7 research outputs found

    Minimal complexity of equidistributed infinite permutations

    Full text link
    An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account. In the paper we investigate a new class of {\it equidistributed} infinite permutations, that is, infinite permutations which can be defined by equidistributed sequences. Similarly to infinite words, a complexity p(n)p(n) of an infinite permutation is defined as a function counting the number of its subpermutations of length nn. For infinite words, a classical result of Morse and Hedlund, 1938, states that if the complexity of an infinite word satisfies p(n)≤np(n) \leq n for some nn, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to n+1n+1, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions growing arbitrarily slowly, and hence there are no permutations of minimal complexity. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation α\alpha is pα(n)=np_{\alpha}(n)=n. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.Comment: An old (weaker) version of the paper was presented at DLT 2015. The current version is submitted to a journa

    Infinite permutations vs. infinite words

    Full text link
    I am going to compare well-known properties of infinite words with those of infinite permutations, a new object studied since middle 2000s. Basically, it was Sergey Avgustinovich who invented this notion, although in an early study by Davis et al. permutations appear in a very similar framework as early as in 1977. I am going to tell about periodicity of permutations, their complexity according to several definitions and their automatic properties, that is, about usual parameters of words, now extended to permutations and behaving sometimes similarly to those for words, sometimes not. Another series of results concerns permutations generated by infinite words and their properties. Although this direction of research is young, many people, including two other speakers of this meeting, have participated in it, and I believe that several more topics for further study are really promising.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Enumeration and Decidable Properties of Automatic Sequences

    Full text link
    We show that various aspects of k-automatic sequences -- such as having an unbordered factor of length n -- are both decidable and effectively enumerable. As a consequence it follows that many related sequences are either k-automatic or k-regular. These include many sequences previously studied in the literature, such as the recurrence function, the appearance function, and the repetitivity index. We also give some new characterizations of the class of k-regular sequences. Many results extend to other sequences defined in terms of Pisot numeration systems

    Ergodic Infinite Permutations of Minimal Complexity

    Get PDF
    International audienceAn infinite permutation can be defined as a linear ordering of the set of natural numbers. Similarly to infinite words, a complexity p(n) of an infinite permutation is defined as a function counting the number of its factors of length n. For infinite words, a classical result of Morse and Hedlind, 1940, states that if the complexity of an infinite word satisfies p(n) ≤ n for some n, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to n + 1, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions of arbitrarily slow growth, and hence there are no permutations of minimal complexity. In the paper we introduce a new notion of ergodic permutation, i.e., a permutation which can be defined by a sequence of numbers from [0, 1], such that the frequency of its elements in any interval is equal to the length of that interval. We show that the minimal complexity of an ergodic permutation is p(n) = n, and that the class of ergodic permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words

    Prism complexity of matrices

    Get PDF

    On automatic infinite permutations

    No full text
    An infinite permutation α is a linear ordering of N. We study properties of infinite permutations analogous to those of infinite words, and show some resemblances and some differences between permutations and words. In this paper, we try to extend to permutations the notion of automaticity. As we shall show, the standard definitions which are equivalent in the case of words are not equivalent in the context of permutations. We investigate the relationships between these definitions and prove that they constitute a chain of inclusions. We also construct and study an automaton generating the Thue-Morse permutation

    On automatic infinite permutations

    No full text
    corecore