
Alloy Meets the Algebra of Programming: A Case Study

J.N. Oliveira
M.A. Ferreira

Ref. [OF13] — 2013

J.N. Oliveira, M.A. Ferreira. Alloy meets the algebra of programming: A case study. IEEE Transactions on

Software Engineering, 39(3):305–326, 2013.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55624863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Alloy Meets the Algebra of Programming:
A Case Study

José N. Oliveira and Miguel A. Ferreira, Member, IEEE

Abstract—Relational algebra offers to software engineering the same degree of conciseness and calculational power as linear algebra

in other engineering disciplines. Binary relations play the role of matrices with similar emphasis on multiplication and transposition. This

matches with Alloy’s lemma “everything is a relation” and with the relational basis of the Algebra of Programming (AoP). Altogether, it

provides a simple and coherent approach to checking and calculating programs from abstract models. In this paper, we put Alloy and

the Algebra of Programming together in a case study originating from the Verifiable File System mini-challenge put forward by Joshi

and Holzmann: verifying the refinement of an abstract file store model into a journaled (FLASH) data model catering to wear leveling

and recovery from power loss. Our approach relies on diagrams to graphically express typed assertions. It interweaves model

checking (in Alloy) with calculational proofs in a way which offers the best of both worlds. This provides ample evidence of the positive

impact in software verification of Alloy’s focus on relations, complemented by induction-free proofs about data structures such as

stores and lists.

Index Terms—Model checking, algebra of programming, software verification, grand challenges in computing

Ç

1 INTRODUCTION

THIS paper is concerned with a major topic in software
engineering: that of designing correct programs in the

first place. Let us begin by inquiring into the phrase software
engineering itself. The terminology seems to date from the
Garmisch NATO conference in 1968, from whose report [1]
the following excerpt is quoted:

In late 1967, the Study Group recommended the holding of a
working conference on Software Engineering. The phrase “soft-
ware engineering” was deliberately chosen as being provocative, in
implying the need for software manufacture to be based on the
types of theoretical foundations and practical disciplines, that are
traditional in the established branches of engineering.

Provocative or not, the need for sound theoretical

foundations has clearly been of concern since the very
beginning of the discipline. However, how “scientific” do
such foundations turn out to be, now that four decades have

since elapsed?
Many took the provocation seriously and embarked on

researching formal methods for developing code from formal

specifications. However, in a recent paper [2], David Parnas
questions suchmethods,whichhe regards as still unfit for the
software industry:

We must learn to use mathematics in software development, but we
need to question, and be prepared to discard, most of the methods
that we have been discussing and promoting for all these years.

At the core of Parnas objections lies the contrast between
the current ad hoc (re)invention of burdening mathematical
notation and elegant concepts which are neglected, often for
cultural reasons or (lack of) background.

The question is: What is it that tells “good” and “bad”
methods apart? As Parnas writes, there is a disturbing gap
between software development and traditional engineering dis-
ciplines. In such disciplines one finds a successful, well-
established mathematical background essentially made of
calculus, linear algebra, and probability theory.

Central to engineering mathematics is the construction of
sets of simultaneous equations asmodels of physical systems
(e.g., circuits, etc.):

a11x1 þ a12x2 þ a1mxm ¼ b1;

..

. ..
. ..

.

an1x1 þ an2x2 þ anmxm ¼ bn;

8
><
>:

ð1Þ

that is, formulæ of the form

8i : 1 � i � n :
Xm

j¼1

aijxj ¼ bi: ð2Þ

The maturity of traditional engineering mathematics can
be appreciated from the fact that such (often very large) sets
of equations do not intimidate engineers, thanks to the
matrix and vector concepts: Grouping all coefficients aij of
(1) in a matrix A, variables xj in a vector X, and values bi in
a vector B, (1) becomes

A �X ¼ B;

where operator ð�Þ denotes matrix multiplication. Backhouse
[3] writes: “In this way a set of equations has been reduced to a
single equation. This is a tremendous improvement in concision
that does not incur any loss of precision!”

Thus, notation scales up and quantity does not disturb
quality. Another sign of maturity arises from the use of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013 1

. J.N. Oliveira is with the High-Assurance Software Laboratory (HASLab)/
INESC TEC, Departamento de Informática, University of Minho, Campus
de Gualtar, Braga 4710-057, Portugal. E-mail: jno@di.uminho.pt.

. M.A. Ferreira is with the Software Improvement Group, Rembrandt Tower,
15th Floor, Amstelplein 1, 1096 HA Amsterdam, The Netherlands.
E-mail: m.ferreira@sig.eu.

Manuscript received 23 Feb. 2011; revised 29 Dec. 2011; accepted 21 Jan.
2012; published online 17 Feb. 2012.
Recommended for acceptance by M. Chechik.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2011-02-0055.
Digital Object Identifier no. 10.1109/TSE.2012.15.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

mathematical transformations, such as the Laplace trans-

form [4], which changes the “mathematical space” so as to

convert “difficult” sets of equations (e.g., differential) into

“easy” ones (e.g., polynomial), whose solutions are mapped

back to the original problem domain by the converse

transform. Once again, complexity is controlled via effective

mathematical techniques.
One may wonder about parallels to these techniques in

formal methods for software design in their use of formal

logics. Do such logics scale up to very large sets of clauses

issued by proof obligation (PO) generators, for instance? Is

there a linear algebra for logic and set theory? Is there a logic

equivalent to a matrix?
While the answer to the first question is poorly!, those to

the other questions are affirmative: yes, there are! Quoting [2]

once again:

There is an alternative. Some researchers have been studying the
use of relational methods in computer science; (. . .) the well-
known laws of relational algebra can serve as the axiomatic basis
for programming. The axioms of relational algebra are simple and
universal. This approach seems to have been neglected by most
mainline researchers in the area of formal methods.

Binary relations are Boolean matrices, thus providing a

straight parallel with linear algebra. And the relational

composition of two relationsR and S, usually denoted by the

same multiplicative term R � S, provides another one. In set

theory, this relational operator is defined indirectly as

follows, assuming the set-of-pairs understanding of binary

relations: Pair ðb; cÞ is in R � S iff there exist one or more

mediating a such that ðb; aÞ 2 R and ða; cÞ 2 S.
If we look at one of the first definitions of this combinator,

due to Charles Peirce (1839-1914) and explained in [5], we

realize that it computes inner products like those of (2),where

multiplication (restricted to 0s and 1s) captures logical

conjunction and addition (respectively, summation) captures

disjunction (respectively, existential quantification), if

clipped at 1. Thereafter, relation union R [S is nothing but

index-wise Boolean matrix addition and distributive laws

R � ðS [T Þ ¼ ðR � SÞ [ðR � T Þ; ð3Þ

ðS [T Þ �R ¼ ðS �RÞ [ðT � RÞ ð4Þ

arise from the bilinearity of the underlying matrix algebra.
In his recent book on relational mathematics [6], Gunther

Schmidt makes extensive use of matrix notation, concepts

and operations in relation algebra. An account of thework on

calculational reasoning about regular and Kleene algebras of

matrices can be found in [3]. The close relationship between

categories of matrices and relations is implicit in the

allegorial setting of Freyd and �S�cedrov [7]: Essentially,

matrices whose data values are taken from locales (e.g., the

Boolean algebra of truth values) are the morphisms of the

corresponding allegory (e.g., that of binary relations).
The application of this allegorial view of relational algebra

to the synthesis of algorithms has led to a new discipline,
called Algebra of Programming (AoP), which has reached
textbook format in [8]. This textbook provides ample
evidence of the usefulness of relation-algebra-based reason-
ing in algorithm design.

Influenced by this effectiveness, we (and others) have
reported success in its application to other areas of the
software sciences, namely, software components [9], coalge-
braic reasoning [10], algorithmic refinement [11], data model
refinement and relational database design [12], separation
logic [13], extended static checking (ESC) [14], and data
dependency theory [15].

The main purpose of this paper is to show the application
of relational calculation to software verification. A case study
is presented which can be framed in the challenge put
forward by Joshi andHolzmann [16] on developing a reliable
FLASH file-system for in-flight software. The challenge has
been widely tackled in the literature (see Sections 6 and 10).
We ourselves have addressed it before, from two rather
different angles: a tool-intensive approach based on a
verification life-cycle supported by a tool-chain combining
several off-the-shelf technologies [17] and a minimalist one
[14] in which only one such tool—Alloy [18]—is kept,
blending nicely with AoP calculation.

The current paper follows the latter approach and
illustrates a simple, but effective methodology for software
design from abstract models which is currently adopted and
taught at Minho University, at the postgraduate level. It
combines the pragmatism of Alloy’s often-called lightweight
approach to formal methods [18] with AoP calculation [8],
providing formal proofs of those desirable properties of the
design which “survive” the model-checking phase, using
the Alloy tool.

In this way, the best of both worlds is met: model-
checking filters wrong intuitions and careless errors, upon
which AoP gets into the play and completes the certification
of the design, “by calculation.”

Paper structure. We start by briefly introducing binary
relations as a device for thinking about software (Section 2),
leading to an introduction to the AoP (Section 3), and to
Alloy (Section 4). Preparing for the paper’s case study, a
brief account of verification theory is given in Section 5.

Section 6 introduces the VFS mini-challenge and Section 7
focuses on the paper’s case study: a relational model of a
journaled FLASH store. The link from the abstract level to the
refined (journaled) level is presented in Section 8, including
data type invariants and the correctness of the operation that
deletes items from the file store. Section 9 gives the last touch
in the journaling mechanism by introducing in-device
caching to increase fault-recovery performance. The reader
less interested in details of the refinement case study may
want to skip Sections 8 and 9 on first reading.

Sections 10 and 12 give a review of related and future
work, respectively. An account of advantages and limita-
tions of the proposed strategy is given in Section 11.
Appendix A.1 lists auxiliary Alloy functions. Standard facts
of relation algebra and proofs of side-stream results are
deferred to in Appendices A.2 and A.3, respectively.

The target audience is assumed to be aware of abstract
modeling and verification techniques.

2 THINKING RELATIONALLY

2.1 Relational Ubiquity

It is hard to find a text where the word “relation” does not
turn up, and even harder to find one in which no particular

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

relationship can be found implicit in its semantics, recorded

in natural language. Sentences such as “John is the father of

Mary,” “Mary speaks English,” for instance, express typed

relationships among objects: fatherhood between people,

tongue between people and languages, etc.
Relational sentences like the above have been absorbed

by mathematical notation a long time ago, for instance in
writing 1 � 0 as an abbreviation of “1 is at least 0” and 3 ¼
1þ 2 instead of “3 is the successor of 2.” These examples
show that infix notation is the natural way to write relational
facts. In general, notation b R a (where b and a are objects
and R is the relationship) is far better than the set-theory-
biased ðb; aÞ 2 R. And this carries over to the passive voice,
captured by the converse of R, to be denoted R�, which is
such that a R�b means exactly the same as b R a. For
instance, speaks� ¼ is spoken by. In the parallel with linear
algebra, converse corresponds to matrix transposition.

The close binding of relational notation to language
structure can be further observed in the use of definite article
“the” in R ¼ ðis the father ofÞ. This means that, if known,
one’s father is unique. Relations with this property are
referred to as simple and satisfy property

R �R� � id; ð5Þ

where ð�Þ denotes relation composition (already introduced
above), id is the identity relation (that is, y id x means
y ¼ x), and � denotes relational inclusion:

R � S � 8 b; a : b R a) b S a: ð6Þ

2.2 Functions

Definite articles are also implicit in the way one under-
stands facts such as 3 ¼ 1þ 2 above, where the equality sign
expresses the determinism of relation successor of. To stress
this, one may even define succ n �4 1þ n and write
3 ¼ succ 2. Note that the equality sign only makes sense
because relation succ is simple (deterministic) and defined for
all its arguments. The property of a relation R being defined
for all its inputs is captured by

id � R� �R; ð7Þ

in which case we say that R is entire.1

Functions are relations which are simple and entire at the
same time. Following common practice, functions will be
denoted by lower case letters (e.g., f , g) or identifiers starting
with such letters (e.g., succ). Summing up, mind that infix
notation bfa always means b ¼ fa, in the case of functions.

2.3 Relation Types

Consistent with relational infix notation, bRa is the

declaration of relation types in AoP using arrows: B �
R

A

declares binary relation R with source type A and target

type B. (For instance, B ¼ People and A ¼ Language in the

case of R ¼ speaks above.) We will say that B �A is the

type of R. Thus, in writing b R a, b (respectively, a) inhabits

the target (respectively, source) type of R. Type declara-

tions B �
R

A and A �!
R

B mean the same thing.

