175 research outputs found

    Massive MIMO performance evaluation based on measured propagation data

    Full text link
    Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA) which has a physically large aperture, and a practical uniform cylindrical array (UCA) which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.Comment: IEEE Transactions on Wireless Communications, 201

    Reciprocity Calibration for Massive MIMO: Proposal, Modeling and Validation

    Get PDF
    This paper presents a mutual coupling based calibration method for time-division-duplex massive MIMO systems, which enables downlink precoding based on uplink channel estimates. The entire calibration procedure is carried out solely at the base station (BS) side by sounding all BS antenna pairs. An Expectation-Maximization (EM) algorithm is derived, which processes the measured channels in order to estimate calibration coefficients. The EM algorithm outperforms current state-of-the-art narrow-band calibration schemes in a mean squared error (MSE) and sum-rate capacity sense. Like its predecessors, the EM algorithm is general in the sense that it is not only suitable to calibrate a co-located massive MIMO BS, but also very suitable for calibrating multiple BSs in distributed MIMO systems. The proposed method is validated with experimental evidence obtained from a massive MIMO testbed. In addition, we address the estimated narrow-band calibration coefficients as a stochastic process across frequency, and study the subspace of this process based on measurement data. With the insights of this study, we propose an estimator which exploits the structure of the process in order to reduce the calibration error across frequency. A model for the calibration error is also proposed based on the asymptotic properties of the estimator, and is validated with measurement results.Comment: Submitted to IEEE Transactions on Wireless Communications, 21/Feb/201

    Doctoral Thesis: Massive MIMO in Real Propagation Environments

    Get PDF
    Mobile communications are now evolving towards the fifth generation (5G). In the near future, we expect an explosive increase in the number of connected devices, such as phones, tablets, sensors, connected vehicles and so on. Much higher data rates than in today's 4G systems are required. In the 5G visions, better coverage in remote regions is also included, aiming for bringing the current "4 billion unconnected" population into the online world. There is also a great interest in "green communications", for less energy consumption in the ICT (information and communication technology) industry. Massive MIMO is a potential technology to fulfill the requirements and visions. By equipping a base station with a large number, say tens to hundreds, of antennas, many terminals can be served in the same time-frequency resource without severe inter-user interference. Through "aggressive" spatial multiplexing, higher data rates can be achieved without increasing the required spectrum. Processing efforts can be made at the base station side, allowing terminals to have simple and cheap hardware. By exploiting the many spatial degrees of freedom, linear precoding/detection schemes can be used to achieve near-optimal performance. The large number of antennas also brings the advantage of large array gain, resulting in an increase in received signal strength. Better coverage is thus achieved. On the other hand, transmit power from base stations and terminals can be scaled down to pursue energy efficiency. In the last five years, a lot of theoretical studies have been done, showing the extraordinary advantages of massive MIMO. However, the investigations are mainly based on theoretical channels with independent and identically distributed (i.i.d.) Gaussian coefficients, and sometimes assuming unlimited number of antennas. When bringing this new technology from theory to practice, it is important to understand massive MIMO behavior in real propagation channels using practical antenna arrays. Not much has been known about real massive MIMO channels, and whether the claims about massive MIMO still hold there, until the studies in this thesis were done. The thesis study connects the "ideal" world of theory to the "non-ideal" reality. Channel measurements for massive MIMO in the 2.6 GHz band were performed, in different propagation environments and using different types of antenna arrays. Based on obtained real-life channel data, the studies include • channel characterization to identify important massive MIMO properties, • evaluation of propagation conditions in real channels and corresponding massive MIMO performance, • channel modeling for massive MIMO to capture the identified channel properties, and • reduction of massive MIMO hardware complexity through antenna selection. The investigations in the thesis conclude that massive MIMO works efficiently in real propagation environments. The theoretical advantages, as observed in i.i.d. Rayleigh channels, can also be harvested in real channels. Important propagation effects are identified for massive MIMO scenarios, including channel variations over large arrays, multipath-component (MPC) lifetime, and 3D propagation. These propagation properties are modeled and included into the COST 2100 MIMO channel model as an extension for massive MIMO. The study on antenna selection shows that characteristics in real channels allow for significant reductions of massive MIMO complexity without significant performance loss. As one of the world's first research work on massive MIMO behavior in real propagation channels, the studies in this thesis promote massive MIMO as a practical technology for future communication systems

