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OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA
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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

PRECODIFICAÇÃO E SELEÇÃO DE ANTENAS EM SISTEMAS MIMO

MASSIVO

Rafael da Silva Chaves

Março/2018

Orientador: Wallace Alves Martins

Programa: Engenharia Elétrica

Esta dissertação apresenta uma visão geral sobre MIMO (do termo em inglês,

multiple-input multiple-output) massivo e propõe novos algoritmos que permitem a

pré-codificação de sinais e a seleção de antenas de forma simultânea. MIMO mas-

sivo é uma nova tecnologia candidata para compor a quinta geração (5G) dos sis-

temas celulares. Essa tecnologia utiliza uma quantidade muito grande de antenas na

estação-base e, sob condições de propagação favorável ou assintoticamente favorável,

pode alcançar taxas de transmissão elevadas, ainda que utilizando um simples pro-

cessamento linear. Entretanto, os sistemas MIMO massivo apresentam algumas

desvantagens, como por exemplo, o alto custo de implementação das estações-bases.

Uma maneira de lidar com esse problema é utilizar algoritmos de seleção de antenas

na estação-base. Com esses algoritmos é posśıvel reduzir o número de antenas ativas

e consequentemente reduzir o custo nas estações-bases. Essa dissertação também

apresenta uma classe pouco estudada de pré-codificadores não-lineares que buscam

sinais pré-codificados esparsos para realizar a seleção de antenas conjuntamente com

a pré-codificação. Além disso, este trabalho propõem dois novos pré-codificadores

pertencentes a essa classe, para os quais o número de antenas selecionadas é con-

trolado por um parâmetro de projeto. Resultados de simulações mostram que os

pré-codificadores propostos conseguem uma BER (do termo em inglês, bit-error

rate) menor que os algoritmos clássicos usados para selecionar antenas. Além disso,

resultados de simulações mostram que os pré-codificadores propostos apresentam

uma relação linear com o parâmetro de projeto que controla a quantidade de ante-

nas selecionadas; tal relação independe do número de antenas na estação-base e do

número de terminais servidos por essa estação.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

JOINT PRECODING AND ANTENNA SELECTION IN MASSIVE MIMO
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Rafael da Silva Chaves

March/2018

Advisor: Wallace Alves Martins

Department: Electrical Engineering

This thesis presents an overview of massive multiple-input multiple-output

(MIMO) systems and proposes new algorithms to jointly precode and select the

antennas. Massive MIMO is a new technology, which is candidate for comprising

the fifth-generation (5G) of mobile cellular systems. This technology employs a

huge amount of antennas at the base station and can reach high data rates under

favorable, or asymptotically favorable, propagation conditions, while using simple

linear processing. However, massive MIMO systems have some drawbacks, such as

the high cost related to the base stations. A way to deal with this issue is to employ

antenna selection algorithms at the base stations. These algorithms reduce the num-

ber of active antennas, decreasing the deployment and maintenance costs related to

the base stations. Moreover, this thesis also describes a class of nonlinear precoders

that are rarely addressed in the literature; these techniques are able to generate

precoded sparse signals in order to achieve joint precoding and antenna selection.

This thesis proposes two precoders belonging to this class, where the number of

selected antennas is controlled by a design parameter. Simulation results show that

the proposed precoders reach a lower bit-error rate than the classical antenna selec-

tion algorithms. Furthermore, simulation results show that the proposed precoders

present a linear relation between the aforementioned design parameter that controls

the signals’ sparsity and the number of selected antennas. Such relation is invariant

to the number of base station’s antennas and the number of terminals served by this

base station.
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Chapter 1

Introduction

1.1 A Brief History of Wireless Communication

The invention of the first wireless communication system is usually credited to the

Italian electrical engineer Guglielmo Marconi. Marconi is the inventor of the wire-

less telegraphy, which is a system that transmits telegraph messages without wire

connections, as those employed by electric telegraphy [1]. Actually, this was not a

new idea since numerous inventors had been exploring wireless telegraphy, but none

had proven technically and commercially successful. The mathematical theory of

electromagnetic waves formulated by James C. Maxwell in 1873 [2] and the experi-

mental confirmation of the existence of these waves by Heinrich Hertz in 1888 made

possible Marconi’s invention in 1984.

In December of 1894, Marconi made an indoor experiment that consisted in

ringing a bell on the other side of a room by pushing a telegraphic button on a

bench within this room. In the summer of 1895, Marconi continued his experiment

outdoors. In his outdoor experiments he was not able to transmit signals over the

distance of 0.8 km, which was predicted by Oliver Lodge as the maximum trans-

mission distance reached by radio waves. However, in the same summer, Marconi

found out that much larger distances could be achieved as long as the antennas were

made taller and the transmitter and receiver were properly grounded. With these

improvements, the resulting system was capable of surpassing the distance of 3.2 km

and of transmitting over hills [3].

In May of 1897, Marconi did the world’s first ever wireless transmission over the

open sea. The experiment consisted in sending a message over the Bristol Channel,

UK, from Flat Holm island to Lavernock point in Penarth, reaching a range of

6.0 km. In 1901, Marconi made history by using radio waves for transatlantic

transmissions. His communication system sent a message from Poldhu, Cornwall,

to Signal Hill in St. John’s, Newfoundland (now part of Canada). The distance

1



between the two points was about 3, 500 km [4].

The Canadian inventor Reginald Fessenden conceived the amplitude modulation

(AM) for music and voice broadcasting in 1906. In addition, Fessenden also invented

the heterodyne receiver, which is able to rectify and receive AM signals. In 1913,

the American electrical engineer Edwin H. Armstrong conceived the superhetero-

dyne receiver, which was used in the first broadcast radio transmission in 1920 at

Pittsburgh, USA. In 1921, The Detroit Police Department, USA, was the first one

to use land mobile wireless communication. In 1929, the Russian inventor and en-

gineer Vladimir Zworykin performed the first experiment of TV transmission. In

1933, Armstrong invented frequency modulation (FM).

The first public mobile telephone service was introduced in June of 1946 at St.

Louis, USA. It was a half-duplex system that used 120 kHz of FM bandwidth [5].

This system had a feature known as press to transmit, which means that only one

user could talk at a time using the push-to-talk button. In 1958, the launch of

the Signal Communication by Orbital Relay Equipment (SCORE) satellite led to

a new era of satellite communications. In the 1960s, automatic channel trunking

was introduced, enabling the creation of full-duplex. The most important break-

through for modern mobile communications happened in the 1970s, when AT&T

Bell Laboratories introduced the concept of cellular mobile systems [6].

In the last four decades there was a huge explosion in the rising of radio systems.

Wireless communication systems migrated from the first-generation (1G) narrow-

band analog systems in the 1980s, to the second-generation (2G) narrowband digital

systems in the 1990s, followed by the third-generation (3G) wideband multimedia

systems in the 2000s, up to the ongoing fourth-generation (4G) systems that provide

mobile ultra-broadband (rate of Gbps) access. Nowadays, research and development

regarding the fifth-generation (5G) systems are being pursued worldwide.

1.2 Cellular Communications

The 1G mobile cellular systems were analog speech communication systems. They

employed frequency division multiple access (FDMA) coupled with frequency divi-

sion duplexing (FDD) schemes, analog FM for speech modulation, and frequency

shift keying (FSK) modulation for control signaling, besides providing full-duplex

analog voice services. The main system used in 1G standard was the Advanced

Mobile Phone Services (AMPS) [7] that was developed by Bell Labs in 1970. This

system was mainly deployed at the frequency bands from 450 MHz to 1 GHz, with

a bandwidth of 30 kHz per channel, reaching a data rate of 10 kbps.

The 2G mobile cellular systems were deployed in the early 1990s. They provided

digital wireline-quality voice service and short message service (SMS). These sys-

2



tems were featured by digital implementation, unlike the 1G systems. New access

methods, such as time division multiple access (TDMA), and code division multiple

access (CDMA), were introduced. The main 2G mobile cellular standards were the

Global System for Mobile Communication (GSM) [8], and Interim 95 CDMA (IS-95

CDMA) [9]. The 2G systems were mainly deployed at the frequency bands from

900 MHz to 1.9 GHz.

In 1990, the GSM was introduced by European Telecommunications Standards

Institute (ETSI). The GSM system was based on FDMA/TDMA/FDD and Gaus-

sian minimum shift keying (GMSK) modulation. The spectrum was divided into

channels with bandwidth of 200 kHz. Each channel was time-divided for eight users

and reached a data rate of 270.833 kbps.

The TIA/EIA IS-95 standard was introduced in 1993, and the IS-95 revision was

released in 1995. IS-95 operated jointly with the analog AMPS, and was the basis for

the 2G CDMA distribution. The first IS-95A system was launched at Hong Kong

in 1996. This system employed CDMA/FDD with orthogonal quaternary phase

shift keying (OQPSK) modulation. It used the same bands as IS-54, but they were

1.2288-MHz wide. IS-95 allowed variable data rate of 1.2 kbps, 2.4 kbps, 4.8 kbps,

and 9.6 kbps. IS-95 was significantly more complex than other 2G technologies.

IS-95 employed techniques, such as power control, frequency and delay diversity,

variable-rate coding, and soft handoff.

The 3G mobile cellular systems are featured by wideband communications. As

general requirements, it demanded a data rate of 2 Mbps for stationary mobiles,

384 kbps for a user with pedestrian speed, and 144 kbps in a mobile vehicle. It was

the global system supporting global roaming before the 4G. The 3G network uses

packet switching, and is typically deployed at the 2 GHz frequency band.

In June of 1998, International Telecommunication Union Radiocommunication

Sector (ITU-R) received 11 competing proposals for terrestrial mobile systems, and

approved five. Two mainstream 3G standards are Wideband CDMA (WCDMA)

and CDMA 2000, which was administrated by Third-generation Partnership Project

(3GPP) and Third-generation Partnership Project 2 (3GPP2), respectively. In Oc-

tober of 2007, ITU-R elected to include WiMAX (802.12e) in the IMT-2000 suite of

wireless standards.

In 2005, 3GPP approved the further study of six physical layer proposal: multi-

carrier WCMDA, multicarrier TD-SCDMA, and four orthogonal frequency division

multiple access (OFDMA)-based proposals. In 2008, Long-term Evolution (LTE)

was publicized in 3GPP Release 8. LTE uses a number of bandwidths scalable

from 1.25 MHz to 20 MHz, and both FDD and time division duplexing (TDD)

schemes can be used. Both orthogonal frequency division multiplexing (OFDM)

and multiple-input, multiple-output (MIMO) technologies are employed to enhance

3



the data rate to 172.8 Mbps for the downlink and 86.4 Mbps for the uplink.

In 2008, ITU-R specified a set of requirements for 4G standards, which was called

the IMT-Advanced specification. These requirements set the peak of data rate to

100 Mpbs for high mobility and 1 Gpbs for low mobility equipments. Since the

first-release version LTE support much less than 1 Gbps of peak data rate, it was

not capable of attending the IMT-Advanced compliant, but are often branded 4G

by service providers.

The spread spectrum technology used in 3G systems is abandoned in all 4G

candidate systems and replaced by OFDMA transmission and single carrier with

frequency domain equalization (SC-FD) schemes, making it possible to transfer

very high data rates despite extensive multipaths. The peak of data rate is further

improved with MIMO [5, 9]. Table 1.1 list the main characteristics of each mobile

generation.

Table 1.1: Main characteristics of each mobile generation

Generation 1G 2G 3G 4G

Application Analog voice
Digital voice Digital voice

Wireless Internet
SMS Multimedia

Data Rate 10 kbps 270 kbps 2 Mbps 1 Gbps

Frequency 450 MHz – 1 GHz 900 MHz – 1.9 GHz 1.6 GHz – 2 GHz 2 GHz – 8 GHz

Bandwidth 30 kHz 1.2 MHz 100 MHz 100 MHz

Multiplexing FDMA
TDMA CDMA OFMD

CDMA OFDM OFDMA
MIMO No No Yes Yes

1.3 What Is the Next Step for Cellular Commu-

nications?

The next step for cellular communication is the development of a new standard

capable of supplying the increasing demand for communication at high data rates.

This new standard is commercially called 5G, which is currently being developed

worldwide. The 5G standard will have to account for a variety of services and emerg-

ing new applications. Possible scenarios currently envisioned for 5G networks are:

very large data rate wireless connectivity, Internet of things (IoT), tactile Internet,

and wireless regional area networks, which are now detailed:

• Very large data rate wireless connectivity: Users will be able to download

large amounts of data in a short period of time. A typical application is in the
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high-definition video streaming services, like Netflix, YouTube, and Twitch.

Another application is in games with augmented reality, like Pokemon GO [10–

12].

• Internet of things: IoT will be able to remotely control and connect a lot of

devices (things), like TVs, washing machines, air conditioners, and lights in

a smart house as well as cars, buses, traffic signals, and smartphones in a

smart city. These connected things will have limited processing capabilities,

forcing them to sporadically transmit small amounts of data. IoT demands

for modulations that are robust to time synchronization errors and effective

for short-range communications [13, 14].

• Tactile Internet: It refers to real-time cyber-physical tactile control experi-

ments. The tactile Internet will enable humans and machines to interact with

the environment, in real time, while on the move. This system requires reliable

communication services with small latency. The target latency is in the order

of 1 ms, requiring a physical layer (PHY) latency around 200 ∼ 300 µs [15, 16].

• Wireless regional area networks: It is expected that 5G will also play a crucial

role by bringing Internet access to sparsely populated areas. In this scenario,

the 5G systems will have very low mobility and latency will not be a key

requirement [17].

The 5G standard must be flexible in order to supply all those demands and

it is unlikely that 5G requirements can be achieved with a mere evolution of the

status quo. The keys aspects of 5G networks related to PHY are: waveform design,

millimeter wave (mmWave), and massive MIMO.

The discussions related to waveform design are seeking for a substitute for

OFDM/OFDMA modulations [13, 18]. The most popular proposals are the filter

bank multicarrier (FBMC) modulation [18–26], faster-than-Nyquist (FTN)/ time-

frequency-packed (TFP) signaling [26, 27], filtered OFDM (f-OFDM) [18, 22, 28, 29],

generalized frequency division multiplexing (GFDM) [26, 30], bi-orthogonal fre-

quency division multiplexing (BFDM) [26, 31, 32], universal filtered multicarrier

(UFMC) [26, 33]. All of those proposals circumvent some of the OFDM deficiencies.

Moreover, all of these waveforms are OFDM-inspired, which is a huge advantage

given that the base station’s structure of 4G networks may be reused for 5G sys-

tems.

The motivation behind the mmWaves is working in an unused portion of the

spectrum. While spectrum has become scarce up to microwave frequencies (1.6 up

to 30 GHz), it is still available in the mmWave frequencies (30 up to 300 GHz).

MmWaves already have a standard (IEEE 802.11ad) and works for applications
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such as small-cell backhaul [34]. However, this a subject that is not fully under-

stood. MmWave technologies can be combined with MIMO to enhance the achiev-

able rates [35]. In addition, due to the high operating frequency, digital processing

may be hindered in some cases, demanding for analog processing [36]. MmWave

technologies have to deal with two major issues: it does not have sufficiently large

coverage due to the propagation nature of mmWaves [35, 37], and it does not have

support for mobility in non-line-of-sight (NLoS) environment [35, 38].

