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Abstract (German Version)

Many-Core Systeme stellen die Forschung vor vielfältige neue Herausforderungen,
darunter die Handhabung von sehr dynamischer und kaum voraussagbarer Rechenlast.
Optimale Ressourcenverwaltung von Many-Core Systemen ist ein NP-vollständiges
Problem. Die große Anzahl der zu verwaltenden Anwendungen und Kernen führt bei
zentral agierenden Heuristiken, welche stets einen globalen Blick auf das gesamte
System haben, zu Skalierbarkeitsproblemen. Die Ressourcenverwaltung selbst kann
so zum Engpass werden, welcher wegen hohen Latenzen die erzielbare Leistung des
Systems einschränkt.

Der Schwerpunkt dieser Arbeit liegt im Erreichen von Skalierbarkeit der Ressourcen-
verwaltung. Die Komplexität der Ressourcenverwaltung wird durch verteilt statt-
findende lokale Optimierungen gehandhabt. Jeder Anwendung wird ein eigener lokaler
Ressourcenmanager zugewiesen, welcher den Bedarf an Ressourcen der Anwendung
gegenüber den anderen Anwendungen vertritt. Die lokalen Ressourcenmanager kom-
munizieren über ein, sich am

”
Contract-Net Protokoll“ und an sogenannten

”
Gossip

Protokollen“ orientierendes, Protokoll miteinander und verhandeln lokal darüber,
wie die Verteilung der Ressourcen der betroffenen Anwendungen anhand eines vorge-
gebenen Optimierungsziels verbessert werden kann.

Parallele Anwendungen, welche sich während der Laufzeit an die ihnen zugewiese-
nen Ressourcen anpassen können, erlauben die Aufteilung (und Umverteilung) der
Kerne des Many-Core Systems unter den gerade gleichzeitig ausgeführten Anwen-
dungen, so dass diese effizient ausgeführt werden können. Dabei ist es jedoch wichtig,
vor einer Ressourcenzuweisung die Auswirkungen auf die erzielbare Leistung der
jeweiligen Anwendung abschätzen zu können.

Im Rahmen dieser Arbeit wurde ein adaptives Anwendungs-Performance-Modell
entwickelt, welches anhand einer parametrischen Beschreibung der Anwendung
abschätzt, welche Performance die jeweilige Anwendung unter einer bestimmten
Ressourcenzuweisung erreichen wird. Es reagiert dabei auf spontane Variationen in
der Belastung des Systems und berücksichtigt die topologischen Eigenschaften der
Ressourcen. Im Vergleich zu vorherigen Anwendungs-Performance-Modellen wird der
durchschnittliche Schätzfehler von 14,7% auf 4,5% reduziert.

Die vorgestellten Ressourcenverwaltung kann verschiedene Optimierungsziele ver-
folgen, welche durch eine Zielfunktion vorgegeben werden. Unter diesen Optimie-
rungszielen ist beispielsweise die Maximierung des Durchschnitts der Performance
der jeweils gleichzeitig ausgeführten Anwendungen. Die Annäherung an das Ziel
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erfolgt dabei in mehreren inkrementellen Optimierungsschritten. Um dieses Ziel zu
erreichen wurden zwei Strategien entworfen. Die erste Strategie ist eine komplexe
Strategie und betrachtet in jedem Optimierungsschritt ganze Bereiche auf dem Chip,
bestehend aus mehreren Kernen. Dabei erreicht sie nach wenigen Schritten eine
gute Verteilung der Ressourcen. Ein Nachteil der komplexen Strategie ist, dass auch
wenn keine Verbesserungen erzielt werden können, stets der gleiche Berechnungs-
und Kommunikationsaufwand nötig ist. Die zweite Strategie ist eine leichtgewichtige
Strategie und berücksichtigt im Gegensatz dazu in jedem Optimierungsschritt nur
einen einzelnen Kern. Es sind jedoch viele kleine Optimierungsschritte notwendig,
um das gleiche Ergebnis der komplexen Strategie zu erreichen. Die Summe des
Gesamtaufwandes ist dabei jedoch höher.

Um die Effizienz der Ressourcenverwaltung zu verbessern, werden daher beide
Strategien kombiniert. Dabei wird Wissen über den Bedarf an Ressourcen der
jeweiligen Anwendungen für eine adaptive Auswahl zwischen den beiden Strategien
genutzt. Nur wenn es aussichtsreich ist, die komplexe Strategie zu verwenden und
die Differenz aus benötigten und zugeteilten Ressourcen die komplexe Strategie
rechtfertigt, wird diese eingesetzt. Andernfalls kommt die leichtgewichtige Strategie
zum Einsatz, um die Verteilung der Ressourcen unter den Anwendungen graduell zu
verbessern.

Andere Forschungsgruppen wurden durch den gewählten Ansatz inspiriert, eige-
ne, verteilte Ressourcenverwaltungsverfahren zu entwickeln. Verglichen zu diesen
aktuellen Forschungsergebnissen wird durch die adaptive Wahl der Strategie der
Berechnungsaufwand der Ressourcenverwaltung im Durchschnitt um 67% und der
Kommunikationsaufwand um durchschnittlich 69% reduziert.

Insgesamt erzielt die in dieser Arbeit entwickelte verteilte Ressourcenverwaltung
eine vergleichbar gute Verteilung der Ressourcen unter den gleichzeitig ausgeführten
Anwendungen, wie diese von zentral agierenden Heuristiken erreicht wird. Im Ge-
gensatz zu diesen besteht jedoch keine Gefahr, dass die Ressourcenverwaltung selbst
zum Engpass wird. Sie erreicht also die Skalierbarkeit, welche notwendig ist, um
zukünftige Many-Core-Systeme zu verwalten.



Abstract (English Version)

Many-core systems provide researchers with important new challenges, including the
handling of very dynamic and hardly predictable computational loads. Managing
the resources of many-core systems optimally is a NP-complete problem. The
large number of applications and cores causes scalability issues for centrally acting
heuristics, which always must retain a global view of the entire system. Resource
management itself can become a bottleneck which – due to high computation and
communication latencies – limits the achievable performance of the system.

The focus of this work is to achieve scalability of resource management. The com-
plexity of resource management is handled through distributed local optimizations. A
local resource manager is assigned to each application and represents the applications’
resource demands in relation to other applications. The local resource managers
communicate using a protocol which is based on the “contract-net” protocol and
“gossip protocols”. The resource managers negotiate locally on how the distribution
of the resources of the affected applications can be improved using a predetermined
optimization objective.

Parallel applications that can adapt to the resources allocated to them during
runtime allow allocating (and reallocating) the cores of the system among the
concurrently executing applications, leading to efficient system utilization of the
available resources. However, it is essential to estimate the impact of resource
(re-)allocation on the achievable performance of the application before allocating
resources.

In this work, an adaptive application performance model was developed that
estimates, based on a parametric description of the application, which performance
will be reached by the application under a given resource allocation. The application
performance model reacts to spontaneous variations in the load on the system and
takes the topological properties of the resources into account. Compared to previous
application performance models, the average estimation error is reduced from 14.7%
down to 4.5%.

The presented resource management is able to optimize for different optimization
goals, given through an objective function. Among these optimization goals is the
maximization of the average performance of the concurrently running applications.
Two strategies have been designed to realize an incremental, step-wise optimization
of the objective function. The first strategy is a complex strategy and considers
larger areas on the chip, consisting of several cores. This way, after a few steps, a
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good allocation of resources is achievable. A disadvantage of this strategy is that
even if no improvements can be achieved, the same computation and communication
overhead is required. In contrast, the second strategy is a low-effort strategy and
only takes a single core into account in each optimization step. However, there are
many small optimization steps necessary to achieve the same result as the complex
strategy, resulting in an overall higher effort if only the second strategy is used.

Therefore, in order to improve the efficiency of resource management, both strate-
gies are combined. Knowledge about the resource demands of the respective appli-
cations is used for an adaptive selection between the two strategies. The complex
strategy is only used if the difference between the required and allocated resources jus-
tifies its effort. Otherwise, the low-effort strategy is used to improve the distribution
of resources among the applications gradually.

Other research groups have been inspired by the chosen approach to develop
their own, distributed resource management. Compared to this recent research, the
computational effort of the resource management presented in this thesis is reduced
by an average of 67% and the communication overhead is reduced by an average of
69%.

Overall, the distributed resource management developed in this thesis achieves a
comparably good distribution of resources among concurrently executing applications,
similar to those achieved by centrally acting heuristics with global knowledge. In
contrast to these, however, there is no risk that the resource management becomes
a bottleneck itself. Thus, it reaches the scalability, which is necessary to manage
future many-core systems.
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1. Introduction

Based on early advances in integrated circuit technology, G. Moore predicted an
exponential growth of the number of transistors that could be integrated into a
single integrated circuit [M+65] – often referred to as Moore’s Law. Until today, this
growth continued as predicted and allowed to design complex processor architectures.
Together with advances in technology scaling that allowed increasing the clock
frequency of these processors, computer systems became very powerful while only
using a single processor core. However, physical changes in technology around the
90nm scale lead to constraints such as the power consumption of these cores combined
with the high power densities [Sha07] that prohibit significant further increases in
the clock frequency. The complexity of the architecture of individual processor cores
has reached a level at which further improvements generate diminishing returns, i.e.
the traditional ways to increase the performance of individual cores seem to have
reached their limit.