Comparing relations (6) only make sense for relations of

the same type. In fact, each relational type B �A forms a

Boolean algebra ordered by � whose least relation is

denoted by? (empty relation) and largest relation is denoted

by > (topmost relation). Clearly, b?a never holds and b>a is

always true.2

2.4 Diagrams

Arrow notation makes it possible to express relational

formulæ using diagrams. This is a major ingredient of the

method because it provides a graphical way of picturing

relation types and relational constraints.
Paths in diagrams are built by arrow chaining, which

corresponds to relational composition (“... is R of some S of

...” in natural language):

Diagrams arise from comparing paths, for instance,

which depicts constraint

path � FT � FS� � >; ð9Þ

where—already in the file-system modeling domain [14]—

simple relation FS models a file store (a table that maps file

systempaths to the respective files), simple FT is the open-file

descriptor table (a table that holds the information about open

files3), function path yields the path of a file descriptor, and>

is the largest possible relation between file-handles and files.

2.5 From Diagrams to Logic

What does (9) mean, in predicate logic? We reason

path � FT � FS� � >

� f 0at most0 ordering ð6Þ g

8 p; h : pðpath � FT Þh) pðFS� � >Þh

� f composition ð8Þ; path is a function g

8 p; h : ð9 d : p ¼ path d ^ d FT hÞ) pðFS� � >Þh

� f quantifier calculus� splitting rule ½19	 g

8 d; h : d FTh) ð8 p : p ¼ path d) pðFS� � >ÞhÞ

� f quantifier calculus� one-point rule ½19	 g

8 d; h : d FT h) ðpath dÞðFS� � >Þh:

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 3

1. Word total is avoided so as not to clash with preexisting relational
terminology, e.g., total order. We adopt this terminology from [7] and [8].

2. > is De Morgan’s “is coexistent with” relation [5].
3. Open files are manipulated by the file system via open file descriptor

data structures, which hold various relevant metadata (e.g., current position
within the file). Such descriptors are identified by file handles which the file
system provides to applications that manipulate files. This indirection layer
avoids unnecessary coupling between applications and the details of the file
system implementation.

We still have to unfold term ðpath dÞðFS� � >Þh:

ðpath dÞðFS� � >Þh

� f composition ð8Þ g

9 x : ðpath dÞFS�x ^ x>h

� f converse;x>h always holds g

9 x : x FS ðpath dÞ:

In summary, path � FT � FS� � > unfolds into

8d; h : d FT h) ð9 x : xFS ðpath dÞÞ: ð10Þ

Literally:

If h is the handle of some open-file descriptor d, then this holds the
path of some existing file x.

In fewer words:

Nonexisting files cannot be opened (referential integrity).

Thus, we see how relation diagrams “hide” logically

quantified formulæ capturing properties of designs. Another

example, in the same domain, is

where � intends to capture the child-of relationship among

paths.4 Similar reasoning will yield a logical interpretation

which, in words, will mean that mother-directories always

exist, another essential property of a file-system.
Easy to draw and memorize are the following (generic)

constraints involving two arbitrary relations M and N .

. M, N are domain-disjoint: M �N� � ?.

. M, N are domain-coherent: M �N� � id.

. The domain of M is strictly above that of N
(assuming a strict ordering > on the input types of
M and N): M� � > �N � >.

In summary, relation composition and converse are

enough (compare with matrix multiplication and transpose

in linear algebra) to capture interesting properties of abstract

models, which can be drawn as diagrams. The approach

consists of, in the first place, sketching abstract models by

drawing diagrams which capture “the things which matter”

to a given problem: object types (nodes in the diagrams,

usually nouns in the requirements), relationships among

such objects (arrows, usually noun phrases in the require-

ments), and constraints—commutative polygons (e.g.,

squares, triangles) in diagrams, often corresponding to

relative clauses in the requirements.
Clearly, these diagrams only capture static semantics and

their role is comparable to that of class diagrams in UML, for

instance. But they are far simpler graphically and concep-

tually, offering a very simple framework for starting a

design anew.5

3 ALGEBRA OF PROGRAMMING

3.1 Background

Chronologically, relational notation emerged earlier than
predicate logic itself in the work of Augustus De Morgan
(1806-1871) on binary relations [5]. Later, Peirce (1839-1914)
invented quantifier notation to explain De Morgan’s
algebra of relations (see, e.g., [5] for details). De Morgan’s
pioneering work was ill fated: The language invented to
explain his calculus of relations eventually became more
popular than the calculus itself. Alfred Tarski (1901-1983),
who had a life-long struggle with quantified notation [20],
[21], revived relation algebra. Together with Steve Givant
he wrote a book (published posthumously) on set theory
without variables [22].

Meanwhile, category theory was born, stressing the role
of arrows and diagrams and on the arrow language of
diagrams, which is inherently pointfree. The category of sets
and functions immediately provided a basis for pointfree
functional reasoning, but this was by and large ignored by
John Backus (1924-2007) in his FP algebra of programs [23].
Anyway, Backus’ landmark FP paper was among the first
to show how relevant such reasoning style is to computing.

A bridge between the two pointfree schools, the
relational and the categorial, was eventually established
by Freyd and �S�cedrov [7] in their proposal of the concept of
an allegory. This gave birth to typed relation algebra and
relation diagrams like those adopted in the current paper.
The pointfree algebra of programming as it is understood
today [8] stems directly from [7].

3.2 Recent Developments

In the 1990s, the Groningen-Eindhoven MPC group led by
Backhouse [3] contributed decisively to the AoP by
structuring relation algebra in terms of Galois connections.
However intimidating this may sound, it is in fact a great
simplification in its structuring the calculus in terms of rules
which make relational reasoning closer to school algebra.

Think, for instance, of the rule used to reason about
whole division of two natural numbers:

z
 y � x � z � x� y ðy > 0Þ; ð11Þ

assumed universally quantified in all its variables. Prag-
matically, it expresses a “shunting” rule which enables one
to exchange between a whole division in the upper side of
an inequality and a multiplication in the lower side. Many
properties of ð
Þ and ð�Þ can be inferred from (11), for
instance, ðx� yÞ
 y � x—just replace z by x� y and
simplify.6

The parallel with relation algebra is easy to perceive by
writing a rule similar to (11):

R � S � X � R � X=S; ð12Þ

which connects relation division (an operator which will play
a role in the sequel) to relational composition. It can be
shown that, while composition hides an existential quanti-
fier (8), division hides a universal one [3]:

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

4. That is, p � p0 means that p is a subpath of p0.
5. For the comparison to make sense we still need to introduce products

(A
B) and coproducts (AþB) of any two given types A, B [8], expressing
two dual, standard forms of data aggregation. See Section 4.

6. Rule (11) connects division to multiplication, the latter helping to
reason about the former. Functions connected in this way are said to be
adjoints: Multiplication is adjoint of division. Equivalences of this are
scalable, powerful devices known in mathematics as Galois connections.

cðX=SÞa � 8 b : a S b) c X b: ð13Þ

Thus, (12) captures, in a rather eloquent way, the duality
between universal and existential quantification. Moreover,
the relational equivalent to ðx� yÞ
 y � x above is
ðX=SÞ � S � X. This cancellation rule, very often used in
practice, unfolds to

ð8 b : a S b) c X bÞ ^ a S b0) c X b0;

that is, to the well-known device in logic known as modus
ponens: ððS ! XÞ ^ SÞ ! X.

Often referred to as “shunting rules” [8], equivalences
such as (11), (12) are examples of Galois connections. Many
other relational concepts are captured in the same way. For
instance, the fact that a relation is a function f is equivalent to
connection (83) in Appendix A.2. Furthermore, the meaning
of two relational operators central to understanding theAlloy
semantic rules of Section 4—the domain (�) and range (�) of a
relation—are captured by connections (86) and (87) in the
same appendix, respectively.

There is something else concerning the two operators just
above: They yield sets represented by fragments of the
identity relation. In general, for each predicate p, we define
binary relation �p such that b �p a holds iff ðb ¼ aÞ ^ ðp aÞ,
that is, �p is the relation that maps every a which satisfies p
(and only such a) onto itself. Clearly, �p � id. This is why
these relations are termed partial identities or coreflexives [8].
Given a set S, the coreflexive which represents S is �2S , also
denoted by�S . This is referred to in [18] as the identity on setS.

3.3 More on Terminology

We have seen that relations can be simple (5), entire (7), and
both (functions). Taking converses, we obtain the dual
notions of injectivity

R� �R � id; ð14Þ

and surjectivity

id � R �R�: ð15Þ

Mind the following four AoP rules of thumb easy to infer
from the definitions [14].

. Converse of injective is simple (and vice versa).

. Converse of entire is surjective (and vice versa).

. Smaller than injective (simple) is injective (simple).

. Larger than entire (surjective) is entire (surjective).

3.4 Remark on Notation

The following conventions will be adopted for saving
parentheses in relational expressions, concerning infix
operators (such as, e.g., composition, [) and unary ones
(e.g., converse, domain, and range): 1) Unary and prefix
operators bind tighter than binary, 2) “multiplicative” binary
operators (e.g., composition, \, =) bind tighter than “addi-
tive” ones (e.g., [), 3) relation composition binds tighter than
any other multiplicative operator.

4 ALLOY

Alloy is a lightweight modeling language for software
design inspired by the Z notation and developed by the

Software Design Group at MIT [18]. Its foundations are first
order logic and relation algebra. Alloy’s lemma “everything
is a relation” makes this highly declarative language simple
and well integrated with relational thinking, as will be
illustrated in the sequel.

4.1 Tool Support

Alloy’s tool support is provided by the Alloy Analyzer,
intended for both development and verification of abstract
models. This tool is capable of performing simulation as
well as exhaustive verification in searching for counter-
examples to given assertions.

The Alloy Analyzer helps a great deal in detecting naive,
subtle, or special case mistakes. Mistakes of this kind often
go undetected by test cases, and are known to jam theorem
provers for unforeseeable reasons. The tool relies on the
Kodkod model finder to encode Alloy’s logic in Boolean
logic, which in turn can be subject to fully automated
analysis by SAT solvers [18]. This way, Alloy’s relational
models are mapped onto Boolean formulas that can be either
checked for consistency (possible to instantiate) or falsified
(existence of counterexamples).Whenever a counterexample
is found, the corresponding Boolean formula is translated
back to relational logic and displayed as an interactive
diagram for user inspection.

4.2 “Alloy-Meets-AoP” Verification Life-Cycle

The main idea behind blending Alloy with AoP is that of
model-checking every proof obligation in a design before
proceeding to its correctness proof.

Being a model checker, the Alloy Analyzer does not
discharge proofs as such, but is very useful in finding
design flaws. The absence of counterexamples builds
confidence that a correctness proof is within reach. In this
way, one avoids attempting full-fledged proofs of asser-
tions that could be demonstrated impossible by counter-
examples. This positive impact on productivity will be
addressed later on within our case study. Fig. 1 depicts the
corresponding verification life-cycle.

4.3 Alloy-to-AoP Mapping

The main feature of Alloy’s notation is the “dot join”
combinator, denoted “.”, which extends binary relation
composition. The formal, relation algebra semantics of the
Alloy language has been the subject of some research; see,

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 5

Fig. 1. “Alloy-meets-AoP” verification round-trip.

e.g., [24], [25], mainly because of the flexibility of “dot join”
and the fact that Alloy’s relations are n-ary, in general.

Our Alloy-to-AoP correspondence is greatly simplified
because relational diagrams restrict to binary relations only,
requiring not much more than such relations, converses,
“dot join,” and set-like operators such as union and
intersection. This makes the semantic mapping of our Alloy
subset to AoP relatively easy to establish.

4.4 Semantic Rules

Below (part of) Alloy’s syntax and respective semantics [18]
is explained. We start with the semantic rules which capture
its syntax for the at most ordering, intersection, union, and
converse:

½½R in S		 ¼ ½½R		 � ½½S		; ð16Þ

½½R S		 ¼ ½½R		 \ ½½S		; ð17Þ

½½Rþ S		 ¼ ½½R		 [½½S		; ð18Þ

½½~R		 ¼ ½½R		�: ð19Þ

Alloy’s syntax for > is quite interesting in its making the
types explicit:

½½A! B		 ¼ ½½B		 � > � ½½A		: ð20Þ

Types A and B are sets which, in our semantics, will be
captured by coreflexives, a special case of binary relations
already introduced in Section 3. In general, given a set s : A,
we have the semantic rule

½½s		 ¼ A �
�s

A: ð21Þ

The largest such s is A itself, represented by the largest such
coreflexive: the identity idA. Writing s <: iden is the
standard way in Alloy to obtain coreflexive �s, using the
domain restriction combinator, defined by semantic rule

½½s <: r		 ¼ ½½r		 � �s: ð22Þ

Restricted to binary relations, Alloy’s “dot join” is
(forward) binary relation composition, therefore changing
the order in which the producer and consumer relations
appear in terms:

½½S:R		 ¼ ½½R		 � ½½S		 C �
½½R		

B �
½½S		

A: ð23Þ

With these rules we are already in a position to express
referential integrity constraint (9) in Alloy syntax:

FT.path in (Handle! File).~FS

Dot join can be used in Alloy between relations which are
not binary, e.g., sets (unary relations or vectors) and even
scalars (singleton vectors). Recalling the range combinator �
from Section 3, we have the following semantic rule in the
first case:

½½s:R		 ¼ �ð½½R		 � ½½s		Þ C �
½½s:R		

C �
½½R		

B �
½½S		

B; ð24Þ

for R binary and s a set (unary relation).7

Thanks to ½½R:s		 ¼ ½½s:~R		 [18] one has ½½R:s		 ¼ �ð½½s		 � ½½R		Þ,
where � is the domain combinator of Section 3. (Mind the fact
that � and � commute through converse, cf. (85) in the
Appendix.)