Massive MIMO is a technology that employs a very large number of antennas at

the base station and serves a considerable number of terminals by using the same

time-frequency resource [39]. Traditional MIMO systems usually employ up to a

maximum of 12 antennas for transmissions, such as in 4G systems, while current

massive MIMO proposals consider using hundreds of antennas in the base station.

This quantitative change brings a qualitative change, since it opens up new possibil-

ities for massive MIMO transmissions. Massive MIMO systems are able to focus the

radiated energy toward the intended directions while minimizing intra- and inter-cell

interferences [34]. Massive MIMO systems are able to achieve high data rates by

using simple digital linear processing, under favorable or asymptotically favorable

propagation [10, 39, 40].

The use of massive MIMO systems does not prevent the use of new waveforms

or mmWaves. Contrariwise, these three technologies may be used together. Massive

MIMO and FBMC modulation are used together in [20, 24, 41]. Some propaga-

tion characteristics of massive MIMO systems simplify the channel equalization for

FBMC modulation. The use of mmWaves in massive MIMO considerably reduces

the size of the antennas, increasing the number of antennas per m2 [35].

Although massive MIMO technology is very promising, it also faces some chal-

lenges. Massive MIMO systems have to deal with pilot contaminations, which is

induced by the limited number of orthogonal pilots generated by the base sta-

tions [39, 42]. Massive MIMO systems rely on TDD schemes due to the guarantee

of channel reciprocity. However, the uncertainty in the analog components of the

radio frequency chains (RFCs) may unbalance the channel reciprocity, requiring a

calibration [43, 44]. Massive MIMO is rather different from everything appearing

in previous mobile communication standards, demanding for major changes in the

design of base stations [34, 45].

Another important issue related to the deployment of massive MIMO systems

is the cost of the base station. The increase in the number of antennas at the

base station provides an increasing in the number of RFCs as well, resulting in

prohibitively high power consumption and base station’s cost [46]. The RFCs are

basically compound by power amplifiers, analog-to-digital converters (ADCs), and

digital-to-analog converters (DACs), phase shifters, and mixers. An attempt to
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solve the issues related to the base stations is reducing the peak-to-average-power

ratio (PAPR) of the transmitted signals. Massive MIMO signals usually have high

PAPR, demanding for high-quality power amplifiers, which are commonly the most

expensive components of RFCs. The decrease of PAPR enables the use of low-quality

power amplifiers, which reduces the cost related to the base station [47–55].

Another way to deal with the issues related to the base station’s cost is using

1-bit quantizers. In general, the base station uses high-precision (e.g., 10 bits or

more) ADCs/DACs [56]. The 1-bit quantization reduces the power consumption

on RFCs and reduce the complexity of other analogical components, such as power

amplifiers [53, 56–59]. The 1-bit quantization is a solution that both increases the

energy efficiency and decreases the bases station’s cost.

One more alternative to reduce the base station’s cost is reducing the number of

RFCs by selecting antennas. With a lower number of active antennas, the number

of active RFCs is reduced, increasing the energy efficiency and decreasing the base

station’s cost [55, 60–65]. Antenna selection for massive MIMO is a topic that de-

serves special attention. The main algorithms used in massive MIMO was originally

developed for point-to-point MIMO systems [60, 61] and might not meet the actual

massive MIMO requirements. The goal of this thesis is to tackle antenna selection

for massive MIMO systems.

1.4 Main Contributions

The main contributions of this work are:

• Providing an overview of the massive MIMO technology;

• Presenting the precoding stage from a beamforming viewpoint;

• Studying a subject not fully tackled in the literature, which is the joint pre-

coding and antenna selection;

• Proposing two new nonlinear precoding algorithms that perform joint precod-

ing and antenna selection;

• Analyzing the precoding algorithms over sparse multipath channels.

1.5 Organization

The text is organized as follows. Chapter 2 aims to provide a brief overview of

massive MIMO technology. The chapter highlights some propagation characteristics

innate to massive MIMO systems. These characteristics are related to favorable or
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asymptotically propagation. Moreover, this chapter presents the signal model for

massive MIMO systems.

Chapter 3 summarizes the main precoders and detectors employed in massive

MIMO systems. The chapter also presents the importance of the linear precoding

and detection algorithms under favorable or asymptotically favorable propagation.

Under this type of propagation, the linear algorithms can reach high data rates.

Moreover, the chapter presents the precoding stage from a beamforming viewpoint,

which makes easier to bring new ideas to the precoder design.

Chapter 4 presents classical algorithms to select antennas in massive MIMO.

These algorithms consist in antenna selection via random choice and channel capac-

ity maximization.

Chapter 5 describes a new class of precoders that are used to jointly precode and

select the antennas. This new class of precoders aim to produce sparse precoded

signals, being called sparsity-aware precoders. In addition, this chapter proposes

two new precoding algorithms.

Chapter 6 presents some simulation results. These simulations aim to evaluate

the performance of the proposed algorithms. The results are promising: they show

that the bit-error rate of the proposed algorithms are close to the benchmarks that

do not use antenna selection as long as some mild conditions hold. Furthermore, the

results show an unexpected behavior related to the antenna selection: there exists

a linear relation between the number of selected antennas and a design parameter

of the proposed algorithms.

Chapter 7 draws some conclusions regarding this work and presents some possible

future research directions.

1.6 Notation

Throughout the thesis, vectors and matrices are represented in bold face with lower

case and uppercase letters, respectively. The symbols C, R, and N denote the set

of complex, real, and natural numbers, respectively. The symbols 0M×K , 1M , and

IM denote an M ×K matrix with zeros, an all-one vector with length M , and an

M ×M identity matrix, respectively. Given M = {1, 2, · · · , M}, the cardinality

of this set is card (M) = M .

Given the matrix A ∈ CM×K , the notations AT, A∗, AH, and A−1 stand for

transpose, conjugate, Hermitian transpose, and inverse operations on A, respec-
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tively. Matrix A can be represented as follows:

A =


a11 a12 · · · a1K

a21 a22 · · · a2K
...

...
. . .

...

aM1 aM2 · · · aMK

 ,
=
[
a1 a2 · · · aK

]
,

where ak ∈ CM×1 is the kth column of A.

The scalar X ∈ C stands for a random variable, the vector x ∈ CM×1 stands

for a random vector, the scalar x ∈ C stands for a realization of X, and the vector

x ∈ CM×1 stands for a realization of x. The notation E [x] stands for the expected

value of x. The notation Diag (x) stands for the diagonal matrix composed by the

elements of x, i.e.,

X = Diag (x) ,

=


x1

x2
. . .

xM

 .

The support of a vector x is defined as the index set of its nonzero entries, i.e.,

supp (x) = {m ∈M : xm 6= 0}.

The notation ‖x‖p for p ≥ 1 stands for the lp-norm of x, which is defined as

‖x‖p =

(∑
m∈M

|xm|p
)1/p

.

For p = 0, the l0-norm1 of x is defined as the number of nonzero entries of x, i.e.,

‖x‖0 = card (supp (x)) .

The vector x is called K-sparse if at most K of its entries are nonzero, i.e., if

‖x‖0 ≤ K.

1The l0-norm is not a norm in a mathematical sense, but this nomenclature will be kept to
maintain the coherence with the literature.

9



Chapter 2

Massive MIMO: A Brief Overview

2.1 Introduction

Massive multiple-input, multiple-output, also called large-scale antenna wireless

communication system, was first proposed by Marzetta in [39]. As mentioned

in Chapter 1, massive MIMO systems arise as a disruptive technology, with very

promising results in terms of sum-rate capacity and spectral efficiency [12, 34, 40,

45, 66]. The main concept of massive MIMO is equipping the base station with

a large number of antennas and serving multiple terminals using the same time-

frequency resource [67]. This chapter presents the basic concepts of this new tech-

nology, highlighting the main differences among massive MIMO and other standard

MIMO technologies.

2.2 Preliminary Definitions

2.2.1 Communication Links

A communication link is a connection among two or more devices. This connection

may be an actual physical channel or a logical channel that uses one or more actual

physical channels. In wireless communications, the links can be cast as forward or

reverse links.

Forward Link

The forward link is the communication link from a fixed location to a mobile termi-

nal, for instance, the link from a base station to a smartphone. This communication

link is also called downlink. In a multi-user scenario, the fixed location has different

communication links with different mobile terminals and, in this case, the downlink

channel is often called a broadcast channel [68]. In the broadcast channel, each ter-
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minal usually receives different data, but there is a special case when the same data

are transmitted to all terminals, which is referred to as a multicast channel [67].

Reverse Link

The reverse link is the communication link from a mobile terminal to a fixed location.

This communication link is also called uplink. In a multi-user scenario, there are

several mobile terminals communicating with the fixed location and, in this case,

the uplink channel is often called a multiple-access channel [68].

2.2.2 Duplexing Schemes

Channel access methods are used in cellular networks for dividing forward and re-

verse communication channels over the same physical communication medium. They

are known as duplexing methods, and the main duplexing schemes employed in wire-

less communications are time-division duplexing and frequency-division duplexing.

Time-division Duplex

Time-division duplexing is the application of time-division multiplexing to separate

the forward and reverse data. In TDD operation, the base station learns the uplink

channel from uplink pilots sent by terminals. Moreover, because the channel is

reciprocal,1 once the base station has learned the uplink channel, it automatically

has a legitimate estimate of the downlink channel, avoiding the transmission of

downlink pilots. There is no standard defined for wireless massive MIMO systems

yet, but the first option is a TDD operation mode [39, 67]. Hence, all the MIMO

systems addressed in this work will be considered operating in TDD scheme.

Frequency-division Duplex

Frequency-division duplexing means that base station and terminals operate at dif-

ferent carrier frequencies, and use frequency-division multiplexing to separate the

forward and reverse data. In FDD operation, the terminals learn the downlink

channel from pilots sent by the base station, and communicate the estimated chan-

nel state information (CSI) back to the base station over a control channel. This

feedback can be very costly, except in special cases, such as in line-of-sight (LoS)

propagation, when the CSI can be efficiently quantized [67]. To learn the uplink

channel, the base station listens to pilots sent by the terminals. There are a few

works using FDD operation mode, but this duplexing scheme is not as popular as

TDD [69–73].

1The impulse response between any two antennas is the same in both directions, for the same
time-instant and frequency range of communication.
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2.3 Basic Concepts of MIMO Technology

Multiple-input, multiple-output technology can be divided into three categories

namely: point-to-point MIMO, multiuser MIMO (MU-MIMO), and massive MIMO.

Point-to-point MIMO and MU-MIMO were very popular in previous communica-

tion standards, whereas massive MIMO is a strong candidate to be part of the 5G

standard.

2.3.1 Point-to-point MIMO

Point-to-point MIMO emerged in the late 90s [74–81] and represents the simplest

form of MIMO system, where the base station equipped with an antenna array

serves a terminal also equipped with an antenna array. In point-to-point MIMO,

different terminals are orthogonally multiplexed. Figure 2.1 depicts a simplified

point-to-point MIMO system with an M -antenna base station and a K-antenna

terminal.

A common figure of merit for MIMO systems is the link achievable rate, which is

also called channel capacity or sum-rate capacity [67, 82]. In the presence of additive

white Gaussian noise (AWGN) at the receiver, the following formulas respectively

define the link spectral efficiency measured in b/s/Hz at uplink and downlink:

Cul = log2 det
(
IM +

ρul
K

HHH
)
, (2.1)

Cdl = log2 det
(
IM +

ρdl
M

HHH
)
, (2.2)

where H ∈ CM×K is the multiple-access channel matrix, hmk ∈ C is the gain between

the mth transmitting antenna and kth receiving antenna, ρul ∈ R+ and ρdl ∈ R+

are the reverse link signal-to-noise ratio (SNR) per terminal and the forward link

SNR, respectively. The normalizations by M and K mean that, for constant values

of ρul and ρdl, the total radiated power is independent of the number of antennas.

The channel capacity values in (2.1) and (2.2) require the receiver to know H but

do not require the transmitter to know H [67, 82]. With complete CSI knowledge at

both ends of the link, it is possible to highly improve the related performance [82].

An important fact to be mentioned here is that (2.1) and (2.2) are ideal theoretical

bounds, which are calculated assuming ideal channel coding schemes at base station

and terminal. Thus, they are rarely achieved in practical situations [67].

In rich scattering propagation environments2 with sufficiently high SNR values,

Cul and Cdl scale linearly with min (M,K) and logarithmically with SNR [82]. Hence,

in theory, the link spectral efficiency can be increased by simultaneously using large

2Rich scattering means that the receiving antennas receive signal from all directions.
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Figure 2.1: Point-to-point MIMO system with an M -antenna base station and a
K-antenna terminal.

arrays at the transmitter and the receiver. In practice, however, three factors seri-

ously limit the usefulness of point-to-point MIMO, even with large arrays at both

ends of the link. First, the terminal equipment requires independent RF chains per

antenna as well as the use of advanced digital signal processing to separate data

streams, preventing the use of large-scale antenna arrays. Second, the propagation

environment must support min (M,K) independent streams. This is often not the

case in practice when compact arrays are used. Third, near the cell edge, where

most terminals are usually located, and for which SNRs are typically low due to

high path losses, the spectral efficiency scales slowly with min (M,K) [82].
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2.3.2 Multiuser MIMO

MU-MIMO systems enable a single base station to serve a multiplicity of termi-

nals using the same time-frequency resources. In fact, the MU-MIMO scenario

can be obtained from the point-to-point MIMO setup by splitting the K-antenna

terminal model into multiple autonomous terminals. In general, the terminals in

MU-MIMO are single-antenna devices, which are less complex than the K-antenna

terminals in point-to-point MIMO. Moreover, the single-antenna terminals are typ-

ically separated by many wavelengths, and the terminals cannot collaborate among

themselves, either in uplink or downlink. In MU-MIMO, different terminals are spa-

tially multiplexed. Figure 2.2 describes a simplified multiuser MIMO system with

an M -antenna base station and K single-antenna terminals.
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Figure 2.2: Multiuser MIMO system with an M -antenna base station and K single-
antenna terminals.

14



Assuming a TDD operation, the multiple-access and broadcast channel capacity

are given by

Cul = log2 det
(
IM + ρulHHH

)
, (2.3)

and

Cdl =


maximize
p∈RK×1

+

log2 det
(
IM + ρdlH

∗Diag (p) HT
)

subject to 1T
Kp = 1

, (2.4)

where H ∈ CM×K is the multiple-access channel matrix, p ∈ RK×1
+ is the power

allocation among the users, ρul ∈ R+ and ρdl ∈ R+ are the reverse link SNR per

terminal and the forward link SNR, respectively, 1K stands for an all-one vector

with length K, and Diag (p) stands for a diagonal matrix with the elements of p.

The computation of downlink capacity according to (2.4) requires the solution of

a convex optimization problem, which appears in many communication applications.

Indeed, it is a power allocation problem and can be solved with iterative watter filling

algorithms [82, 83]. The derivation of (2.3) and (2.4) assumes CSI knowledge for

both uplink and downlink. In the uplink, the base station alone must know the

channels, and each terminal has to be aware of its permissible transmission rate

separately in order for the capacity in (2.3) to be achieved. In the downlink, both

the base station and the terminals must have CSI knowledge in order for the capacity

(2.4) to be achieved, as explained in [84]. Obtaining CSI knowledge at both ends

of the link might be impracticable, making it hard for the system to achieve the

theoretical capacity in practical situations. Additionally, the data rates in (2.3)

and (2.4) are calculated assuming an expensive channel coding scheme, which is

infeasible in practical situations.

