcsx +

∞∑
x=1

fx
(W + 1)x

2
(5.10)

Substituting Eq.(5.9) into Eq.(5.10), we get

E [tx] = ∑∞
x=1(1 − α)αx−1σcsx +∑∞

x=1(1 − α)αx−1 (W +1)x
2 .

According to the property of the geometric progression, we get

k∑
x=1

αx−1x = 1 − (k + 1)αk + kαk+1

(1 − α)2 . (5.11)

Therefore,

E [tx] =
σcs + W +1

2
1 − α

. (5.12)
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5.2.2.3 Average Service Time E [tservice]

As the service time tservice = ti + tx, and E [ti] and E [tx] are derived in Eqs.(5.8)

and (5.12), respectively. The average service time per packet can be obtained as

E [tservice] = E [ti] + E [tx], we obtain,

E [tservice] = E [ti] + E [tx]

= b4ts + b3tf + σcs+ W +1
2

1−α
.

Here ts and tf are assumed equal to L, hence we get,

E [tservice] = b4L + b3L + σcs+ W +1
2

1−α
. (5.13)

Substituting α in Eq.(5.4), b3 and b4 in Eqs.(5.6) into Eq.(5.13), E [tservice] can

be expressed in terms of b2,1 as,

E [tservice] = b2,1L
2

1 + (N − 1) b2,1
+
(

σcs + W + 1
2

)
(1 + (N − 1) b2,1) . (5.14)

5.2.3 Joint Traffic Load and Contention Window Analysis

In Eq.(5.7), the transition probabilities Pr(S1|S3,1) = Pr(S1|S4,1) = π0 and

Pr(S1|S1) = p0 depend on the number of packets in the buffer of the node,

which is affected by the average local packet arrival rate and the local buffer size.

In the following, the relation of π0, p0 and the average local packet arrival rate λ,

which follows any distribution, is analysed under the assumption that the buffer

size K of the node is sufficiently large, that is, K = ∞.

To analyse the traffic load, we define pk as the probability that there are k packets

in the queue of a node at any arbitrary time, where k = 0, 1, ..., K and the buffer

size K = ∞, and πk as the probability that there are k packets in the queue
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of a node after a packet departure, where k = 0, 1, ..., K − 1 and the buffer size

K = ∞. E [tservice] is the average service time per packet, including the duration

of transmission, backoff and channel sensing.

When ρ > 1, the packet service time, E [tservice], is smaller the packet arrivals.

Under this condition, as defined in [83], the buffer will never be empty and thus

the probability that the buffer of the node is empty after a packet transmission

is 0, π0 = 0. The mathematical relationship in (5.7) can then be simplified as,

L

1 + (N − 1) b2,1
+ W + 1

2
− 1

b2,1
= 0. (5.15)

In the case that the traffic load ρ ≤ 1, the traffic queue of the node is stable and

will not be infinitely long. The probability that there are k packets in the buffer

of the node is

(1 − pK)ρ = 1 − (1 − pK)π0, (5.16)

where n = 0, 1, ..., K and pK is the blocking probability, due to the fact that ar-

rival packets are dropped if buffer size reaches to K. As the buffer size is assumed

as K = ∞, the blocking probability pK = 0 and we get π0 = 1 − ρ.

As both pk and πk describe the probability that there are k packets in the buffer.

However, the observation durations of pk and πk are different. The observation

duration of pk is arbitrary and that of πk is a specific time slot. Hence, the ob-

servation duration of πk is a part of that of pk. Therefore, pk is proportional to

πk and we get

pk = (1 − pK)πk, k = 0, 1, ..., K − 1 (5.17)
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In Eq.(5.17), pk (the probability that there are always k packets in the queue)

equals to πk (there are always k packets after a packet departure), under the

condition that the buffer size is not full (1 − pK), which means that the arriv-

ing packets are allowed to go into the queue. Eq.(5.17) indicates that under the

assumption of an infinite buffer size, the probability pk that there are k pack-

ets in the queue of a node at any arbitrary time slot is equal to the probability

that there are k packets in the queue of a node after a packet departure, that is,

pk = πk for k = 0, 1, ..., K − 1, if pK = 0.

Consequently, we obtain p0 = π0 = 1 − ρ and Eq. (5.7) is updated as follows in

the case of ρ ≤ 1

(
1 − λE [tservice]

λE [tservice]
+ L

)
1

1 + (N − 1) b2,1
+ W + 1

2
− 1

b2,1
= 0. (5.18)

The relation of the channel access probability b2,1, the number of nodes in the

network N , the average local packet arrival rate λ, the average packet service

time tservice the contention window length W has been derived in Eq.(5.15). The

average packet service time tservice is expressed in Eq.(5.14). Hence, only N and

λ are known variables.

5.3 Self-Adaptive Backoff Algorithm

In this section, we formulate the system throughput as the optimisation function

and use it to achieve the optimal contention window length W . As the successful

transmission probability is b4 derived in Eq.(5.6), the actual data transmitted suc-

cessfully is b4L during the average service time E [tservice] derived in Eq. (5.14).