In case R is a function f and s is a scalar x (that is, a
singleton vector), ½½x:f		 boils down to function application
fðxÞ. Thus, the following piece of pointwise Alloy,

all h: Handle, d: h.FT j some (d.path).FS,

means the same as the file-system referential integrity
constraint given earlier in pointwise notation (10). The Alloy
keywords all and some express the universal and existential
quantifiers, respectively. The pipe (|) symbol delimits the
declaration of the universally quantified variables. In the
above example, the existential quantifier does not have a list
of associated variables because it is applied directly to a
relation. Some of Alloy’s quantifiers, such as the existential,
can be used to express multiplicity factors restricting the
cardinality of relations. More examples of such multiplicity
factors will be provided in the sequel.

One may wonder about which properties of relation
composition are preserved by Alloy’s “dot join” combinator.
Our semantics can be used for this purpose. For instance, let
us check whether associativity ðX:RÞ:S ¼ X:ðR:SÞ holds in
Alloy. In case of binary relationswe are done (23). The case of
X being unary (a set x) follows:

½½ðx:RÞ:S		

¼ frule ð24Þ twiceg

�ð½½S		 � �ð½½R		 � ½½x		ÞÞ

¼ frange of composition ð94Þg

�ð½½S		 � ð½½R		 � ½½x		ÞÞ

¼ fcomposition is associative ð75Þg

�ðð½½S		 � ½½R		Þ � ½½x		Þ

¼ fR and S are binary ð23Þ; ð24Þg

½½x:ðR:SÞ		:

In a similar way, the interested reader may check that
once the middle component is unary, associativity
ðR:xÞ:S ¼ R:ðx:SÞ requires side condition~R:S ¼ S:~R.8

4.5 Typed Relations in Alloy

Thus far we have seen how close Alloy syntax is to relational
AoP notation, making the translation from one to the other
almost direct. Alloy’s lemma “everything is a relation”
carries the analogy further, leading into the way Alloy caters
for relation types, using keyword sig (for signature):

sig A {R : B}

This declares relation R of type A�!B.
Multiplicity constraints can be added to this syntax in

order to capture relation subclasses. For instance,

sig A {R : lone B}

declares a simple relation

A ��*
R

B; ð25Þ

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

7. Thus, ½½s		 is a coreflexive binary relation; recall (21). By resorting to
coreflexives we are saved from the point-density requirement of [24]. Points,
as defined in [24], correspond to singleton coreflexives.

8. This softens the side condition given in [24] for “dot join” associativity
to take place.

by addition of multiplicity constraint lone (read: less or equal
to one) to the target type. Note the use of “harpoon” arrows
(*) to depict these relations, already adopted in [14] and
[17]. This is a way of singling out this important kind of
relation in diagrams.

Another such keyword—one (read: exactly one)—will
ensure R simple and entire, that is, a function:

sig A {f : one B}

More than one typed relation can be declared in a single
Alloy signature, for instance,

sig C {fst : one A, snd : one B}

or

sig System {

store: Path ! lone File,

table: Handle ! lone Descriptor

}

In the first case, one is declaring a pair of functions
sharing the same source type C. This is captured by the
diagram below, which relates C to the Cartesian product
type A
B, where projections �1 and �2 are such that
�1ða; bÞ ¼ a and �2ða; bÞ ¼ b, and AoP combinator hf; gi pairs
the results of its argument functions f and g.9

Something else is going on in the second Alloy sample
above: Two simple relations store and table are declared,
but their domains are Cartesian products

System
 Path ���*
store

File;

System
Handle ���*
table

Descriptor:

Alloy implicitly relies on the “currying” isomorphism,10

ðA
BÞ* C ffi ðB * CÞA;

in handling relations of the left-hand side type as functions of

the right-hand side type, which are higher order in the sense

of yielding relations (of typeB * C) as results. Thus, for each

s of type System, s:store is a relation of type Path! File.

Similarly, Handle ����!
s:table

Descriptor is well typed.
As an instance of this notation, check the following Alloy

predicate:

pred ri[s: System] {s.table.path in (Handle! File) ~(s.store)}

which rephrases the referential integrity constraint (9) in
terms of signature System.11

Summing up, note how this semantic interpretation of
Alloy’s syntax once again shows the flexibility of the “dot
join” notation. In particular, it explains the highly successful

“navigation style” of Alloy’s syntax, typical of object-
oriented (OO) programming.

4.6 Ordering Signatures

The analogy with object-oriented syntax carries further to
the hierarchical definition of data types, similar to that of
classes in OO languages. Given signature A, writing

sig B extends A

means B � A [18]. Several extensions to the same signature
ensure subset disjointness. On the other hand, prefixing
keyword sig by keyword abstract ensures that a signature
has no elements except those belonging to its extensions. So,

abstract sig C {}

sig A extends C {}

sig B extends C {}

declares C ¼ A [B with A \B ¼ ;.
This device will be helpful in structuring several

refinement steps in Section 8.

5 VERIFICATION THEORY IN BRIEF

According to the standard theory, there are two kinds of
proof to be considered in the design of software from
abstract models. One is known as satisfiability [26]: For every
operation Op specified by a pre/post pair whose input is
taken from type A and output from type B, proof obligation

8a : a 2 A ^ pre-OpðaÞ) ð9 b : b 2 B ^ post-Opðb; aÞÞ;

should be discharged. In case Op is deterministic and
performed uniformly over a state space (A ¼ B), this PO
shrinks to

8a : a 2 A ^ pre-OpðaÞ) OpðaÞ 2 A: ð26Þ

Because a 2 A and OpðaÞ 2 A check for the state invariant
(constraint) before and after Op takes place, (26) is also
referred to as invariant preservation [26] or extended static
checking [14].

The second kind of PO has to do with refinement steps. In
this case, an operation such as Op above is implemented by
another operation COp (where “C” stands for concrete)
running on a strengthened, or more detailed, state space CA
[27], glued to the abstract space A by an abstraction invariant
(ai): For all x; x0 2 A and y; y0 2 CA:

aiðx; yÞ ^ post-COpðy0; yÞ)

9 x0 : post-Opðx0; xÞ ^ aiðx0; y0Þ;

should hold. In words: To prove the intended refinement it
is necessary to show that once running the refined
operation COp in a state (y) reachable from a given abstract
state (x), there exists an after-state of Op (x0) which abstracts
the after-state (y0) of COp.

Typically, aiðx; yÞ will be decomposed into two parts: an
abstraction function x ¼ afðyÞ and a concrete invariant ciðyÞ
imposing constraints at low level. In this situation, which
covers the examples given in this paper, the above
instantiates to

ciðyÞ ^ post-COpðy0; yÞ)

post-Opðafðy0Þ; afðyÞÞ ^ ciðy0Þ:
ð27Þ

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 7

9. The relational generalization of this combinator is termed split in [8]
and fork in [24].

10. See [12]. Exponential type XA is the set of all functions of type
A! X. This result is implicit in the way n-ary relations are converted into
binary relations in the semantics given in [24].

11. See [18] for details on the syntax of Alloy predicates, which are not
relevant here.

Moreover, any new operation invented at low level
should remain “invisible” at high level, that is, it should
refine the identity on states, often termed Skip, and such
that post-Skipðx0; xÞ �4 x0 ¼ x. As can be drawn from (27) by
making Op ¼ Skip, this boils down to showing that COp
preserves concrete invariant ci and that af cannot distin-
guish y0 from y.

Refinement steps involve other, complementary proofs
(related, for instance, to deadlock freedom) which are not
listed because they will not be considered in the examples
given later in the current paper. (See [27] for details.)

Discharging satisfiability proofs of shape (26) in the AoP
is dealt with in [14]. For a related, more tool-oriented (but
still “Alloy-centric”) approach see, e.g., [17]. Concerning
refinement proofs, we will follow the life-cycle of Fig. 1:
Once the refined model is conjectured and encoded in
Alloy, refinement POs are model checked using the Alloy
Analyzer. Absence of counterexamples leads to the calcula-
tion stage. Lemmas introduced in proofs (or particularly
difficult proof steps) are also model-checked. The process
will not be finished until all calculations are over.

We proceed to the presentation of our case study,
recalling that satisfiability at the abstract level was pre-
viously proven for the delete [14] and open [17] operations.

6 VERIFIED FILE SYSTEM (VFS) CHALLENGE

There is a healthy trend in formal methods research driven
by the idea of a Grand Challenge (GC) [28] expected to deliver
“a comprehensive and unified theory of programming” and “a
repository of verified software” [28, Section 2]. Mondex [29] was
the first GC pilot project. Later, Joshi and Holzmann [16] put
up a 2-3 year mini-challenge on verifying a reliable FLASH

file-system (VFS) for in-flight software.
An account of the community’s response to the VFS mini-

challenge is given in Section 10. Further to previous work
reported in [17], we have chosen as a case study for the
current paper to focus on the refinement steps which
introduce the journalingmechanism. This is usually found in
modern file systems to allow for higher performance and
reliability in the face of power loss or unexpected device
removal. Moreover, in FLASH devices it contributes to wear
leveling of its blocks. This is a nonfunctional requirement
intended to prolong the service life of erasable storage
media in general.

The inspiration for investing on such a facet of the
overall FLASH refinement process comes from work by
Schierl et al. [30] on the formalization of UBIFS file system
for FLASH memory. We find this aspect of the refinement
interesting because it shows the role of properties induced
in the refined model by nonfunctional requirements.

This choice reflects one of the major needs in software
design, that of separation of concerns, that is, the need to
factor complex designs into “orthogonal” subdesigns.
Journaling is the one (in fact, central) aspect of the design
of a FLASH file-system considered in this paper.

In this setting, we select the refinement of the delete
operation, already specified and verified in [14], down to the
journaled level. This is perhaps the most interesting part of
the refinement for its counterintuitive behavior induced by
the wear-leveling requirement, as explained in the sequel.

7 RELATIONAL MODEL OF A JOURNALED (FLASH)
FILE SYSTEM

In a typical file system, the file store’s data and metadata are
stored in the device that hosts the file system. In order to
increase performance, some metadata are stored in central
memory (RAM), dramatically decreasing the update latency.
However, this approach leads to consistency problems
when, for some unexpected reason, the device is removed
or the whole system crashes. In such faulty situations,
central memory metadata are lost and their counterpart
stored in the device will most likely be out of date.

One way to add robustness to the file system against
faults of this kind is to store in the device a backlog of the
operations that have been performed. Such a backlog is often
referred to as a journal [30]. Altogether, the journal and the
remaining metadata stored on the device should make it
possible to rebuild the metadata that were stored in central
memory as it was before the fault occurred.

While journaling and decentralized metadata improve
file system performance, they also add to the complexity of
the file store model and its invariant. Dealing with this
added complexity is the goal of the refined model presented
in the remainder of this section.

As an aside, we recall the main relations of the idealized
file system of Section 2 in its Alloy version. This model,
which served our purposes to introduce relational modeling
and Alloy, is, however, too high-level for journaling to be
understood and formalized.

Looking at UBIFS [30], for instance, we see that POSIX-
compliant file system implementations are based on nodes
that are stored in volumes. A volume (e.g., a FLASH drive)
simply acts as an array of nodes that gets written to and read
from. This means that the abstractions used thus far to
model a file system somehow have to be encoded in such
arrays of nodes. To this end, there are several types of nodes,
of which we list the ones that are relevant in this context:

. inode (index) nodes that hold file metadata (e.g.,
size, number of links etc.);

. data nodes that hold file contents (as chunks of
data);

. dentry (directory entry) nodes that record the
contents of directories (file names, etc.).

Nodes have keys associated with them that enable node
retrieval and linking, thus making it possible, without
further information, to reconstruct the abstract (tree-based)
view one has of a file system simply by sweeping such arrays
of nodes. (This is actually what the operating system does
when the file system in a volume is checked for consistency.)

Refining our starting, idealized model into volume-level
arrays of nodes is surely a very important step. As this has
already been dealt with elsewhere (see, e.g., [31]), we have
rather focused on another refinement step, this one carried
out over the arrays of nodes themselves: journaling.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

7.1 Journaling

Reasoning about such a low-level concept calls for a context
switch from the high-level mental model of a file system to
its actual implementation in terms of arrays of nodes. In
spite of the semantic gap, both levels are captured by simple
relations, of type Path * File at high-level (as seen above)
and of type Key * Dat at volume level.