    Joint precoding and antenna selection in massive mimo systems

    Get PDF
    This thesis presents an overview of massive multiple-input multiple-output (MIMO) systems and proposes new algorithms to jointly precode and select the antennas. Massive MIMO is a new technology, which is candidate for comprising the fifth-generation (5G) of mobile cellular systems. This technology employs a huge amount of antennas at the base station and can reach high data rates under favorable, or asymptotically favorable, propagation conditions, while using simple linear processing. However, massive MIMO systems have some drawbacks, such as the high cost related to the base stations. A way to deal with this issue is to employ antenna selection algorithms at the base stations. These algorithms reduce the number of active antennas, decreasing the deployment and maintenance costs related to the base stations. Moreover, this thesis also describes a class of nonlinear precoders that are rarely addressed in the literature; these techniques are able to generate precoded sparse signals in order to achieve joint precoding and antenna selection. This thesis proposes two precoders belonging to this class, where the number of selected antennas is controlled by a design parameter. Simulation results show that the proposed precoders reach a lower bit-error rate than the classical antenna selection algorithms. Furthermore, simulation results show that the proposed precoders present a linear relation between the aforementioned design parameter that controls the signals’ sparsity and the number of selected antennas. Such relation is invariant to the number of base station’s antennas and the number of terminals served by this base station.Esta dissertação apresenta uma visão geral sobre MIMO (do termo em inglês, multiple-input multiple-output) massivo e propõe novos algoritmos que permitem a pré-codificacão de sinais e a seleção de antenas de forma simultânea. MIMO massivo é uma nova tecnologia candidata para compor a quinta geração (5G) dos sistemas celulares. Essa tecnologia utiliza uma quantidade muito grande de antenas na estação-base e, sob condições de propagação favorável ou assintoticamente favorável, pode alcançar taxas de transmissão elevadas, ainda que utilizando um simples processamento linear. Entretanto, os sistemas MIMO massivo apresentam algumas desvantagens, como por exemplo, o alto custo de implementação das estações-bases. Uma maneira de lidar com esse problema é utilizar algoritmos de seleção de antenas na estação-base. Com esses algoritmos é possível reduzir o número de antenas ativas e consequentemente reduzir o custo nas estações-bases. Essa dissertação também apresenta uma classe pouco estudada de pré-codificadores não-lineares que buscam sinais pré-codificados esparsos para realizar a seleção de antenas conjuntamente com a pré-codificação. Além disso, este trabalho propõem dois novos pré-codificadores pertencentes a essa classe, para os quais o número de antenas selecionadas é controlado por um parâmetro de projeto. Resultados de simulações mostram que os pré-codificadores propostos conseguem uma BER (do termo em inglês, bit-error rate) menor que os algoritmos clássicos usados para selecionar antenas. Além disso, resultados de simulações mostram que os pré-codificadores propostos apresentam uma relação linear com o parâmetro de projeto que controla a quantidade de antenas selecionadas; tal relação independe do número de antenas na estação-base e do número de terminais servidos por essa estação

    Antenna selection in massive mimo based on matching pursuit

    Get PDF
    As wireless services proliferate, the demand for available spectrum also grows. As a result, the spectral efficiency is still an issue addressed by many researchers looking for solutions to provide quality of service to a growing number of users. massive MIMO is an attractive technology for the next wireless systems since it can alleviate the expected spectral shortage. This work proposes two antenna selection strategies to be applied in the downlink of a massive MIMO system, aiming at reducing the transmission power. The proposed algorithms can also be employed to select a subset of active sensors in centralized sensor networks. The proposed strategy to select the antennas is inspired by the matching pursuit technique. The presented results show that an efficient selection can be obtained with reduced computational complexity.Com a proliferação de serviços wireless, a demanda por espectro disponível também cresce. Logo, a eficiência espectral é um assunto de grande interesse na comunidade científica, que procura por meios para fornecer qualidade de serviço ao crescente número de usuários. massive MIMO é uma técnica repleta de atrativos a ser empregada na futura geração wireless, já que aproveita o espectro existente eficientemente. Este trabalho propõe duas estratégias de seleção de antenas para serem empregadas no downlink de um sistema massive MIMO, visando a redução da potência de transmissão. Os algoritmos propostos podem também ser usados para selecionar um subconjunto de sensores ativos em uma rede centralizada de sensores. A estratégia proposta para seleção de antenas é inspirada na técnica matching pursuit. Os resultados apresentados indicam que uma seleção eficiente pode ser obtida com baixa complexidade computacional