One possibility to increase the overall system performance without violating physi-
cal limitations is to integrate multiple (potentially simple) processor cores in a single
chip and to exploit parallelism in the executed application software. As the highest
performance per watt and per chip area is achieved using less complex processor cores
[Sha07], many-core systems are emerging. Accordingly, the International Technology
Roadmap for Semiconductors (ITRS) [ITR13] predicts systems with thousands of
cores for the next decade. Today, for example the Kalray MPPA [dDAB+13] pro-
cessor already integrates 256 compute cores per chip, and up to 1024 cores per chip
announced for 2015. Tilera’s current Gx-Processor family [Til14] consists of up to
72 cores per chip. Instead of using a huge centralized interconnect, the individual
cores communicate by using a Network-on-Chip (NoC) [Bor07].

An extensive number of cores in a many-core system poses the challenge of efficient
system utilization. Mapping multiple applications to these cores and adapting
each application to the allocated cores (e.g. by choosing a different algorithmic
implementation or by increasing/decreasing the degree of parallelism) is key for an
efficient utilization of the computation resources in many-core systems. Without
proper resource management strategies, additional cores added to a many-core system
will not automatically lead to a higher performance.

Figure 1.1 shows different resource allocations for four applications Ai, Aj, Ak,
and Al and the resulting overall system performance. In the example, Al is capable
of efficiently utilizing large numbers of cores. Allocating the same number of cores to
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Introduction

all applications (i.e. a fair share allocation, Figure 1.1a) typically results in a worse
overall performance than allocating just the right resources to the right application
(Figure 1.1b)). Over-saturating Al at the cost of the other applications Ai, Aj,
and Ak sacrifices system performance (Figure 1.1c). Therefore, to select the right
resources, it is necessary to estimate or know the application performance under
different resource allocations when deciding the application mapping.

In static scenarios with a fixed number of applications that do not change their
resource demands at runtime, offline mapping of applications to cores can often
provide optimal solutions. However, in situations with dynamic workloads in which
e.g. the execution of a new application can be started at any time [CCD+08], mappings
cannot be predetermined and need to be decided online.

a) b) c) 

Overall System Performance: 
100% 70% 70% 

Core allocated to: 

Application Aj 

Application Ak 

Application Ai 
      

Application Al 

Figure 1.1.: Sketch on how the overall performance of a many-core system is influ-
enced by the application mapping

A promising approach to efficiently utilize the available cores in dynamic scenarios
is the principle of malleable applications ([TWY92], see Section 2.2) that are able to
adapt the degree of parallelism to the number of allocated cores dynamically. This
means that such a malleable application Ai is able to fulfill the same functionality on
a variable number of cores and is designed in a way that allows it to enlarge or shrink
the set of cores CAi that application Ai uses at runtime [KKD02]. However, each
application’s ability to increase its speedup (i.e. the relative performance compared
to an execution on only one core) with the allocated cores varies. Therefore, select
the right cores for each application, models that allow estimating the application
performance on a certain set of cores before actually allocating these cores to the
application are required.

Systems with hundreds or thousands of cores integrated on a single chip [ITR13]
span a huge solution space that grows factorial with the number of cores [MMCM07].
The problem of optimal mapping of parallel applications to cores is known to be
NP-complete [CGJ78]. The latency of deciding the application mapping, even when
using fast heuristics, grows with the system size. Decision latencies in the order
of seconds or even minutes limit the adaptation of the application mapping to
dynamic workload situations significantly and prohibit an interactive utilization.
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Hence, the problem of scalability of runtime resource management is of significant
relevance. If no new paradigms are developed, complex future many-core systems
will suffer from low efficiency since these systems will tend to spend large portions of
their communication and computation capacities with managing their own resources
instead of employing the resources for efficient application execution.

This results in two key challenges for efficient many-core system utilization: a)
application performance estimation that allows selecting the right resources for
each application and b) the scalability of runtime resource management. Both are
presented in detail in the following Sections.

1.1. Application Performance Estimation

The performance of an application not only depends on the number of cores allocated
to the application but also on their topological location on the chip. For example,
the work presented in [MBS+05] has shown a 42% reduction of application execution
time by improving the application mapping. To be able to select the right cores
dynamically, accurate performance estimates are necessary (see Figure 1.2). These
estimates rely on so-called application performance models.

Core allocated to an other Application Core allocated to Application Ai 

  

a) 
  

b) 
  

c) 
  

d) 

Normalized Performance of Application Ai: 
100% 70% 170% to be estimated 

Figure 1.2.: Estimating the performance of an application Ai given a set of cores CAi

In some cases, it is possible to base these estimates solely on static application
knowledge determined by offline analysis. However, in general this is not accurate,
especially if the dynamic behavior of the application heavily depends on input data,
e.g. a robotic vision application [PSK+12] that tracks and identifies objects. The
more objects are recognized in the scene, the higher the potential parallelism is in the
application which allows to efficiently utilize larger numbers of cores. Additionally,
the performance of an application depends on the system architecture it is executed
on (e.g. the ratio of computation to communication performance [HZQ+13, LNC13])
and the system load caused by concurrently executing applications.
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As the number and kind of concurrently executing applications is not known
a priori, in most situations estimations solely based on offline analysis will result
in inaccurate estimates and thus in disproportionate application mappings. A high
number of estimates (see Section 5.3) is calculated at runtime to find a suitable
allocation of cores to each application whenever a change in the workload triggers a
new application mapping. This requires the performance estimation to be lightweight
– otherwise, the latency of runtime resource management negates the improved
application mapping quality.

1.1.1. Motivational Example

Consider an example application Ax that only executes a sequential section of code
followed by a parallel section, followed by a sequential section. This represents the
traditional fork-join programming style, e.g. reading input data, parallel processing,
writing output, see Figure 1.3. Therefore, execution time depends on the time
Tforward required to forward the input data from the core that processed the input to
the cores that process the data and Tcollect to collect the results from the respective
cores. The total execution time is Tinput + Tforward + Tprocess + Tcollect + Toutput. The
communication delays depend on the selection of cores in CAx (see Section 3.1).
Depending on the communication latencies between the cores in CAx , the available
bandwidth of the NoC, and the amount of transferred data. The delays Tforward
and Tcollect significantly limit the speedup of the application [HZQ+13]. Bandwidth
can be consumed either by concurrent communication of other applications or by
communication of different tasks of the same application.

Read Input Write Output 

Parallel Processing 

Parallel Processing 

Parallel Processing 

. . . 

𝑇𝑖𝑖𝑖𝑖𝑖  𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑖𝑓𝑓𝑝𝑝𝑝𝑝 𝑇𝑝𝑓𝑐𝑐𝑝𝑝𝑖  𝑇𝑓𝑖𝑖𝑖𝑖𝑖  

Figure 1.3.: Components of the total execution time of a hypothetical application Ax

To select the right cores CAx , accurate estimates of the achievable performance are
required. In this thesis, the speedup of the application compared to the execution
on a single core is used as relative performance metric. However, determining the
speedup SAi (CAi) while considering the topological location of the cores in CAi is
in general computationally more intensive than S#

Ai
(|CAi |) where only the number

of cores is considered. The former would entail an actual mapping of the tasks
while the latter would always be an estimate, based e.g. on the values obtained by
offline profiling of the application. Due to the large number of different subsets of
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cores, it is not feasible to pre-compute and store all combinations. Even when only
considering different subsets of cores with an identical number of cores (|CAi | =

∣∣C ′Ai∣∣
but CAi 6= C ′Ai), there are approximately 1047 possible ways to select 40 different

cores out of 256 cores (binomial coefficients, Equation (1.1)). The metric S#
Ai

(|CAi |)
estimates the same speedup for all these subsets, but actually they differ depending
on the topological location of the cores. Therefore, ignoring the topology of the
resources assigned to each application leads to inefficient application mappings.

(
N

|CAi |

)
=

(
256

40

)
≈ 1047 (1.1)

Accurately calculating SAi (CAi) by using the scheduling heuristic presented in
[THW02] requires several milliseconds (validated by measurements of an implementa-
tion on an Intel i5-2500 running at 3.3 GHz), depending on the number of tasks in the
application task-graph and the number of cores in CAi . However, many estimations
have to be calculated for each mapping decision – the hill-climbing heuristic used in
the evaluation (see Section 5.3.1) considers more than 10,000 combinations of CAi to
find a good distribution of 256 cores to 10 different applications (and even 62,000
combinations to distribute 256 cores to 20 applications). Optimistically assuming
that there is no additional overhead and that the average computation time of
determining SAi (CAi) is just 1 ms, this results in a total execution time of 10-60
seconds to determine the resource allocation for 10-20 applications on a 256-core
system. This is an unacceptable high latency, e.g. when starting a new application
for interactive utilization.

