65 research outputs found

    New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus

    Get PDF
    This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    New Developments in Geometric Function Theory

    Get PDF
    The book contains papers published in a Special Issue of Axioms, entitled "New Developments in Geometric Function Theory". An Editorial describes the 14 papers devoted to the study of complex-valued functions which present new outcomes related to special classes of univalent and bi-univalent functions, new operators and special functions associated with differential subordination and superordination theories, fractional calculus, and certain applications in geometric function theory

    QUADRATURE FORMULAS FOR THE FOURIER-CHEBYSHEV COEFFICIENTS

    Get PDF
    We consider the well known Micchelli-Rivlin quadrature formula, of highest algebraic degree of precision, for the Fourier-Chebyshev coefficients. For analytic functions the remainder term of this quadrature formula can be represented as a contour integral with a complex kernel. We study the kernel, on elliptic contours with foci at the points ∓1 and a sum of semiaxes ρ > 1, for the quoted quadrature formula. Starting from the explicit expression of the kernel, we determine the locations on the ellipses where maximum modulus of the kernel is attained. So we derive effective L ∞- error bounds for this quadrature formula. Complex-variable methods are used to obtain expansions of the error in the Micchelli-Rivlin quadrature formula over the interval [−1, 1]. Finally, effective L 1 -error bounds are also derived for this quadrature formul

    ERROR ESTIMATES OF GAUSS-TURAN QUADRATURES

    Get PDF
    A survey of our recent results on the error of Gauss-Tur´an quadrature formulae for functions which are analytic on a neighborhood of the set of integration is given. In particular, a computable upper bound of the error is presented which is valid for arbitrary weight functions. A comparison is made with the exact error and number of numerical examples, for arbitrary weight functions, are given which show the advantages of using such rules as well as the sharpness of the error bound. Asymptotic error estimates when the number of nodes in the quadrature increases are presented. A couple of numerical examples are included

    New Trends in Differential and Difference Equations and Applications

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open-access journal Axioms (ISSN 2075-1680) from 2018 to 2019 (available at https://www.mdpi.com/journal/axioms/special issues/differential difference equations)

    Fixed Point Theory and Related Topics

    Get PDF

    Fractional Differential Equations, Inclusions and Inequalities with Applications

    Get PDF
    During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering
    corecore