Hence, the system throughput is defined as the ratio of successful actual trans-
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Table 5.1: SAB Algorithm
Input λ, N ,
Assume ρ > 1
1. Derive W1 according to Eqs.(5.15) and (5.20),
2. Calculate E [tservice] according to (5.14).

if λ > 1
E[tservice]

The assumption ρ > 1 holds, Wopt = W1.
else

Derive W2 according to Eqs.(5.18) and (5.20)
end

Output Wopt.

missions over the transmission duration as follows

S(b2,1, W ) = Nb4L

E [tservice]
= b2,1(1 − b2,1)N−1L2

b2,1L2 +
(
σcs + W +1

2

)
(1 + (N − 1) b2,1)2 . (5.19)

Based on the relation of W , N , λ and b2,1 derived in Eqs.(5.15) and (5.18), the

optimal contention window length can be derived by optimising the objective

function in Eq.(5.19) and is obtained as

Wopt = argmax
W ∈N

S(b2,1, W ). (5.20)

To solve the system of equations (5.15), (5.18) and (5.20), the optimisation tool,

like, the grid search, is employed to obtain the numerical solution W . The self-

adaptive backoff (SAB) algorithm is summarised in Table 5.1. Firstly, we make an

assumption that ρ > 1 and derive the contention window length W1 according to

Eqs.(5.15) and (5.20). Secondly, E [tservice] can be obtained according to (5.14)

as W1 and b2,1 are known. Then, we need to verify the assumption ρ > 1. If

λ > 1
E[tservice] , the assumption holds and the optimal contention window length

Wopt = W1. Otherwise, another contention window value W2 is derived according

to Eqs.(5.18) and (5.20) and Wopt = W2.
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5.4 Performance Evaluation

In order to evaluate the performance of the proposed SAB algorithm, we com-

pare the proposed self-adaptive backoff algorithm with the binary exponential

backoff (BEB) algorithm [73] and the average contention window (Avg CW) al-

gorithm proposed in [78]. The performances are compared in terms of the system

throughput, the collision rate and the energy consumption overhead. The sys-

tem throughput is defined as the percentage of successful transmissions out of

all transmissions, which is normalised in all figures. The collision rate is defined

as the ratio of the number of failed packet transmissions to the total number of

packet transmissions. The energy consumption overhead is the ratio of the en-

ergy consumed for channel sensing and transmission failures to the total energy

consumption.

5.4.1 Simulation Environment

The backoff algorithm is simulated in MATLAB based on the CSMA mechanism.

The simulation parameters are set as follows. The data size L is 100 Bytes and

the data rate is 250Kbps. Time is slotted and a unit time slot σ is defined as

0.32ms. The average channel sensing duration σcs = 2σ.

5.4.2 Simulation Results

The system throughput is compared between the BEB, the Avg CW and the

proposed SAB algorithms in Figs. 5.2 and 5.3. Fig. 5.2 shows the throughput

comparison of three algorithms versus data rate per node for N = 20. The

throughput performance of the BEB algorithm increases to 60% and then de-

creases with the increasing traffic load. In contrast, the throughput performance

of the Avg CW and SAB algorithms increase with the traffic arrival rate. The Avg

CW algorithm achieves 61% system throughput in the case of 250Kbps arrival
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rate, while, the SAB algorithm achieves 65% system throughput.

Fig. 5.3 shows the throughput comparison versus the number of nodes for data

rate 250Kbps. The results in Fig. 5.3 show that the throughput of BEB degrades

significantly with an increasing number of nodes. In contrast, the Avg CW and

SAB algorithm achieve a stable throughput of 61% and 68%, respectively, even

in a large network of 40 nodes. According to the backoff algorithm, the node

performs packet transmissions when the channel is probably available, which

contributes to 7% and 11% system throughput improvement compared with the

Avg CW algorithm proposed in [78] in Fig. 5.2 and 5.3, respectively. Figs. 5.2 and

5.3 show that the system throughput of both algorithms increase with the packet

arrival rate per node and the number of nodes in the network. This results from

the fact that the contention for channel resources becomes a serious issue when

the traffic load is high. In a network with a high traffic load, the ability of back-

off algorithms to resolve contention is more significant to the system performance.

The collision rate performances of three algorithms are compared in Fig. 5.4.

The collision rate of BEB reaches 85% in the network of 40 nodes, which indi-

cates its inability to provide reliable transmissions. The collision rates of the Avg

CW algorithm reaches 30% in the network of 40 nodes. On the other hand, the

proposed algorithm achieves a lower collision rate of 19%. This 37% collision

reduction compared with [78] is because individual nodes can dynamically adjust

contention window lengths based on the channel congestion status. A node takes

action backoff when the channel is likely to be occupied, which results in a sig-

nificant collision reduction.

Fig. 5.5 shows that for a network of 40 nodes, the BEB algorithm and the Avg

CW algorithm in [78] consume nearly 88% and 36% energy for channel sensing.
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Compared with the Avg CW, the proposed algorithm consumes only 18% energy

for channel sensing. The 50% energy saving as compared to [78] will result in

a longer battery life of sensor nodes. The reason leading to a large amount of

energy reduction is that the node remains silent when it detects a high channel

congestion.