1.2. Resource Management

Multiple applications {A1, A2, . . . , AM} are executed concurrently. With the ability
to estimate the performance of each application for potential resource allocations
introduced in the previous Section, assigning resources to each application is an
optimization problem defined by an optimization goal like the maximization of the
average application performance or the minimization of the time required to complete
all concurrently executing applications, as described in Section 5.2.

The goal of resource management is to (re-)allocate a subset of cores CAi ⊆ C
to each application Ai such that the chosen optimization goal is reached and that
no core is assigned to two applications at the same time, i.e. for all Ai, Aj with
i 6= j, CAi ∩ CAj = ∅. To achieve the optimization goal in dynamic workload
scenarios, the application mapping is adapted whenever a new application is about
to start execution, an application terminated, or the resource demands of one of the
momentary executing applications change. This results in frequent opportunities for
application (re-)mapping in dynamic workload scenarios. Considering the size of the
solution space, optimal solutions can not be derived at runtime.
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Figure 1.4.: Scalability issues of centralizes resource management under growing
numbers of applications and cores

However, even fast heuristics like the ones presented in Section 5.3 take too long
(i.e. multiple seconds) to react on frequent changes in the workload of multiple
concurrent applications. Such high latencies, however, negate the benefits of fre-
quent adaptations of the application mapping. Additionally, the communication
infrastructure surrounding the core a centralized resource manager is located on is
heavily utilized which may lead to additional latencies trough link congestion (see
Figure 1.4) and frequent adaptations in turn cause increasing overhead and therefore
exacerbate scalability problems. The computational complexity and the ongoing
communication may often lead to computation/communication bottlenecks which
break the scalability.

Scalability in general is the ability of a technique to stay within feasible computation
constraints under growing problem sizes. Scalability for resource management is
crucial with respect to the computation overhead (i.e. the amount of computation
needed to manage the resources and the involved latencies) as well as the induced
communication volume. The challenge in resource management is to achieve high
application mapping quality with respect to the optimization goal while at the same
time keeping the associated overhead and the latencies of computing the application
mapping low.

1.2.1. Motivational Example

To motivate the benefits of frequent adaptations of the application mapping at
runtime, the NWChem application package [KAB+00] for large-scale simulations
of chemical and biological systems was chosen as a real-world example. However,
similar examples for runtime varying resource demands of an application can be
found in other domains [CCD+08], too.

Simulations performed with NWChem comprise multiple computation kernels.
When executed on the same number of cores the computation kernels show varying
speedups and thus a different efficiency, which is defined as speedup in relation to
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the number of used cores, see Equation (3.4). The number of cores allocated to one
computation kernel might not be sufficient to exploit the parallelism of the next
kernel or it might lead to an inefficient utilization.

An example from NWChem is a parallel linear algebra calculation consisting of
three computation kernels: calculation of Eigenvectors (EV), Householder reduction
(HH), and back-transformation (BT). Figure 1.5 shows the speedup of each kernel,
as presented in [KAB+00]. The HH kernel does not scale beyond 32 cores, whereas
the EV and BT kernels (that are executed before and after HH, respectively) can
efficiently utilize more cores.
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Figure 1.5.: Speedup of the computation kernels of a parallel linear algebra calculation.
The kernels are repetitively executed in sequence (EV1→ HH1→ BT1→
EV2 → . . . ) and vary in their resource demands (based on measurements
presented in [KAB+00])

When multiple applications are executed on a many-core system, the overall system
performance highly depends upon the application mapping. Figure 1.6 shows in
a simplified example how the total execution time of two concurrent applications
benefits from adapting the application mapping according to the computation de-
mands of the applications. The improvement in application execution efficiency
comes at the cost of multiple invocations of the resource management. Note that in
the example only two applications are shown. For a larger number of applications,
far more opportunities for re-mapping exist.

1.2.2. Achieving Scalability

Scalability may be achieved by moving from centralized resource management to
distributing the resource management throughout the chip and by using only local
information of the system state in order to perform local application mapping
optimizations [KBL+11, ATBS13, Wei99].
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Figure 1.6.: Execution time of two applications a) with and b) without considering
the varying resource demands at runtime. The respective momentary ap-
plication mapping quality is given by the combined application speedup.
Frequent adaptations result in an overall higher application mapping
quality and a reduced execution time of both applications

In this thesis one local resource manager is employed per application for managing
the cores CAi of the respective application Ai, and communicating the related
resource demands to the other resource managers with the goal to achieve a chip-wide
coordinated resource management. Compared to centralized resource management,
this improves scalability for three main reasons:

� The computational complexity of resource management is reduced, as only a
subset of the system resources is considered for decision making and therefore
the problem size gets decoupled from the system size.

� The resource management becomes inherently parallel.

� The communication infrastructure gets equally utilized. The individual resource
managers do not demand system-wide synchronization or knowledge of the
global system state. Communication takes place locally to avoid communication
bottlenecks to ensure scalability.

Figure 1.7 visualizes the scalability advantage of distributed resource management.
There is no centralized bottleneck, so the system may expand indefinitely without
the addition of supporting resources (other than the resource managers themselves).

In literature such local computational entities are often referred to as Agents.
Multiple interacting Agents form a Multi-Agent-System [Wei99] (see Section 2.3). In
the reminder of this thesis the terms “local resource manager” and “Agent” will be
used interchangeably.
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Figure 1.7.: Scalability of distributed resource management: the system may expand
indefinitely without the addition of supporting resources (other than the
resource managers themselves)

1.3. Thesis Contribution

The contribution of this thesis is twofold: first, an adaptive on-the-fly application
performance model that considers the topological properties of the cores allocated
to an application in NoC based many-core systems is presented. Secondly, the
scalability issues of online resource management for on-chip many-core systems are
addressed by means of a fully distributed resource management:

� The adaptive on-the-fly application performance model (see Chapter 4) consid-
ers the topological properties of the cores allocated to an application in NoC
based many-core systems. It uses a simple metric of CAi that can easily be
determined to estimate the achievable performance based on the lower bound
and the upper-bound performance of the application. To handle highly dynamic
behavior of workloads not known a priori the application performance model
is continuously adapted at runtime. Compared to static application models
which do not consider the topological properties, the estimation accuracy is
improved while the computation effort stays within feasible bounds for online
application mapping decisions.

� The distributed resource management presented in Chapter 5 is able to flexibly
react to changes of the resource demands of applications by adaptively selecting
the employed resource management strategy, whereof two are developed in
the scope of this thesis. The resource management is able to find a good
initial mapping of applications fast and to optimize the application mapping
gradually with a very low overhead. It uses the concept of a Multi-Agent-
System [Wei99] to achieve scalability by focusing on local decision making
based locally available information.

� Both contributions work hand in hand (see Figure 1.8 and Chapter 6) to improve
the quality of resource management and to reduce the necessary computational
and communicational overhead. Compared to centralized resource management,
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the application mapping latency is reduced in order to support the efficient
execution of highly dynamic workloads on many-core systems.

Estimator Application 
Estimator Application 

Performance 
Monitor Performance 

Estimation 
Model 

On-the-Fly 
Adaptation 

a) b) 

Application Performance Estimation Distributed Resource Management 

Figure 1.8.: Thesis contributions: a) adaptive on-the-fly application performance
modeling and b) scalable distributed resource management for many-core
systems

1.4. Thesis Outline

The reminder of this thesis is structured as follows: Chapter 2 first introduces
historic, current and future many-core systems. As pointed out before, malleable
applications are key for efficient many-core utilization. Therefore, Section 2.2 gives a
broad overview on how malleability in an application can be realized. Section 2.3
presents the concepts of Multi-Agent Systems. Two selected protocol families (“The
Contract-Net Protocol” and “Gossip Protocols”) are described in detail as they
inspired the protocols developed in this thesis. A brief overview on operating systems
for many-cores concludes the Chapter.

Chapter 3 distills the information given in Chapter 2 into the models and assump-
tions used in this thesis. It presents the many-core platform model (Section 3.1), the
application model (Section 3.2), and the functionality assumed to be provided by an
operating system to facilitate resource management.

As motivated, resource management entails an estimation of the performance an
application Ai achieves when executed on a certain set of cores CAi . Chapter 4
presents the adaptive on-the-fly application performance modeling developed in the
scope of this thesis. The model (Section 4.4) is based on an empirical analysis
(Section 4.3). Section 4.6 presents the on-the-fly adaptation of the model parameters
and Section 4.7 evaluates the estimation accuracy and the introduced overhead.

In Chapter 5, the scalable distributed resource management for many-cores is
presented. Section 5.1 begins with an overview over related work on resource
management in different many-core domains. As the developed strategies are not
limited to a specific optimization goal, different goals are presented in Section 5.2.
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Examples for centralized resource management and their resulting latencies are
shown in Section 5.3 to motivate the need for distributed resource management.
Infrastructure required to realize the resource management presented in this thesis
is described in Section 5.4.1. The two optimization strategies developed in the
scope of this thesis, DistRM and a low-effort strategy are presented in Section 5.4.3
and Section 5.4.5, respectively. Finally, the adaptive strategy selection AStra that
combines both is described in Section 5.4.6.

