1,821 research outputs found

    Building an IDE for the Calculational Derivation of Imperative Programs

    Full text link
    In this paper, we describe an IDE called CAPS (Calculational Assistant for Programming from Specifications) for the interactive, calculational derivation of imperative programs. In building CAPS, our aim has been to make the IDE accessible to non-experts while retaining the overall flavor of the pen-and-paper calculational style. We discuss the overall architecture of the CAPS system, the main features of the IDE, the GUI design, and the trade-offs involved.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Alloy meets the algebra of programming: a case study

    Get PDF
    Relational algebra offers to software engineering the same degree of conciseness and calculational power as linear algebra in other engineering disciplines. Binary relations play the role of matrices with similar emphasis on multiplication and transposition. This matches with Alloy’s lemma “everything is a relation” and with the relational basis of the Algebra of Programming (AoP). Altogether, it provides a simple and coherent approach to checking and calculating programs from abstract models. In this paper, we put Alloy and the Algebra of Programming together in a case study originating from the Verifiable File System mini-challenge put forward by Joshi and Holzmann: verifying the refinement of an abstract file store model into a journaled (FLASH) data model catering to wear leveling and recovery from power loss. Our approach relies on diagrams to graphically express typed assertions. It interweaves model checking (in Alloy) with calculational proofs in a way which offers the best of both worlds. This provides ample evidence of the positive impact in software verification of Alloy’s focus on relations, complemented by induction-free proofs about data structures such as stores and lists.Fundação para a Ciência e a Tecnologia (FCT
    corecore