In the sequel we will focus on such a Key * Dat volume
level array which, at this level of refinement, is regarded as
the abstract structure to be further refined. Diagram (28)
above shows how this array, hereinafter referred to as the
abstract store (AbsSt), unfolds into four data structures—
labeled FIdx, Jrnl, RIdx, and Flash in the diagram once
refined down to (journaled) FLASH level. In detail:

. Flash (FLASH store) is kept in the device and maps
memory addresses in the data type Addr to array
entries (Entry) which record keys (Key) and data
(Dat). Function key tells which key is stored in each
particular array entry. Simple relation V al tells which
entries hold data. Entries holding a key and not
holding data are regarded as deleted, as will be
explained shortly.

. Structures FIdx (FLASH index) and Jrnl (journal)
hold in-device metadata, whereas RIdx (RAM
index) keeps similar data in central memory.

. The RAM index (RIdx) provides for fast indexing,
mapping each key inKey to the address that currently
holds its data in Flash; so, by chaining RIdx and
Flash one should be able to rebuild the information
kept in AbsSt. But there is some redundancy in the
refinement, as Flash also keeps the converse relation-
ship between addresses (Addr) and keys (Key)—a
redundancy intended for power loss recovery, as we
shall soon see.

. Under normal operation, device removal is preceded
by a commit operation whereby the contents of RIdx
are saved in FIdx.

. Abnormal operation (power loss or abrupt device
removal) calls for the help of journal Jrnl, which
keeps the list of addresses which have been created
since the last commit operation. This means that, in
such situations, a replay process should take place so
as to rebuild RIdx (volatile) from the in-device triple
ðFlash; FIdx; JrnlÞ.

. Finally, note the fact that, in diagram (28), list Jrnl is
modeled as an association of natural numbers (IN) to
addresses (Addr) indicating the position of each
address in the list.

7.2 How It Works

The four structures of the refined state space are sugges-
tively recorded in Fig. 2, extracted verbatim from [30]. The
leftmost column of the central array depicts addresses
(Addr) and the other columns depict keys (Key) and data
(Dat), the components of node entries (Entry).

To ensure wear leveling, cell overwriting is avoided as
much as possible. Instead, new addresses are used for
updated data values. In the picture, a cell on black back-
ground indicates the most recent value associated to a
particular key. For instance, KEY 3 at address 5 is outdated
(white background) because it has been updated at address 6
(black background).

The RAM index is, of course, always pointing to the most
recent updates. Fig. 2 also shows an outdated FLASH index
(still pointing at address 5) in contrast to the updated RAM
index (already pointing at address 6).

It is visible that the update of KEY 3 was the first change
taking place upon the last time RAM and FLASH indexes
were synchronized, as address 5 is the last in the FLASH

index and address 6 is the first entry in the journal.
The journal states the story of what happened afterward.

Its second position (address 7) corresponds to the update of
KEY 1. The next two positions in the journal (addresses 8
and 9) reveal that two other updates took place, the last one
being the deletion of entry KEY 4. This was the first node
to be stored, at address 1. Instead of freeing this address, a
new entry is created (address 9) where KEY 4 is marked as
deleted.

In other words, to delete n cells in Flash one must have
n extra free cells. Should this not be the case, a garbage
collection operation has to take place, reclaiming all redun-
dant entries such as KEY 4 in address 1. Lack of space
persisting, the device will be full.

7.3 Alloy Encoding

Prior to the formalization of this journaling refinement step,
let us see how the relations of diagram (28) are encoded as
Alloy signatures, intended for model checking. While
abstract node stores (AbsSt) are modeled as Alloy maps
from keys (Key) to data (Dat):

sig AbstSt {r : Key ! lone Dat}

concrete stores are captured by the four-tuple signature

sig CncSt {

Jrnl : Num ! lone Addr,

Flash : Addr ! lone Entry,
FIdx : Key ! lone Addr,

RIdx : Key ! lone Addr

}

where each entry in the FLASH store

sig Entry {key : one Key, Val : lone Dat}

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 9

Fig. 2. Journaled FLASH store data structures (picture quoted from [30]).

can be regarded as a pair whose right element is of optional
type loneD [18] in order to model deletion.

8 REFINEMENT PROCESS

The refinement of AbsSt into CncSt will be performed in a
stepwise manner so as to introduce concrete details in the
place where they are required. There are essentially three
stages in the refinement.

1. Introduces the FLASH store accessed by the RAM
index; too simplistic, it fails to recover the RAM
index in the event of power-loss and ignores the
wear-leveling requirement.

2. Adds the Journal to the two previous structures to
remedy the downsides of the previous step; the new
structure, however, grows indefinitely long.

3. Finally, adds the FLASH index to cache the RAM
index and (periodically) clear the Journal.

Among the CRUD12AbsSt operations, the delete operation—
in Alloy:

pred absDelete[s: set Key, r’,r: Key ! lone Dat]

{r’ ¼ (Key-s) <: r}

— is selected for refinement because its implementation
ends up far more elaborate than first thought, revealing the
impact of the wear-leveling and power-loss recovery
nonfunctional requirements.

8.1 Refinement—Stage 1

Asa startingpointwewill consider aminimumconcrete state
model made of the FLASH store and RAM index only, that is,

sig CncSt1{
Flash : Addr ! lone Entry,

RIdx : Key ! lone Addr

}

in Alloy. The corresponding abstraction invariant (ai1) will
glue abstract states—cf. AbsSt in diagram (28)—to concrete
states CncSt1—cf. the pair ðFlash;RIdxÞ in the same
diagram.

As anticipated by refinement equation (27), we partition
ai1 in terms of an abstraction function af1 and a concrete
invariant ci1.

8.1.1 Abstraction Function

This is straightforward to define as

af1ðFlash;RIdxÞ �4 ðactive FlashÞ � RIdx; ð29Þ

where relation

Addr ��������!
active Flash

Dat �4 V al � Flash ð30Þ

captures the Addr to Dat relationship recorded in Flash,
ignoring all addresseswhich lead todeleted entries.Chaining
this withRIdx yields theKey toDatmap,which is accessible
via the RAM index.

The Alloy encoding of definitions (29) and (30) follows,
where cs 2 CncSt1 stands for concrete state. Note how “dot
join” notation alone does the whole job:

fun af1[cs: CncSt1] : Key ! Dat {(cs.RIdx).(cs.Flash.active)}
fun active[x: CncSt1.Flash] : Addr ! Dat {x.Val}

8.1.2 Concrete Invariant

Recall that the abstract state space is inhabited by simple
relations: No two different data items are associated to the
same key. So, for af1 to be properly typed, it must always
deliver one such relation AbsSt. Since composition pre-
serves simplicity, active F lash will be simple. In the same
vein, ðactive FlashÞ �RIdx will be simple because RIdx is
simple. (Note how elementary properties of relation
algebra help in type checking the diagram “on the fly.”)

We conclude that the simplicity ofRIdx and Flash are the
first requirements of concrete invariant ci1 to consider. But
wedo not need towrite these explicitly since they are implicit
in the use of “harpoon arrows” in type diagram (28) and
keyword lone in Alloy signatures.

8.1.3 Operation Refinement

Proceeding to the refinement process properly said, wewant
abstract operations over abstract states (relations of type
AbsSt ¼ Key * Dat) to be implemented at low level,
running on top of concrete states as depicted in diagram
(28). Focusing on the delete operation, already specified in
Alloy, we can use the semantic rules of Section 4 to derive

post-absDeleteðS;AbsSt0; AbsStÞ �4

AbsSt0 ¼ AbsSt � �ð62SÞ;
ð31Þ

where argument set S tells which keys are to be deleted,
and �ð62SÞ is a filter—the coreflexive relation associated to
predicate x 62 S, produced by semantic rule (22).

How does one implement this operation at FLASH level?
At first sight, performing a similar domain-subtract opera-
tion on the RAM index RIdx,

RIdx0 ¼ RIdx � �ð62SÞ; ð32Þ

and leaving Flash unchanged would do since the smaller
RIdx is the smaller the abstract state delivered by af1 (28).
And it does, in fact, as the corresponding instance of
refinement PO (27)

RIdx0 ¼ RIdx � �ð62SÞ ^ Flash0 ¼ Flash)

af1ðFlash0; RIdx0Þ ¼ af1ðFlash;RIdxÞ � �ð62SÞ;
ð33Þ

shows, once RIdx0 and Flash0 are substituted by equals,

af1ðFlash;RIdx � �ð62SÞÞ ¼ af1ðFlash;RIdxÞ � �ð62SÞ

� f ð29Þ g

active F lash � ðRIdx � �ð62SÞÞ

¼ ðactive F lash � RIdxÞ � �ð62SÞ

� fcomposition is associative ð75Þg

TRUE:

Why are things not so easy in practice? Note that, for
every key deleted in RIdx there is an address in Flash
which becomes available for further writing. And further

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

12. Acronym CRUD stands for Create, Read, Update, Delete.

delete/write cycles may write to such an address over and
over again, thus contradicting wear leveling.

On the other hand, in the event of a power loss RIdx will
be lost, for it lives in volatile RAM. This could in part be
remedied by exploiting the redundancy of Flash (28) and
running an operation able to recover the Key to Addr
association it keeps:

Key��������!
index Flash

Addr �4 ðkey � FlashÞ�; ð34Þ

—that is,

fun index[x: CncSt1.Flash] : Key ! Addr {(x.key)}

in Alloy—provided the following consistency clause is
added to the concrete invariant:

RIdx � index Flash: ð35Þ

Note, however, that (35) cannot be strengthened to an
equality, for index Flash is not simple in general: By
construction, it keeps track of all addresses which have been
used to record data for a given key. Besides, information is
missing about which addresses correspond to the most
recent updates. So, RIdx is not recoverable at all.

This leads to a revision of the model, which brings
journal Jrnl into the scene, intended to keep the order in
which addresses are created.

8.2 Refinement—Stage 2

The revision consists, first of all, in adding the journal
(another simple relation) to the model

sig CncSt2 extends CncSt1 {

Jrnl : Num ! lone Addr

}

and then in drafting the new concrete invariant (ci2) in a
diagram:

The top-right triangle records (35); the other two triangles
capture referential integrity and together ensure that the
addresses logged in Jrnl are exactly those found in Flash. By
resorting to the algebra of the � and � relational operators
mentioned in Section 3, we put ci2 in symbols as follows:13

ci2ðFlash;RIdx; JrnlÞ �4

RIdx � index Flash ^ �Jrnl ¼ �Flash:
ð36Þ

A consequence of (36) worth mentioning is the injectivity
of RIdx. This arises from the simplicity of key � Flash and
the rules of thumb of Section 3: The converse of simple is
injective, etc. Moreover,

�ðindex FlashÞ ¼ �F lash; ð37Þ

as can be easily checked using the algebra of domain and
range—see, e.g., (88) and (93) in Appendix A.2. (Also note
that a function f is a totally defined relation, that is, �f ¼ id.)

Finally, a third clause has to be added to ci2, rendering
RIdx functionally dependent on the other components of
the concrete state:

RIdx ¼ replayðFlash; JrnlÞ; ð38Þ

thus ensuring that, at any time, RIdx can be rebuilt from
persistent FLASH data by running function replay. The
specification of this most important ingredient of the revised
model follows.

8.2.1 The replay Function

The semantics of replay are based on handling relation
index Flash (34), in two steps.

. First, for each key in index Flash select the address
which holds its most recent update (this will yield a
simple relation from Key to Addr).

. Second, filter deleted keys out.

Below we give a relational definition of the replay
function in which these two steps are captured by dedicated
relational combinators. One of these in particular shows
how relational algebra scales up by definition of “clever”
operators which enable one to deal with inductive problems
in a noninductive fashion.

First, we need to define an ordering on addresses, taking
into account their position in the journal:

a�Jrnlb � 9 i; j : a Jrnl i ^ b Jrnl j ^ i � j: ð39Þ

This order on addresses works by comparing their relative
positions in Jrnl, larger positions meaning more recent
updates. In relation algebra notation, (39) shrinks to

Addr ���
�Jrnl

Addr �4 Jrnl � � � Jrnl�: ð40Þ

Finally, the relational specification of replay relies on this
ordering

replayðFlash; JrnlÞ �4

active F lash / ðindex Flash +ð�JrnlÞÞ;
ð41Þ

and in two newly defined binary relational combinators (/
and +) which are explained in the following paragraphs.

8.2.2 The / (Postrestrict) Combinator

This combinator, defined by

S /R �4 �S �R; ð42Þ

(read S / R as “R wherever S is defined”) postrestricts a
given relation R by the domain of some other relation S.
Clearly, properties

ðS /RÞ � T ¼ S /ðR � T Þ; ð43Þ

S / ðR [V Þ ¼ ðS /RÞ [ðS /V Þ; ð44Þ

hold. Combinator (42) is used in (41) in the second step,
filtering deleted keys out (i.e., those not present in

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 11

13. Since ci1 is implicit in the overall typing, we do not quote it in ci2.

active Flash). It is encoded in Alloy as function ifdef , given

in Appendix A.1.