Chapter 6 presents an extensive evaluation of the different resource management
strategies developed in the scope of this thesis (the low-effort strategy in Section 6.1,
DistRM in Section 6.2, and AStra in Section 6.3), and State-of-the-Art distributed
resource management in Section 6.4.2. They are compared to each other in Sec-
tion 6.5, where Section 6.5.1 presents the average of several application scenarios
and Section 6.5.3 shows the different behavior of the different resource management
strategies for different application scenarios.

Finally, Chapter 7 concludes this thesis and gives an outlook on future work.
Appendix A presents the simulation environment that was developed and used in this
thesis, and Appendix B details the workload used for evaluation. Appendix C briefly
shows the developed hardware platform that demonstrates the fully distributed
resource management in a real implementation. Appendix D gives details on the
implementation of the distributed resource management developed in the scope of
this thesis on the Intel SCC.
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2. Background

To lay the foundation of this thesis and to motivate the models and assumptions
presented in Chapter 3, this chapter first introduces some historic and current
many-core chips. Several ways how to realize malleable applications that can adopt
their execution to the assigned resources, are presented in Section 2.2. As Multi-
Agent Systems are a central building block of the resource management developed
in the scope of this thesis, they are introduced and defined in Section 2.3. Two
fundamental protocols traditionally used in Multi-Agent Systems that inspired the
protocols designed in this thesis are presented. Section 2.4 gives a brief overview on
current many-core operating systems and how they address the problem of resource
management.

2.1. Many-Core Hardware Architectures

This Section introduces different many-core architectures. The platform model used
in this thesis (presented in Section 3.1) is based on these architectures. Section 2.1.1
starts with a historic example the Transputer. The Intel many-core research platform
“Single Chip Cloud Computer” is presented in Section 2.1.2. Two commercially
available many-core platforms, the Tilera TILE-Gx processor family and the Kalray
MPPA are presented in Section 2.1.3 and Section 2.1.4, respectively.

2.1.1. A historic example: The Transputer

While not exactly an on-chip many-core system, the Transputer (first announced
in 1983 and released in 1984) [WS85] was one of the first systems to have multi-
processing and parallelism as a key design feature. Technology of that time limited
the number of transistors to be integrated in a single chip. Therefore a Transputer
system consisted of many individual chips that contained one processing core each1.
The different chips were connected by dedicated communication channels, able to
form a 2d-mesh network, similar to to the networks on-chip seen in today’s many-core
systems. Each core has its own memory, communication takes place by message

1Appendix C presents a hardware demonstrator platform which runs a variant of the resource
management developed in this thesis. Its hardware design, consisting of several micro-controllers,
is heavily inspired by the Transputer.
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passing. Theoretically, computing power of a Transputer system could simply be
increased by adding additional Transputer chips. Figure 2.1 shows how multiple
Transputer were connected to larger many-core boards. Multiple of these boards
could be connected to create systems with hundreds or thousands of Transputer
chips.

System 
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On-Chip RAM 

External 
Memory / GPIO 

Processor 

Link Interface 

Link Interface 

Link Interface 

Link Interface 

a) b) c) 
Transputer 

Transputer 

Transputer 

Transputer 

Transputer Transputer 

Figure 2.1.: Block diagram of a) each Transputer chip and b) the possible 2d-mesh
interconnect of multiple Transputer chips. Subfigure c) shows a picture
of the B0042 evaluation board containing 42 Transputer chips [May]

Hardware Profile “Transputer”

Number of cores: 1 – ∞
Core architecture: 16Bit (T2)

32Bit (T4)
64Bit (T8)

Core clock speed: 15 – 30 MHz
Cores per cache coherent domain: 1

Primary means of communication: Message-Passing
Communication infrastructure topology: arbitrary, e.g. 2d-mesh Network

Communication infrastructure bandwidth: 5 – 20 Mbit/s per link
4 links per core

On-Chip memory per core: 4 kByte
Operating system support: multiple, e.g. HeliOS or

“Bare Metal” occam

The envisioned programming model of the Transputer was formalized in the
programming language occam [May83] which allows to describe programs in the
format of Communicating Sequential Processes (CSP) [Hoa78]. The Transputer
contained a dedicated hardware scheduler. Processes were ready for execution once
their input data arrived. Multiple Processes were transparently multiplexed on the
individual chips without the need for a software scheduler in an Operating System
to keep the overhead low.
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Despite its visionary architecture, the Transputer did not succeed and failed to
change the way of computing at its time. Still, it provoked new ideas in computer
architecture, several of which appeared again or are starting to appear again.

2.1.2. Intel Single-Chip Cloud-Computer

The Intel Single-Chip Cloud-Computer (SCC) was introduced in 2009 and integrates
48 IA-32 x86 cores in a 6Ö4 2D-mesh network, i.e. two cores each are combined
to a so-called tile that is connected to the Network-on-Chip. The chip was made
available to several research institutes and academics. Thereby, Intel planed to gain
a better understanding of how to schedule and coordinate the many cores of this
experimental chip. Cores primarily communicate through message passing and there
is no hardware-managed memory coherence for the globally addressable external
memory [HDH+10]. Figure 2.2 shows the block diagram of the Intel SCC and a
photograph of the die.

a) b) 

Figure 2.2.: Intel Single Chip Cloud Computer (SCC). Subfigure a) shows the block
diagram and b) an actual picture of the fabricated die[HDH+10]

The Intel SCC can be operated in several modes: It is possible to execute a
separate instance of the Linux Kernel [Fou] on each core. This allows to execute tra-
ditional software as it is common in cloud-computing or high-performance computing
environments. Further, a “bare metal” runtime environment that allows to program
the Intel SCC without the overhead of running Linux on each core is available. To
take advantage of the dedicated message passing hardware integrated on the Intel
SCC, a message passing library called RCCE was developed. RCCE is available in
both modes of operation [MRL+10]. Additionally, the Barrelfish Operating System
[BBD+09] – described in Section 2.4.2 – was ported to the Intel SCC as its design
principles were a close match to the hardware design of the Intel SCC [PRB10].

The resource management [KBL+11] developed in the scope of this thesis has
been implemented for the Intel SCC [PKH12]. A component based middleware
that runs on top of Linux on each core of the SCC (see Appendix D) allows an
efficient implementation and evaluation. Insights gained by evaluating the behavior
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on the real hardware platform lead to improvements of the system level simulation
environment (see Appendix A) as well as the resource management itself.

Hardware Profile “Intel SCC”

Number of cores: 48
Core architecture: 32Bit x86
Core clock speed: 1 GHz

Cores per cache coherent domain: 2
Primary means of communication: Message-Passing

Communication infrastructure topology: 2d-Mesh Network
Communication infrastructure bandwidth: 64GB/s per link

2TB/s bi-section bandwidth
On-Chip memory: ≈8MB

Operating system support: Multiple Linux instances
“Bare-Metal”
Barrelfish

2.1.3. Tilera TILE-Gx Processor Family

The commercially available Tilera TILE-Gx processor family currently includes
processors with 9, 16, 36, or 72 identical processor cores interconnected with an
on-chip network. Systems with even more cores have been announced but are not
available yet. Figure 2.3 shows the block diagram of the Tilera TILE-Gx72� and a
picture of the TILEncore-Gx72� card which is suitable as an application accelerator
or directly as a TILE-Gx development platform.

a) b) 

Figure 2.3.: a) Tilera TILE-Gx72� Processor Block diagram and b) a picture of the
TILEncore-Gx72� card [Til14]

Each processor core has is own L1 and L2 cache, however there is hardware sup-
ported cache coherence which allows to execute standard symmetric multi-processing
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(SMP) Linux on the TILE-Gx processors. Additionally, a “zero overhead Linux”
variant is available, which allows the execution of almost unmodified applications
without providing traditional operating system services like interrupt handling, etc.
Similar to the Intel SCC, a “bare metal” operation allows to optimize for the highest
possible performance. Any mode of operation can be spatially mixed on the TILE-Gx
processors, i.e. a group of cores can run an instance of SMP Linux while other cores
operate in bare metal mode and another group of cores runs a separate instance of
SMP Linux [Til14].

The TileGX processor family is mostly used for high bandwidth network processing
(e.g. load-balancing, filtering and monitoring), video processing (e.g. transcoding of
video streams for different bandwidth in real-time), and cloud-computing.

Hardware Profile “Tilera TILE-Gx”

Number of cores: 9 – 72
Core architecture: 64 Bit “full-featured”
Core clock speed: 1.2 GHz

Cores per cache coherent domain: all
Primary means of communication: Shared-Memory

Message-Passing
Communication infrastructure topology: 2d-Mesh Network

Communication infrastructure bandwidth: >110 Tbps aggregate bandwidth
On-Chip memory: 23 MB

Operating system support: Linux and “Bare Metal”

2.1.4. Kalray MPPA

The Kalray MPPA-256 is a many-core chip that integrates 256 user cores and 32
system cores. These cores are distributed across 16 compute clusters of 16+1 cores,
and 4 quad-core I/O subsystems. Each compute cluster and I/O subsystem owns a
private address space, while communication and synchronization between them is
ensured by an on-chip network [dDAB+13, dDdML+13]. Each core is a 32-bit Very
Long Instruction Word (VLIW) processor running at chip frequency. It may execute
up to four “RISC like” instructions per cycle. With this architecture, the Kalray
MPPA exploits instruction level parallelism, thread level parallelism (within compute
cluster) and process level parallelism (between compute clusters).

