11 research outputs found

    Predictable performance and high query concurrency for data analytics

    Get PDF
    Conventional data warehouses employ the query- at-a-time model, which maps each query to a distinct physical plan. When several queries execute concurrently, this model introduces contention and thrashing, because the physical plans—unaware of each other—compete for access to the underlying I/O and computation resources. As a result, while modern systems can efficiently optimize and evaluate a single complex data analysis query, their performance suffers significantly and can be highly erratic when multiple complex queries run at the same time. We present in this paper Cjoin , a new design that substantially improves throughput in large-scale data analytics systems processing many concurrent join queries. In contrast to the conventional query-at-a-time model, our approach employs a single physical plan that shares I/O, computation, and tuple storage across all in-flight join queries. We use an “always on” pipeline of non-blocking operators, managed by a controller that continuously examines the current query mix and optimizes the pipeline on the fly. Our design enables data analytics engines to scale gracefully to large data sets, provide predictable execution times, and reduce contention. We implemented Cjoin as an extension to the PostgreSQL DBMS. This prototype outperforms conventional commercial systems by an order of magnitude for tens to hundreds of concurrent queries

    Scalable Learning Adaptive to Unknown Dynamics and Graphs

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2019. Major: Electrical/Computer Engineering. Advisor: Georgios B. Giannakis. 1 computer file (PDF); xii, 174 pages.With the scale of information growing every day, the key challenges in machine learning include the high-dimensionality and sheer volume of feature vectors that may consist of real and categorical data, as well as the speed and the typically streaming format of data acquisition that may also entail outliers and misses. The latter may be present, either unintentionally or intentionally, in order to cope with scalability, privacy, and adversarial behavior. These challenges provide ample opportunities for algorithmic and analytical innovations in online and nonlinear subspace learning approaches. Among the available nonlinear learning tools, those based on kernels have merits that are well documented. However, most rely on a preselected kernel, whose prudent choice presumes task-specific prior information that is generally not available. It is also known that kernel-based methods do not scale well with the size or dimensionality of the data at hand. Besides data science, the urgent need for scalable tools is a core issue also in network science that has recently emerged as a means of collectively understanding the behavior of complex interconnected entities. The rich spectrum of application domains comprises communication, social, financial, gene-regulatory, brain, and power networks, to name a few. Prominent tasks in all network science applications are those of topology identification and inference of nodal processes evolving over graphs. Most contemporary graph-driven inference approaches rely on linear and static models that are simple and tractable, but also presume that the nodal processes are directly observable. To cope with these challenges, the present thesis first introduces a novel online categorical subspace learning approach to track the latent structure of categorical data `on the fly.' Leveraging the random feature approximation, it then develops an adaptive online multi-kernel learning approach (termed AdaRaker), which accounts not only for data-driven learning of the kernel combination, but also for the unknown dynamics. Performance analysis is provided in terms of both static and dynamic regrets to quantify the novel learning function approximation. In addition, the thesis introduces a kernel-based topology identification approach that can even account for nonlinear dependencies among nodes and across time. To cope with nodal processes that may not be directly observable in certain applications, tensor-based algorithms that leverage piecewise stationary statistics of nodal processes are developed, and pertinent identifiability conditions are established. To facilitate real-time operation and inference of time-varying networks, an adaptive tensor decomposition based scheme is put forth to track the topologies of time-varying networks. Last but not least, the present thesis offers a unifying framework to deal with various learning tasks over possibly dynamic networks. These tasks include dimensionality reduction, classification, and clustering. Tests on both synthetic and real datasets from the aforementioned application domains are carried out to showcase the effectiveness of the novel algorithms throughout