In comparison with the BEB and Avg CW algorithms, the proposed algorithm

performs a significant collision rate reduction and energy saving. The perfor-

mance evaluation demonstrates that the proposed algorithm is capable to support

reliable and real-time communications in the contention-based multiple access

networks.
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Figure 5.2: System Throughput Comparison of the BEB, Avg CW and SAB
algorithms plotted vs. Arrival Rate λ for N = 20

5.5 Conclusion

In this chapter, we proposed a self-adaptive backoff algorithm for the random

access networks, where the contention window (CW) length is dynamically ad-
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Figure 5.3: Throughput Comparison of the BEB, Avg CW and SAB algorithms
plotted vs. the number of node N for λ = 250Kbps
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Figure 5.4: Collision Rate Comparison of the BEB, Avg CW and SAB algorithms
plotted vs. the number of node N

justed by each node and adapted to channel congestion conditions. We derived

a probabilistic analytical expression of the optimal channel access probability of

each node, based on the criteria of maximising the system throughput and min-

imising collisions. The optimal channel access probability is then used to derive

the expression for the CW length adapted to real-time measurements of channel
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Figure 5.5: Energy Consumption Overhead Comparison of the BEB, Avg CW
and SAB algorithms plotted vs. the number of node N

congestion conditions. Performance comparison with the Avg CW algorithm pro-

posed in [78] shows that the proposed algorithm significantly reduces the collision

rate by 37% and the energy consumption by 50%, when the number of nodes is 40,

while achieving an 11% higher throughput than [78]. The proposed self-adaptive

backoff algorithm can be used in any contention-based multiple access networks,

such as, ZigBee, WiFi and WiMax.
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Chapter 6

Conclusions

This thesis has investigated the methods that are capable to improve the spec-

tral efficiency for wireless communication networks. In particular, relay schemes,

employed in the physical (PHY) layer of the open systems interconnect (OSI)

model, and multiple access schemes, applied in the media access control (MAC)

layer of the OSI model, are considered.

In the physical layer, the channel estimation issue was investigated in the two-way

relay networks (TWRNs) under the assumption of the perfect synchronisation.

The main challenge is to design a low complexity channel estimation algorithm,

which is also independent of training symbols. Hence, we proposed two low com-

plexity semi-blind channel estimation algorithms by deriving convex maximum

likelihood estimation functions. To relax the assumption of the perfect synchroni-

sation in the channel estimation for TWRNs, we explored the channel estimation

and synchronisation issues in the asynchronous two-way relay networks, where

there are timing offsets between nodes. The challenge is to jointly estimate chan-

nel coefficients and timing offsets. We proposed the frame asynchronous channel

estimation (FACE) and the joint synchronisation and channel estimation (JSCE)

algorithms to detect channel parameters, frame offsets and symbol offsets jointly.
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In the media access control layer, the backoff algorithm is investigated to re-

solve contention in the multiple access networks. The challenge here is to adjust

the contention window length according to the average local packet arrival rate

and the channel congestion. We proposed a self-adaptive backoff (SAB) algorithm

that achieves the optimal contention window length that maximise the system

throughput by considering the number of nodes, the local packet arrival rate and

the channel congestion condition.

In Chapter 3 of the thesis, we proposed two low complexity semi-blind chan-

nel estimation algorithms, referred to as the low complexity maximum likelihood

(LCML) estimator and the modified low complexity maximum likelihood (ML-

CML) estimator. Both channel estimators use only one training symbol in each

channel estimation to estimate general non-reciprocal flat-fading channels in AF-

TWRNs. We proposed the LCML algorithm with a convex optimisation function

that produces a closed-form channel estimator. By taking into account the modu-

lation structure, the MLCML channel estimation algorithm with the closed-form

channel estimation is proposed to further improved the MSE performance of the

LCML algorithm in BPSK. In the case of a high SNR, the LCML and MLCML

channel estimation algorithms approach the real channel parameter values with

the probability of 1 −
(

2
M

)N−1
(M − 1) and 1 − 1

MN−1 , respectively, where M is

the modulation order and N denotes the frame length of signals. Additionally,

the LCML channel estimator is proved to be consistent and unbiased [85]. The

closed-form MSE expressions of the LCML and MLCML channel estimator with

respect to the SNR and N are derived as, MSE ∝ 2
SNR N

and MSE ∝ 1
SNR N

,

respectively. Both the analytical MSE expression and Monte-Carlo simulations

show that the average MSE performance of the proposed channel estimators im-

prove as either SNR, frame length of signals or modulation order increases. In
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[60], a deterministic maximum likelihood (DML) channel estimator and a modi-

fied constrained maximum likelihood (MCML) estimator are proposed for semi-

blind channel estimation in the synchronous AF-TWRNs. Due to the non-convex

optimisation functions for channel estimation, the DML and MCML algorithms

have to rely on numerical solutions by using optimisation tools. As closed-form

channel estimation is achieved by the LCML and MLCML algorithms, the com-

putational complexity of the LCML and MLCML estimation algorithms is O(N),

where N is the frame length of signals. In addition, the LCML channel estimator

noticeably decreases the average MSE of the DML channel estimator by 89.84%

in BPSK. Compared with the DML and MCML channel estimators in the liter-

ature, the LCML and MLCML estimators not only achieve a better MSE and

SER performance, but also significantly reduce the computational load. However,

the perfect synchronisation is assumed in this chapter. As a result, the channel

impairments result from asynchronization are not considered.