One of the main differences between point-to-point MIMO and MU-MIMO is

the cooperative detection of point-to-point MIMO. In MU-MIMO systems there

is no cooperation among terminals, preventing sophisticated detection algorithms

on forward link. The inability of the terminals to cooperate in the MU-MIMO

system does not compromise the multiple-access channel sum-rate capacity as can

be straightforwardly verified via the comparison of (2.1) and (2.3).3 Note also that

the broadcast channel capacity in (2.4) may exceed the downlink capacity in (2.2)

for point-to-point MIMO, because (2.4) assumes the base station knows H, whereas

(2.2) does not. Nonetheless, the reader must keep in mind that CSI knowledge at

both ends is necessary to achieve the bounds in (2.3) and (2.4) [67].

MU-MIMO systems have two fundamental advantages over point-to-point MIMO

systems. First, it is much less sensitive to assumptions about the propagation en-

3Although these expressions are exactly the same, point-to-point MIMO and MU-MIMO are
in fact different; for instance, the derivation of (2.3) does not assume cooperation among the
terminals.
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vironment. Second, MU-MIMO requires only single-antenna terminals. Notwith-

standing these virtues, two factors seriously limit the practicality of MU-MIMO

in its originally conceived form. First, achieving the capacities in (2.3) and (2.4)

requires complicated digital signal processing by both the base station and the ter-

minals. Second, in the downlink, both the base station and the terminals must know

H to achieve the theoretical data rate in (2.4), thus requiring substantial resources

to be set aside for transmission of pilots in both directions. It is worth pointing out

that practical MU-MIMO systems usually do not possess such information, working

below their capacity limits.

2.3.3 Massive MIMO

Massive MIMO was originally conceived by Marzetta [39]. Massive MIMO systems

are enhanced versions of MU-MIMO systems that aim to overcome the main is-

sues of multiuser MIMO. There are three fundamental distinctions between massive

MIMO and conventional MU-MIMO. First, only the base station learns H, so the

single-antenna terminals may be cheaper than in MU-MIMO systems. Second, M

is typically much larger (typically ranging from 50 to 1000) than K, increasing the

sum-rate capacity, while reducing the radiated power by each individual antenna

and, simultaneously, increasing the number of terminals that can be served. Third,

simple linear digital signal processing is near optimal and it is used in both the

uplink and the downlink [39, 40, 42].

Figure 2.3 depicts a simplified single-cell massive MIMO network with an M -

antenna base station and K single-antenna terminals. Either in the reverse link or

in forward link transmissions, all terminals occupy the full time-frequency resources

concurrently. In the reverse link, the base station has to recover the individual

signals transmitted by the terminals. In the forward link, the base station has to

ensure that each terminal receivers only the signal intended for it. The base station’s

multiplexing and de-multiplexing signal processing is made possible by utilizing a

large number of antennas and by its CSI knowledge.

2.3.4 Pilot Signals and Channel Estimation

Point-to-point MIMO, MU-MIMO, and massive MIMO require different degrees of

CSI knowledge at the base station and at the terminals. This CSI may be obtained

either by estimation from received pilot signals, or by feedback from the receiver to

the transmitter, or by combining both strategies.

Learning the channel by sending pilots consumes resources that could otherwise

be used to transmit data. To facilitate channel estimation at the receiver, during

each segment of the time-frequency plane over the coherence interval, a unique pilot
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Figure 2.3: Massive MIMO system with an M -antenna base station and K single-
antenna terminals.

waveform needs to be assigned to each transmitting antenna, and all pilots need

to be mutually orthogonal. For example, in FDD scheme, if M antennas transmit

orthogonal pilots in the forward link, then at least M samples per coherence interval

have to be spent on pilots to estimate the equivalent channel.

The number of pilots necessary in each duplexing method is different for each

type of MIMO technology. Table 2.1 summarizes the amount of resources consumed

by pilot transmission and CSI feedback for point-to-point MIMO, MU-MIMO, and

massive MIMO. In Table 2.1, it is possible to see why TDD operation is preferable

for massive MIMO, since the number of pilot resources is independent of the number

of base station antennas [67]. Moreover, feedback from terminals is entirely avoided.
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Consequently, massive MIMO operating in TDD has immeasurable scalability with

respect to the number of base station antennas, the cornerstone of massive MIMO

concept.

Table 2.1: Resources consumed by pilot transmission

FDD TDD

Uplink Downlink Uplink Downlink

Point-to-Point MIMO
(no CSI knowledge)

K pilots M pilots K pilots M pilots

Multiuser MIMO
K pilots +

M CSI coefficients
M pilots K pilots M pilots

Massive MIMO
K pilots +

M CSI coefficients
M pilots K pilots not used

Notwithstanding those advantages, massive MIMO has limitations when operat-

ing in TDD mode. When the terminals have some mobility, the coherence interval

is reduced and there is only time for the creation of a limited set of orthogonal

pilots. In a multi-cell scenario, different base stations share some of those pilots,

contaminating the channel estimates with information from other cells. This phe-

nomenon is called pilot contamination and it is harmful in multi-cell networks using

massive MIMO. Dealing with pilot contamination is a major concern in massive

MIMO-system design [42, 85, 86].

2.4 System Model

Consider a generic single-cell massive MIMO wireless communication system, in

which K different single-antenna mobile terminals communicate with an M -antenna

base station in the uplink, as depicted in Figure 2.4. The signal model for a time-

invariant multiple-access channel is given by

y =
√
ρul Hs + v, (2.5)

where y ∈ CM×1 is the received signal at the base station, s ∈ CK×1 is a realization

of a random vector s = [S1 S2 · · · SK ]T that models the signals transmitted by

the terminals, ρul ∈ R+ is the SNR for reverse link measured at the base station,

v ∈ CM×1 is a realization of the AWGN random vector v, which is assumed to be

circularly symmetric complex Gaussian distributed, i.e. v ∼ CN (0M×1, IM), and

H ∈ CM×K is the multiple-access channel matrix between the base station antenna

array and the set of terminals’ antennas. In addition, each terminal is constrained
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to have unitary power, i.e.,

E
[
|Sk|2

]
= 1, ∀ k ∈ K, (2.6)

where K = {1, 2, · · · , K} is the set of the terminals’ indexes and E [·] denotes the

expected value.

Decoder

Df·g

Terminal 1

Terminal K

s1

sK

.

.

.

.

.

.

.

.
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ŝ1

ŝK
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y2

yM

h11

h21

hM1 h1K

h2K

hMK

Figure 2.4: Signal model for massive MIMO in uplink.

In order to recover the message sent by the mobile terminals, the base station

performs a decoding operation D{·} on the received signal vector y. Then, the

reconstructed message ŝ is given by

ŝ = D {y} . (2.7)

There are a lot of possible decoding algorithms for massive MIMO. As will be further

described in Section 3.3.1, linear digital signal processing is near optimal for massive

MIMO systems in terms of achievable rate. Thus, it is possible to recover s with low-

cost algorithms, while keeping a reasonable performance. Further details regarding

linear and nonlinear decoders for massive MIMO systems will be summarized in

Section 3.3.

In the downlink, an M -antenna base station communicates with K different

single-antenna mobile terminals, as shown in Figure 2.5. Due to the channel reci-

procity, the downlink channel matrix is the transpose of the uplink channel matrix.

Therefore, the signal model for a time-invariant broadcast channel is given by

y =
√
ρdl H

Tx + v, (2.8)

where y ∈ CK×1 is the received signal at terminals, x ∈ CM×1 is a realization of the

random vector x that models the signal transmitted by the base station, ρdl ∈ R+

is the SNR for forward link measured at terminals, and v ∈ CK×1 is a realization
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of an AWGN random vector v ∼ CN (0K×1, IK). Furthermore, the total transmit

power is independent of the number of antennas, i.e,

E
[
‖x‖22

]
= 1. (2.9)

Precoding
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xM

h11
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hM1
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h2K
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Figure 2.5: Signal model for massive MIMO in downlink.

As shown in Figure 2.5, the terminals do not perform any processing to recover

the original message sent by the base station. The base station has to perform a

precoding operation, denoted as P {·}, on the message s, so that y ≈ s. Hence, the

signal x transmitted by the base station is

x = P {s} . (2.10)

Like decoding, there are many precoding algorithms for massive MIMO and the lin-

ear precoding methods are suboptimal solutions as will be described in Section 3.2.1.

Further details regarding the most popular precoders for massive MIMO systems will

be presented in Section 3.2.

2.5 Propagation in Massive MIMO

Before introducing the main detection and precoding techniques in Chapter 3, it is

necessary to describe some propagation characteristics inherent to massive MIMO

transmissions. These characteristics are related to the so-called favorable propaga-

tion that may happen in massive MIMO channels.

2.5.1 Favorable Propagation for Deterministic Channels

Intuitively, to maximize performance from information-theoretic or bit-error rate

(BER) perspectives, the uplink channel vectors should be as different as possible,
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according to some appropriate metric. This appropriate metric is the so-called

favorable propagation offered by the channel [67, 87, 88], defined as

hH
k hk′ = 0, k, k′ ∈ K, with k 6= k′, (2.11)

where hk denotes the kth column of the uplink channel matrix H. The result in

(2.11) means that the uplink channel vectors of different users are orthogonal.

In practice, the orthogonality requirement in (2.11) usually does not hold, but it

can be asymptotically satisfied. In this case, it is said that the environment offers

asymptotically favorable propagation as long as

1

M
hH
k hk′ −→ 0, k, k′ ∈ K, with k 6= k′, and K �M −→∞. (2.12)

Letting M −→ ∞ has no physical meaning, but taking the limits is useful in order

to understand the behavior of the propagation when the number of antennas grows

unlimited.

2.5.2 Capacity Upper Bound Under Favorable Propagation

The conditions for favorable propagation described in (2.11) and (2.12) are the

preferable scenarios from a channel-capacity perspective. Indeed, the uplink capacity

in (2.3) can be written as

Cul = log2 det
(
IM + ρulHHH

)
(a)
= log2 det

(
IK + ρulH

HH
)

(b)

≤ log2

(∏
k∈K

∥∥ek + ρulH
Hhk

∥∥
2

)
, (2.13)

where ek ∈ RK×1
+ is the kth column of the identity matrix IK . The Sylvester’s

determinant theorem [89] is used in (a). This theorem states that, if A ∈ CM×K

and B ∈ CK×M , then

det(IM + AB) = det(IK + BA). (2.14)

In (b), the Hadamard’s inequality [90] is used. This inequality asserts that, if A =

[ a1 · · · aK ] ∈ CK×K , then

|det(A)| ≤
∏
k∈K

‖ak‖2 . (2.15)

According to the Hadamard’s inequality, the capacity upper bound in (2.13) is
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achieved if only if HHH is diagonal, which happens when the environment induces fa-

vorable or asymptotically favorable propagation. Then, under this condition, (2.13)

becomes

Cul =
∑
k∈K

log2

(
1 + ρul ‖hk‖22

)
. (2.16)

The bound in (2.16) confirms the importance of the favorable propagation con-

dition for massive MIMO systems. Chapter 3 will show that simple digital linear

processing is optimum under this condition.

The concept of favorable or asymptotically favorable propagation can also be

analyzed for the downlink capacity, but this requires more work, since the corre-

sponding data rate expression in (2.4) involves solving an optimization problem.

2.5.3 Measures of Favorable Propagation

Some channels will not induce favorable or asymptotically favorable propagation.

An important question is how far from favorable propagation a given channel model

parametrized by matrix H is. There is a common measure for quantify this, namely:

the distance from favorable propagation [87, 88].

Distance from Favorable Propagation

The first measure is the “distance” from favorable propagation. This measure uses

the ratio between the sum-rate capacity in (2.3) and the upper bound in (2.16), i.e.,

ζC =
log2 det

(
IM + ρulHHH

)∑
k∈K

log2

(
1 + ρul ‖hk‖22

) . (2.17)

Another measure is the SNR increase that would be needed for the channel

capacity offered by H to reach the upper bound in (2.16), i.e., one must find ζρ ∈ R+

that satisfies the following equation:∑
k∈K

log2

(
1 + ρul ‖hk‖22

)
= log2 det

(
IM + ζρρulHHH

)
. (2.18)

Actually, these two measures are not distances strictly speaking, but they are

referred to as distances in the literature.

2.5.4 Favorable Propagation for Random Channels

The concept of favorable propagation was presented for a deterministic multiple-

access channel H, but in practice, H will be a realization of a random matrix H due

to the stochastic nature inherent to fading. Hence, it is of paramount importance to
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examine if favorable propagation takes place on average. There are some alternatives

to perform this analysis, for instance, by studying the distribution of the singular

values of H , or the probability that σmax(H)/σmin(H) falls below a given threshold.

Moreover, the aforementioned distances ζC(H) and ζρ(H) may also be used as well

as their probability to fall below a given threshold. Furthermore, another way to

evaluate the favorable propagation is analyzing the behavior of hH
k hk′ on average.

The favorable propagation will be analyzed for two particular scenarios: independent

Rayleigh fading (rich scattering) channel and spatial multipath channel.

Independent Rayleigh Channel

In this scenario the system operates in a dense, rich scattering environment with

signal being received from all directions, as illustrated in Figure 2.6. In a rich

scattering environment, the multiple-access channel gain between the kth single-

antenna terminal and the mth base station antenna is denoted as hmk ∈ C. This

gain can be split into two terms: a complex-valued small-scale fading (or fast fading)

coefficient times a large-scale fading coefficient that embodies both range-dependent

pathloss (or geometric fading) and shadow fading, i.e.,

hmk = gmk
√
βk, ∀ (m, k) ∈M×K, (2.19)

whereM = {1, 2, · · · , M} is the set of the base station antennas’ indexes, gmk ∈ C
is the small-scale fading coefficient, and βk ∈ R+ is the large-scale fading coefficient.

Both gmk and βk are realizations of random variables Gmk and Bk. The small-

scale fading coefficients are assumed to be different for different users and for each

different antennas at the base station, whereas the large-scale fading coefficients are

the same for different antennas at the base station, but are user-dependent.

· · ·

Base Station

Figure 2.6: Base station located in a propagation environment with rich scattering.

Small-scale fading models range-dependent phase shifts as well as constructive

and destructive interferences among different propagation paths. These phenomena

happen over intervals of a wavelength or less [40]. The small-scale fading coefficients
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are usually assumed to be i.i.d.4 and drawn from a circularly symmetric complex

Gaussian distribution,5 i.e., Gmk ∼ CN (0, 1). Rayleigh fading comes as a byproduct

of simple physical models. For instance, in rich scattering, the small-scale fading

coefficient represents the combined effect of many independent propagation paths;

hence, by the superposition principle and the central limit theorem, they will be

approximately circularly symmetric complex Gaussian random variables [67].

The large-scale fading coefficient usually is assumed to be constant due to the

slow variation of the geometric and shadow fading over the space [39]. Anyway, a

possible model for the large-scale fading coefficient is

βk =
zk
rδk
, (2.20)

where rk ∈ R+ is the distance between the kth terminal and the base station, δ ∈ R+

is the decay exponent, and zk is the realization of a random variable Zk that models

the shadow fading and is log-normally distributed, i.e., ln(Zk) ∼ N (0, σ2
Zk

).