    Massive MIMO for Dependable Communication

    Get PDF
    Cellular communication is constantly evolving; currently 5G systems are being deployed and research towards 6G is ongoing. Three use cases have been discussed as enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-reliable low-latency communication (URLLC). To fulfill the requirements of these use cases, new technologies are needed and one enabler is massive multiple-input multiple-output (MIMO). By increasing the number of antennas at the base station side, data rates can be increased, more users can be served simultaneously, and there is a potential to improve reliability. In addition, it is possible to achieve better coverage, improved energy efficiency, and low-complex user devices. The performance of any wireless system is limited by the underlying channels. Massive MIMO channels have shown several beneficial properties: the array gain stemming from the combining of the signals from the many antennas, improved user separation due to favourable propagation -- where the user channels become pair-wise orthogonal -- and the channel hardening effect, where the variations of channel gain decreases as the number of antennas increases. Previous theoretical works have commonly assumed independent and identically distributed (i.i.d.) complex Gaussian channels. However, in the first studies on massive MIMO channels, it was shown that common outdoor and indoor environments are not that rich in scattering, but that the channels are rather spatially correlated. To enable the above use cases, investigations are needed for the targeted environments. This thesis focuses on the benefits of deploying massive MIMO systems to achieve dependable communication in a number of scenarios related to the use cases. The first main area is the study of an industrial environment and aims at characterizing and modeling massive MIMO channels to assess the possibility of achieving the requirements of URLLC in a factory context. For example, a unique fully distributed array is deployed with the aim to further exploit spatial diversity. The other main area concerns massive MIMO at sub-GHz, a previously unexplored area. The channel characteristics when deploying a physically very large array for IoT networks are explored. To conclude, massive MIMO can indeed bring great advantages when trying to achieve dependable communication. Although channels in regular indoor environments are not i.i.d. complex Gaussian, the model can be justified in rich scattering industrial environments. Due to massive MIMO, the small-scale fading effects are reduced and when deploying a distributed array also the large-scale fading effects are reduced. In the Internet-of-Things (IoT) scenario, the channel is not as rich scattering. In this use case one can benefit from the array gain to extend coverage and improved energy efficiency, and diversity is gained due to the physically large array

    On the application of massive mimo systems to machine type communications

    Get PDF
    This paper evaluates the feasibility of applying massive multiple-input multiple-output (MIMO) to tackle the uplink mixed-service communication problem. Under the assumption of an available physical narrowband shared channel, devised to exclusively consume data traffic from machine type communications (MTC) devices, the capacity (i.e., number of connected devices) of MTC networks and, in turn, that of the whole system, can be increased by clustering such devices and letting each cluster share the same time-frequency physical resource blocks. Following this research line, we study the possibility of employing sub-optimal linear detectors to the problem and present a simple and practical channel estimator that works without the previous knowledge of the large-scale channel coefficients. Our simulation results suggest that the proposed channel estimator performs asymptotically, as well as the MMSE estimator, with respect to the number of antennas and the uplink transmission power. Furthermore, the results also indicate that, as the number of antennas is made progressively larger, the performance of the sub-optimal linear detection methods approaches the perfect interference-cancellation bound. The findings presented in this paper shed light on and motivate for new and exciting research lines toward a better understanding of the use of massive MIMO in MTC networks

    Characterisation and Modelling of Measured Massive MIMO Channels

    Get PDF
    corecore