The MPPA can be programmed in a data-flow description language, providing
developers a solution for describing highly parallel applications without being con-
strained by the underlying hardware platform. This description is then used by a
compiler to fully automate the mapping of tasks to the MPPA clusters and the data
routing through the NoC. Similar to a general purpose graphics processing units
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a) b) 

Figure 2.4.: Kalray MPPA 256 Core System. Subfigure a) shows the block diagram
and b) a picture of the actual chip[dDAB+13]

(GPGPU) like the NVidia Tesla [LNOM08], the tool-chain is optimized to run only
one application at a time and uses static mapping of application tasks to cores.

Additionally a POSIX like programming environment is available that offers
multi-threading per compute cluster and inter-process communication through the
Network-on-Chip to communicate and synchronize between the compute clusters.

Hardware Profile “Kalray MPPA-256”

Number of cores: 256
Core architecture: 32Bit VLIW
Core clock speed: 400 MHz

Cores per cache coherent domain: 16 compute cores
1 core dedicated for I/O

Primary means of communication: Shared Memory
Message-Passing

Communication infrastructure topology: 2D-wrapped-around torus
Communication infrastructure bandwidth: up to 3.2 GB/s

On-Chip memory: 2 MB per compute cluster
32 MB total

Operating system support: “POSIX”

2.2. Malleable Applications

After the previous Section 2.1 briefly introduced many-core architecturs, this Section
focuses on the different kinds of parallel applications that may be executed on such
many-core systems. In general, parallel applications are classified as follows [FR96]:
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Rigid applications require a fixed number of cores. They can not start execution
on less cores than required and they will not utilize additional cores (see
Figure 2.5a). The resource manager has no means to adapt the resource
allocation to the momentary workload of the system.

Moldable applications can execute over a wide range of cores. This number of cores
has to be decided at the beginning of the execution of the application and
stays constant until termination of the application execution (see Figure 2.5b).
Applications following the SPMD2 style are typically moldable. The resource
manager can adapt the application to the momentary workload of the system
only once and cannot react to changes in the workload.

Malleable applications are very flexible and can adapt to changes in the set of
allocated cores at runtime (see Figure 2.5c). The resource manager has a high
degree of freedom to adapt each application to the momentary workload of the
system. For efficient adaptations, the resource manager should be aware of
the current resource demands of the application. Malleable applications that
inform the resource manager about their resource demands are sometimes also
referred to as evolving applications and are the targeted kind of applications in
this thesis.
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Figure 2.5.: Parallelism p over time t of a) rigid applications, b) moldable applications,
and c) malleable applications. Adapted from [FR96]

Malleable pplications that can adapt themselves to changes in the set of allocated
cores at runtime have proven to improve the system utilization and the average
response time [KKD02]. This section now continues with a brief overview on how
malleable applications may be realized.

The programmer of an application could either directly design the application
to be malleable (e.g. using master/worker architectures with varying amounts of
workers per master to distribute the work among the workers and/or use work-
stealing techniques [BL94]) or use frameworks that support the automated creation

2Single Program, Multiple Data – The dominant style of parallel programming, where all processors
use the same program, though each has its own data [Ata98], e.g. MPI applications
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of malleable applications. Intels Threading Building Blocks [Rei07], for example,
support the programmer to create malleable applications by automatically applying
techniques similar to work-stealing to efficiently make use of varying numbers of
available cores.

2.2.1. Master/Worker Paradigm

Most probably the most simple and intuitive approach for a malleable application
is the master/worker paradigm. Sometimes, it is also referred to as master/slave
paradigm or simply as task-queue [SV96]. To apply the master/worker paradigm,
the problem must be divisible into multiple, smaller jobs. The master assigns theses
jobs to its workers, collects their results and combines them to a solution for the
original problem.

Allocating additional cores to the application allows the master to spawn additional
workers such as the parallelism of the application is increased. Retrieving cores from
the application is possible whenever a slave finished the execution of its assigned
job. In the worst case, the application reconfiguration latency is determined by the
execution time of the individual jobs. If the reconfiguration latency is the main
concern, workers might simply be terminated before completing the execution of
their job, which then is re-assigned to an other worker. However, the expected gain
of the reduced latency should outweigh the additional overhead of re-computing the
partially solved job. Migrating the state of the partial solution to an other worker
[JAFH11] might also be an viable solution, at the cost of a significantly more complex
design of the application.

The master/worker paradigm is broadly applicable and has be applied to several
typical heuristics, e.g. parallel genetic algorithms [Ism04], and branch-and-bound
[ANF03]. Another example for the master/worker paradigm are image-processing
applications where the workers operate on independent regions of a larger image.

2.2.2. Adaptive MPI

Standard MPI programs divide the computation into N processes, one for each core.
In contrast, adaptive MPI [HLK04] divides the computation into a large number
of virtual processes, independent of the number of physical cores. Adaptive MPI
includes a powerful runtime support system that takes advantage of the degree of
freedom afforded by allowing it to assign virtual processes onto cores. It enables
automatic load balancing and checkpointing. Most importantly, it has the ability to
shrink and expand the set of processors used by a job at runtime. With other words:
by using the Adaptive MPI runtime instead of a common MPI implementation, any
application that relies on MPI can be made malleable. The virtual processes are
programmed in MPI as before. Physical cores are no longer visible to the programmer,
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as the responsibility for assigning virtual processes to physical cores is taken over by
the runtime system.

Adaptive MPI builds on top of the CHARM++[KK93] processor virtualization
system and uses its communication facilities and load balancing strategies. The work
presented in [HZKK06] demonstrated, that the overhead of adaptive MPI is small
and tolerable for most applications. Thus, the benefits of adaptivity and malleability
come at only a small cost.

Adaptive MPI only balances the load of one application to a given allocation
of cores. It does not decide which application should use which and how many
cores. Adaptive MPI does not provide direct feedback to the resource manager to
decide the resource allocation, however e.g. the (average) number of tasks ready for
execution in the work queues might be an indicator to assign additional resources to
an application. Otherwise, an application performance model like the one presented
in Chapter 4 could provide feedback to the resource manager.

2.2.3. Intel Threading Building Blocks

Intels Threading Building Blocks (TBB) [Rei07] are a C++ template library, similar
to the C++ Standard Template Library (STL) [PLMS00]. TBB provides data struc-
tures and algorithms that simplify parallel programming in C++. Instead of directly
programming threads, the TBB allow the programmer to specify independently
executable work packages (i.e. tasks). Tasks are ready for execution once all their
input dependencies have been fulfilled. The TBB runtime then schedules these tasks
to the cores available to the application. Similar to the Master/Worker-Paradigm
(see Section 2.2.1), it enqueues these tasks in task queues. For each core available to
the application, a task queue is used. Whenever the task queue on one of the cores
runs empty, the TBB runtime uses work-stealing techniques [BL94] to transfer work
from a random other queue. This avoids using a global task queue, which would
limit scalability. Using TBB to express parallelism with tasks allows developers to
express more concurrency and finer-grained concurrency than it would be possible
with threads, leading to increased scalability [Rei07] i.e., the application can make
use of additional cores as long as enough tasks are available. The TBB Frequently
Asked Questions [Int14] suggests that the programmer should specify at least ten
times the number of tasks than the number of utilized cores to make the work stealing
scheduler the most efficient.

“Out of the box”, applications written with TBB are moldable applications (see
Section 2.2). However, the number of utilized cores (i.e. the number of worker
threads) can be adjusted by the application. By slicing the application in multiple
phases and adapting the number of worker threads per phase the application can be
made malleable. In principle, the concept of dedicated work queues per core and work
stealing among the cores would allow malleability by spawning additional worker
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threads and stealing work from existing queues and/or by terminating worker threads
and transferring the remaining tasks to other work queues [SS11]. It is reasonable to
assume that future versions of TBB might directly support malleability.

2.2.4. Malleable Software Pipelines

This subsection is based on:

[JPK+13] J. Jahn, S. Pagani, S. Kobbe, J.-J. Chen, and J. Henkel. Optimizations
for Configuring and Mapping Software Pipelines in Many Core Systems. In
Design Automation Conference (DAC), 2013.