A realization of the multiple-access channel matrix between the base station

antenna array and the set of antenna terminals is denoted as

H =
[
h1 h2 · · · hK

]
, (2.21)

where hk = [h1k h2k · · · hMk]
T is the uplink channel vector of the kth user. Taking

into account the model in (2.19), the uplink channel matrix can also be represented

in terms of the small-scale fading matrix and the large-scale matrix as

H = GDiag (β)1/2 , (2.22)

where

G =
[
g1 g2 · · · gK

]
, (2.23)

with gk = [g1k g2k · · · gMk]
T being the small-scale fading vector of the kth user, and

with β = [β1 β2 · · · βK ]T denoting the large-scale fading vector. Asymptotically

favorable propagation does not hold for independent Rayleigh channel, but it holds

in probability when M −→ ∞. Indeed, for independent Rayleigh channel, it is

4Independent and identically distributed.
5The literature refers to this as Rayleigh fading, despite the small-scale fading coefficients are

not drawn from a Rayleigh distribution, but their absolute values. Nevertheless, from now on
small-scale fading used in this work will be referred to as Rayleigh fading to keep the coherence
with the literature.
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possible to write

1

M
‖hk‖22 =

1

M
βkg

H
k gk

= βk

(
1

M

∑
m∈M

|gmk|2
)

p−→ βk, for M −→∞ and k ∈ K, (2.24)

and

1

M
hH
k hk′ =

1

M

√
βkβk′ g

H
k gk′

=
√
βkβk′

(
1

M

∑
m∈M

g∗mkgmk′

)
p−→ 0, for M −→∞, and k, k′ ∈ K, with k 6= k′, (2.25)

eventually yielding
1

M
HHH

p−→ Diag (β) , (2.26)

where the convergence in probability comes from the weak law of the large numbers.

Therefore, rich scattering environments induce asymptotically favorable propaga-

tion.

Spatial Multipath Channel

The channel model mentioned before considers that the received signals arrive from

all directions independently, which means that the environment has rich scattering

and no spatial correlation [91]. However, in reality, the received signals may only

arrive from some sparse incident angles, which means that the environment has

poor scattering and the spatial correlation comes along with the channel sparsity,

as illustrated in Figure 2.7.

With the sparsity property of wireless channels, the uplink channel vector hk in

the spatial domain can be modeled as the superposition of the channel vectors in

the angular domain [75]:

hk =
∑
n∈N

gkn
√
βk a (θkn) (2.27)

=
√
βk

[
a (θk1) a (θk2) · · · a (θkN)

]
gk

=
√
βkAkgk, (2.28)

where N = {1, 2, · · · , N} is the set of the multipath indexes, θkn ∈ [0, π] is

a realization of the random variable Θkn that models the angle of arrival of the
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Figure 2.7: Base station located in a propagation environment with multipath.

nth multipath connecting the kth terminal and the base station, whereas gkn ∈ C
and βk ∈ R+ are realizations of the random variables Gkn and Bk that model

the corresponding small-scale and large-scale fading coefficients, respectively. The

random variables Gkn and Bk have the same distribution as the small-scale and

large-scale fading coefficients in the independent Rayleigh channel case. Vector

a(θ) ∈ CM×1 is the so-called array steering vector [92], which depends on the array

geometry. For a uniform linear array (ULA), a(θ) is written as [92]

a(θ) =
[
1 e−jπcos(θ) · · · e−jπ(M−1)cos(θ)

]T
. (2.29)

By writing Ak = [ ak1 ak2 · · · akM ]T, one has

1

M
hH
k hk′=

√
βkβk′

M
gH
k AH

k Ak′gk′

=

√
βkβk′

M

∑
m∈M

gH
k a∗kmaT

k′mgk′

=
√
βkβk′ g

H
k

(
1

M

∑
m∈M

a∗kmaT
k′m

)
︸ ︷︷ ︸

=Bk,k′

gk′

=
√
βkβk′ g

H
k Bk,k′gk′ . (2.30)

If k = k′, then
1

M
hH
k hk = βkg

H
k Bk,kgk > 0, (2.31)
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since Bk,k′ is a Hermitian positive-definite matrix and gk 6= 0. On the other hand,

if k 6= k′, it is not possible in general to guarantee that (1/M)hH
k hk′ −→ 0. Never-

theless, one can still write in this case that

1

M
hH
k hk′ =

√
βkβk′

∑
n∈N

∑
n′∈N

g∗knBk,k′(n, n
′)gk′n′ . (2.32)

Thus, when the number of multipaths N is sufficiently large, one can state that

the following approximation holds in probability:

1

M
hH
k hk′ ≈

√
βkβk′N

2 E [G∗knGk′n′ ]︸ ︷︷ ︸
=0

E [Bk,k′(n, n
′)] = 0, (2.33)

in which it is assumed that the random variables Θkn and Gkn are independent

allowing one to replace E [G∗knGk′n′Bk,k′(n, n
′)] with E [G∗knGk′n′ ]E [Bk,k′(n, n

′)].

In summary, spatial multipath channels usually do not induce asymptotically

(with respect to the number of antennas) favorable propagation, but when the num-

ber of multipaths grows to infinity, one has

1

M
HHH

p−→ Diag
(
βkg

H
k Bk,kgk

)
. (2.34)

2.6 Conclusion

Massive MIMO is a very promising technology. This chapter presented a summary

of the main concepts regarding massive MIMO, pointing out its potential in terms of

spectral efficiency and channel capacity. A mathematical description of the uplink

and the downlink transmissions was presented. Moreover, some key results concern-

ing the propagation in massive MIMO systems were presented, including the study

of favorable and asymptotically favorable propagations. The condition of favorable

or asymptotically favorable propagation will play a central role to show the optimal-

ity of the linear processing in massive MIMO in the next chapter, which will also

address the main precoders and detectors used in massive MIMO.
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Chapter 3

Precoding and Detection

3.1 Introduction

This chapter presents a variety of precoding and detection algorithms for massive

MIMO systems, namely: matched filter (MF), zero-forcing (ZF), regularized zero-

forcing (RZF), minimum mean square error (MMSE), dirty paper coding (DPC),

iterative linear filer schemes, random step methods, and tree-based algorithms.

3.2 Precoding

Precoding is a technique which exploits transmission diversity by properly weighing

the data stream. This technique will reduce the corrupting effects of the commu-

nication channel. For massive MIMO systems, both nonlinear and linear precoding

schemes can be used. The function of precoding is almost the same of equalization,

but precoding is performed at the transmitter, instead of at the receiver. In massive

MIMO, precoding techniques usually aim to maximize the signal-to-interference-

plus-noise ratio (SINR). Nonlinear precoding methods, such as dirty paper coding

(DPC) [93], vector perturbation [94], and lattice-aided methods [95], have a better

performance albeit with higher implementation complexity. In fact, nonlinear pre-

coding techniques are of paramount importance when M is not much larger than

K, which is not the case in massive MIMO [40]. Thus, it is more common to use

low-complexity linear precoding methods in massive MIMO systems.

3.2.1 Linear Precoding

For linear precoding, the precoding operator P {·} in Figure 2.5 is a matrix W ∈
CM×K . Depending on the application, this matrix can have different purposes, such

as right inverting the broadcast channel matrix HT or maximizing the SINR related
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to the signals received by the terminals. The most common linear precoding methods

are the MF, ZF, RZF, and MMSE.

Matched Filter

Matched filter precoding is the simplest linear precoding, where the MF precoding

matrix is given by

WMF = H∗Diag
(
[ ‖h1‖22 · · · ‖hK‖

2
2 ]T
)−1/2

Diag (p)1/2 . (3.1)

This precoder amplifies the signal of interest as much as possible, disregarding inter-

ference. If only one terminal were transmitting, this processing would be optimal.

Under favorable or asymptotically favorable propagation, MF is also optimal in

terms of sum-rate capacity. This result is the cornerstone of massive MIMO theory

and is demonstrated bellow.

Under asymptotically favorable propagation, the overall forward link sum-rate

capacity for all users becomes

Cdl =


maximize
p∈RK×1

+

log2 det
(
IM + ρdlH

∗Diag (p) HT
)

subject to 1T
Kp = 1

(a)
=


maximize
p∈RK×1

+

log2 det
(
IK + ρdlDiag (p) HTH∗

)
subject to 1T

Kp = 1

=


maximize
p∈RK×1

+

log2 det
(
IK + ρdlDiag (p) Diag

(
[ ‖h1‖22 · · · ‖hK‖

2
2 ]T
))

subject to 1T
Kp = 1

,

(3.2)

where (a) uses the Sylvester’s determinant theorem. If MF precoding is applied in

(2.8), the transmitted precoded signal is given by

xMF = H∗Diag
(
[ ‖h1‖22 · · · ‖hK‖

2
2 ]T
)−1/2

Diag (p)1/2 s. (3.3)

Then the received signal vector by the terminals is

y =
√
ρdl H

TH∗Diag
(
[ ‖h1‖22 · · · ‖hK‖

2
2 ]T
)−1/2

Diag (p)1/2 s + v

=
√
ρdl Diag

(
[ ‖h1‖22 · · · ‖hK‖

2
2 ]T
)1/2

Diag (p)1/2 s + v. (3.4)

The MF precoding technique separates the signal in the direction of different ter-

minals, avoiding the inter-user interference. Furthermore, the channel capacity
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achieved by (3.4) can be maximized by properly choosing p as in (3.2), which demon-

strates that MF precoding is optimum under favorable or asymptotically favorable

propagation [39, 96].

The optimality of matched filtering processing in downlink is entirely related to

the assumption of favorable or asymptotically favorable propagation. This assump-

tion is based on two conditions: M � K and M −→ ∞. The first one is very

reasonable and it is not so difficult to hold in practical situations. However, the

second one is just a mathematical tool to simplify the theoretical analysis, which

does not have any meaning in practice. It is totally fair to ask what is the optimum

number of antennas from a cost-effectiveness point of view. Unfortunately, there is

no definitive answer and it depends for sure on the details of the propagation, the

complexity of the processing, and the cost of antenna elements. In general, works

in this area use the number of antennas between 50 and 1000 [40, 42, 56, 57, 97].

Zero-forcing

Zero-forcing precoding is more computationally expensive than MF precoding for it

performs a K ×K matrix inversion. The precoded signal by ZF is solution of the

following convex optimization problem

minimize
x∈CM×1

∥∥HTx− s
∥∥2
2
. (P-3.1)

The problem (P-3.1) is known as least-squares problem and has infinitely many

solutions due to the fact that HT is a full-row rank matrix with much more columns

than rows. A common choice among these infinity solutions is the minimum l2-norm

solution, which yields the ZF-precoded signal

xZF = H∗
(
HTH∗

)−1
s, (3.5)

where the ZF precoding matrix is

WZF = H∗
(
HTH∗

)−1
=
(
HT
)†
, (3.6)

which is the Moore-Penrose pseudoinverse matrix. Note that ZF precoding inverts

perfectly the channel no matter the number of base station antennas, M , unlike the

MF precoding. This fact is a significant advantage for ZF precoding because it can

guarantee reasonable channel capacity and bit-error rate.
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Regularized Zero-forcing

Regularized zero-forcing precoding is very similar to ZF, except the diagonal loading

factor added prior to the inversion of the matrix HTH∗. The RZF precoding is also

the solution of a convex optimization problem, but now there is a constraint on

the power of the precoded signal, i.e., now there is an l2-norm regularization in the

problem. The l2-norm regularization is known as Ridge/Tikunov regression [98].

The formulation of RZF precoding can be written as

minimize
x∈CM×1

∥∥HTx− s
∥∥2
2

subject to ‖x‖22 = ξ
, (P-3.2)

where ξ ∈ R+ is the power of x. The solution of (P-3.2) is given by

xRZF = H∗
(
HTH∗ + ξIK

)−1
s, (3.7)

and the RZF precoding matrix is given by

WRZF = H∗
(
HTH∗ + ξIK

)−1
. (3.8)

The RZF precoding performance is bounded by MF and ZF precoding perfor-

mances. When ξ −→ 0, RZF precoding approaches to ZF precoding, and when

ξ −→ ∞ RZF precoding approaches to MF precoding. Thus, RZF precoding can

be a flexible alternative to MF and ZF precoders.

Minimum Mean Square Error

Minimum mean square error precoding is formulated as the following convex opti-

mization problem

minimize
W∈CM×K

E
[∥∥(HTx+ v

)
− s
∥∥2
2

]
subject to Ws = x

. (P-3.3)

The precoded signal for a given realization s is then written as

xMMSE = H∗
(

HTH∗ +
1

ρdl
IK

)−1
s, (3.9)

and the MMSE precoding matrix is given by

WMMSE = H∗
(

HTH∗ +
1

ρdl
IK

)−1
. (3.10)
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The MMSE precoding is a specific case of RZF precoding with ξ = 1/ρdl. This

regularization factor in MMSE precoding takes into consideration the effect of the

environment noise, unlike other precoding algorithms described in this section. In

terms of bit-error rate, MMSE precoding outperforms MF and ZF precoding in low

SNR regimes due the regularization factor based on the SNR. In high SNR regime,

the performances of the three precoding schemes tend to be the same.

3.2.2 Nonlinear Precoding

Dirty Paper Coding

In the massive MIMO context, DPC is a nonlinear algorithm used as a precoding

scheme to improve the sum-rate capacity, yielding the maximum achievable rate [40,

42]. If the transmitter has perfect knowledge of interference for a given terminal,

then the sum-rate capacity is the same as that in the case of no interference to the

terminal, or is equivalent to the case where the receiver has perfect knowledge of

the interference so that it can subtract it [93]. Based on this idea, the interference

can be presubtracted at the transmitter without increasing the transmit power [99].

DPC precoding has practical implementations that are rarely used due to their

computational complexity [40].

3.2.3 Precoding as Beamforming

Precoding can be viewed as a generalization of beamforming to support multi-stream

transmissions in wireless communication MIMO systems. In conventional linear-in-

parameters beamforming, the same signal is emitted from each of the base station

antennas with appropriate weighting such that the signal power is maximized at the

terminal input, as illustrated in Figure 3.1.

.

.

.

w1

w2

wM

s

Base Station

Terminal

Figure 3.1: Example of a simplified communication system using beamforming.
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For a base station having a ULA with M antennas, the beampattern for a given

direction θ ∈ [0, π] of a conventional linear-in-parameters beamforming having

weighting vector w ∈ CM×1 can be calculated as

b(θ) = wTa(θ), (3.11)

where a(θ) is the underlying steering vector. A plethora of algorithms to project the

weighting vector w can be found in the literature, ranging from algorithms based

on simple linear estimation to adaptive algorithms [92, 100–102].

In MU-MIMO systems, there are a lot of terminals and conventional beamform-

ing cannot simultaneously send different signals to each terminal and maximize the

signal level at all of the terminals. In order to maximize the throughput in multi-

ple receiving antenna systems, multi-stream transmission is generally required. In

multi-stream transmission, the base station has to send different signals in different

directions for each terminal. In order to do that it is necessary a precoding operation

at the base station. Figure 3.2 shows an MU-MIMO system with an M -antenna base

station and K single-antenna terminals using precoding. This figure illustrates the

precoding acting in LoS scenario. In the presence of local scattering, the precoding

steers the beams in the direction of the multipaths [67].

The precoding in Figure 3.2 can be viewed as M individual conventional linear-

in-parameters beamformers, and each one aims to steer the signal in the direction

of a terminal. Let xm be the signal transmitted by the mth antenna of the base

station, given as

xm = s1wm1 + s2wm2 + · · ·+ sKwmK

=
[
wm1 wm2 · · · wmK

]
s, (3.12)

where wmk ∈ C is the precoding weight for the mth antenna and the kth user signal.