    A Statistical Perspective of the Empirical Mode Decomposition

    Get PDF
    This research focuses on non-stationary basis decompositions methods in time-frequency analysis. Classical methodologies in this field such as Fourier Analysis and Wavelet Transforms rely on strong assumptions of the underlying moment generating process, which, may not be valid in real data scenarios or modern applications of machine learning. The literature on non-stationary methods is still in its infancy, and the research contained in this thesis aims to address challenges arising in this area. Among several alternatives, this work is based on the method known as the Empirical Mode Decomposition (EMD). The EMD is a non-parametric time-series decomposition technique that produces a set of time-series functions denoted as Intrinsic Mode Functions (IMFs), which carry specific statistical properties. The main focus is providing a general and flexible family of basis extraction methods with minimal requirements compared to those within the Fourier or Wavelet techniques. This is highly important for two main reasons: first, more universal applications can be taken into account; secondly, the EMD has very little a priori knowledge of the process required to apply it, and as such, it can have greater generalisation properties in statistical applications across a wide array of applications and data types. The contributions of this work deal with several aspects of the decomposition. The first set regards the construction of an IMF from several perspectives: (1) achieving a semi-parametric representation of each basis; (2) extracting such semi-parametric functional forms in a computationally efficient and statistically robust framework. The EMD belongs to the class of path-based decompositions and, therefore, they are often not treated as a stochastic representation. (3) A major contribution involves the embedding of the deterministic pathwise decomposition framework into a formal stochastic process setting. One of the assumptions proper of the EMD construction is the requirement for a continuous function to apply the decomposition. In general, this may not be the case within many applications. (4) Various multi-kernel Gaussian Process formulations of the EMD will be proposed through the introduced stochastic embedding. Particularly, two different models will be proposed: one modelling the temporal mode of oscillations of the EMD and the other one capturing instantaneous frequencies location in specific frequency regions or bandwidths. (5) The construction of the second stochastic embedding will be achieved with an optimisation method called the cross-entropy method. Two formulations will be provided and explored in this regard. Application on speech time-series are explored to study such methodological extensions given that they are non-stationary

    Scalable and Distributed Resource Management for Many-Core Systems

    Get PDF
    Many-core systems provide researchers with important new challenges, including the handling of very dynamic and hardly predictable computational loads. The large number of applications and cores causes scalability issues for centrally acting heuristics, which always must retain a global view of the entire system. Resource management itself can become a bottleneck which limits the achievable performance of the system. The focus of this work is to achieve scalability of resource management

    Just-in-time Analytics Over Heterogeneous Data and Hardware

    Get PDF
    Industry and academia are continuously becoming more data-driven and data-intensive, relying on the analysis of a wide variety of datasets to gain insights. At the same time, data variety increases continuously across multiple axes. First, data comes in multiple formats, such as the binary tabular data of a DBMS, raw textual files, and domain-specific formats. Second, different datasets follow different data models, such as the relational and the hierarchical one. Data location also varies: Some datasets reside in a central "data lake", whereas others lie in remote data sources. In addition, users execute widely different analysis tasks over all these data types. Finally, the process of gathering and integrating diverse datasets introduces several inconsistencies and redundancies in the data, such as duplicate entries for the same real-world concept. In summary, heterogeneity significantly affects the way data analysis is performed. In this thesis, we aim for data virtualization: Abstracting data out of its original form and manipulating it regardless of the way it is stored or structured, without a performance penalty. To achieve data virtualization, we design and implement systems that i) mask heterogeneity through the use of heterogeneity-aware, high-level building blocks and ii) offer fast responses through on-demand adaptation techniques. Regarding the high-level building blocks, we use a query language and algebra to handle multiple collection types, such as relations and hierarchies, express transformations between these collection types, as well as express complex data cleaning tasks over them. In addition, we design a location-aware compiler and optimizer that masks away the complexity of accessing multiple remote data sources. Regarding on-demand adaptation, we present a design to produce a new system per query. The design uses customization mechanisms that trigger runtime code generation to mimic the system most appropriate to answer a query fast: Query operators are thus created based on the query workload and the underlying data models; the data access layer is created based on the underlying data formats. In addition, we exploit emerging hardware by customizing the system implementation based on the available heterogeneous processors â CPUs and GPGPUs. We thus pair each workload with its ideal processor type. The end result is a just-in-time database system that is specific to the query, data, workload, and hardware instance. This thesis redesigns the data management stack to natively cater for data heterogeneity and exploit hardware heterogeneity. Instead of centralizing all relevant datasets, converting them to a single representation, and loading them in a monolithic, static, suboptimal system, our design embraces heterogeneity. Overall, our design decouples the type of performed analysis from the original data layout; users can perform their analysis across data stores, data models, and data formats, but at the same time experience the performance offered by a custom system that has been built on demand to serve their specific use case

    XXI Workshop de Investigadores en Ciencias de la ComputaciĂłn - WICC 2019: libro de actas

    Get PDF
    Trabajos presentados en el XXI Workshop de Investigadores en Ciencias de la Computación (WICC), celebrado en la provincia de San Juan los días 25 y 26 de abril 2019, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de San Juan.Red de Universidades con Carreras en Informátic
    corecore