In Chapter 4 of the thesis, the assumption of the perfect synchronisation is relaxed

and the channel impairments result from asynchronization are considered. We

considered the joint synchronisation and channel estimation in the asynchronous

AF-TWRNs and proposed algorithms to estimate the timing offsets and channel

parameters jointly. In the asynchronous AF-TWRNs, we developed a generalised

low complexity maximum likelihood (GLCML) algorithm to perform channel es-

timation in the presence of a timing offset. The optimal channel estimation is

achieved in GLCML algorithm based on the MSE expressions derived in Chap-

ter 3. Then a joint synchronisation and channel estimation (JSCE) algorithm

is proposed to estimate the timing offset. We firstly proposed a sub-algorithm

to achieve frame synchronisation, referred to as the frame asynchronous channel

estimation (FACE) algorithm, to estimate the frame offset by energy detection

and the cross correlation of the received and transmitted signals. The analy-
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sis shows that the error probability of the FACE algorithm approaches zero in

a large frame length scenario. After frame boundaries are determined by the

FACE algorithm, we proposed a sub-algorithm, named the symbol asynchronous

channel estimation (SACE) algorithm, to estimate the symbol offset (fractional

timing offset). In addition, the SACE algorithm achieves joint symbol synchro-

nisation and channel estimation. In the GLCML and JSCE algorithms, only few

training symbols are needed per estimation and low computational complexity

is achieve by the closed-form solutions. Monte-Carlo simulation results demon-

strate that the GLCML algorithm always select the optimal channel estimation

in the cases of varying timing offsets and the JSCE algorithm is able to achieve

accurate timing offset estimations. Compared with the best known channel es-

timation algorithm for TWRNs, the modified constrained maximum likelihood

(MCML) estimator in [60], the proposed GLCML and JSCE algorithm are ca-

pable to achieve a similar MSE performance of channel parameter estimation in

the presence of the timing offset. Different from the MCML algorithm, which de-

pend on optimisation tools to derive channel estimation, the GLCML and JSCE

algorithm derive the closed-form channel estimation. Thus, the computational

complexity of the MCML algorithm is reduced. Moreover, the timing offset and

channel parameters can be jointly estimated for the AF-TWRNs in the proposed

GLCML and JSCE algorithms. The proposed algorithms in this chapter achieve

channel estimation and timing synchronisation. However, the carrier frequency

synchronisation is assumed among all the nodes. Hence, the joint frequency and

timing synchronisation and channel estimation will be studied in the future work.

In Chapter 5, we propose a self-adaptive backoff (SAB) algorithm to resolve con-

tention in the contention-based multiple access networks. We model the states

of a node as a discrete-time Markov chain [86] and use the queue theory [83] to

analyse the traffic load. The contention window length expression is obtained
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given the average local packet arrival rate and the total number of nodes in the

network and provides specific directions on the CW length adjustment. As the

average local packet arrival rate is considered, the assumption that all the nodes

always have packets to transmit is relaxed in the proposed algorithm. Based on

the derived contention window length expression, the system throughput is for-

mulated as the optimisation function with the contention window length as the

variable. Compared with the algorithm proposed in [78], the proposed algorithm

significantly reduces the collision rate by 37% and the energy consumption by

50%, when the number of nodes is 40, while achieving an 11% higher through-

put than [78]. The proposed self-adaptive backoff algorithm can be used in any

contention-based multiple access networks, such as, ZigBee, WiFi and WiMax.
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Appendix A

In this appendix, we will derive V(v), which is the variance of |zi(v)|2 as stated

in (C.1). |zi(v)|2 could be expanded as,

|zi(v)|2 = A2 |v|2 + A2 |G|2 + vG∗s1is
∗
2i + v∗Gs∗

1is2i

+ |ni|2 + (vs1i + Gs2i) n∗
i + (v∗s∗

1i + G∗s∗
2i) ni. (A.1)

Firstly, assuming that s1i and s2i are deterministic, the conditional expectation

and variance [98] of |zi(v)|2 are obtained as,

E
{
|zi(v)|2 | (s1i, s2i)

}
= (A.2)

A2 |v|2 + A2 |G|2 + vG∗s1is
∗
2i + v∗Gs∗

1is2i + |h2|2σ2
n + σ2

n,

Var
{
|zi(v)|2 | (s1i, s2i)

}
=

E
{
|zi(v)|4 | (s1i, s2i)

}
− E

{
|zi(v)|2 | (s1i, s2i)

}2

= 2 (K2|h2|2σ2
n + σ2

n)(
A2 |v|2 + A2 |G|2 + vG∗s1is

∗
2i + v∗Gs∗

1is2i

)
.

According to The Total Law of Variance [98],

V ar
{
|zi(v)|2

}
= E

{
Var

{
|zi(v)|2 | (s1i, s2i)

}}
+Var

{
E
{
|zi(v)|2 | (s1i, s2i)

}}
,
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E
{
V ar

{
|zi(v)|2 | (s1i, s2i)

}}
= 2 (K2|h2|2σ2

n + σ2
n)
(
A2 |v|2 + A2 |G|2

)
,

Var
{
E
{
|zi(v)|2 | (s1i, s2i)

}}
= E

{
E
{
|zi(v)|2 | (s1i, s2i)

}2
}

− E
{
E
{
|zi(v)|2 | (s1i, s2i)

}}2

= 2A4 |v|2 |G|2 .

Expand V(v) with respect to (ℜ{v}, ℑ{v}), we get

V(v) = 2A2 |G|2 (K2|h2|2σ2
n + σ2

n)

+2A2
(
K2A2|h2|2σ2

n + A2 |G|2 + σ2
n

)
|v|2 , (A.3)

where |v|2 = (ℜ{v}2 + ℑ{v}2) and (ℜ{v}, ℑ{v}) ∈ R2.
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Appendix B

Lemma B.1. Assume H and G both belong to compact set Ω, then VN(v) con-

verges uniformly to V(v) as N → ∞.