The effective transmitted vector is given by

x =


w11 w12 · · · w1K

w21 w22 · · · w2K

...
...

. . .
...

wM1 wM2 · · · wMK

 s

=
[
w1 w2 · · · wK

]
s

= Ws. (3.13)

Each wk is a weighting vector that steers the desired signal to the respective terminal.

The beampattern for a given direction θ and for a precoding matrix W can be
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Figure 3.2: Example of a simplified MU-MIMO system using precoding.

calculated as

b(θ) = xTa(θ) (3.14)

= sT


wT

1 a(θ)

wT
2 a(θ)

· · ·
wT
Ka(θ)


=
∑
k∈K

skbk(θ), (3.15)

where bk(θ) = wT
k a(θ). It is possible to see that b(θ) is the combination of all bk(θ),
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which means that the transmitted signal is steered in all terminals’ directions. Note

that the beampattern could be calculated directly from the weighting vectors wk,

but this could not be possible with nonlinear precoding techniques, which must be

calculated from (3.14).

This approach helps analyze the precoding algorithms by another viewpoint,

which is the spatial multiplexing provided by the precoders. In Chapter 6, some

simulations are performed to evaluate the precoders about the quality of their beam-

patterns.

3.2.4 Practical Considerations

The aforementioned precoding methods focus on the theoretical aspects of massive

MIMO systems, but there are some practical issues that can limit the use of massive

MIMO. One of the main issues is the cost of the base station due to many anten-

nas’ RF chains. The RF chains contain all analog components in the front-end of

a base station, such as power amplifiers, phase shifters, and ADCs/DACs. The RF

chains can be reduced using antenna selection algorithms, which is the main focus

of this work and will be approached in Chapters 4 and 5. Another alternative is

employing low-cost power amplifiers in RF chains. The precoded massive MIMO

signals, in general, have a high PAPR, and the use of power-efficient power ampli-

fiers can decrease the signal distortion. For this reason, some precoding algorithms

based on per-antenna constant envelope constraint to reduce the PAPR have been

developed [47–55]. Those new precoding techniques with low PAPR enable the use

of low-cost power amplifiers. There are also some works studying the use of 1-bit

ADCs and DACs. Indeed, with 1-bit quantization the PAPR is naturally reduced,

working as an alternative to reduce base station’s cost [53, 56–59].

3.3 Detection

Similarly to precoding algorithms for massive MIMO systems, simple linear detection

algorithms are near optimal under favorable or asymptotically favorable propaga-

tion conditions. The most common linear detection algorithms are the same used for

precoding, viz.: MF, ZF, and MMSE. The performance of massive MIMO systems

using linear detection algorithms has been studied in [85]. In addition to linear de-

tection methods, nonlinear detection algorithms, such as iterative filtering schemes,

random step methods, and three based algorithms can be used for detection in mas-

sive MIMO systems. Nonlinear algorithms achieve lower levels of bit-error rate than

linear detection algorithms, but they have much higher computational complexity.
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3.3.1 Linear Detection

For linear detection, the detection operator D {·} in Figure 2.4 is a matrix D ∈
CK×M , which can be used, for instance, to invert the multiple-access channel matrix

H or to maximize the SINR. The most common linear detection algorithms are the

MF, ZF, RZF, and MMSE.

Matched Filter

Like in Section 3.2.1, MF detector is the simplest linear detector, where the MF

detection matrix is written as

DMF = HH. (3.16)

Like the MF precoder, under favorable or asymptotically favorable propagation

mentioned in Section 2.5, the MF detector is also optimum in terms of achievable

rate. This result is demonstrated below.

Applying the MF detection algorithm in (2.5), one has

HHy =
√
ρul H

HHs + HHv

=
√
ρul Diag

(
[ ‖h1‖22 · · · ‖hK‖

2
2 ]T
)

s + HHv, (3.17)

where HH is the MF detection matrix. Note that due to the asymptotically orthog-

onality of the channel vectors, the MF detector does not color the noise. Moreover,

since Diag
(
[ ‖h1‖22 · · · ‖hK‖

2
2 ]T
)

is a diagonal matrix, MF separates the signal from

different users into different streams, avoiding the inter-user interference. Further-

more, the sum-rate capacity achieved by the matched filtering is the same as in

(2.16), which implies that matched filtering is optimum when the number of anten-

nas at the base station, M , grows to infinity.

3.3.2 Nonlinear Detection

Iterative Linear Filtering Schemes

This method works by solving the detection of the received vector y via iterative

linear filtering, using the previous estimate of y to enhance the current estimate of

y. The propagated information can be either hard or soft. The methods typically

employ matrix inversions repeatedly during the iterations, which can be very costly

when M is large. An alternative to reduce the high computational cost is using the

matrix inversion lemma [40]. A popular soft information based detection algorithm is

the conditional MMSE with soft interference cancellation (MMSE-SIC) scheme [103].

Another algorithm similar to MMSE-SIC is the block-iterative generalized decision

feedback equalizer (BI-GDFE) algorithm [104]. BI-GDFE algorithm can approach
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the single user MF within only a few iterations even if the number of antennas is

large [42].

Random Step Methods

Random step methods are matrix-inversion free. A basic random step algorithm

starts with the initial vector, usually the MMSE solution, and evaluates the mean

squared error (MSE) for vectors in its neighborhood. The neighboring vector with

smallest MSE is chosen, and the process restarts, continuing like this until achieving

the maximum number of iterations. Common random step algorithms are the like-

lihood ascent search (LAS) algorithm [105] and tabu search (TS) algorithm [106].

The TS algorithm is superior to LAS algorithm because it can avoid local minimum

points.

Tree-Based Algorithms

The most prominent algorithm in this class is the sphere decoder (SD) [107]. The SD

is, in fact, a maximum likelihood decoder that only considers points inside a sphere

with certain radius. If the sphere is too small for finding any appropriate points, it

has to be increased. Many tree-based low-complexity algorithms try to reduce the

search by only expanding the fraction of the tree-nodes that appear to be the most

“promising” ones. Such a method is the stack decoder [108], where the nodes of the

tree are expanded in the order of least Euclidean distance to the received signal.

Another algorithm in this class is the fixed complexity sphere decoder [109], which

is a low complexity, suboptimal version of the SD.

3.4 Conclusion

This chapter presented a big picture of precoding and detecting algorithms, empha-

sizing their key characteristics. Next chapter addresses a practical issue concerning

to massive MIMO wireless systems: the high cost of base stations. To deal with this

problem, next chapter introduces a very common technique used in point-to-point

MIMO systems: antenna selection.
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Chapter 4

Classic Antenna Selection

Algorithms

4.1 Introduction

An important problem in massive MIMO systems is related to the base station’s

cost. The increase in the number of antennas at the base station makes feasible

a plethora of theoretical gains, but also imposes many practical challenges [42].

These challenges are mostly related to the RF chains [64, 65, 110–116] and hardware

power consumption [47–52, 54, 55]. An RFC contains all analog components before

the transmitting antennas, such as power amplifiers, mixers, phase shifters, and

ADCs/DACs. There are some alternatives to reduce the base station’s cost, like

PAPR-awareness precoding and 1-bit quantizer precoding, as briefly discussed in

Chapter 3. Moreover, another solution is the hybrid precoders that perform a digital

and an analogical processing to reduce the number of RF chains [112–116]. Another

technique is selecting specific antennas to transmit the data [60, 61]. The antenna

selection technique decreases the number of active RFCs by selecting antennas,

which also decreases the number of active analog components. This reduction in the

number of active RFCs both increases the energy efficiency and decreases the base

station’s cost. This antenna selection algorithms was firstly developed to point-to-

point MIMO, and the idea has been used in massive MIMO systems as well [62–

65]. This chapter presents the main antenna selection algorithms, namely: antenna

selection via channel capacity maximization and random selection.
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4.2 Reduced-dimension Model and Precoding

4.2.1 Reduced-dimension Model

Consider the single-cell massive MIMO system operating in downlink as depicted in

Figure 4.1. This figure illustrates a massive MIMO system with a new processing

stage at base station. Now the number of active antennas is reduced and an antenna

selection algorithm is run to select the best set of active transmitting antennas. In

this case, L ∈ N antennas are selected to be active, and the received signal by the

single-antenna terminals can be written as

y =
√
ρdl H

T
Lz + v, (4.1)

where z ∈ CL×1 is a realization of the random vector z that models the reduced-

dimension precoded signal, ρdl ∈ R+ is the SNR for forward link measured at termi-

nal, v ∈ CK×1 is a realization of an AWGN random vector v ∼ CN (0K×1, IK), and

HT
L is the reduced-dimension broadcast channel. The subscript L in HT

L denotes

that the L columns comprising HT
L were selected from the complete broadcast chan-

nel matrix HT, corresponding to the L active antennas.1 As in the signal model in

(2.8), the total transmitted power is independent of the number of antennas, i.e.,

E
[
‖z‖22

]
= 1. (4.2)
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Figure 4.1: Massive MIMO system with antenna selector.

1The notation does not specify which columns were kept from the original matrix.
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The signal model in (4.1) can also be represented in terms of the complete forward

link channel matrix; in this case, the received signal by the terminals can be rewritten

as

y =
√
ρdl H

TSz + v, (4.3)

where S ∈ RM×L
+ is the antenna-selector matrix, which is represented by the antenna-

switch block in Figure 4.1. Another representation of (4.1) is in terms of the complete

precoded signal, as follows:

y =
√
ρdl H

TDiag (δ) x + v, (4.4)

where x ∈ CM×1 is the complete precoded signal, and δ ∈ RM×1
+ is the antenna-

selector vector that has the following structure:

δm =

1, if the mth antenna is selected

0, otherwise
, ∀ m ∈M, (4.5)

and satisfying

1T
Mδ = L. (4.6)

4.2.2 The Antenna Selector Matrix

The antenna selector matrix S introduced in (4.3) is of paramount importance to

the algorithms that will be presented in this chapter. The antenna selector matrix is

a permuted version of the identity matrix with a reduced number of columns, which

are selected from the supp (δ). Moreover, due to the construction of S, the antenna

selector matrix and the antenna selector vector have the following property

Diag (δ) = SST. (4.7)

The construction of the antenna selector matrix is easier to explain with a toy

example, as the following one.

Example 4.1. Consider a MIMO system with M = 5 antennas at base station and

L = 3 active antennas. Consider an antenna selector vector given by

δ =
[
0 1 0 1 1

]T
. (4.8)

First, it is necessary to get the support of δ, which is given by

supp (δ) = {2, 4, 5}. (4.9)

40



Then, matrix S is given by

S=
[
e2 e4 e5

]
(4.10)

=


0 0 0

1 0 0

0 0 0

0 1 0

0 0 1

 , (4.11)

thus yielding

SST=


0 0 0

1 0 0

0 0 0

0 1 0

0 0 1


0 1 0 0 0

0 0 0 1 0

0 0 0 0 1



=


0

1

0

1

1


= Diag (δ) . (4.12)

In future analyses, the construction operator B{·, ·}, which takes the columns of

the matrix in the first argument according to the support provided in the second

argument, will be used for the sake of simplicity. This operator is responsible for

building matrix S or any matrix with a given structure. Thus, in the previous

example, S can be written as follows:

S = B{IM , supp (δ)}. (4.13)

4.2.3 Precoding in Reduced-dimension Model

In a massive MIMO system with antenna selection, the precoding algorithm has to

use the reduced downlink channel matrix HL. Although all algorithms of Chapter 3

could be used here for this reduced model, the antenna selection algorithms presented

in this chapter will use only MF and ZF precoding algorithms.
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Matched Filter

In this case, the MF precoding matrix is given by

WMF =
(
HT
L

)H
, (4.14)

so that the reduced-dimension precoded signal is

z= WMFs (4.15)

=
(
HTS

)H
s

= STH∗s, (4.16)

whereas the effective transmitted signal is

x= Sz (4.17)

= SSTH∗s

= Diag (δ) H∗s. (4.18)

Thus, the MF precoding can be computed by either (4.15) followed by (4.17) or

directly by (4.18).

Zero-forcing

For ZF precoding, the precoding matrix is

WZF = H∗L
(
HT
LH∗L

)−1
, (4.19)

so that the reduced-dimension precoded signal is

z= WZFs (4.20)

= STH∗
(
HTSSTH∗

)−1
s

= STH∗
(
HTDiag (δ) H∗

)−1
s, (4.21)

whereas the effective transmitted signal is

x= Sz (4.22)

= SSTH∗
(
HTDiag (δ) H∗

)−1
s

= Diag (δ) H∗
(
HTDiag (δ) H∗

)−1
s. (4.23)
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4.3 Antenna Selection

The previous section shows the precoders for a given S and δ, but it does not explain

what is the better method to find them. The core question in this chapter is how to

find the best (in a sense to be further defined) antenna selector vector δ. The most

common algorithms are the random selection and the channel capacity maximization

selection.

4.3.1 Random Selection

A possible solution is to perform random antenna selection, which is a naive solu-

tion that randomly selects L out of M antennas. However, this strategy may not

guarantee the best antenna selector vector. The common method to find the best

antenna selector vector δ is through channel capacity maximization [60, 61] that

will be presented in Section 4.3.2. Algorithms 1 and 2 summarize the MF precoding

along with random antenna selection (RANDOM-MF), as well as the ZF precoding

along with random antenna selection (RANDOM-ZF).

Algorithm 1 : RANDOM-MF

supp (δ)←randperm(M,L)
supp (δ)←sort(supp (δ))
S← B{IM , supp (δ)}
HT
L ← HTS

WMF ← H∗L
z←WMFs
xRANDOM-MF ← Sz

Algorithm 2 : RANDOM-ZF

supp (δ)←randperm(M,L)
supp (δ)←sort(supp (δ))
S← B{IM , supp (δ)}
HT
L ← HTS

WZF ←
(
HT
L

)†
z←WZFs
xRANDOM-ZF ← Sz
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4.3.2 Channel Capacity Maximization Selection

For the signal model defined in (4.3), the ideal channel capacity is the maximum of

the following convex optimization problem, as mentioned in Section 2.3.2:

maximize
p∈RK×1

+

log2 det
(
IM + ρdlS

TH∗Diag (p) HTS
)

subject to 1T
Kp = 1,

(P-4.1)

where p ∈ RK×1
+ is the power allocation vector. Using Sylvester’s determinant

theorem in (P-4.1) yields

maximize
p∈RK×1

log2 det
(
IK + ρdlDiag (p) HTSSTH∗

)
subject to 1T

Kp = 1.
(P-4.2)

Therefore, (P-4.2) can be finally rewritten as

maximize
p∈RK×1

log2 det
(
IK + ρdlDiag (p) HTDiag (δ) H∗

)
subject to 1T

Kp = 1.
(P-4.3)

Problem (P-4.3) appears often in communications and can be solved using an

iterative water filling algorithm, as mentioned in Chapter 2. However, water filling

algorithms just solve (P-4.3) in relation to p, assuming a predefined δ. In order

to find the optimal antenna selector, (P-4.3) also needs to take into account δ as

an optimization variable. Thus, the optimal antenna selector matrix Diag (δo) is

solution of the following optimization problem:

maximize
p∈RK×1

δ∈RM×1

log2 det
(
IK + ρdlDiag (p) HTDiag (δ) H∗

)
subject to 1T

Kp = 1,

1T
Mδ = L,

δm ∈ {0, 1} ∀ m ∈M.