8.2.3 The + (Shrinking) Combinator

Let relations R and S be typed as in the diagram aside. We

willwrite the expressionR + S todenote the effect of shrinking

R by S, that is, of convertingR into a smaller, simple relation

by looking at particular (e.g., maximal) elements of its range

relative to S. This is captured by definition

R +S �4 R \ S=R�

and the corresponding universal property

X � R +S � X � R ^X �R� � S; ð45Þ

which ensure that R +S is the largest subrelation X of R

such that, for all b0; b 2 B, if there exists some a 2 A such

that b0Xa ^ bRa holds, then b0Sb holds.

This combinator is a generalization of the max operator

of the AoP [8]. Its pointwise meaning is captured in Alloy

by function shrinkby, given in Appendix A.1.
Let, for instance, S be id (the equality relation) and R be

simple in (45). Then, since R �R� � id holds (5), the maximal

solution of (45) is X :¼ R. That is, R +id ¼ R for R simple. In

case R is not simple, R +id will be the largest deterministic

fragment of R. Among the properties of this combinator, we

single out the following:

ðR +SÞ � � ¼ ðR � �Þ +S; ð46Þ

R +S ¼ R +ð�R � S � �RÞ; ð47Þ

R +S is simple(S is antisymmetric; ð48Þ

ðR [SÞ +U ¼ ðR +UÞ \ U=S� [ðS +UÞ \ U=R�; ð49Þ

as well as a corollary of (49)

ðR [SÞ +U ¼ ðR +UÞ [ðS +UÞ(R � S� � ?; ð50Þ

all relevant in the sequel. For instance, thanks to (48), the

shrinking combinator “simplifies” index Flash in (41) via

relation (40).
However, to ensure (40) antisymmetric, simple Jrnl also

needs to be injective so as to prevent address duplication:

�Jrnl \ �Jrnl
� � id(Jrnl simple and injective: ð51Þ

The proof of (51) can be found in Appendix A.2.

8.2.4 Final Touch

It follows from (41) that clause (38) strengthens (35), since

both R +S and S / R are subrelations of R, in general. So (38)

replaces (35) in the final version of concrete invariant ci2,

which also records the injectivity of Jrnl:

ci2ðFlash;RIdx; JrnlÞ �4

RIdx ¼ replayðFlash; JrnlÞ ^

�Jrnl ¼ �Flash ^

Jrnl injective:

ð52Þ

Encoded in Alloy, this invariant becomes

pred ci2[cs : CncSt2] {

cs.RIdx ¼ cs.replay

cs.Jrnl.ran ¼ cs.Flash.dom
injective[cs.Jrnl,Num]

}

where injective is a function available from Alloy module
relation and—last but not least—the replay function (41) is
given by

fun replay[cs: CncSt2] : Key Addr {

let geq ¼ (ordering/prev),
geqj ¼ ~(cs.Jrnl).geq.(cs.Jrnl),

ix ¼ shrinkby[cs.Flash.index, geqj] |

ifdef [cs.Flash.active,ix]

}

8.2.5 Revised Delete Operation

As happens with the replay function, the revised delete
operation is better explained in its three conceptual steps.

. First, it should be possible to assign the key of every
entry to be deleted to a fresh store address where it
will be marked as deleted.

. Second, the journal must be updated accordingly.

. Finally, the RAM index should be restricted as in the
previous version (32), thus denying access to deleted
entries.

Note the partial behavior of this operation when compared
to its abstract counterpart: There may not exist enough fresh
addresses for the operation to be completed. This is
captured by the existential flavor of the corresponding
postcondition, as follows:

Let Key��*
N

Addr(��
M

IN be two simple and injective relations,
where N associates fresh FLASH store addresses to the keys to be
deleted (specified in a given set S) and M orders such addresses in
an underspecified way. Then,

RIdx0 ¼ RIdx � �ð62SÞ; ð53Þ

Flash0 ¼ Flash [delN; ð54Þ

Jrnl0 ¼ Jrnl [M; ð55Þ

under the following conditions: 1) addresses in N are fresh,

Flash �N ¼ ?; ð56Þ

and precisely those listed in M:

�N ¼ �M: ð57Þ

2) The keys in N are exactly those to be deleted:

�N ¼ �ð2SÞ � �RIdx: ð58Þ

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

3) Positions in M are such that Jrnl [M appends M to Jrnl:

M� � > � Jrnl � >: ð59Þ

4) Finally, relation Entry ��
delN

Addr records Key��!
N

Addr into
the FLASH store associating to each fresh address its key and no
data, meaning a deletion. Thus, the following requirements:

key � ðdelNÞ ¼ N� ð60Þ

(the whole N is recoverable from delN);

V al � ðdel NÞ ¼ ? ð61Þ

(no data in delN entries, so as to mark keys as deleted.)

The diagram which follows helps in type checking the
postcondition just given: the synthesis of the Alloy for delN

fun del[n: Key ! Addr] : Addr ! Entry {

{ a: n.ran, e: Entry j a in e.key.n and no e.Val}

}

—equivalent to ðdel NÞ� ¼ N � key \ ?=V al� arising from
properties (60) and (61)—is an interesting exercise in Alloy-
meets-AoP interfacing, omitted for space economy. Note
how the negative part of the Alloy definition is captured by
relational division (13). Another way to express this is to
resort to the complemented domain operator from (97) and
(98), whereby closed formula delN ¼ �V al � ðN � keyÞ� is
easy to obtain.

Note that, for diagram (62) to type-check, we still need to
prove that arrows Flash0 and Jrnl0 are simple,

Flash0 ¼ Flash [del N is simple; ð63Þ

Jrnl0 ¼ Jrnl [M is simple; ð64Þ

as RIdx0 is trivially so. The calculations of (63) and (64) can
be found in Appendix A.2.

A number of facts are useful recording at this point for
later use.

. All fresh entries in Flash0 are inactive:

activeðdel NÞ ¼ ?: ð65Þ

This follows immediately from (30) and (61).
. index recovers N from del N :

indexðdel NÞ ¼ N: ð66Þ

This follows immediately from (34) and (60).
. Jrnl0 adds nothing to the update of index Flash:

index Flash +ð�Jrnl0Þ ¼ index Flash +ð�JrnlÞ: ð67Þ

(Proof in Appendix A.2.)

Finally, the whole postcondition is transliterated to Alloy:

pred Delete[cs,cs’: CncSt2, s: set Key] {

some n: Key ! lone Addr, m: Num ! lone Addr {

injective[n, Key] and injective[m, Key]

no n.(cs.Flash)

n.ran = m.ran
n.dom = (s & cs.RIdx.dom)

cs.Jrnl.(Addr! Addr).(em) in ^(ordering/prev)

cs’.Jrnl = cs.Jrnl + m

cs’.Flash = cs.Flash + n.del

cs’.RIdx = (cs.RIdx.dom-s) <: (cs.RIdx)

}

}

8.2.6 Checking the Proposed Refinement

It is handy to split proof obligation (27) in its two components,

one dealing with concrete invariant maintenance,

ciðyÞ ^ post-COpðy0; yÞ) ciðy0Þ; ð68Þ

and the other ensuring safe refinement,

ciðyÞ ^ post-COpðy0; yÞ)

post-Opðaf ðy0Þ; af ðyÞÞ:
ð69Þ

The instance of (69) for the Delete operation is, in Alloy’s
assertion syntax:

assert po69 {

all cs,cs’: CncSt2, s : set Key j
(ci2[cs] and Delete[cs,cs’,s]))

absDelete[s,cs’.af1,cs.af1]

}

The instance of (68) for ci ¼ ci2 splits into

ci2ðFlash;RIdx; JrnlÞ ^ clausesð53� 61Þ;)

�Jrnl0 ¼ �F lash0;
ð70Þ

ci2ðFlash;RIdx; JrnlÞ ^ clausesð53� 61Þ)

Jrnl0 injective;
ð71Þ

ci2ðFlash;RIdx; JrnlÞ ^ clausesð53� 61Þ)

RIdx0 ¼ replayðFlash0; Jrnl0Þ;
ð72Þ

giving rise to the Alloy assertions:

assert po70 {

all cs,cs’: CncSt2, s : set Key j
(ci2[cs] and Delete[cs,cs’,s]))

cs’.Jrnl.ran = cs’.Flash.dom

}

assert po71 {

all cs,cs’: CncSt2, s : set Key j
(ci2[cs] and Delete[cs,cs’,s])) injective[cs’.Jrnl,Num]

}

assert po72 {

all cs,cs’: CncSt2, s : set Key j
(ci2[cs] and Delete[cs,cs’,s])) cs’.RIdx = cs’.replay

}

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 13

Calculation of (69) proceeds by rewriting the consequent of
the implication, assuming the antecedent and all the
substitutions implicit:

afðFlash0; RIdx0; Jrnl0Þ ¼ afðFlash;RIdx; JrnlÞ � �ð62SÞ

�f ð29Þ twice g

active Flash0 � RIdx0 ¼ ðactive Flash �RIdxÞ � �ð62SÞ

� fð53Þ ; ð54Þ g

activeðFlash [del NÞ �RIdx0 ¼ active F lash � RIdx0

(fLeibnizg

activeðFlash [delNÞ ¼ active F lash

�f activeð30Þ distributes through uniong

active Flash [activeðdel NÞ ¼ active F lash

�fð65Þg

active Flash ¼ active Flash:

Not as immediate as calculation (33) performed in
refinement step 1, refinement PO (69) for Delete was easy to
discharge after all. So, the crux of the refinement step must
reside elsewhere: in fact, in preserving the concrete invar-
iant’s clauses (70), (57), and (72), which ensure referential
integrity and power loss recovery, as we shall see shortly.

The first two such POs to check, (70) and (71), are still
easy exercises in the AoP (see Appendix A.2). By contrast,
the calculation of PO (72) is by far the most expensive and
complex of the whole refinement exercise, giving evidence
of the “cost” to be paid by meeting the wear leveling
requirement. It proceeds by rewriting one side of the target
equality (replayðFlash0; Jrnl0Þ) into the other (RIdx0), under
the given context. We abbreviate �Jrnl0 to w for improved
readability.

replayðFlash0; Jrnl0Þ

¼ f substitutions enabled by clauses ð55Þ to ð61Þg

replayðFlash [del N; Jrnl0Þ

¼ f definition ð41Þ ; active distributes over union g

ðactive Flash [activeðdel NÞÞ /

ðindexðFlash [del NÞ +wÞ

¼ f ð65Þ; index distributes over union; del ð66Þ g

active Flash / ððindex Flash [NÞ +wÞ

¼ f splitting index Flash in two disjoint parts g

active Flash /

ððindex Flash � �N [index Flash � �N [NÞ +wÞ

¼ f distributions ð50Þ and ð44Þ g

ðactive Flash / ððindex Flash � �NÞÞ +wÞ [

ðactive Flash / ððindex Flash � �N [NÞ +wÞÞ

¼ f ð46Þ; ð67Þ g

ðactive Flash / ðindex Flash +ð�JrnlÞÞ � �NÞ [

ðactive F lash / ððindex Flash � �N [NÞ +wÞÞ

¼ f ðindex Flash � �N [NÞ +wisN; see ð73Þ below g

replayðFlash; JrnlÞ � �N [active Flash /N

¼ f definition ð52Þ ; �ðactive F lashÞ � � Flash; ð56Þ g

RIdx � �N [?

¼ f ð77Þ; clause ð58Þ; ð99Þ g

RIdx � �ð2SÞ

¼ f ð100Þ; clause ð53Þ g

RIdx0:

The intuition behind the step left unjustified in the
calculation above,

ðindex Flash � �N [NÞ +ð�Jrnl0Þ ¼ N +ð�Jrnl0Þ ¼ N; ð73Þ

is that, because all addresses in N are greater than those in
Flash (as granted by M in Jrnl0), all entries in index Flash �
�N will be overwritten by N for they are all bound to
conflict with N .

This provides an interesting opportunity for reflecting on
the overall Alloy-meets-AoP round-trip philosophy. It turned
out that, at the time of calculating the above proof
obligation, conjecture (73) was made, offering a significant
simplification of the argument and promising its conclu-
sion. What we did was to interrupt the proof and model-
check (73) as the pair of Alloy assertions:

assert po73a {

all cs,cs,: CncSt2, s : set Key,
n: Key ! lone Addr, m: Num ! lone Addr j
po73_context[cs,cs’,s,n,m])
let geq = (ordering/prev) j

let ord = ~(cs’.Jrnl).geq.(cs’.Jrnl) j
shrinkby[(n.dom) <: (cs.Flash.index) +

n, ord] = shrinkby[n, ord]

}

and

assert po73b {

all cs,cs’: CncSt2, s : set Key,

n: Key ! lone Addr, m: Num ! lone Addr j
po73_context[cs,cs’,s,n,m] ¼>
let geq = (ordering/prev) j
let ord = ~(cs’.Jrnl).geq.(cs’.Jrnl) j

shrinkby[n, ord] = n
}

under the proof’s context:

pred po73_context

[cs,cs’: CncSt2, s : set Key,

n: Key ! lone Addr,

m: Num ! lone Addr] {

ci2[cs]

injective[n, Key]
injective[m, Key]

no n.(cs.Flash)

n.ran = m.ran

n.dom = s & cs.RIdx.dom

cs.Jrnl.(Addr! Addr).(em) in ^(ordering/prev)

cs’.Jrnl = cs.Jrnl + m

cs’.Flash = cs.Flash + n.del

cs’.RIdx = (cs.RIdx.dom-s) <: (cs.RIdx)
}

Not getting any counterexample (given a large enough
scope), we trusted the conjecture and completed the proof,
as given above. Then, we turned our attention back to

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

proving (73) itself, by AoP calculation, which was not at all
immediate. (Readers interested in the details of this proof
can find it in Appendix A.3.) Clearly, the AoP exercise of
proving (72) could have been a waste of time should (73)
not be true. Thus, the practical role of Alloy model-checking
of intermediate results, interweaved in AoP calculations, to
reduce the risk of relying on bad conjectures.