Software pipelines are a well-established means to parallelize stream-processing
applications, among which are very common image/video and networking applications
[TKA02]. They consist of multiple stages, each processing subsequent iterations on
a stream of input data. Each stage i requires the time ci to compute each iteration.
The output data oi of one stage i forms the input data ei+1 of its direct successor.
There is no further communication. A malleable software pipeline [JPK+13] can
reduce the number of its stages (and thus the number of cores used) at runtime by
fusing consecutive stages (see Figure 2.6) so they can be mapped to the same core.
Consequently, no communication through the Network-on-Chip between these two
stages is necessary. The time required to compute an iteration for the fused stage
equals the sum ci + ci+1 of the time required for each stage, however, communication
delays between the fused stages vanish. Fused stages can be fused again with other,
consecutive stages. Fused stages can be split through fission until the initial degree
of parallelism is restored.

c1 c2 c3 c4 c5 c6 

e1 e2 o1 e3 o2 e4 o3 e5 o4 e6 o5 o6 

c1 c2+c3 c4 c5 c6 

e1 e2 o1 e4 o3 e5 o4 e6 o5 o6 

Figure 2.6.: Malleable software pipelines. Adopted from [JPK+13]

The actual performance of a malleable software pipeline is determined by its
throughput which is limited by the slowest execution time of ei+ ci+oi of all stages i.
To achieve the best performance, the stages have to be fused differently for different
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core allocations. By measuring ei, ci, and oi for each stage, the fusions can be
adapted for variations in workload. Additionally, the malleable software pipeline
may inform the resource manager about potential performance improvements by
allocating additional cores. In [JPK+13], a dynamic programming based solution for
optimal fusions of stages has been presented that embodies the capability to provide
information to the resource manager. It was shown how the distributed resource
management developed in the scope of this thesis can be applied to malleable software
pipelines.

2.3. Multi-Agent Systems

As computing systems are continuously getting more complex, it becomes harder to
manage them from one central point. Starting with IBM’s autonomic computing
initiative [Hor01], there has been a clear consent that future computing systems
should be self-organizing and self-optimizing to be able to handle the always-growing
complexity. This means that the components within a large system have to configure
and optimize themselves independently to operate efficiently as a whole.

Multi-Agent Systems [Wei99] are a promising approach to achieve these goals. A
Multi-Agent System is composed of multiple interacting intelligent Agents and is
typically used to solve problems that are difficult or impossible for an individual Agent
or a centralized decision authority to solve. In [JSW98] the major characteristics of
Multi-Agent Systems are defined as follows:

� Each Agent has only incomplete (i.e. local) information and is restricted in its
capabilities

� System control is distributed

� Computation is asynchronous, i.e. the Agents operate independent of each
other (except rather seldom communications)

Agents use communication protocols to exchange information and to decide on
how to act. In the following, the Contract Net Protocol (Section 2.3.1) and Gossip
Protocols (Section 2.3.2) are presented as they jointly inspired the design of the
protocol used by the distributed resource management developed in the scope of this
thesis (as presented in Chapter 5).

2.3.1. The Contract Net Protocol

The Contract Net Protocol [Smi80] was developed to specify communication and
control for nodes in a distributed problem solver. The Contract Net Protocol or
extended versions thereof are used in various Multi-Agent Systems to solve the
so-called connection problem that describes the situation in which an Agent needs to
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find an other suitable Agent to (jointly) solve a problem, e.g. assign a task to the other
Agent. The connection problem is solved by negotiations between the participating
Agents. According to [Smi80], the protocol has four important properties:

� It does not involve centralized control

� There is a two-way exchange of information

� Each party to the negotiation evaluates the information from its own perspective

� Final agreement is achieved by mutual selection

a) b) c) 

Announcement Bidding Awarding 

Figure 2.7.: The three core steps (Announcement, Bidding and Awarding) used by
the Contract Net Protocol

Being a high-level protocol, it defines in multiple steps what the nodes should say
to each other, rather than how to say it. These steps (visualized in Figure 2.7) are:

Announcement: The Agent that has a problem to be solved announces this problem
to all other Agents or a subset thereof. The announcement must contain a
specification of the problem. Additionally it might contain constraints that
must be fulfilled by the other Agents in order to be eligible to bid for the
announced problem.

Bidding: Agents that received the announcement decide for themselves whether
they have the capabilities to participate in solving the problem. They calculate
the costs that would occur if they participate. If they decide to participate in
solving the problem, they place a bid by sending a message to the announcing
Agent that contains information on their capabilities as well as the calculated
costs.

Awarding: Once the initiating Agent received enough bids or a timeout occurred, it
decides which of the bids (or, which parts of which bids) to accept in order
to solve the problem jointly. The result of this process is communicated to all
Agents that submitted a bid, even if they have not been selected to participate
in solving the problem.
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In summary, the Contract Net Protocol specifies a protocol that may be used by
an Agent to identify other Agents in order to jointly solve a problem. However, it
does not specify how to make any decisions, i.e. it does not formulate any objective
functions nor does it specify how to find the final agreement. The distributed resource
management developed in the scope of this thesis uses a communication protocol
quite similar to the Contract Net Protocol. It bases its decisions on the specified
objective function (see Section 5.2) and uses the adaptive application performance
modeling presented in Chapter 4 to evaluate the objective function with respect to
application mapping.

2.3.2. Gossip Protocols

Gossip Protocols are another typical communication scheme used in Multi-Agent
systems. They reach back to the mathematical theory of epidemics described in
[Bai57]. Today, they are often employed in distributed systems to enable autonomic
self-management, the dissemination of information, to compute aggregates [JMB05],
etc.. The most important properties of gossip protocols are [Bir07]:

� Periodic, pairwise interactions between Agents

� Only small amounts of information are exchanged during these interactions

� After the interaction, the state of one or both of the Agents changes in a way
that reflects the state of the other Agent

� There is some kind of randomness in the peer selection

An Agent that uses the uses a gossip protocol contains (at least) two components:
an active gossiping component and a passive component that reacts on incoming
gossip messages. Listing 1 and Listing 2 show the most simple implementation
of these components. The periodic interactions typically are referred to as steps.
Figure 2.8 shows how the random selections of two peers in each steps leads to the
dissemination of information initially only known to one Agent after a small number
of steps.

Listing 1: Active Gossip

while true do
select (random) peer p;
send own state s to p;
sleep until next periodic step;

end

Listing 2: Passive Gossip

while true do
wait for state sp from peer p;
own state s ← merge s with sp;

end

The goal that shall be achieved by gossiping is defined by the merge function
that merges the own state of an Agent with the new information it just received.
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1st step 2nd step 3rd step 

Figure 2.8.: Information dissemination by using a gossip protocol (two random peers
selected in each step)

For instance [RNV09] uses a gossip protocol to minimize a global objective function
which is the sum of the local objective functions of the different Agents. In each
step, each Agent averages its state with a randomly chosen neighbor and adjusts
the average using the gradient of its local function that is computed with stochastic
errors. The paper proves that for convex local objective functions the global state
converges to an optimal solution almost surely.

The random selection of peers allows gossip protocols to operate efficiently without
centralized infrastructure and to disseminate information throughout the system.
However, in many settings, new information generated at individual Agents is most
interesting to Agents that are spatially nearby. Spatial gossip [KKD04] proposes to
vary the probability to select a peer with the spatial distance, i.e. nearby Agents
will receive the information sooner, and on average the communication distances are
reduced.

2.4. Operating Systems for Many-Cores

Traditional operating systems like the Linux kernel [Fou] can manage the resources
of a many-core system if it has shared memory and cache coherency. In [BWCM+10]
it has been shown that the Linux kernel does scale well up to 48 cores in an AMD
multi-socket system. In theory (and praxis) the Linux kernel supports up to 4096
cores. The SGI UV System [Sil14], a huge NUMA3 system that takes a whole server
rack, scales to 4096 threads (2048 cores on 256 CPU sockets) and up to 64TB of
cache-coherent, global shared memory in a single system which runs a off the shelf
Linux operating system. However, there is no smart application mapping – to achieve
good performance on such huge systems, a mapping of tasks to cores has to be done

3Non-uniform memory access, the memory access time depends on the memory location relative
to the processor, i.e. a processor can access its own local memory faster than non-local memory.
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before application execution. For systems without cache coherency, novel approaches
and operating system designs are required. In the following, two research operating
systems tailored for (on-chip) many-core systems are presented.

2.4.1. Tessellation Operating System

The fundamental component of the Tessellation Operating System [tes14] is a resource-
guaranteed cell which provides guaranteed fractions of system resources (such as
processor cores, cache, network or memory bandwidth, fractions of system services,
etc.). The software running within each cell has full user-level control of the resources
assigned to the cell, including CPU cores and memory pages [CEH+13]. Applications
may consist of multiple cells that are connected by secure channels. Also the operating
system services execute in their own separated cells. The Tessellation OS derives
its name from the space-time partitioning approach that tessellates cells across the
space of hardware resources.

Resources are virtualized using space-time partitioning, a multiplexing technique
that divides the hardware into a sequence of simultaneously-resident spatial par-
titions [LKB+09]. With space-time partitioning, cores and other resources are
gang-scheduled [Ous82]. The individual cells thus provide an environment that be-
haves similar to a dedicated machine. Each application uses an user-space scheduler
to schedule the applications tasks to the cores in the cell. Tessellation separates the
global decisions about the allocation of resources to cells from application-specific
scheduling of resources within cells.

An adaptive resource redistribution among cells occurs at a coarse time scale to
amortize the decision-making cost. A centralized Resource Allocation Broker collects
periodic performance reports from each application and the hardware components
to make its decisions [CBC+10]. The Resource Allocation Broker is generic and
allows the implementation of different policies, e.g. a reactive control that assigns
additional resources until a specified performance goal is achieved. Other, more
advanced policies could be implemented, however.