(P-4.4)

Convex Relaxation

Solving (P-4.4) over the power allocation vector p among the terminals, and the

antenna selection vector δ is a hard task. The problem is no longer convex and

there are no computationally efficient algorithms to solve it. Therefore, a common

approach to solve (P-4.4) is performing an optimization in two steps:

(i) Firstly, the power distribution among all users is assumed to be equal, i.e., pk =

1/K, ∀ k ∈ K = {1, 2, · · · , K}, which allows one to solve the optimization
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problem with respect to δ to find the best antenna selector vector δo;

(ii) Then, with the best set of L antennas selected, the optimization over p is

performed to find the maximum sum-rate capacity. For instance using an

iterative water filling algorithm.

Although, the strategy above does not guarantee the global solution, because

the decoupling of the variables p and δ, it at least guarantees a lower bound for the

channel capacity [65].

Performing step (i) and setting pk = 1/K, ∀ k ∈ K, the new optimization

problem is given by

maximize
δ∈RM×1

log2 det
(
IK +

ρdl
K

HTDiag (δ) H∗
)

subject to 1T
Mδ = L,

δm ∈ {0, 1} ∀ m ∈M.

(P-4.5)

Despite the fact that log2 det
(
IK + (ρdl/K)HTDiag (δ) H∗

)
is concave, (P-4.5) is

non-convex, for the binary restriction on δ actually makes the optimization problem

NP-hard. NP-hard problems could in principle be solved by exhaustive search, but

due to the combinatorial nature of the problem, it is unfeasible to solve it for large

values of M , which is the case in practical massive MIMO.

In order to make the problem computationally feasible, a convex relaxation is

performed in the binary restriction on δ [117], yielding

maximize
δ∈RM×1

log2 det
(
IK +

ρdl
K

HTDiag (δ) H∗
)

subject to 0 ≤ δm ≤ 1 ∀ m ∈M,

1T
Mδ = L,

(P-4.6)

or alternatively

maximize
δ∈RM×1

log2 det
(
IK +

ρdl
K

HTDiag (δ) H∗
)

subject to 0 � δ � 1,

1T
Mδ = L.

(P-4.7)

Now, δm can be any real value between 0 and 1, and the best antenna selector δo is

obtained by keeping the L largest values of δ, setting them to one and the remaining

M−L to zero. After that, the optimal p can be found with a water filling algorithm.

This convex relaxation yields a near-optimal solution, except for the case when

a small number of antennas are selected, i.e., L�M [65, 117]. In antenna selection

for massive MIMO system, the number of active antennas is reduced via a trade-off
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with the achievable data rate. Therefore, in practical situations, L should be rela-

tively large (L� K) and the convex relaxation will show near-optimal results [65].

Algorithms 3 and 4 summarize the MF precoding along with antenna selection using

channel capacity maximization (CM-MF) and the ZF precoding along with antenna

selection using channel capacity maximization (CM-ZF).

Algorithm 3 : CM-MF

δ ← argmax
0�δ�1
1T
Mδ=L

log2 det
(
IK +

ρdl
K

HTDiag (δ) H∗
)

[δo, indexes]← sort(δ,‘descend’)
δo(indexes(1 : L))← 1
δo(indexes(L+ 1 : end))← 0
S← B{IM , supp (δo)}
HT
L ← HTS

WMF ← H∗L
z←WMFs
xCM-MF ← Sz

Algorithm 4 : CM-ZF

δ ← argmax
0�δ�1
1T
Mδ=L

log2 det
(
IK +

ρdl
K

HTDiag (δ) H∗
)

[δo, indexes]← sort(δ,‘descend’)
δo(indexes(1 : L))← 1
δo(indexes(L+ 1 : end))← 0
S← B{IM , supp (δo)}
HT
L ← HTS

WZF ←
(
HT
L

)†
z←WZFs
xCM-ZF ← Sz

4.4 Conclusion

This chapter described the most common antenna selection algorithms. Antenna

selection based on channel capacity maximization finds the best selector through a

convex optimization problem, but it presents a few issues. As discussed in Chap-

ter 3, practical systems commonly use simple linear precoding techniques to produce

the precoded signal x. However, the optimum antenna selector δo was found using

the ideal downlink sum-rate capacity. Therefore, this selector may not be the opti-

mum for the linear precoders as MF and ZF. Additionally, the antenna selection is

performed using the channel capacity as metric, but this strategy may not be the
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best choice for other practical metrics, such as bit-error rate. Furthermore, this an-

tenna selection algorithm does not avoid the necessity of precoding at base station,

increasing the data processing performed by the base station. Next chapter pro-

poses two new algorithms to perform joint antenna selection and signal precoding,

focusing on the minimization of the estimation error.
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Chapter 5

Joint Precoding and Antenna

Selection

5.1 Introduction

The previous chapter presented some algorithms to select antennas in massive MIMO

systems. The main classic solution finds the best set of active antennas by maximiz-

ing the sum-rate capacity achieved by ideal coding schemes. However, this algorithm

does not have any integration with the precoder, which, in general, is far from the

ideal. This lack of integration between the precoding and the antenna selection

algorithm forces the base station to run two algorithms instead of one, which may

increase the complexity in the base station, besides the inherent suboptimality of

the uncoupled approach.

Considering those aspects, this chapter proposes new algorithms that interpret

the antenna selection problem as a sparse recovery problem. In this approach,

the selected antennas are the indexes of the nonzero entries of the precoded vector.

Hence, the proposed approach performs joint precoding and antenna selection, which

may reduce the complexity in base stations.

5.2 Sparse Estimation Problem

Consider the parameter estimation problem for the model

y = Ax + v, (5.1)

where x ∈ CM×1 is the parameter vector to be estimated, A ∈ CK×M is the mea-

surement matrix with full row-rank and with K < M , y ∈ CK×1 is the measured

data vector, and v ∈ CK×1 the measurement noise. A possible solution to this prob-

lem is finding an x that minimizes the residue corresponding to the signal model in
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(5.1), i.e., finding a solution to the least-squares problem

minimize
x∈CM×1

‖Ax− y‖22 . (P-5.1)

The least-squares problem is a convex optimization problem, with infinite many

solutions since matrix A does not have full column-rank; the most commonly used

value for x is the one which has minimum l2-norm. Therefore, the least-squares

solution with minimum l2-norm is given by

xLS = A†y, (5.2)

as already seen in Chapter 3 for the ZF precoding.

Equation (5.1) appears frequently in sparse recovery problems and for the vast

majority of them the parameter vector x is supposed to be sparse. However, the

least-squares solution does not feature any sparsity in general. Finding sparse so-

lutions for (5.1) encompasses an entire area of research known as sparse recov-

ery/estimation problems.

The goal in sparse recovery problems is to find the sparsest vector x, satisfying

some constraints, such as Ax = y. The popular algorithms used in sparse recovery

problems are divided into three classes: greedy methods, thresholding-based meth-

ods, and optimization methods. Greedy methods are based on the matching pursuit

algorithm [118–120], which computes the best matching projections of multidimen-

sional data onto the span of an over-complete dictionary. The most common greedy

algorithms are the orthogonal matching pursuit (OMP) [121–123], compressive sam-

pling matching pursuit (CoSaMP) [124], and subspace pursuit [125]. The most com-

mon thresholding-based algorithms are the basic thresholding [126], iterative hard

thresholding (IHT) [127], and hard thresholding pursuit (HTP) [128]. For optimiza-

tion methods, the main algorithms are the basis pursuit (BP) [129], quadratically

constrained basis pursuit (QCBP) [126], basis pursuit denoising (BPDN) [130], least

absolute shrinkage and selection operator (LASSO) [131], and Dantzig selector [132].

Table 5.1 summarizes the common algorithms used in sparse recovery problems.

Greedy and thresholding-based methods are out of the scope of this work, since

they do not have the same flexibility presented by optimization methods when one

wants to ensure a minimum sparsity level in the solution. Section 5.3 will clarify the

importance of limiting the sparsity and will show how optimization can handle this

constraint. More details on greedy and thresholding-based methods can be found

in [126] and references therein.

The optimization methods for sparse recovery are derived from the following
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Table 5.1: Main algorithms in sparse recovery problems

Greedy Methods Thresholding Methods Optimization Methods

OMP [121–123] Basic Thresholding [126] BP [129]

CoSaMP [124] IHT [127] QCBP [126]

Subspace Pursuit [125] HTP [128]

BPDN [130]

LASSO [131]

Dantzig Selector [132]

problem

minimize
x∈CM×1

‖x‖0

subject to Ax = y.
(P-5.2)

Problem (P-5.2) has the same difficulty presented by (P-4.5): it is NP-hard and,

therefore, it is infeasible to solve it in practical cases for large dimensions. The

natural approach for solving (P-5.2) is to use some convex relaxation. The most

common relaxation for (P-5.2) is to replace the l0-norm with the l1-norm, yielding

minimize
x∈CM×1

‖x‖1

subject to Ax = y.
(P-5.3)

This principle is called l1-minimization or basis pursuit [129]. In general, l1-

minimizers are sparse for real-valued entries of the optimization variable. However,

basis pursuit may not result in sparse solutions for complex-valued entries [126].

The problems (P-5.2) and (P-5.3) can be equivalent in some cases. For instance,

(P-5.2) and (P-5.3) are said to be strongly equivalent if (P-5.2) has a unique solution

which coincides with the unique solution of (P-5.3). And a sufficient and necessary

condition for this to hold is that the range space property holds. Details regarding

this topic can be found in [126] and references therein.

Another alternative problem to deal with sparse recovery is a variation of basis

pursuit that extends l1-minimization taking into account the effect of measurement

error. The new problem is given by

minimize
x∈CM×1

‖x‖1

subject to ‖Ax− y‖2 ≤ η,
(P-5.4)
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where η ∈ R+ is the l2-norm regularization factor. This variation is natural because

the measured vector y is not exactly equal to Ax in general, as seen in (5.1). Problem

(P-5.4) is commonly known as quadratically constrained basis pursuit or as noise-

aware l1-minimization [126]. The solution of (P-5.4) is related to the output of the

basis pursuit denoising [130], which consists in solving

minimize
x∈CM×1

‖Ax− y‖22 + λ ‖x‖1, (P-5.5)

where λ ∈ R+ is the l1-norm regularization factor. The solution of (P-5.4) is also

linked to the solution of the LASSO estimator [131], which consists in solving

minimize
x∈CM×1

‖Ax− y‖22

subject to ‖x‖1 ≤ τ
, (P-5.6)

where τ ∈ R+ is the l1-norm regularization factor.

QCBP, BPDN, and LASSO can have equivalent solutions, but they have differ-

ent motivations and interpretations. QCBP wants to find the sparsest x that still

satisfies a constraint on the noise energy. BPDN minimizes the noise power, regu-

larizing the objective function with the l1-norm of the solution x. Finally, LASSO

minimizes the noise power subject to a constraint on the l1-norm of the solution x.

Another type of l1-minimization problem is the Dantzig selector [132], which is

given by

minimize
x∈CM×1

‖x‖1

subject to
∥∥AH (Ax− y)

∥∥
∞ ≤ γ,

(P-5.7)

where γ ∈ R+ is the l∞-norm regularization factor. The intuition behind the con-

straint in (P-5.7) is that the residual Ax−y should have small correlation with the

columns am of the matrix A.

5.3 Sparsity-aware Precoding Algorithms

Consider the signal model in (4.3), which is written again here for the reader’s

convenience:

y =
√
ρdl H

TDiag (δ) x + v,

where HT ∈ CK×M is the broadcast channel matrix, x ∈ CM×1 is the precoded

signal, δ ∈ RM×1
+ is the antenna selector, ρdl ∈ R+ is the SNR for forward link

measured at terminal, and v ∈ CK×1 is the noise vector. For massive MIMO down-

link, (4.3) is also an undetermined system like (5.1), since M � K. Additionally,
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in antenna selection Diag (δ) x is an L-sparse vector, where the L nonzero entries

of Diag (δ) x correspond to the selected antennas. Therefore, the effective transmit-

ted signal Diag (δ) x can be found with sparse recovery algorithms. Besides that,

there is no necessity to separate precoding and antenna selection anymore, even-

tually meaning that the problem comes down to find an L-sparse precoded signal.

Table 5.2 shows the relation among sparse recovery and massive MIMO downlink

variables.

Table 5.2: Relation among sparse recovery and massive MIMO variables

Sparse Recovery Massive MIMO Downlink

Measurement Matrix (A) Broadcast Channel Matrix (HT)

Measured Vector (y) Received Signal (y)

Parameter Vector (x) Precoded Signal (x)

Unlike most cases in sparse recovery, antenna selection does not seek the sparsest

solution. There is a trade-off between the number of antennas and the quality of

service of the communication system. The sparsest solution for antenna selection

may severely reduce the sum-rate capacity, and the gain in sum-rate capacity is one

of the main reasons to increase the number of antennas in MIMO systems. Antenna-

selection schemes aim to decrease the number of antennas keeping acceptable values

for channel capacity or bit-error rate. Thus, the formulation in (P-5.2) is slightly

different from that desired for antenna selection. Antenna selection aims to find a

specific L-sparse vector for a desired value of L. A better formulation for antenna

selection problem would be

minimize
x∈CM×1

∥∥HTx− s
∥∥2
2

subject to ‖x‖0 = L.
(P-5.8)

Replacing the l0-norm with the l1-norm and the equality constraint with an

inequality constraint yield

minimize
x∈CM×1

∥∥HTx− s
∥∥2
2

subject to ‖x‖1 ≤ τ,
(P-5.9)

which is the LASSO estimator presented in Section 5.2. Note that τ is not exactly

the number of selected antennas L, but it is possible to verify that there is an

approximately linear relation between L and τ , as will be presented in Chapter 6.
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LASSO estimator is a very powerful tool and it seems to fit very well to solve

the antenna selection problem. Thus, LASSO is the basic building-block of the

proposals in this chapter, and the first sparsity-aware precoding algorithm is based

on LASSO. This idea of using l1-norm regularization to promote sparsity in antenna

arrays is also employed in [102] within the context of hexagonal arrays to satellite

signals. In massive MIMO, the l1-norm regularization for solving antenna selection

is introduced in [55]. The authors used a BPDN-like formulation combined with the

replica method from statistical mechanics considering Replica Symmetry to select

antennas. Moreover, the proposed solution in [55] is evaluated in terms of a figure

of merit called asymptotic distortion, which is unusual to evaluate communication

systems performance.

5.4 LASSO Precoding

The first proposed algorithm will be called LASSO precoding, which can be viewed

as a generalization of the ZF precoding algorithm in (P-3.1). The LASSO precoding

adds new constraints to (P-3.1), raising awareness regarding the sparsity in the solu-

tion. The LASSO precoding technique is lightly different from the LASSO presented

in (P-5.9), i.e.:

minimize
x∈CM×1

∥∥HTx− s
∥∥2
2

subject to ‖x‖1 ≤ τ,

‖x‖2 ≤ η,

(P-5.10)

where τ ∈ R+ is the l1-norm regularization factor, η ∈ R+ is the l2-norm regulariza-

tion factor, and both of them are tuning parameters.

The main idea of this optimization is to shrink the solution based on the value

of the l1-norm regularization factor τ : the smaller the value of τ , the more shrunken

the solution will be, thus inducing more sparsity. Although the l2-norm constraint

works like a regularization for the problem, it has a practical meaning related to the

energy control of the precoded signal x.