Proof. We use the Uniform Law of Large Numbers (Lemma B.2) [92] to prove

Lemma B.1. Let g(xi, θ) be a function of the parameter θ ∈ Ω and a sequence

of i.i.d random variables xi ∈ C, i = 1, ..., N , we have Lemma B.2 as follows,

Lemma B.2. Suppose for all xi, (a) g(xi, θ) is continuous at each θ ∈ Ω with

probability one, (b) g(xi, θ) is dominated by a function D(xi) for all θ ∈ Ω, i.e.

|g(xi, θ)| ≤ D(xi), ∀θ ∈ Ω, and (c) E {D(xi)} < ∞, then 1
N

∑N
i=1 g(xi, θ) converges

uniformly to E {g(xi, θ)} when N → ∞: supθ∈Ω

∣∣∣ 1
N

∑N
i=1 g(xi, θ) − E {g(xi, θ)}

∣∣∣
p→ 0, N → ∞.

First of all, we will prove that Lemma B.2 is applicable to |zi(v)|2. Since

zi(v) ∆= vs1i + Gs2i + ni, i = 1, ..., N and |zi(v)|2 is derived in Appendix A,

|zi(v)|2 = A2 |v|2 + A2 |G|2 + vG∗s1is
∗
2i + v∗Gs∗

1is2i

+ |ni|2 + vs1in
∗
i + Gs2in

∗
i + v∗s∗

1ini + G∗s∗
2ini.

|zi(v)|2 is a function of fixed parameters v and G, and i.i.d random variables s1i,

s2i and ni. Define vector z ∆= [A2 |v|2 , A2 |G|2 , vG∗s1is
∗
2i, v∗Gs∗

1is2i, |ni|2 , vs1in
∗
i ,

Gs2in
∗
i , v∗s∗

1ini, G∗s∗
2ini]. Note Lemma B.2 can be extended to multivariate

cases with multiple fixed parameters and random variables [60]. Condition (a)
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is met, as |zi(v)|2 is continuous at each v, G ∈ Ω with probability one. Us-

ing the triangle inequality [85], we obtain |zi(v)|2 ≤ (|vs1i| + |Gs2i| + |ni|)2. As

|H| , |G| < ξ is assumed in condition 1.1, |zi(v)|2 ≤ 4A2ξ2 + |ni|2 + 4Aξ |ni|,

then condition (b) is satisfied. Define d(ni)
∆= 4A2ξ2 + |ni|2 + 4Aξ |ni|, we

get E {d(ni)} = 4A2ξ2 + (K2|h2|2 + 1)σ2
n +

√
2σ2

n(K2|h2|2+1)
π

. Since channel co-

efficient h2 and noise power σn are bounded, E {d(ni)} < ∞ and condition

(c) is met. Therefore, Lemma B.2 can be applied to |zi(v)|2 to prove that

supv∈Ω

∣∣∣ 1
N

∑N
i=1 |zi(v)|2 − E

{
|zi(v)|2

}∣∣∣ p→ 0 as N → ∞.

It has been proved that the sample mean 1
N

∑N
i=1 |zi(v)|2 converges uniformly

to the expectation E
{
|zi(v)|2

}
as N → ∞. If we define random i.i.d gi(v) ∆=(

|zi(v)|2 −
∑N

k=1|zk(v)|2

N

)2
, i = 1, ..., N , then gi(v) converges uniformly to g

′
i(s1i, s2i, ni; v, G) =(

|zi(v)|2 − E{|zk(v)|2}
)2

. Here, g
′
i(s1i, s2i, ni; v, G) is a function of parameters v

and G, and random variables s1i, s2i and ni. Next we will validate that Lemma

B.2 can be applied to g
′
i(s1i, s2i, ni; v, G). By inspection, g

′
i(s1i, s2i, ni; v, G) is

continuous at each v, G ∈ Ω with probability one, hence, condition (a) is met.

Using triangle inequality, we get the dominant function of
∣∣∣g′

i(s1i, s2i, ni; v, G)
∣∣∣

from (A.1) (See Appendix A),

∣∣∣g′
i(s1i, s2i, ni; v, G)

∣∣∣ = |vG∗s1is
∗
2i + v∗Gs∗

1is2i + |ni|2

+ (vs1i + Gs2i) n∗
i + (v∗s∗

1i + G∗s∗
2i) ni − K2|h2|2σ2

n − σ2
n|2,

≤ (|vG∗s1is
∗
2i| + |v∗Gs∗

1is2i| + |ni|2 + |(vs1i + Gs2i) n∗
i |

+ |(v∗s∗
1i + G∗s∗

2i) ni| + K2|h2|2σ2
n + σ2

n)2,

<
(
2A2ξ2 + |ni|2 + 4Aξ |ni| + K2ξ2σ2

n + σ2
n

)2
.

Define D(ni)
∆=
(
2A2ξ2 + |ni|2 + 4Aξ |ni| + K2ξ2σ2

n + σ2
n

)2
, condition (b) is met.

Since noise power σ2 = (K2|h2|2 + 1)σ2
n and |h2| < ξ, E {D(ni)} < ∞ and condi-

tion (c) is met. As a result, we obtain
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supv∈Ω

∣∣∣ 1
N

∑N
i=1 g

′
i(s1i, s2i, ni; v, G) − E

{
g

′
i(s1i, s2i, ni; v, G)

}∣∣∣ p→ 0 as N → ∞.