2.4.2. Barrelfish Operating System

The research operating system Barrelfish [Bar14] explores how to structure an
operating system for future multi- and many-core systems. It is motivated by the
rapidly growing number of cores per chip, which leads to a scalability challenge, and
heterogeneous hardware resources.

Barrelfish follows the principles of a so-called multi-kernel operating system
[BBD+09]. It instantiates one lightweight kernel on each core and treats the whole
machine as a network of independent cores, assumes no inter-core sharing at the
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lowest level, and moves traditional operating system functionality to a distributed
system of processes that communicate by means of message-passing – even on systems
with shared memory and/or cache coherency. In contrast to traditional operating
system that share state among cores, Barrelfish follows the “shared nothing” design
model. This enforces an event-driven control flow which however already is the com-
mon programming style of operating systems. Barrelfish divides the code running
on each core into a privileged-mode CPU driver which operates purely local on
the core, and a distinguished user-mode monitor process that handles all inter-core
coordination. The rest of Barrelfish consists of device drivers and system services,
which run in user-level processes as in a microkernel [Lie95]. The message-passing
based “shared nothing” design model allowed to port Barrelfish efficiently to the
Intel SCC many-core platform [PRB10] and various other platforms.

All cores allocated to an application are referred to as application domain. Cores
in Barrelfish might be time-multiplexed among different applications, i.e. there is a
spatial and temporal multiplexing of applications. Each application runs a set of
dispatchers, one per core in the application domain, which collectively implement an
application-specific user-level thread scheduler [PSB+10]. Similar to the Tessellation
operating system, the dispatchers on different cores of on application are gang
scheduled by the concept of phase-locked schedulers.

The placement of applications onto cores takes place in the long-term scheduling,
taking into account application requirements, system load, and hardware details.
A centralized placement controller uses information on the applications resource
demands along with knowledge of the momentary hardware utilization to determine a
suitable set of hardware resources for the applications. System state and application
requirements are stored as first-order logic expressions [AW+07]. The placement
policy is then implemented in Prolog [PSB+10]. Currently, a load balancing policy
to distribute application load over all available cores is implemented [Pet12].

2.5. Runtime-adaptive Systems at CES

Runtime-adaptive systems of different domains are and always have been one
of the primary research directions at the Chair for Embedded Systems (CES).
The broad scope of research covers runtime-adaptive network-on-chip architec-
tures [FAEH07, FAEH08], runtime-adaptive instruction set architectures [BSKH07,
BSKH08], runtime-adaptive task-management [AFKH08, JAFH11, JPK+13], ther-
mal management [EFH09], memory management [HBH12], sensor networks [SBHH15],
and others like research with respect to reliability [HBB+11]. This Section briefly
introduces the topics related to the runtime-adaptive resource management presented
in this thesis.

ADAM [AFKH08] was the first approach for runtime resource management using
a Multi-Agent-System developed at the Chair for Embedded Systems. It uses an
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hierarchy of Agents, where each Agent is responsible for resource management of a
subset of the cores (referred to as virtual cluster) in the system. If an Agent is not
able to answer a resource request within its virtual cluster, it forwards the request to
a centralized global control Agent that then might choose an other Agent or triggers
a re-clustering of the resource subsets managed by each Agent. However, this global
control Agent was left for future work and therefore cannot be compared to the
resource management developed in the scope of this thesis.

TAPE [EFH09] (thermal-aware agent-based power economy) is a distributed
thermal management scheme for on-chip many-core systems. It also employs the
concept of a fully distributed agent-based system in order to deal with the complexity
of thermal management in many-core systems. However, in TAPE each core is
assigned its own agent which is able to negotiate with its immediate neighbors (i.e.
adjacent cores). Thermal management itself is performed by distributing power
budgets which dictate task execution among the cores. Thus the agent negotiation
consists of distributing this power budget based on the concept of supply-and-demand,
taking the currently measured temperatures into account. Since each agent is only
able to trade with its neighbors, multiple agent negotiations are required to propagate
power budget across the chip. At start-up, the available tasks are randomly mapped
on the cores in the grid and then continuously remapped when either there is no power
budget available in a node or the difference of temperatures in the neighboring nodes
goes beyond certain threshold [EFH09]. TAPE is highly related to the distributed
resource management presented in this thesis as both approaches share the concept
of a fully distributed Multi-Agent-System, however aiming at a different optimization
goal. In contrast to TAPE, which associates an Agent with each core, the work
presented in this thesis associates an Agent with each application. TAPE assumes
applications to consist of tasks that are executed on single cores and that may freely
be re-allocated to different cores, whereas the resource management presented in
this thesis uses a different application model in which each application consumes
multiple cores concurrently.

The same optimization goal as the one used in this thesis was persuaded in
[JPK+13]. The concept of malleable software pipelines is used as application model.
However, the problem is simplified such that it only considers the number of cores
to allocate to each application but not their topological location on the chip. The
resulting optimization problem is solved using dynamic programming. The reduced
complexity of the optimization problem allows to solve it optimally centralized for
many-core systems with a reduced number of cores or in a distributed hierarchical
manner for large many-core systems, i.e. it does not use a Multi-Agent-System as
the approaches mentioned before. An improved version of the optimization problem
that also considers the available memory bandwidth of the memory controllers is
presented in [JPCH13].

The main idea of invasive computing [THH+11] is to introduce resource-aware
programming support in the sense that a given program gets the ability to explore
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and dynamically spread its computations to processors similar to a phase of invasion,
then to execute portions of code of high parallelism degree in parallel based on
the available (invasible) region on a given multi-processor architecture. Afterwards,
once the program terminates or if the degree of parallelism should be lower again,
the program may enter a retreat phase, deallocate resources and resume execution
again, for example, sequentially on a single processor. To support this idea of self-
adaptive and resource-aware programming new programming concepts, languages,
compilers and operating systems are necessary as well as architectural changes in
the design of MPSoCs (Multi-Processor Systems-on-a-Chip) to efficiently support
invasion, infection and retreat operations by involving concepts for dynamic processor,
interconnect and memory reconfiguration [HHB+12].

As systems with 1000 or more processors on a single chip are expected in the year
2020 [ITR13], static and central management concepts to control the execution of all
resources might have met their limits long before and are therefore not appropriate.
Invasion might provide the required self-organising behaviour to conventional pro-
grams for being able to provide scalability, higher resource utilisation, required fault
tolerance, and of course also performance gains by adjusting the amount of allocated
resources to the temporal needs of a running application. The resource management
developed in the scope of this thesis is part of the invasive computing project and
enables and exploits these properties of invasive applications.
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Inspired by trends of on-chip many-core research, as shown in Chapter 2, the resource
management presented in this thesis is tailored to the following assumptions:

� The on-chip many-core system has significantly more cores N than concurrently
running applications M . A Network-on-Chip connects the cores, the primary
means of communication is message passing. The many-core system is described
by the set C of all cores ci, i.e. C = {c1, c2, . . . , cN}. Each core ci has a unique
topological location on the chip.

� Applications {A1, A2, . . . , AM} consist of multiple phases (e.g. the computa-
tion kernels EV, HH, and BT from the motivational example NWChem in
Section 1.2.1). Each phase Pj consists of multiple smaller tasks (e.g. parallel
implementations of a computation kernel, see Section 3.2). Each phase of
each application may execute on multiple cores concurrently, however, there is
always only one active phase per application.

� Applications are assumed to be malleable (see Section 2.2), i.e. they are able
to adapt their degree of parallelism to the allocated cores. Applications can
utilize additional cores at any point in time, as long as there are additional
tasks ready for computation.

� Applications are assumed to release cores when required by the resource man-
ager. Depending on the implementation of the malleability of the application,
this release may take place immediately (tasks are migrated [JAFH11] or are
restarted on other cores), or if the application consists of short-running tasks
directly after the tasks currently assigned to the respective cores have finished
execution.

� Resource management means to (re-)allocate a subset of cores CAi ⊆ C to each
application Ai such that no core is assigned to two applications at the same
time, i.e. for all Ai, Aj with i 6= j, CAi∩CAj = ∅. Cores are exclusively allocated
to applications at certain points in time, i.e. there is no need for multi-tasking
per core. Current many-core operating system research [CEH+13, OSK+11,
SATG+07] emphasizes the advantages of temporally exclusive allocation of
cores to applications to avoid multiplexing overhead. The goal of runtime
resource management is to dynamically select these subsets CAi in a way that
maximizes a predefined optimization goal (see Section 5.2).
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3.1. Many-Core Platform Model

In line with the definition given in [VBC11], the targeted architecture of this work is
basically is the greatest common divisor of the many-core architectures presented
in Section 2.1: a homogeneous on-chip many-core system as depicted in Figure 3.1.
Each core is capable to execute any application and system service, i.e. there
are no specialized cores. Cores are connected through a Network-on-Chip (NoC),
communication is implemented via message passing. The topological location of each
core ci is given by its x- and y-coordinates (cxi , c

y
i ) in the 2d-mesh. This also means,

the performance of an application depends not only on the number of allocated
cores but also on the mapping of the applications tasks to cores and the (relative)
topological location of these cores on the chip.