In classical antenna selection algorithms it is possible to choose the desired num-

ber of active antennas L. It is therefore desirable that the same could be performed

in LASSO precoder. The LASSO precoding promotes a high sparsity degree, but it

faces a big issue: there is no straightforward relation between the value of τ and the

l0-norm of the estimate.

The question here is how to choose τ and η in order for the LASSO precoding

to achieve the desired number of active antennas. Unfortunately, there is no close

expression for τ as a function of the desired number of active antennas L. We
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propose to use a strategy based on the l1- and l2-norms of the ZF precoded signal:

the value of both τ and η can be respectively chosen as fractions of the l1- and

l2-norms of the ZF solution, for instance:

τ = α ‖xZF‖1 , (5.3)

η = ‖xZF‖2 , (5.4)

where α ∈ [0, 1.0] is a parameter to adjust the sparsity of the solution, called sparsity

factor. Note that when α = 1, LASSO precoding produces the same result of ZF

precoding. Roughly speaking, the constraints in (5.3) and (5.4) mean that the signal

produced by LASSO precoding should have the same instantaneous energy of the

ZF-precoded signal and might have a percentage of selected coefficients proportional

to α. The percentage of used coefficients of LASSO solution is defined as

p =
L

M
, (5.5)

where L ∈ N is the sparsity of the LASSO precoding solution (number of selected

antennas) and M ∈ N is the total number of coefficients (number of antennas).

Although related , the parameter α is not exactly equal to p, but simulation results

of Chapter 6 indicate that there exists an approximately linear mapping between α

and p.

The LASSO precoding has a drawback that might limit its use. It is data-

dependent, which means that its solution always varies with the symbol vector s,

i.e., it is a nonlinear precoder. In comparison with ZF precoding that solves an

optimization per coherence time, and antenna selection algorithms that solve an

optimization per coherence time or new SNR value, LASSO precoding solves an

optimization per sampling time. However, the proposed LASSO precoding might

still be worth using depending on the optimization tools available. Moreover, this

data-dependent nature of LASSO precoding must be further studied: if the support

of the solution does not vary too much for each sampling time, some partial update

approach could be used to reduce the complexity of the LASSO precoding, like

in [133]. The LASSO precoding pseudo-code is described in Algorithm 5.

Algorithm 5 : LASSO

α← [0, 1.0]

xZF ← argmin
∥∥HTx− s

∥∥2
2

τ ← α ‖xZF‖1
η ← ‖xZF‖2
xLASSO ← argmin

∥∥HTx− s
∥∥2
2

s.t. ‖x‖1 ≤ τ, ‖x‖2 ≤ η

The ZF precoding is one of the best linear precoding algorithms due to its ability
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to right invert the downlink channel. This ability of ZF precoding helps it to produce

low bit-error rate, as corroborated by the simulations that will be presented in

Chapter 6. In order to satisfy the constraints, LASSO precoding loses this ability

to right invert the channel, thus the LASSO solution may differ significantly to the

ZF solution. If the “best” support vector is previously known, this could be used to

improve the performance of LASSO precoding, or at least provide an upper bound

for the LASSO precoding solution. This new solution is called LASSO-supported

ZF (LASSO-SZF) and its algorithm is described in Algorithm 6.

Algorithm 6 : LASSO-SZF

α← [0, 1.0]

xZF ← argmin
∥∥HTx− s

∥∥2
2

τ ← α ‖xZF‖1
η ← ‖xZF‖2
xLASSO ← argmin

∥∥HTx− s
∥∥2
2

s.t. ‖x‖1 ≤ τ, ‖x‖2 ≤ η
S← B{IM , supp (xLASSO)}
HT
L ← HTS

WZF ←
(
HT
L

)†
z←WZFs
xLASSO-SZF ← Sz

The LASSO-SZF will yield better results in terms of bit-error rate than LASSO

precoding, providing an upper bound for LASSO precoding performance. This oc-

curs due to the ability of LASSO-SZF inverting the equivalent channel matrix HT
L.

Indeed, simulations results in Chapter 6 indicate that LASSO-SZF precoding can

outperform LASSO precoding in terms of bit-error rate. As LASSO-SZF precod-

ing relies on LASSO precoding, it also has the same aforementioned drawbacks of

the LASSO precoding. Furthermore, the LASSO-SZF precoding cannot be included

in the class of joint precoding and antenna selection algorithms. This precoding

algorithm just combines the antenna selection performed by LASSO with the ZF

precoding, but it does not jointly perform them.

5.5 Conclusion

This section presented a different methodology to deal with antenna selection prob-

lem, called joint precoding and antenna selection. This idea uses the LASSO estima-

tor, which is very popular in statistics and sparse recovery areas. From the LASSO

estimator two new nonlinear sparsity-aware precoders are derived. Next chapter

presents simulation results to evaluate the sparsity-aware precoder performances

and compare with the classical linear precoders and antenna selection algorithms.
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Chapter 6

Simulation Results

6.1 Introduction

This chapter describes the simulation results for the precoding algorithms proposed

in Section 5.4. These algorithms are evaluated in terms of both beampattern design

and BER performance. The results are compared with those obtained by using

the classic linear precoders and the classic antenna selection algorithms. Moreover,

simulation results indicate the existence of an approximately linear relation between

the sparsity factor (see Section 5.4) and the number of selected antennas.

6.2 Methodology

This chapter evaluates several algorithms presented throughout the thesis, which

are listed in Table 6.1, where the two proposals are highlighted in bold. These

algorithms are evaluated in terms of beampattern design and BER performance.

The beampattern is calculated by using (3.14) and (3.15) for nonlinear and lin-

ear precoding algorithms, respectively. The beampattern design of an M -antenna

base station equipped with a ULA, transmitting to K single-antenna terminals is

qualitatively evaluated by visually inspecting the steering direction and the spread

energy over the space. Moreover, an objective analysis is made by investigating the

figure of merit called out of direction emission (ODE), which calculates the energy

emissions out of the desired directions with an uncertainty of ±1◦ in the desired

directions.

The performance is also evaluated in terms of the average BER per user as a

function of the forward link SNR measured at terminals using Monte-Carlo simula-

tion and assuming complete CSI knowledge by the base station. The average BER
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Table 6.1: Summary of the algorithms used in the simulations

Acronymous Description Section

MF Matched filter 3.2.1

ZF Zero-forcing 3.2.1

LASSO Least absolute shrinkage and selection operator 5.4

LASSO-SZF LASSO-supported ZF 5.4

CM-MF
MF precoding along with antenna selection

using channel capacity maximization
4.3.2

CM-ZF
ZF precoding along with antenna selection

using channel capacity maximization
4.3.2

RANDOM-MF
MF precoding along with
random antenna selection

4.3.1

RANDOM-ZF
ZF precoding along with
random antenna selection

4.3.1

per user is calculated as a mean of the individual BERk of each user, i.e.,

BER =
1

K

∑
k∈K

BERk, (6.1)

and the SNR is defined as

ρdl = 10 log10

(
Ps

Pn

)
, (6.2)

where Ps ∈ R+ is the signal power measured at the base station, and Pn ∈ R+ is the

noise power measured at terminals. Moreover, the percentage of selected antennas

is analyzed (see Section 5.4).

6.2.1 Scenario 1: Beampattern Design

For the nonlinear precoding algorithms, a random data block of a 4 quadrature

amplitude modulation (QAM) constellation is transmitted. This scenario considers

M ∈ {50, 100, 200} antennas, K = 2 terminals, and sparsity factor appearing in

(P-5.6) as α ∈ {0.50, 0.80, 0.90, 0.95}. The signals for the first and second terminals

have departure angles of θ1 = 45◦ and θ2 = 135◦, respectively. The SNR for forward

link measured at terminals is set to ρdl = 10 dB for CM-ZF and CM-MF algorithms.

The results of ZF and MF precoders are used as benchmarks (corresponding to α =

1.00, which means that all antennas are used). It is assumed that the base station

has knowledge of both departure angles. Table 6.2 summarizes all key parameters
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used in this simulation.

Table 6.2: Simulation parameters of scenario 1

Parameters Value
Full-array geometry ULA

Constellation 4-QAM
Number of blocks 1

Number of antennas M ∈ {50, 10, 200}
Number of terminals K ∈ 2

Sparsity factor α ∈ {0.50, 0.80, 0.90, 0.95}
SNR ρdl = 10 dB

Departure angles (θ1, θ2) = (45◦, 135◦)

6.2.2 Scenario 2: Bit-error Rate Performance

A total of 100 random data blocks of a 4-QAM constellation are transmitted. This

scenario considers M ∈ {50, 100, 200} antennas, K ∈ {3, 5, 10} terminals, and

sparsity factor as α ∈ {0.50, 0.80, 0.90, 0.95}. The simulations use the SNR values

within the set {−10, −7, −4, −1, 2, 5, 8} dB. The channel model used in the

simulations is the multipath MIMO channel mentioned in the end of Section 2.5.

The simulations use N = 2 multipaths, Θkn ∼ U([0, π]), Gmk ∼ CN (0, 1), with a

constant power delay profile equal to 1, and βkn = 1. The Monte-Carlo simulation

runs 500 different channels. The results of ZF and MF precoders are used as bench-

marks. It is assumed that the base station has complete CSI knowledge. Table 6.3

lists all key parameters used in this simulation.

Table 6.3: Simulation parameters of scenario 2

Parameters Value
Full-array geometry ULA

Constellation 4-QAM
Number of blocks 100
Monte-Carlo runs 500

Number of antennas M ∈ {50, 10, 200}
Number of terminals K ∈ {3, 5, 10}

Sparsity factor α ∈ {0.50, 0.80, 0.90, 0.95}
SNR ρdl = {−10, −7, −4, −1, 2, 5, 8} dB

Channel model Spatial multipath channel
Number of multipaths N = 2

Departure angles Θkn ∼ U([0, π])
Small-scale fading coefficient Gmk ∼ CN (0, 1)

Power delay profile 1 (Constant)
Large-scale fading coefficient βkn = 1
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6.3 Beampattern of Sparsity-aware Precoding Al-

gorithms

Figure 6.1 shows the beampattern for the ZF-based precoders considering M = 50

and different sparsity levels, whereas Figure 6.2 depicts the beampattern for the

MF-based precoders considering M = 50 and the same values of α. Table 6.4 shows

the number of selected antennas L for each value of α used in the simulation for

M = 50. The case with α = 1.00 represents the ZF and MF precoders, which

have the same beampattern due to the asymptotically favorable propagation (see

Section 2.5).

Table 6.4: Sparsity factor versus number of active antennas for M = 50

Sparsity factor Selected antennas Percentage of active antennas

1.00 50 100%
0.95 45 90%
0.90 41 82%
0.80 32 64%
0.50 13 26%
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(d) α = 0.50.

Figure 6.1: Beampatterns of the ZF-based precoders forM = 50, and different values
of α. Legend: – ZF, – – LASSO, –. LASSO-SZF, : CM-ZF, and – RANDOM-ZF.

Figures 6.1a and 6.2a illustrate the beampatterns for ZF- and MF-based pre-

coders for α = 0.95, respectively. In this case, the precoders use 90% of the antennas

and resolve the terminals’ directions. Visual inspection of these figures tells us that

LASSO, LASSO-SZF, and CM-ZF precoders have approximately the same beampat-

tern of the ZF precoder, whereas the CM-MF precoder has the same beampattern
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of the MF precoder. These beampatterns are close, but not the same, as can be

noticed in Figure 6.3. Additionally, the beampattern of random methods have side

lobes spread over the space, with approximately 10% of the energy corresponding

to the largest peak. The energy out of the desired directions may be irrelevant, but

this amount of energy could be sufficient to induce some inter-user interference.

Figures 6.1b and 6.2b show the beampattens for ZF- and MF-based precoders

for α = 0.90, respectively. With 82% of the antennas, the precoders still resolve

the terminals’ directions. However, some precoders are steering to some undesired

directions. For instance, the LASSO precoder has low-energy peaks (approximately

10% of the energy corresponding to the largest peak) in the directions of 83.3◦ and

97◦. Moreover, the beampatterns of LASSO-SZF, CM-ZF, and CM-MF precoders

are still very similar to the beampatterns of ZF and MF precoders. Furthermore,

the beampattern of RANDOM-ZF follows the same behavior shown in Figure 6.1a,

with more pronounced secondary lobes, whereas the beampattern of RANDOM-MF

has approximately 20% of the energy corresponding to the largest peak focused in

some undesired directions, as such 30◦, 60◦, 83.3◦, 97◦, 120◦, and 150◦.
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(a) α = 0.95.
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(d) α = 0.50.

Figure 6.2: Beampattern of the MF-based precoders for M = 50, and different
values of α. Legend: – MF, – – CM-MF, and –. RANDOM-MF.

Figures 6.1c and 6.2c depict the beampatterns of ZF- and MF-based precoders

for α = 0.80, respectively. The LASSO beampattern has peaks with energy around

40% of the energy corresponding to the largest peak focused in 83.3◦ and 97◦. Other

beampatterns that point toward undesired directions are the CM-ZF’s and CM-

MF’s, besides 83.3◦ and 97◦ directions, they steer toward 60◦ and 120◦. In addition,

the beampattern of the LASSO-SZF precoder is still very similar to the ZF’s, even

using only 64% of the antennas. Moreover, the beampattern of the random methods
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have much more pronounced side lobes. The energy spread of the CM-ZF is more

uniform than the energy spread of CM-MF, which is more focused in some specific

directions.

Figures 6.1d and 6.2d illustrate the beampatterns of the ZF- and MF-based

precoders for α = 0.50, respectively. In this case, the precoders use 26% of the

antennas. The random methods yield poor beampatterns, spreading a high amount

of energy over many directions. Morevoer, the beampatterns of LASSO and CM-

ZF are very similar to each other, steering toward the same undesired directions

with approximately the same energy. Furthermore, the LASSO-SZF and CM-MF

precoders have similar beampatterns, which spend more energy in the correct di-

rections than the LASSO’s and CM-ZF’s. Despite the reduced number of active

antennas, their energy spreading in undesired directions is smaller than that pro-

duced by other precoders. With the decrease of α, the array spatial selectivity is

reduced and the energy is spread over the space, possibly point toward in some

specific undesired directions. This result is harmful to massive MIMO systems, for

it may cause inter-user interference in the terminals.

Figure 6.3 shows the ODE as function of the sparsity level for M = 50. This

figure shows that the random methods have high ODE, as previously discussed.

The other precoders have similar ODEs, with the CM-ZF being slightly worse with

respect to this figure of merit for some sparsity levels. This fact could not be

noticed in the qualitative analysis of the beampattern. Moreover, the level of ODE

for LASSO and CM-MF are very close. Furthermore, with the exception of the

random-based precoders, the other precoders achieve ODE levels close to the ZF

and MF solutions, for sparsity factors close to one, thereby indicating the potential

of those algorithms.

Figure 6.4 depicts the beampattern for the ZF-based precoders considering M =

100 and different sparsity levels, whereas Figure 6.5 illustrates the beampattern for

the MF-based precoders for M = 100 and the same values of α. Table 6.5 shows

the number of selected antennas L for each value of α used in the simulation for

M = 100.

Table 6.5: Sparsity factor versus number of active antennas for M = 100

Sparsity factor Selected antennas Percentage of active antennas

1.00 100 100%
0.95 90 90%
0.90 80 80%
0.80 64 64%
0.50 25 25%
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Figure 6.3: Out of direction emissions for M = 50.