The conclusion that supv∈Ω

∣∣∣ 1
N

∑N
i=1 |zi(v)|2 − E

{
|zi(v)|2

}∣∣∣ p→ 0 as N → ∞ im-

plies that VN(v) (3.22) converges uniformly to 1
N

∑N
i=1 g

′
i(s1i, s2i, ni; v, G). Since

V (v) = E
{
g

′
i(s1i, s2i, ni; v, G)

}
and it has been proved that 1

N

∑N
i=1 g

′
i(s1i, s2i, ni; v, G)

converges uniformly to E
{
g

′
i(s1i, s2i, ni; v, G)

}
as N → ∞, therefore, VN(v) con-

verges uniformly to V (v) as N → ∞.
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Appendix C

Lemma C.1. V(v) has a unique global minimum with respect to v occurring at

vo = 0.

Proof. To demonstrate condition 1.3, we will prove that v = 0 is a local minimum

of V(v) first (See Lemma C.2) and then the convexity of V(v) (See Lemma

C.3).

Lemma C.2. v = 0 is a local minimum of V(v).

Proof. Expanding V(v) and we obtain (See Appendix A ),

V(ℜ{v}, ℑ{v}) = 2A2 |G|2 (|h2|2σ2
n + σ2

n) +

2A2
(
A2|h2|2σ2

n + A2 |G|2 + σ2
n

)
(ℜ{v}2 + ℑ{v}2) . (C.1)

with (ℜ{v}, ℑ{v}) ∈ R2 where R denotes real number field. The first partial

derivative [85] of V(v) is

∂V
∂ℜ{v} = 4A2

(
A2|h2|2σ2

n + A2 |G|2 + σ2
n

)
ℜ{v},

∂V
∂ℑ{v} = 4A2

(
A2|h2|2σ2

n + A2 |G|2 + σ2
n

)
ℑ{v}.

which are equal to 0 at the critical point (0, 0), that is, v = 0 is a local extrema.

According to the Second Partial Derivative Test [85], the second derivative test
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discriminant is

∇2V(v) =

∣∣∣∣∣∣∣∣∣∣
∂2V

∂ℜ{v}2
∂V

∂ℜ{v}∂ℑ{v}
∂V

∂ℜ{v}∂ℑ{v}
∂2V

∂ℑ{v}2

∣∣∣∣∣∣∣∣∣∣
,

where the second partial derivatives of V(v) are,

∂V
∂ℜ{v}∂ℑ{v} = 0,

∂2V
∂ℜ{v}2 = ∂2V

∂ℑ{v}2 = 4A2
(
A2|h2|2σ2

n + A2 |G|2 + σ2
n

)
.

Then we get ∇2V(v) = 16A4
(
A2|h2|2σ2

n + A2 |G|2 + σ2
n

)2
> 0 and ∂2V

∂ℜ{v}2 > 0 at

v = 0. Hence, the local extrema v = 0 is a local minimum of V(v).

Then, we will prove this local minimum is also the global minimum of V(v)

by demonstrating the convexity of V(v) according to Lemma C.3 [62].

Lemma C.3. Define domV as the domain of V , then V (v) is convex if and only

if domV is convex and its Hessian is positive semidefinite: for all v ∈ domV ,

∇2V (v) ≥ 0.

It has been proved in Lemma C.2 that ∇2V > 0 for all (ℜ{v}, ℑ{v}) ∈ R2.

Since domV = R2 is convex, V(v) is a convex function according to Lemma C.3.

For a convex function, its local minimum is also the global minimum, therefore,

the local minimum point v = 0 is the global minimum of V(v). We complete the

proof based on Lemma C.2 and Lemma C.3.
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Appendix D

Theorem 3.1.

Proof. Regarding condition 1.1, there are no upper bounds on H and G, strictly

speaking, if we treat h1, h2, g1 and g2 as ideal complex Gaussian random variables.

However, we can always choose a sufficiently large ξ such that Pr(|H| , |G| < ξ) =

1 − ϵ , where ϵ can be made arbitrarily small. Therefore, condition 1.1 can

be satisfied by assuming that the amplitude of channel coefficients h1, h2, g1

and g2 are bounded. Conditions 1.2 and 1.3 have been proved in Lemma B.1

(See Appendix B) and Lemma C.1 (See Appendix C), respectively. Since

Conditions [1.1, 1.2, 1.3] are satisfied, Theorem 3.1 holds.
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Appendix E

Theorem 3.2.

Proof. For simplicity, we define the estimation error v2
∆= H − ĤBPSK

lcml . Then

(3.19) is expressed as,

F BPSK
sync (v2) = 1

N

∑N
i=1

∣∣∣∣z2
i (v2) −

∑N

k=1 z2
k(v2)

N

∣∣∣∣2 ,

= 1
N

∑N
i=1

(
ℜ {z2

i (v2)} −
∑N

k=1 ℜ{z2
k(v2)}

N

)2

+ 1
N

∑N
i=1

(
ℑ {z2

i (v2)} −
∑N

k=1 ℑ{z2
k(v2)}

N

)2
, (E.1)

where zi(v2)
∆= v2s1i + Gs2i + ni, i = 1, ..., N . (E.1) represents the sum of sample

variance of the real and imaginary parts of random variable z2
i (v2). zi(v2) in

(E.1) is approximated as zi(v2) = v2s1i + Gs2i, i = 1, ..., N as SNR → ∞. As

s1i, s2i = ±1 in BPSK, we obtain

z2
i (v2) = v2

2 + G2 + 2v2Gs1is2i,

ℜ {z2
i (v2)} = ℜ {v2

2 + G2} + 2ℜ {v2G} cos (ϕ1i + ϕ2i) , (E.2)

ℑ {z2
i (v2)} = ℑ {v2

2 + G2} + 2ℑ {v2G} cos (ϕ1i + ϕ2i) . (E.3)

Since the objective function (E.1) is the sum of the sample variance of ℜ {z2
i (v2)}

and ℑ {z2
i (v2)}, it is obvious that F BPSK

sync (v2) ≥ 0 with equality if and only if the

terms z2
i (v2), i = 1, ..., N are all equal. This is equivalent to either of the following
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two conditions given G ̸= 0,



Condition 1:v2 = 0, Condition 2: xi = xj,

xi = cos (ϕ1i + ϕ2i) , xj = cos (ϕ1j + ϕ2j) ,

where i ̸= j and i, j = 1, ..., N.