8.2.7 Remark on Scoping

One common pitfall when checking assertionswith the Alloy
Analyzer is to rely on no counterexamples found reports when
in fact there might be some. The tool has a standard scope
that defines how many instances of each type it can create
when checking (or instantiating) a model. This scope can,
however, be customized. If the scope with which Alloy
Analyzer checks a property is too narrow to create instances
of the model, it will always report no counterexample found.
This does not mean that there are no counterexamples to the
property, it only means that the space of instances in which
Alloy Analyzer searches for the counterexamples is empty.

To avoid this type of problem, one should constantly
check if it is possible to instantiate the model via the Alloy
run command. If at some point, with the standard scope
size, Alloy Analyzer cannot instantiate the model, we
incrementally increase the scope size until it can. However,
if we reach a point where the scope size is too large and it is
still not possible to instantiate the model, then we know we
have introduced some contradiction and need to fix the
model (see [31, Section 5.2] for how to identify contra-
dictions in Alloy models). For assessing how large is too
large, we estimate the minimum scope needed to instantiate
the model by analyzing the types defined in the model. For
instance, if we partition a signature in four subsignatures
(think of an enumerated type) and some constraint makes it
imperative that instances of all four subsignatures exist,
then it is obvious that the minimum scope size (at least for
the partitioned signature) be 4.

9 LAST TOUCH IN REFINEMENT PROCESS

A great disadvantage of the refined model presented above
is the growth of journal Jrnl, which is bound to cover the
whole Flash at any time. Power loss recovery of RIdx by
the replay function will thus take longer and longer as Jrnl
grows. This suggests that, from time to time, Jrnl should be
cleared up while saving the contents of RIdx persistently.
This is the purpose of FIdx (FLASH index), the last addition
to our state model:

sig CncSt3 extends CncSt2 {

FIdx : Key ! lone Addr

}

In this way, Jrnl will keep only the “difference” between
RIdx and its cache FIdx. Introducing FIdx requires a
commit operation which basically saves RIdx into FIdx and
clears Jrnl, as specified by the following postcondition:

Jrnl0 ¼ ?;

FIdx0 ¼ RIdx;

F lash remains unchanged;

RIdx remains unchanged:

As a consequence of caching RIdx into FIdx, both
concrete invariant ci2 (52) and the replay operation (37) need
to be upgraded. Earlier on, RIdx would be rebuilt just by
taking journal Jrnl into account. Now Jrnl does not cover
the whole Flash, only that part changed since the last
commit, which can be retrieved from

Jrnl� / index Flash:

The rest can be found in the FLASH index FIdx, but it is
necessary to override this with the changes meanwhile
recorded in Jrnl. This has the advantage of replaying only
the operations that happened after the last check point
(commit), as captured by redefinition

replayðFlash; FIdx; JrnlÞ �4

active F lash /

ðFIdxyððJrnl� / index FlashÞ +ð�JrnlÞÞÞ;

where y denotes relational overriding [12].
In turn, the concrete invariant calls for further upgrading

so as to record extra properties of the state. We omit their
formulation and the whole calculation of this extra
refinement step from the current paper, which, despite the
added complexity, is performed along the same lines and
strategy. What is important to know is that it is this step
which introduces the FLASH index into the overall design.

10 RELATED WORK

10.1 Blending Proof Checking and Model Checking

The integration of the complementary technologies of
model checking and proof checking is a popular subject in
the program verification community [32]. In particular, the
idea of preceding correctness proofs by model-checking to
“quickly eliminate false conjectures” can be found in, e.g., [33],
where a program verification method that combines
random testing, model checking and interactive theorem
proving in Agda/Alfa is proposed.

The main difference compared to our work resides in the
level at which reasoning takes place. This can be perceived
by following the same example, checking the type of the
function which doubles a number, as dealt with by Owre
et al. [32] and Oliveira [14]: The PVS in the former handles
quantified formulæ while the latter performs quantifier-free
calculation of weakest preconditions.

The reader is also referred to Dynamite [24], a tool that
blends Alloy with the semi-automatic theorem prover PVS
through the integration of a sound automatic translation of
Alloy models to PVS and a complete proof calculus for
Alloy based on fork algebra.

Finally, theorem provers such as Prover9 [34] work
directly with generalizations of the algebraic structures of
the kind one plays with in relational algebra. Some thoughts
on linking Alloy to Prover9 can be found in [34].

10.2 Alloy and Refinement Verification

Alloy has been used in conjunction with Event-B [35] and Z
[36]. In [35], the Alloy Analyzer is used to validate some
invariants for which an automatic proof was not achieved
through theorem proving. Bolton [36] reports on how the

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 15

tool’s simulation capabilities can be of help in verifying data
refinement in Z. Instead of using state space search
capabilities, Bolton [36] relies on the premise that if there
is a retrieve relation between abstract and concrete states,
then the refinement is sound. So, in this case, the Alloy
Analyzer is required to produce instances of the retrieve
relation to verify the refinement.

In [31], Alloy alone is used to check that a FLASH file
system model conforms to a given POSIX specification. Due
to the proximity between our case study and the one of [31],
a more in-depth comparison follows.

10.3 Modeling FLASH Devices in Alloy

Kang and Jackson [31] model a FLASH file system to
illustrate key concepts of Alloy. Two (at first) independent
models are developed, one covering a POSIX compliant file
system and the other a file system tailored to the specifics of
FLASH devices, including memory layout. The highly
abstracted POSIX file system is linked to the detailed
FLASH file system through an abstraction relation.

The most obvious difference between this work and the
current paper’s case study is that in this one we do not
model a FLASH memory device as such. Concerning which
file system operations are modeled, the two works are
complementary: deletion in our case study, writing and
reading in [31]. This alone leads to different levels of detail
since deletion is parametric on the contents of what is
deleted, in contrast to [31] where such contents are central
to the modeling.

Both papers present refinement exercises, with a differ-
ence in the number of refinement steps. We incrementally
refine a model through a succession of small steps, whereas
they produce two independent models and later provide
evidence that one conforms to the other.

Another difference concerns which file system features
are being addressed. While both papers are concerned with
wear leveling, the main focus of our paper is the journaling
feature, which increases performance and assures that
volatile data structures can be rebuilt in the presence of
faults. The main focus of [31] is the reliability of the write
operation, also in the presence of faults; wear leveling is
considered as part of the garbage collection operation.

Different operations combined with different file system
features addressed lead to the most significant difference:
Where we view the FLASH store as an array of opaque
entries, they model it as an array of inodes and data nodes.
Our entries encapsulate their inodes and data nodes, but
such details are irrelevant as they do not play any role in the
verification of the journaling mechanism.

Despite this fundamental difference, the wear leveling
mechanisms in both models are fairly similar. In neither
model are data erased upon becoming obsolete; instead,
modified copies of the existing data are created in free areas
of the device to replace outdated ones. Tracking obsolete
entries is, however, different: In our model this is part of
journaling, not garbage collection.

All-in-all, the model in [31] is more detailed than ours
with respect to low-level file system and FLASH device data
structures. We rely on a separation of concerns which isolates
the facet of FLASH operation which we want to analyze:
journaling. This is why many details become irrelevant.

10.4 Other Approaches to the VFS Challenge

The VFS challenge has been the focus of several research
groups, leading to a vast range of approaches from low
level FLASH devices, Linux compliant file systems, to highly
abstract file systems models.

One angle of approach to the VFS challenge is the
verification of real file system software. Galloway et al. [37]
report on the verification of the Linux virtual file system
using SPIN and SMART to perform simulation and model
checking, respectively. Mühlberg and Lüttgen [38] present a
novel verification tool named SOCA that is capable of
model checking binary code. This is particularly useful in
the verification of the Linux virtual file system, as it is
written in C and inlined assembly code. Yang et al. [39]
analyze several file system implementations taking journal-
ing into account. Their analysis resulted in several errors
being reported back to the developers. Schierl et al. [30]
report on a bottom-up verification of the UBIFS Linux file
system for FLASH memories using the KIV theorem prover.
This was the paper that inspired us to model and verify
journaling using our approach.

On a more model-driven approach, Butterfield and
Catháin [40] tackle the problem in a bottom up fashion by
modeling and verifying FLASH memory devices based on
the Open NAND Flash Interface (ONFi) specification. Their
work builds from memory layout models in Z [41] to more
advanced models in CSP [40] that already take into account
the interleaving of concurrent low-level operations.

Other researchers, however, take the top-down ap-
proach. Damchoom and Butler [42] use Event-B to model
and verify an abstract tree-based file system. Their baseline
is a dual notion of refinement: horizontal for feature
augmentation, and vertical for structural refinement. They
reach a point where, through machine decomposition in
Event-B, it is possible to split the model in the part to be
implemented in hardware and that to be implemented in
software. Hesselink and Lali [43] present an abstract file
system model similar to ours, where the file store is a partial
function of paths to data. However, instead of model-
checking, this work relies on theorem proving to verify both
the abstract model and the refinement steps toward a
pointer implementation which contemplates the addition of
access control over files in the system.

Not all research related to the VFS challenge is about
designing new file store models. Some researchers have
chosen to take existing models one step further, as is the
case of [44] in starting from an existing Z specification by
Morgan and Sufrin [45]. The outcome is the mechanization
of the required proofs using the Z/Eves theorem prover.

11 CONCLUSIONS

11.1 Relational Thinking

The approach to software design advocated in this paper
puts together two trends in software validation which
usually do not interact with each other—model checking (in
Alloy) and program calculation (in the AoP).

Such interaction between two quite different techniques
(both in spirit and practice) is made possible under the
umbrella of what may be termed “Relational Thinking”:

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

—a discipline which regards binary relations as the main
building block of the process of capturing requirements into
mathematical models, promising a way to verified code
through refinement.

Relational thinking pushes Alloy’s lemma “everything is
a relation” even further by restricting to binary relations
and quantifier-free notation. There is no contradiction here:
Binary relation algebra with pairing14 is as expressive as the
algebra of n-ary relations [21]. In addition, binary relations
are naturally pictured as arrows in diagrams. In this way,
not only types and operations (data types) but also
constraints (business rules) can be displayed by semanti-
cally rich drawings.

On the theory side, binary relations are the morphisms of
the allegory of relations [7] which underlies the AoP [8]; on
the practical side, a subset of the Alloy modeling language
is pointfree enough to accommodate the core combinators of
the algebra, notably dot join. The “Alloy-meets-AoP” gluing
effect is therefore natural and easy to understand and teach.
It contrasts, in its surprising simplicity, with the unneces-
sary convolution of languages, (graphical) notations, and
tools currently offered for commercial software design.

In summary, the approach proposes a two-stage analysis
that combines incomplete reasoning (Alloy) with complete
reasoning (AoP), rather than a two-stage analysis that uses
model-theoretic methods followed by proof-theoretic ones
(such a distinction is not the key issue in the methodology
which is proposed).

Thinking software in this way calls for abstraction skills
[46], no doubt ingredient number-one in software construc-
tion. (In the words of Wing [47], “computing is the automation
of our abstractions.”) It also caters to two complementary
aspects of software validation: checking and proving. The
most practically inclined are likely to feel comfortable
enough within model-checking; others will not trust
checking at all and will want to proceed to formal proofs
straight away. Clearly, each “leg” of diagram (74) has its
own merits and drawbacks. By putting them together we
get the best of both worlds.

11.2 Broadening Scope

The history of scientific technology [48] tells us that
complex phenomena end up being explained by simple
formulæ, leading to endurable knowledge once scientists
find not only a suitable abstract view of reality but also the
right notation for expressing it. Convoluted concepts and
notations are doomed to fail. They may live for a while, but
sooner or later they will be replaced.

Binary relations cannot be a simpler concept. They
generalize graphs, which have provided endurable support
for the software sciences. Depicted as arrows, typed
relations make up diagrams obtained just by arrow
chaining. Quite often, modeling functionalities or imposing
constraints on abstract models amounts to no more than
following paths from one place to another in a diagram;
recall, e.g., (27). Such paths always exist between any two

nodes in a diagram thanks to relation converse (an
advantage of relational versus functional thinking).

Binary relations lead to proofs by calculation in the
tradition of school algebra, easy to get used to once the laws
of the underlying algebra are understood. The fact that AoP
calculations are quantifier and induction free should be
emphasized.