0

30

60

90

120

150

180
0 0.2 0.4 0.6 0.8 1

(a) α = 0.95.
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Figure 6.4: Beampattern of the ZF-based precoders for M = 100, and different
values of α. Legend: – ZF, – – LASSO, –. LASSO-SZF, : CM-ZF, and – RANDOM-
ZF.

Figures 6.4 and 6.5 present slight differences compared with Figures 6.1 and 6.2.

These differences are related to the increase in number of antennas. As M grows,

the array spatial selectivity increases, performing a better steering in the terminal

directions, as can be seen in the beampatterns. However, the increase in the array

spatial selectivity also promotes the steering toward some undesired directions. For

this case with M = 100, even the random methods get a much more focused energy

spreading with very tight beams.
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Figure 6.5: Beampattern of the MF-based precoders for M = 100, and different
values of α. Legend: – MF, – – CM-MF, and –. RANDOM-MF.

Figure 6.6 shows the ODE as function of the sparsity level for M = 100. In this

case, LASSO-SZF and CM-ZF precoders have a similar ODE for each sparsity value.

Besides that, the LASSO, LASSO-SZF, CM-ZF and CM-MF ODEs are near the ZF

and MF bound for sparsity levels close to 1. Furthermore, the random methods

have similar ODEs that are outperformed by the other precoders.
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Figure 6.6: Out of direction emissions M = 100.

Figure 6.7 depicts the beampattern of the ZF-based precoders considering M =

200 different sparsity levels, whereas Figure 6.8 illustrates the beampattern of the
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MF-based precoders for M = 200 and the same values of α. These results follow the

same pattern presented by Figures 6.1, 6.2, 6.4, and 6.5. Table 6.6 shows the number

of selected antennas L for each value of α used in the simulation for M = 200.

Figure 6.9 shows the ODE as function of the sparsity level for M = 200. These

results depicted by these figures also follow the same pattern as in Figure 6.9.

Table 6.6: Sparsity factor versus number of active antennas for M = 200

Sparsity factor Selected antennas Percentage of active antennas

1.00 200 100%
0.95 180 90%
0.90 161 81%
0.80 126 63%
0.50 49 25%
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(d) α = 0.50.

Figure 6.7: Beampattern of the ZF-based precoders for M = 200, and different
values of α. Legend: – ZF, – – LASSO, –. LASSO-SZF, : CM-ZF, and – RANDOM-
ZF.

It is worth highlighting some facts about the results in Tables 6.4–6.6. The

percentage of active antennas is a good figure of merit because it normalizes the

number of selected antennas by the total number of antennas. These results of

percentage of active antennas are very promising, showing that, for this specific

scenario, there exists an approximately linear relation between the sparsity factor

and the percentage of active antennas. Besides that, this relation seems to be

independent of the total number of antennas. Although, this linear relation holds in

this simple scenario, one cannot guarantee its validity for more complex scenarios. In

64



0

30

60

90

120

150

180
0 0.2 0.4 0.6 0.8 1

(a) α = 0.95.

0

30

60

90

120

150

180
0 0.2 0.4 0.6 0.8 1

(b) α = 0.90.

0

30

60

90

120

150

180
0 0.2 0.4 0.6 0.8 1

(c) α = 0.80.

0

30

60

90

120

150

180
0 0.2 0.4 0.6 0.8 1

(d) α = 0.50.

Figure 6.8: Beampattern of the MF-based precoders for M = 200, and different
values of α. Legend: – MF, – – CM-MF, and –. RANDOM-MF.
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Figure 6.9: Out of direction emissions M = 200.

order to verify this linear relation, next section performs a Monte-Carlo simulation

to evaluate it.
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6.4 Bit-error Rate Performance of Sparsity-aware

Precoding Algorithms

Figure 6.10 shows the average BER per user considering M = 50 and K = 3 for

different values of α. Table 6.7 shows the number of selected antennas L, and the

percentage of selected antenna p for each value of α for M = 50 and K = 3.

Table 6.7: Sparsity factor versus number of active antennas for M = 50 and K = 3

Sparsity factor Selected antennas Percentage of selected antennas

1.00 50 100%
0.95 49 98%
0.90 46 92%
0.80 39 78%
0.50 17 34%
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(b) α = 0.90.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.10: Average BER per user for M = 50, K = 3 and different values of α.

Figure 6.10a depicts the average BER per user for α = 0.95. In this case, the

BER of sparsity-aware precoders and antenna selection algorithms is expected to
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be close to the BER of linear precoders (α = 1.00). Indeed, this happens due to a

natural redundancy in massive MIMO systems. The massive MIMO may be able

to compensate for the lost of a few antennas. In this case L = 49 antennas are

selected, so the system uses 98% of the antennas. Additionally, there is a remark-

able difference between the performance of the ZF- and MF-based precoders. As

mentioned in Section 2.5, the MF precoder is optimum in conditions of favorable

propagation or asymptotically favorable. These conditions are not satisfied here due

to the small number of multipaths used to generate the channel. In a few cases, the

asymptotically favorable propagation might be satisfied for some links, but in the

average, the bad conditioned links bias the average BER per user.

Figure 6.10b illustrates the average BER per user for α = 0.90. In this case

L = 46 antennas are used, representing 92% of the antennas. With 92% of active

antennas, the BER of ZF-based methods are still close. Figure 6.10c shows the

average BER per user for α = 0.80. With this value of α, L = 39 antennas are

selected, corresponding to 78% of active antennas. This result shows that with

L = 39 antennas, LASSO and LASSO-SZF precoders achieve BER levels very similar

to the ZF’s and they have a mild advantage in comparison with the others ZF-based

precoders.

Figure 6.10d depicts the average BER per user for α = 0.50. For this value of α,

the number of selected antennas is L = 17, resulting in 34% of active antennas. In

this case, the LASSO and LASSO-SZF precoding algorithms outperform the other

ZF-based precoding algorithms. Moreover, it LASSO-SZF precoder is a lower bound

for LASSO precoder, as discussed in Section 5.4.

Figure 6.11 illustrates the average BER per user considering M = 50 and K = 5

for different values of α. Table 6.8 displays the number of selected antennas L and

the percentage of selected antenna p for each value of α for M = 50 and K = 5.

The results in Figure 6.11 follow the same behaviors observed in Figure 6.10.

Table 6.8: Sparsity factor versus number of active antennas for M = 50 and K = 5

Sparsity factor Selected antennas Percentage of selected antennas

1.00 50 100%
0.95 49 98%
0.90 46 92%
0.80 39 78%
0.50 17 34%
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(a) α = 0.95.

-10 -5 0 5
SNR (in dB)

10-6

10-4

10-2

100

A
ve

ra
ge

 B
it-

er
ro

r 
ra

te
 p

er
 u

se
r

MF
ZF
LASSO
LASSO-SZF
CM-MF
CM-ZF
RANDOM-MF
RANDOM-ZF

(b) α = 0.90.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.11: Average BER per user for M = 50, K = 5 and different values of α.

Figure 6.12 shows the average BER per user considering M = 50 and K =

10. Table 6.9 displays the number of selected antennas L and the percentage of

selected antenna p for each value of α used for M = 50 and K = 10. Once again,

Figure 6.12 follows the same patterns observed in Figures 6.10 and 6.11, with minor

differences. For α = 0.50, LASSO precoder achieves a lower BER than LASSO-SZF

precoder. Moreover, CM-ZF and RANDOM-ZF precoders achieves the same BER

performance.

Table 6.9: Relation between the sparsity factor and the number of selected antennas
for M = 50 and K = 10

Sparsity factor Selected antennas Percentage of selected antennas

1.00 50 100%
0.95 49 98%
0.90 46 92%
0.80 39 78%
0.50 17 34%
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(a) α = 0.95.
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(b) α = 0.90.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.12: Average BER per user for M = 50, K = 10 and different values of α.

The percentages of active antennas presented in Tables 6.7–6.9 are very related

to that ones reported in Section 6.3. Additionally, they seem to be invariant to the

number of terminals, having exactly the same number of selected antennas for each

value of α. This fact makes possible to build a linear model between α and the

number of selected antennas, which is invariant to the number of terminals.

Figures 6.13–6.15 show the average BER per user for M = 100 and K ∈
{3, 5, 10}. Tables 6.10–6.12 display the number of selected antennas L and the per-

centage of selected antenna p for each value of α for M = 100 and K ∈ {3, 5, 10}.
These results have the same pattern presented by the results for M = 50 and

K ∈ {3, 5, 10}, having only modest variation in the results. The number of se-

lected antennas is close for each simulation with M = 100 antennas. Moreover, they

are the same to the simulations with M = 50 antennas. This fact is very interesting

and indicates that the linear model may be expanded to encompass the average

percentage of selected antennas, which is more general than the number of selected

antennas. Furthermore, this result seems to be invariant to the number of antennas

M .

Figures 6.16–6.18 depict the average BER per user considering M = 200 and

K ∈ {3, 5, 10}. Tables 6.13–6.15 display the average number of selected antennas
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Table 6.10: Relation between the sparsity factor and the number of active antennas
for M = 100 and K = 3

Sparsity factor Selected antennas Percentage of selected antennas

1.00 100 100%
0.95 98 98%
0.90 92 92%
0.80 77 77%
0.50 33 33%
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(a) α = 0.95.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.13: Average BER per user for M = 100, K = 3 and different values of α.

Table 6.11: Relation between the sparsity factor and the number of active antennas
for M = 100 and K = 5

Sparsity factor Selected antennas Percentage of selected antennas

1.00 100 100%
0.95 98 98%
0.90 92 92%
0.80 77 77%
0.50 34 34%
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(a) α = 0.95.
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(b) α = 0.90.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.14: Average BER per user for M = 100, K = 5 and different values of α.

Table 6.12: Relation between the sparsity factor and the number of active antennas
for M = 100 and K = 10

Sparsity factor Selected antennas Percentage of selected antennas

1.00 100 100%
0.95 98 98%
0.90 92 92%
0.80 77 77%
0.50 34 34%

L and the percentage of selected antenna p for each value of α for M = 200 and

K ∈ {3, 5, 10}. These results have the same pattern presented by the results for

M = 50, M = 100, and K ∈ {3, 5, 10}, having only modest variations in the

results. The number of selected antennas is almost the same for each simulation

with M = 200 antennas. Moreover, they are also close to the simulations with

M = 50 and M = 100 antennas. This result confirms the linear model adopted to

α and the percentage of selected antennas.
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(a) α = 0.95.

-10 -5 0 5
SNR (in dB)

10-6

10-4

10-2

100

A
ve

ra
ge

 B
it-

er
ro

r 
ra

te
 p

er
 u

se
r

MF
ZF
LASSO
LASSO-SZF
CM-MF
CM-ZF
RANDOM-MF
RANDOM-ZF

(b) α = 0.90.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.15: Average BER per user for M = 100, K = 10 and different values of α.

Table 6.13: Relation between the sparsity factor and the number of active antennas
for M = 200 and K = 3

Sparsity factor Selected antennas Percentage of selected antennas

1.00 200 100%
0.95 194 97.5%
0.90 182 91%
0.80 153 76.5%
0.50 64 32%

Table 6.14: Relation between the sparsity factor and the number of active antennas
for M = 200 and K = 5

Sparsity factor Selected antennas Percentage of selected antennas

1.00 200 100%
0.95 195 97.5%
0.90 183 91.5%
0.80 154 77%
0.50 66 33%
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(a) α = 0.95.
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(b) α = 0.90.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.16: Average BER per user for M = 200, K = 3 and different values of α.

Table 6.15: Relation between the sparsity factor and the number of active antennas
for M = 200 and K = 10

Sparsity factor Selected antennas Percentage of selected antennas

1.00 200 100%
0.95 195 97.5%
0.90 183 91.5%
0.80 154 76.5%
0.50 67 33.5%
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(a) α = 0.95.
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(b) α = 0.90.
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(c) α = 0.80.
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(d) α = 0.50.

Figure 6.17: Average BER per user for M = 200, K = 5 and different values of α.
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(a) α = 0.95.

-10 -5 0 5
SNR (in dB)

10-6

10-4

10-2

100

A
ve

ra
ge

 B
it-

er
ro

r 
ra

te
 p

er
 u

se
r

MF
ZF
LASSO
LASSO-SZF
CM-MF
CM-ZF
RANDOM-MF
RANDOM-ZF

(b) α = 0.90.

-10 -5 0 5
SNR (in dB)

10-6

10-4

10-2

100

A
ve

ra
ge

 B
it-

er
ro

r 
ra

te
 p

er
 u

se
r

MF
ZF
LASSO
LASSO-SZF
CM-MF
CM-ZF
RANDOM-MF
RANDOM-ZF

(c) α = 0.80.

-10 -5 0 5
SNR (in dB)

10-5

10-4

10-3

10-2

10-1

100

A
ve

ra
ge

 B
it-

er
ro

r 
ra

te
 p

er
 u

se
r

MF
ZF
LASSO
LASSO-SZF
CM-MF
CM-ZF
RANDOM-MF
RANDOM-ZF

(d) α = 0.50.

Figure 6.18: Average BER per user for M = 200, K = 10 and different values of α.
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Chapter 7

Conclusion and Future Works

7.1 Concluding Remarks

This thesis presented a basic overview of massive MIMO technology, showing its

potential to achieve high sum-rate capacity. A mathematical description of uplink

and downlink was also given, including details regarding the main precoders and

detectors. In addition, the thesis discussed the most common antenna selection

algorithms for massive MIMO. The main algorithm is based on channel capacity

maximization and finds the best selector through a convex optimization problem.

The thesis studied a subject not fully tackled in the literature, which is the

joint precoding and antenna selection. Precoders belonging to this class are known

as sparsity-aware precoders because they produce sparse precoded signals to select

antennas. Furthermore, two new sparsity-aware precoders were proposed, namely

LASSO and LASSO-SZF precoding. These precoders are nonlinear and depend on

a parameter to adjust the number of selected antennas.

Simulation results indicated that the proposed algorithms achieve bit-error rates

close to those classic precoders, such as zero-forcing. The proposed algorithms pre-

sented an unexpected behavior related to the parameter to adjust the number of

selected antennas. They have an approximately linear mapping with the percentage

of selected antennas, which is desired but unexpected due to the nonlinear nature

of the sparsity-aware precoders.

7.2 Future Research Directions

Possible directions to future works include:

• The sparsity-aware precoders proposed in this work are data-dependent. How-

ever, these precoders might vary slowly with the input data, calling for a de-

tailed study in order to verify how the set of selected antenna varies with the
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input data. If the slowly variation is confirmed, sparsity-aware precoders with

partial update could be developed, reducing the complexity in these precoders;

• The simulations in this thesis assumed complete CSI knowledge. The per-

formance of the sparsity-aware precoders must be analyzed for partial CSI

knowledge;

• Simulations using spatial multipath channels with a large number of multi-

paths must be conducted;

• Simulations in rich scattering fading must be performed. It is important to

verify if the observed behavior is kept for rich scattering channels;

• New constraints might be included in the sparsity-aware precoders, for in-

stance, PAPR-aware constraints or 1-bit quantization;

• Pilot contamination is a topic of major concern for practical massive MIMO

systems. It produces inter-cell interference that is harmful for massive MIMO

systems. Simulation must be done to evaluate the performance of the sparsity-

aware precoders in this type of environment.
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