(E.4)

Condition 1 indicates that there is a unique global minimum of the objective

function at v2 = 0, that is, ĤBPSK
lcml = H. While, on the other hand, there are

infinite number of global minimum if Condition 2 holds. In BPSK, xi, xj = ±1

as ϕ1i, ϕ2i = [0, π]. As a result, Pr(Condition 2) = 1
2N−1 . The probability that

there exists an unique global minimum of the objective function (E.1) conditioned

on SNR → ∞ is 1 − 1
2N−1 ,
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Appendix F

In the following, we will validate Lemma 3.2 by proving ℑ
{
Ĥ
}

equals its Taylor

series expansion T (x, y) if either SNR or N → ∞ (See Lemma F.1) at first and

then demonstrating T (x, y) = µx

µy
+ x

µy
− µxy

µ2
y

if SNR → ∞ (See Lemma F.2).

Since the multivariate function f (x, y) = x
y

where (x, y) ∈ C2 is k+1 times

continuously differentiable at the point (µx, µy) ∈ C2, its Taylor series expansion

at the point (µx, µy) is expressed as,

T (x, y) = ∑k
nx+ny=0

∂nx+ny f(µx,µy)
∂xnx ∂yny

(x−µx)nx (y−µy)ny

nx!ny !

+ ∑
n

′
x+n

′
y=k+1 Rn

′
x+n

′
y
(x, y)(x − µx)n

′
x(y − µy)n

′
y ,

where nx, ny, n
′
x, n

′
y ∈ N and Rk+1(x, y) is the remainder of kth degree Taylor

polynomial approximation [94].

Lemma F.1. The Taylor series expansion T (x, y) about the point (µx, µy) is

equal to f(x, y) = x
y

for (x, y) ∈ C2, if and only if either SNR or frame length

N → ∞.

Proof. Since f(x, y) = x
y

is infinitely differentiable at the point (µx, µy), its Taylor

series expansion is summed up as

T (x, y) = lim
k→∞

x

y

1 −
(

1 − y

µy

)k
 ,
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which shows if |y − µy| < |µy| holds, then T (x, y) = f(x, y). Next, we will prove

that Pr (|y − µy| < |µy|) = 1, if either SNR or N → ∞.

As y is a complex normal distributed variable in CN (µy, σ2
y), where

µy = −j2A4(A2|G|2 + σ2)2(N2 − 3N + 2)
N2 ,

σ2
y = 8A7σ(A2|G|2 + σ2)4(N2 − 3N + 2)2

|G|4N5
, (F.1)

according to its cumulative distribution function (CDF), we get,

Pr (|y − µy| < |µy|) = erf
(

|µy|√
2σ2

y

)
, (F.2)

where erf(x) denotes the error function [84]. Substituting (F.1) into (F.2), we

obtain Pr (|y − µy| < |µy|) = erf
(

|G|2
2

√
AN
σ

)
. The values of error function state

that if |G|2
2

√
AN
σ

→ ∞, then Pr (|y − µy| < |µy|) = 1, which implies that Taylor

series expansion T (x, y) equals the function f(x, y) for (x, y) ∈ C2 in either high

SNR or large frame length scenario.

Actually, there is no need to meet the strict requirement of |G|2
2

√
AN
σ

→ ∞.

As long as |G|2
2

√
AN
σ

is not too small, T (x, y) = f(x, y) holds. For example,

erf
(

|G|2
2

√
AN
σ

)
= 0.9953 when |G|2

2

√
AN
σ

= 2. In practical applications, it is pos-

sible to adjust SNR or frame length N , in order to satisfy the condition for

Pr (|y − µy| < |µy|) = 1.

Lemma F.2. If SNR → ∞, the Taylor series T (x, y) equals its first degree Taylor

polynomial approximation at the point (µx, µy), namely,

T (x, y) = µx

µy

+ x

µy

− µxy

µ2
y

. (F.3)

Proof. Expand T (x, y) to its first order Taylor polynomial approximation, we get,
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T (x, y) = µx

µy
+ x

µy
− µxy

µ2
y

+ R2(x, y).

where R2(x, y) is the remainder [94]. According to Taylor’s theorem for multi-

variate functions [94], the upper bound of the remainder Rk+1(x, y) is

|Rk+1(x, y)| ≤ max
n′

x+n′
y=k+1

max
(x,y)∈R2

k+1
n′

x!n′
y!

∣∣∣∣∣∂k+1f(x,y)

∂xn
′
x ∂y

n
′
y

∣∣∣∣∣ ,
(F.4)

where Rk+1(x, y) represents the remainder of the kth degree Taylor polynomial

approximation. (F.4) indicates that the upper bound of |Rk+1(x, y)| is related to

the maximum norm of the k + 1th partial derivative of f(x, y). As we expand

Taylor series T (x, y) to its first order, k = 1 in this case. Calculate the second

order partial derivative of f(x, y) and we obtain the upper bound of the remainder

|R2(x, y)|,

|R2(x, y)|up = max
{∣∣∣∣∣2x

y3

∣∣∣∣∣ ,
∣∣∣∣∣ 2
y2

∣∣∣∣∣
}

.