Education is surely an issue in relational thinking. There
is no fundamental reason for discrete maths not being
taught to high school students in terms of binary relations,
in the quantifier-free style. Recent, successful experience in
solving puzzles in Alloy as a way of introducing teenagers to
computing [49] suggests our approach as a candidate for
implementing computational thinking [47].

Relational thinking’s focus on relations paves the way for
many other models of computation, such as Petri Nets, LTS,
FSA, etc. Relational databases and modeling languages such
as the UML also rely heavily on relations. However, such
relations are n-ary and make reasoning about them difficult
and convoluted, full of ellipsis (“...”) notation. Oliveira [15]
shows that functional and multivalued dependencies in
database theory can be calculated usingbinary relations only,
thus following the principles advocated in the current paper.

11.3 Downsides

The coexistence of two notations in (74) has a negative side:
It increases the learning burden inherent to the approach.
The definition of a shared logic should be considered in the
future. This is, however, not easy to achieve as choosing one
notation in detriment of the other has pros and cons.
Sticking to AoP notation only, for instance, would mean
losing model checking; enlarging Alloy to include the full
range of operators of the AoP in order to write proof steps
in Alloy would mean this losing its light weight, which is so
appreciated by users. As the approach is still in its infancy,
the proposed Alloy-AoP round-trip is perhaps inevitable at
this early stage. Automated translators between AoP and
Alloy will therefore be essential.

While Alloy provides an interactive tool that is simple to
use, AoP proofs are carried out by manual calculation.
These might be more elegant and agile than traditional
(pointwise) proofs, however they still require a considerable
amount of knowledge, creativity, and, above all, practice.
Moreover, there is no tool support for checking proofs from
top to bottom, which means that one is not free from subtle
(but harmful) mistakes.

This calls for education in calculational techniques,
which, unfortunately, cannot be found in most university
curricula. Changing these will require, perhaps, the effort of
a whole generation. At Minho, relational thinking has been
taught to master’s students for several years now [50]. This
is complemented by later studying automated proof theory
and practicing with off-the-shelf theorem provers. The
students are often shocked by the declarative flavor of Alloy
in the first place, but they soon realize that what they are
asked to do is to think about software, not to write programs
straight away. Maturing a design before implementation is
contrary to the dominant culture in agile methods.

Parnas [2] writes: “good methods, properly explained, sell
themselves. Our present methods do not sell beyond the first
trial.” Relational thinking is in its infancy. We hope to be
able to properly explain, develop, and sell it. Is it a good,
scalable method? We think so, but only time and experience
will tell.

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 17

14. Cf. the fork algebras of [24].

12 FUTURE WORK

12.1 Need for a Body of Knowledge

Experience in formal modeling tells that designs are
repetitive in the sense of instantiating generic constraints
whose ubiquity calls for cataloguing and classification.

Taking advantage of relational thinking’s constraints-as-
rectangles approach, we intend to implement the idea of
drawing a “constraint bestiary” [51] capturing such “con-
straint patterns” in a way easy to memorize, enriched with
the corresponding proof theories. These should encompass
checking all CRUD operations on the constrained relations.

Typical constraint patterns on collections of name spaces
are, for instance, referential-integrity, domain (respectively,
range) coherence or disjointness, domain-closure with
respect to some ordering or function, and so on [51].

12.2 Tuning Alloy for the AoP

Alloy’s type system is too liberal for AoP’s taste and can be
dangerous in places. For instance, during our experiments,
we mistyped a relation name for another in a pointfree
expression, something an AoP type checker would im-
mediately complain about. Instead, Alloy accepted what we
wrote and silently computed an empty “dot join” relation,
trivializing the proof obligation and defectively generating
no counterexamples.

To prevent situations like this, which jeopardize the
purpose of the tool, we plan to develop an external type
checker for Alloy adhering to AoP’s strict typing rules
which we will run as a preprocessor before submitting
scripts to the Alloy Analyzer.

12.3 Need for Automation

The “AoP leg” of relational thinking relies on quantifier-free
relational algebra reasoning in a style which is reminiscent of
the routines of school algebra. Necco et al. [52] experimented
with automating such routines. For this, a type-directed,
strategic term rewriting system is developed in Haskell,
which can be used to simplify relational proof obligations
and ultimately reduce them to tautologies. In [52], we have
checked how to use such reduction strategies in providing
extended static checking for design constraints.

A routine central to equation solving consists of
“shunting” expressions from one side to the other of
(in)equations, while “changing signs.” Galois connections
generalize this routine in their exchanging between lower
an upper adjoints, e.g., ð�RÞ exchanged by ð=RÞ in (12).
Clever use of this tactic is one of the hallmarks of AoP. Silva
and Oliveira [53] report on the development of a proof
assistant which is solely based on the (higher order) algebra
of Galois connections.

We intend to combine these experimental systems with
the Alloy tool reported in [25], toward the development of a
tool-chain supporting the life-cycle of relational thinking
illustrated in this paper. The alternative use of the Dynamite
proving system [24] for the same purpose will be
considered.

12.4 VFS: Need for Comparative Work

As already mentioned, the case study presented in this
paper was greatly inspired by the work of [30] where a
model of the UBIFS is fully verified using the KIV theorem
prover. It will be interesting to tally up the two approaches

in order to obtain some comparative data. This will most

likely require the tool support mentioned in the previous
paragraph.

As already mentioned, [31] is also a good source of

comparative work: It presents an Alloy model contemplat-

ing wear leveling, erase unit reclamation, and tolerance to

power loss as prescribed by the ONFi industry-wide

standard for the specification of NAND FLASH memory.

Carrying out AoP proofs for the various assertions

available from the code will be an interesting test of

Alloy-meets-AoP endurance in face of a model which is

more detailed than ours.

APPENDIX A

A.1 Alloy Auxiliary Functions

Alloy function implementing combinator s/r:

fun ifdef[s,r : univ ! univ] : univ ! univ { r :> (s.dom) }

Alloy function implementing the shrinking combinator:

fun shrinkby[r: Key ! Addr, s: Addr ! Addr] :

Key ! Addr {

{ a : r.dom, b : a.r j all b’ : a.r j b’ in s.b }

}

A.2 Basic Results of Relation Algebra

Composition:

R � ðS � T Þ ¼ ðR � SÞ � T; ð75Þ

R � id ¼ R ¼ id �R; ð76Þ

R � ? ¼ ? ¼ ? �R: ð77Þ

Converses:

ðR � SÞ� ¼ S� �R�; ð78Þ

ðR�Þ� ¼ R; ð79Þ

R � R �R� �R: ð80Þ

Union simplicity:

R [S simple �

R simple ^ S simple ^R � S� � id:
ð81Þ

Union injectivity:

R [S injective �

R injective ^ S injective ^R� � S � id:
ð82Þ

Shunting rule for function f :

R � f� � S � R � S � f: ð83Þ

Shunting rule for injective M:

M� �X � S � �M �X �M � S; ð84Þ

X �M � S � X � �M � S �M�: ð85Þ

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

Domain and range (for � coreflexive):

�R � � � R � > � �; ð86Þ

�R � � � R � � � >: ð87Þ

These offer a number of properties, namely,

�R ¼ �ðR�Þ; ð88Þ

> � �R ¼ > �R; ð89Þ

�R � > ¼ R � >; ð90Þ

R � �R ¼ R; ð91Þ

R ¼ ð�RÞ �R; ð92Þ

�ðR � SÞ ¼ �ð�R � SÞ; ð93Þ

�ðR � SÞ ¼ �ðR � �SÞ; ð94Þ

R � S� � ? � �R \ �S � ?; ð95Þ

�R � �S � R � > � S: ð96Þ

Complemented domain:

�S ¼ id \ ?=S�; ð97Þ

following from

R � �S ¼ R \ ?=S�; ð98Þ

where ?=S� can be replaced by ?=�S since they are the

same. Finally,

R � � � �R ¼ R � �; ð99Þ

�:p ¼ �p; ð100Þ

since the domain of a coreflexive is itself.

A.3 Proofs Left Pending in Main Text

Calculation of (51):

�Jrnl \ �Jrnl
� � id

� f ð40Þ; twice g

ðJrnl � � � Jrnl�Þ \ ðJrnl � �� � Jrnl�Þ � id

� f distribution; since Jrnl is injective g

Jrnl � ð� \ ��Þ � Jrnl� � id

(f since Jrnl is simple g

Jrnl � ð� \ ��Þ � Jrnl� � Jrnl � Jrnl�

(f monotonicity g

� \ �� � id:

Calculation of (63):

Flash0 ¼ Flash [ðdelNÞis simple

� fdefinition; union simplicity ð81Þ; Flash is simpleg

del N is simple

ðdel NÞ � Flash� � id

�

� f assume del N simple ðsee belowÞ g

ðdel NÞ � Flash� � id

(f delN � ðN � keyÞ�follows from ð60Þ; converses ð78Þ g

Flash �N � key � id

� f ð56Þ g

? � id

� f ? is below anything g

TRUE:

Calculation of the simplicity of del N , for N injective:

del N simple

� f ð5Þ g

ðdel NÞ � ðdel NÞ� � id

� f del N ¼ �V al � ðN � keyÞ�; converses g

�V al � key� �N� �N � key � �V al � id

(f N is injective g

�V al � key� � key � �V al � id

� f above; definition g

key � �Val injective:

The injectivity of key � �V al tells that there should be only

one way to record deleted keys in entries, that is, the DEL

mark should be unique.
Calculation of (64):

Jrnl0 ¼ Jrnl [M is simple

� f ð81Þ; since Jrnl and M are simple g

Jrnl �M� � id:

This is granted by condition (59) ensuring that M is right-

appended to Jrnl, since the position of every address in M

is strictly larger than that of any address in Jrnl. In fact, the

stronger condition,

Jrnl �M� � ?; ð101Þ

stems from (59):

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 19

M��> � Jrnl � >

) f since > is ireflexive g

M� � > � Jrnl \ id � ?

) f monotonicity g

Jrnl � ðM� � > � Jrnl \ idÞ �M� � ?

� f distribution; since Jrnl is injective and M� is simple g

Jrnl �M� � > � Jrnl �M� \ Jrnl �M� � ?

)f > is above everything; transitivity g

Jrnl �M� � ðJrnl �M�Þ� � Jrnl �M� \ Jrnl �M� � ?

� f ð80Þ g

Jrnl �M� � ?:

Calculation of (67):

index Flash +ð�Jrnl0Þ

¼ f ð47Þ; ð40Þ g

index Flash +

ð�ðindex FlashÞ � Jrnl0 � � � Jrnl0
�
� �ðindex FlashÞÞ

¼ f�ðindex FlashÞ ¼ �F lash ð37Þg

index Flash +ð�Flash � Jrnl0 � � � Jrnl0
�
� �F lashÞ

¼ f ð55Þ; ð56Þ; ð57Þ g

index Flash +ð�Flash � Jrnl � � � Jrnl� � �F lashÞ

¼ f ð37Þ again; followed by ð47Þ g

index Flash +ðJrnl � � � Jrnl�Þ

¼ fdefinitiong

index Flash +ð�JrnlÞ:

Calculation of (70):

�F lash0

¼ f ð54Þ;[-distribution; ci2ð52Þ g

�Jrnl [�ðdelNÞ

¼ f �ðdelNÞ ¼ �N�ð60Þ; ð93Þ g

�Jrnl [�N�

¼ f ð88Þ; ð57Þ g

�Jrnl [�M

¼ f [-distribution; ð55Þ g

�Jrnl0:

Calculation of (71): Injectivity of Jrnl0 (55), (82) requires

M� � Jrnl � id. This is granted by (101):

Jrnl �M� � ?

)f monotonicity g

M� � Jrnl �M� �M � ?

�fM injective ð85Þ; ð92Þ g

M� � Jrnl � ?:

Calculation of conjecture (73): Let us start by recording that,

wherever a key participates in both N and Flash, its

address in N is greater than any other in Flash:

N � ðindex Flash � �NÞ� � >Jrnl0 : ð102Þ

We reason

N � ðindex Flash � �NÞ� � >Jrnl0

� f ð34Þ; converses g

N � �N � �1 � Flash � >Jrnl0

� f ð91Þ; ð55Þ; ð40Þ g

N � �1 � Flash � ðJrnl [MÞ �> � ðJrnl [MÞ�

� f ð47Þand N; Flash orthogonal to respectivelyJrnl;M g

N � �1 � Flash �M �> � Jrnl�

� f ð92Þ; ð57Þ and ð88Þ; ð36Þ and ð91Þ g

�M � ðN � �1 � FlashÞ � �Jrnl �M �> � Jrnl�

� f shunting ð84; 85Þ g

M� � ðN � �1 � FlashÞ � Jrnl � >

(f > above anything; transitivity g

M� � > � Jrnl � >

�f ð59Þ g

TRUE:

We proceed to (73). To save ink, expressions

index Flash � �N , �Jrnl0 , and >Jrnl0 are abbreviated to S, w,

and t, respectively. In such shortened form, (102) becomes

N � S� � t, which is the same as

N � t=S�; ð103Þ

introducing division (12), in turn the same as

S � t�=N�; ð104Þ

taking converses. We reason

ðN [SÞ +w ¼ N +w

� f ð49Þ g

ðN +wÞ \ ðw=S�Þ [ðS +wÞ \ ðw=N�Þ ¼ N +w

� f N � w=S�thanks to ð103Þ and t � w g

ðN +wÞ [ðS +wÞ \ ðw=N�Þ ¼ N +w

� f since ðS +wÞ \ ðw=N�Þ ¼ ?; see ð105Þ below g

N +w ¼ N +w :

We are left with

ðS +wÞ \ ðw=N�Þ ¼ ?; ð105Þ

the calculation of which is as follows:

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

ðS +wÞ \ ðw=N�Þ ¼ ?