Expanding x and y from (3.13) and approximating x and y under the condition

of SNR → ∞ yields,

x = −2j|G|4ℑ{H} ∗

 A8 − 2A4

N2 sT
2 s∗

1s
T
1 s∗

2 − (sT
2 )2

. (s∗
1)2

. (sT
1 )2

. (s∗
2)2

.
N2

+(sT
2 )2

. (s∗
1)2

. (sT
1 s∗

2)2

N3 + (sT
1 )2

. (s∗
2)2

. (sT
2 s∗

1)2

N3

 ,

y = −2j|G|4 ∗

 A8 − 2A4

N2 sT
2 s∗

1s
T
1 s∗

2 − (sT
2 )2

. (s∗
1)2

. (sT
1 )2

. (s∗
2)2

.
N2

+(sT
2 )2

. (s∗
1)2

. (sT
1 s∗

2)2

N3 + (sT
1 )2

. (s∗
2)2

. (sT
2 s∗

1)2

N3

 (F.5)

Here we define s2
.

∆= [s2
1, s2

2, ..., s2
N ], in which s = [s1, s2, ..., sN ]. (F.5) shows

121



|R2(x, y)|up ∝ 1
|y|2 , which approaches 0 as SNR → ∞. Then, we conclude that

T (x, y) = µx

µy
+ x

µy
− µxy

µ2
y

if SNR → ∞.
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Appendix G

As frequency is perfect synchronised between both source nodes, source node T1

down converts the received signal to the baseband signal

r(t) = H
∑N

i=nt+1 s1,if(t − iT − τ)

+G
∑N

i=nt+1 s2,if(t − iT ) + Kh2n1(t) + n2(t), (G.1)

where H = Kh1h2 and G = Kg1h2. As T1 is able to synchronize with s2(t), it

filters the baseband signal with a matched filter f ′(t) = f(T −t) and then samples

it every T period to get,

rasync(i) = H [f1(τ)s1,i + f2(τ)s1,i+1]

+Gs2,i−nt + Kh2n1i + n2i, i = nt + 1, ..., N. (G.2)

where f1(τ) and f2(τ) are the factors resulting from the symbol offset τ and the

use of a matched filter. f1(τ) and f2(τ) are estimated together with H by the

GLCML algorithm.

In the following, we will show the derivation from (G.1) to (G.2) step by step

and conclude that the values of f1(τ) and f2(τ) are related to the filter type and

symbol offset τ . In addition, it is proved that f1(τ), f2(τ) < 1 regardless of the

filter type.
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As different type of filters do not affect the noise part in the received samples, we

consider the noise free signal is received by T1 for simplicity.

r(t) = H
N∑

i=nt+1
s1,if(t − iT − τ) + G

N∑
i=nt+1

s2,if(t − iT ).

Let r(t) pass through the matched filter f ′(t), we obtain

r′(t) = r(t) ∗ f ′(t) =
(
H
∑N

i=nt+1 s1,if(t − iT − τ)
)

∗ f ′(t)

+
(
G
∑N

i=nt+1 s2,if(t − iT )
)

∗ f ′(t)

= H
∫∞

−∞

(∑N
i=nt+1 s1,if(µ − iT − τ)

)
f ′(t − µ)dµ

+G
∫∞

−∞

(∑N
i=nt+1 s2,if(µ − iT )

)
f ′(t − µ)dµ

= H
∫∞

−∞

(
N∑

i=1
s1,if(µ − iT − τ)

)
f(T − t + µ)dµ

+G
∫∞

−∞

(
N∑

i=1
s2,if(µ − iT )

)
f(T − t + µ)dµ

= H
N∑

i=nt+1

(
s1,i

∫∞
−∞ f(µ − iT − τ)f(µ + T − t)dµ

)
+G

N∑
i=nt+1

(
s2,i

∫∞
−∞ f(µ − iT )f(µ + T − t)dµ

)
.

Define x
∆= µ + T − t, r′(t) is updated as

r′(t) = H
N∑

i=nt+1

(
s1,i

∫∞
−∞ f(x)f (x − (i + 1) T + t − τ)dx

)
+G

N∑
i=nt+1

(
s1,i

∫∞
−∞ f(x)f (x − (i + 1) T + t)dx

)
.

Note that there exist auto-correlation terms of f(x) in (G.3), we denote the auto-

correlation of f(x) as R(∆x) =
∫∞

−∞ f(x)f (x + ∆x)dx and obtain,

r′(t) = H
∑N

i=nt+1 R(t − (i + 1) T − τ)s1,i

+G
∑N

i=nt+1 R(t − (i + 1) T )s2,i.
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Then sampling the signal every T period yields,

rasync(i) = R(τ)Hs1,i + R(T − τ)Hs1,i−1 + Gs2,i,

i = nt + 1, ..., N.

Hence, f1(τ) = R(τ) and f2(τ) = R(T − τ), whose values are related to the

filter type and symbol offset τ . As the normalized value of R(∆x) has the fol-

lowing property that R(∆x) = 1 if ∆x = 0,otherwise R(∆x) < 1. Therefore,

f1(τ), f2(τ) < 1. In the case of rectangle pulse shaping filters, f1(τ) = T −τ
T

and

f2(τ) = τ
T

.
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