� f ð104Þ g

ðS +wÞ \ ðw=N�Þ \ ð t�=N�Þ ¼ ?

� f division preserves \ g

ðS +wÞ \ ðw \ t�Þ=N� ¼ ?

� f w \ t� ¼ ? g

ðS +wÞ \ ?=N� ¼ ?

� f indirect equality ½8	; for all suitably typed X g

X � ðS +wÞ ^ ðX � ?=N�Þ � X � ?

� f ð45Þ; ð12Þ g

X � S ^X � S� � w ^X �N� � ? � X � ?

� f ð95Þ; S and N are not domain-disjoint g

X � S ^X � S� � w ^X � ? � X � ?

� f trivia g

TRUE:

ACKNOWLEDGMENTS

This researchwas carriedout in the context of theMONDRIAN

Project funded by the Portuguese Science and Technology
Foundation (FCT) contract PTDC/EIA-CCO/108302/2008.
The authors would like to thank the anonymous referees for
insightful comments which significantly improved the
quality of the original submission. Comments by Raymond
Boute on an earlier draft of this paper are also gratefully
acknowledged. José Oliveira would like to thank António
Murta for renewing his interest in Alloy.

REFERENCES

[1] Software Engineering: Report on a Conference Sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, Seventh to 11th
October 1968, P. Naur and B. Randell, eds. Scientific Affairs
Division, NATO, 1969.

[2] D.L. Parnas, “Really Rethinking ‘Formal Methods’,” Computer,
vol. 43, no. 1, pp. 28-34, Jan. 2010.

[3] R. Backhouse, Mathematics of Program Construction, Univ. of
Nottingham, 2004, draft of book in preparation.

[4] E. Kreyszig, Advanced Engineering Mathematics, sixth ed. J. Wiley
and Sons, 1988.

[5] R. Maddux, “The Origin of Relation Algebras in the Development
and Axiomatization of the Calculus of Relations,” Studia Logica,
vol. 50, pp. 421-455, 1991.

[6] G. Schmidt, Relational Mathematics, Encyclopedia of Mathematics
and Its Applications. Cambridge Univ. Press, Nov. 2010.

[7] P. Freyd and A. �S�cedrov, Categories, Allegories, Mathematical
Library, vol. 39. North-Holland, 1990.

[8] R. Bird and O. de Moor, Algebra of Programming. Prentice-Hall,
1997.

[9] L. Barbosa and J. Oliveira, “Transposing Partial Components—An
Exercise on Coalgebraic Refinement,” Theoretical Computer Science,
vol. 365, no. 1, pp. 2-22, 2006.

[10] L. Barbosa, J. Oliveira, and A. Silva, “Calculating Invariants as
Coreflexive Bisimulations,” Proc. 12th Int’l Conf. Algebraic Metho-
dology and Software Technology, pp. 83-99, 2008.

[11] J. Oliveira and C. Rodrigues, “Pointfree Factorization of Operation
Refinement,” Proc. 14th Int’l Conf. Formal Methods, pp. 236-251,
2006.

[12] J. Oliveira, “Transforming Data by Calculation,” Proc. Generative
and Transformational Techniques in Software Eng. II, pp. 134-195,
2008.

[13] S. Wang, L. Barbosa, and J. Oliveira, “A Relational Model for
Confined Separation Logic,” Proc. IFIP/IEEE Second Int’l Symp.
Theoretical Aspects of Software Eng., pp. 263-270, 2008.

[14] J. Oliveira, “Extended Static Checking by Calculation using the
Pointfree Transform,” Proc. LerNet ALFA Summer School Conf.,
pp. 195-251, 2008.

[15] J. Oliveira, “Pointfree Foundations for (Generic) Lossless Decom-
position,” Technical Report TR-HASLab:3:2011, HASLab, Univ. of
Minho and INESC TEC, 2011.

[16] R. Joshi and G.J. Holzmann, “A Mini Challenge: Build a Verifiable
Filesystem,” Proc. Verified Software: Theories, Tools, Experiments
Conf., pp. 49-56, 2005.

[17] M.A. Ferreira and J. Oliveira, “An Integrated Formal Methods
Tool-Chain and Its Application to Verifying a File System Model,”
Formal Methods: Foundations and Applications, vol. 5902, pp. 153-
169, Springer, 2009.

[18] D. Jackson, Software Abstractions: Logic, Language, and Analysis,
revised ed. MIT Press, 2012.

[19] R. Backhouse, Program Construction: Calculating Implementations
from Specifications. John Wiley and Sons, Inc., 2003.

[20] S. Feferman, “Tarski’s Influence on Computer Science,” Logical
Methods in Computer Science, vol. 2, pp. 1-1-13, 2006.

[21] S. Givant, “The Calculus of Relations as a Foundation for
Mathematics,” J. Automated Reasoning, vol. 37, no. 4, pp. 277-322,
2006.

[22] A. Tarski and S. Givant, A Formalization of Set Theory without
Variables. Am. Math. Soc., 1987.

[23] J. Backus, “Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of Programs,”
Comm. ACM, vol. 21, no. 8, pp. 613-639, Aug. 1978.

[24] M.F. Frias, C.L. Pombo, and M.M. Moscato, “Alloy Analyzer+PVS
in the Analysis and Verification of Alloy Specifications,” Proc. 13th
Int’l Conf. Tools and Algorithms for the Construction and Analysis of
Systems, pp. 587-601, 2007.

[25] N. Macedo, “Translating Alloy Specifications to the Point-Free
Style,” master’s thesis, Univ. of Minho, 2010.

[26] C. Jones, Systematic Software Development Using VDM, second ed.
Prentice-Hall, 1990.

[27] D. Méry, “Refinement-Based Guidelines for Algorithmic Sys-
tems,” Int’l J. Software and Informatics, vol. 3, nos. 2/3, pp. 197-239,
2009.

[28] T. Hoare and J. Misra, “Verified Software: Theories, Tools,
Experiments Vision of a Grand Challenge Project,” Proc. Verified
Software: Theories, Tools, Experiments Conf., pp. 1-18, 2005,

[29] C.B. Jones and J. Woodcock, “Editorial,” Formal Aspects of
Computing, vol. 20, no. 1, issue devoted to the Mondex grand-
challenge in verified software, pp. 1-3, 2008.

[30] A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif, “Abstract
Specification of the UBIFS file System for Flash Memory,” Proc.
Second World Congress on Formal Methods, pp. 190-206, 2009.

[31] E. Kang and D. Jackson, “Designing and Analyzing a Flash File
System with Alloy,” Int’l J. Software and Informatics, vol. 3, no. 1,
pp. 129-148, 2009.

[32] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS:
Combining Specification, Proof Checking, and Model Checking,”
Proc. Eighth Int’l Conf. Computer Aided Verification, pp. 411-414,
July/Aug. 1996.

[33] P. Dybjer, Q. Haiyan, and M. Takeyama, “Verifying Haskell
Programs by Combining Testing and Proving,” Proc. Third Int’l
Conf. Quality Software, pp. 272-279, 2003.

[34] P. Höfner and G. Struth, “On Automating the Calculus of
Relations,” Proc. Fourth Int’l Joint Conf. Automated Reasoning,
pp. 50-66, 2008.

[35] P. Matos and J. Marques-Silva, “Model Checking Event-B by
Encoding into Alloy,” J. Computing Research Repository,
vol. arXiv:0805.3256v2, 2008.

[36] C. Bolton, “Using the Alloy Analyzer to Verify Data Refinement in
Z,” Electronic Notes in Theoretical Computer Science, vol. 137, no. 2,
pp. 23-44, 2005.

[37] A. Galloway, G. Lüttgen, J. Mühlberg, and R. Siminiceanu,
“Model-Checking the Linux Virtual File System,” Proc. Int’l Conf.
Verification, Model Checking, and Abstract Interpretation, pp. 74-88,
2009.

[38] J.T. Mühlberg and G. Lüttgen, “Verifying Compiled File System
Code,” Proc. Brazilian Symp. Formal Methods, pp. 306-320, 2009.

[39] J. Yang, P. Twohey, D. Engler, and M. Musuvathi, “Using Model
Checking to Find Serious File System Errors,” ACM Trans.
Computer Systems, vol. 24, no. 4, pp. 393-423, 2006.

OLIVEIRA AND FERREIRA: ALLOY MEETS THE ALGEBRA OF PROGRAMMING: A CASE STUDY 21

[40] A. Butterfield and A.�O. Catháin, “Concurrent Models of Flash
Memory Device Behaviour,” Proc. Brazilian Symp. Formal Methods,
pp. 70-83, 2009.

[41] A. Butterfield and J. Woodcock, “Formalising Flash Memory: First
Steps,” Proc. IEEE 12th Int’l Conf. Eng. Complex Computer Systems,
pp. 251-260, 2007.

[42] K. Damchoom and M. Butler, “Applying Event and Machine
Decomposition to a Flash-Based Filestore in Event-B,” Proc.
Brazilian Symp. Formal Methods, pp. 134-152, 2009.

[43] W. Hesselink and M. Lali, “Formalizing a Hierarchical File
System,” Electronic Notes in Theoretical Computer Science, vol. 259,
pp. 67-85, 2009.

[44] L. Freitas, J. Woodcock, and Z. Fu, “POSIX File Store in Z/Eves:
An Experiment in the Verified Software Repository,” Science of
Computer Programming, vol. 74, no. 4, pp. 238-257, 2009.

[45] C. Morgan and B. Sufrin, “Specification of the UNIX Filing
System,” IEEE Trans. Software Eng., vol. 10, no. 2, pp. 128-142, Mar.
1984.

[46] J. Kramer, “Is Abstraction the Key to Computing?” Comm. ACM,
vol. 50, no. 4, pp. 37-42, Apr. 2007.

[47] J.M. Wing, “Computational Thinking and Thinking about Com-
puting,” Philosophical Trans. Royal Soc. A, vol. 366, pp. 3717-3725,
Oct. 2008.

[48] L. Russo, The Forgotten Revolution: How Science Was Born in 300BC
and Why It Had to Be Reborn. Springer-Verlag, Sept. 2003.

[49] J. Ferreira, A. Mendes, A. Cunha, C. Baquero, P. Silva, L. Barbosa,
and J. Oliveira, “Logic Training through Algorithmic Problem
Solving,” Proc. Third Int’l Congress Conf. Tools for Teaching Logic,
pp. 62-69, 2011.

[50] M. in Computer Science and Engineering, “Formal Methods in
Software Engineering Course,” http://mei.di.uminho.pt/?q=en/
mfes-uk, 30 ECTS, Univ. of Minho, 2011.

[51] J. Oliveira, “Calculating with Pointfree Alloy,” contributed talk to
the IFIP WG 2.1 #64 Meeting, Apr. 2009.

[52] C. Necco, J. Oliveira, and J. Visser, “Extended Static Checking by
Strategic Rewriting of Pointfree Relational Expressions,” Technical
Report FAST:07.01, CCTC Research Centre, Univ. of Minho, 2007.

[53] P.F. Silva and J.N. Oliveira, ““Galculator”: Functional Prototype of
a Galois-Connection Based Proof Assistant,” Proc. 10th Int’l ACM
SIGPLAN Conf. Principles and Practice of Declarative Programming,
pp. 44-55, 2008.

José N. Oliveira graduated in electrical engi-
neering in 1978 from the University of Porto in
Portugal and received the MSc and PhD
degrees in computer science in 1980 and
1984, respectively, from the University of Man-
chester, United Kingdom. Since 2010 he has
been an associate professor with habilitation at
the Computer Science Department of the Uni-
versity of Minho, Portugal, and a member of the
High Assurance Software Laboratory (HASLab)

of INESC TEC/University of Minho. He is also a member of IFIP WG2.1
(Algorithmic Languages and Calculi) and of the Formal Methods Europe
(FME) association.

Miguel A. Ferreira received the BSc degree in
software engineering and the MSc degree in
computer science from Minho University, Portu-
gal. Currently, he is working as a researcher at
Software Improvement Group (SIG). In his
research at Minho University he focused mainly
on software modeling for verification purposes.
Later, at SIG, he has focused on different areas
such as software development repository mining
and subsequent empirical analysis, metrics for

spreadsheets, and cloud computing. He was responsible for building the
cloud infrastructure currently used by SIG to scale up its software
analysis capabilities. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. X, X 2013