Please note: The protocols and mechanisms developed and presented in Chap-
ter 5 are not limited to homogeneous NoC-based many-core systems. However, the
application performance estimation presented in Chapter 4, and the exploitation
of spatial neighborhood are tailored to this platform model.
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Figure 3.1.: System and Network Delay Model Components as described in [LK03]

w (ci, cj) = (|cxi − cxj |+ |c
y
i − c

y
j |)

didleNoC(s, ci, cj) = dout + de · (s+ w (ci, cj)) + din
(3.1)

The NoC communication delay model based on xy-routing [LK03] is used. In an
idle NoC (i.e. no communication is taking place), the communication delay didleNoC

for a message of size s (see Equation (3.1)) between two cores ci and cj consists
of three components: The first component dout is the time spent at ci to output
the message to the NoC. The second component is the time de the message takes
to travel through the NoC (the delay that each link induces to process one byte)
multiplied by the sum of s and the number of needed hops w (ci, cj) to send the
message between the cores ci, cj. The third component is the time din that core cj
spends for processing the incoming message. However, this delay is only valid in
an idle system. In [LK03, YXSP10] it has been argued that on average the link
contention and buffer utilization in the routers lead to a linear relation between
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the experienced delay dNoC of a message and the message size s multiplied by the
required number of hops w (ci, cj) as shown in Equation (3.2).

dNoC(s, ci, cj) ≈ de · s · w (ci, cj) (3.2)

3.2. Application Model

The speedup SAi (CAi) always refers to the relative execution time TAi (CAi) of an
application Ai compared to being executed on only one core (T#

Ai
(1)), as shown in

Equation (3.3). The efficiency EAi (CAi) of application execution is defined as the
achieved speedup per core, see Equation (3.4). The number of cores in CAi is given
by |CAi |. The notion of SAi (CAi), TAi (CAi), and EAi (CAi) refers to the speedup,
execution time, and efficiency of Ai when considering the actual mapping of the cores
in CAi , whereas S#

Ai
(k), T#

Ai
(k), and E#

Ai
(k) refer to the average speedup, execution

time, and efficiency of Ai when only considering the number of cores k = |CAi | in
CAi .

SAi (CAi) =
T#
Ai

(1)

TAi (CAi)

S#
Ai

(k) =
T#
Ai

(1)

T#
Ai

(k)

(3.3)

EAi (CAi) =
SAi (CAi)

|CAi |

E#
Ai

(k) =
S#
Ai

(k)

k

(3.4)

The relative progress pAi quantifies how much work of the application Ai has been
completed. A progress of pAi = 0 means that the application has not done any
computation while pAi = 1 means that the application has finished all of its work. If
pAi is given, then the application requires time T finishAi

(CAi) (see Equation (3.5)) to
finish execution on CAi .

T finishAi
(CAi) =

(1− pAi) · T
#
Ai

(1)

SAi (CAi)
= (1− pAi) · TAi (CAi) (3.5)

Applications consist of computation phases Pj , i.e. applicationAi = {P1, P2, . . . PJ}.
The phases, e.g. computation kernels, are executed in order (Pj+1 is executed after
Pj), however repetitions of phases or groups of phases are allowed. Each phase Pj
has characteristic properties. Figure 3.2 shows the components of the application
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model. For instance, phases P2 to P4 might be the three computational kernels
performing the linear algebra calculation [KAB+00] from the motivational example
in Section 1.2.1.

Phase P1 Phase P2 Phase P3 Phase P4 Phase P5 

Repetition Count 𝑆𝐴𝑖,𝑃1
#,𝑏𝑏𝑏𝑏 𝑘  

𝑆𝐴𝑖,𝑃1
#,𝑤𝑤𝑤𝑏𝑏 𝑘  

𝑁𝐴𝑖,𝑃1
Φ𝑚𝑚𝑚  

𝑇𝐴𝑖,𝑃1
# 1  

𝑆𝐴𝑖,𝑃5
#,𝑏𝑏𝑏𝑏 𝑘  

𝑆𝐴𝑖,𝑃5
#,𝑤𝑤𝑤𝑏𝑏 𝑘  

𝑁𝐴𝑖,𝑃5
Φ𝑚𝑚𝑚  

𝑇𝐴𝑖,𝑃5
# 1  

Figure 3.2.: Modeled application Ai consisting of five characteristic phases
{P1, . . . P5} with a repetition of phases P2 to P4

The parameters of each phase Pj are:

� The speedup functions S#,best
Ai,Pj

(k) and S#,worst
Ai,Pj

(k) describe the speedup of each

phase Pj of application Ai when using k = |CAi | cores in the best-case and in
the worst-case. Typically, the best-case is achieved when the cores in CAi are
spatially close to each other, whereas the worst-case occurs when the cores are
spatially distant from each other (see Section 4.3.2). Chapter 4 details how the
achievable speedup SAi,Pj (CAi) is estimated from S#,best

Ai,Pj
(k) and S#,worst

Ai,Pj
(k).

� The execution time of Pj when executed on only one core is given by T#
Ai,Pj

(1).

� The best-suited number of cores NΦmax
Ai,Pj

for application Ai in phase Pj is

determined by choosing k = |CAi | such that the product Φ(k)Ai,Pj (see Equa-

tion (3.6)) of the speedup S#,best
Ai,Pj

(k) and the efficiency E#
Ai,Pj

(k) = S#,best
Ai,Pj

(k) /k

(i.e. the speedup improvement per core) of each application phase Pj is maxi-
mized, as proposed by [Dow98, EZL89].

While executing phase Pj of application Ai on more than NΦmax
Ai,Pj

cores may yield a
higher speedup, the efficiency typically degrades significantly, for instance as shown
in Figure 3.3. In Section 5.4.6, this knowledge with respect to NΦmax

Ai,Pj
is exploited to

select the resource management strategy to be used to optimize the set of cores CAi,Pj
allocated to application Ai in phase Pj.

Φ(k)Ai,Pj = S#,best
Ai,Pj

(k) · E#
Ai,Pj

(k) =
S#,best
Ai,Pj

(k)2

k
(3.6)

The application knowledge is obtained by offline analysis. This analysis needs to
be performed for each phase Pj of each application Ai that should be executed on
the system.
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Figure 3.3.: The relationship of Speedup SbestAi,Pj
(k), Efficiency E#

Ai,Pj
(k), and Φ(k) of

a computation kernel (Pj) when executed on different numbers k = |CAi |
of cores (Speedup values taken from [KAB+00])

If the phases of the application are not known, the whole application may be
represented by a single phase. Alternatively, the phases may be determined in the
analysis process [KKH13]. For instance, Figure 3.4 shows the parallel profile of a
task-graph generated with the Task Graphs For Free (TGFF) tool [DRW98] and
the identified phases in that task-graph. The task scheduler for multi-core systems
presented in [THW02] is used to split the task-graph into a linear sequence of steps,
where each step consists of the tasks that are ready for execution once all tasks
in the previous steps have completed execution, i.e. all tasks of one step may be
executed in parallel. Successive steps with a similar degree of achievable parallelism
are grouped into the same phase. The speedup curves for each phase are then
individually determined. If the computational kernels of an application are known
(e.g. as in the motivational example in Section 1.2.1), the kernels represent suitable
phases and can then directly be profiled.

Techniques for intra-application scheduling and load balancing are not within the
scope of this thesis. For instance Runtime Task-Mapping like the one presented for
Adaptive MPI [HLK04], Intel Threading Building Blocks [Phe08], or an online task
graph scheduler [CCK12] can be used to map the applications tasks to the cores CAi
that have been allocated to Ai by the resource manager.

Please note: To improve the readability of this thesis, the phase is not always
explicitly mentioned. For instance S#

Ai
(k) might be used instead of S#

Ai,Pj
(k). In

theses cases S#
Ai

(k) refers to the momentary active phase Pj.

35



Models and Assumptions

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

#P
ar

al
le

l e
xe

cu
ta

bl
e 

Ta
sk

s 

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

Sp
ee

du
p 

1 

Cores 
1 25 1 25 1 25 1 25 1 25 

Step 

5 
10 
15 

Figure 3.4.: Parallel profile of an application, the identified phases {P1, P2, . . . P5}
(consisting of multiple sets of tasks with similar resource demands), and
the respective speedup curves S#,best

Ai,Pj
(k) [KKH13]

3.3. Operating System Model

An operating system runs directly on top of the hardware and provides an abstract
machine interface to the applications. It encapsulates system services that ease using
the hardware. In the scope of this thesis, resource management is considered as a
part of the operating system and responsible to decide which applications should
execute on which sets of cores at any point in time. Applications use the interface
provided by the operating system to provide information on their resource demands
to the resource manager which in turn allocates resources to the application.

At least the following functionality must be provided to realize the resource
management developed in the scope of this thesis:

� The operating system must be able to constrain each application Ai to execute
only on the set of allocated cores CAi .

� The operating system must provide a mechanism to communicate between
different cores and software instances. This is required for the applications to
inform the resource manager about updated resource demands, and in the case
of distributed resource management, to realize the resource management itself.

These functionalities are available in the research operating systems presented
in Section 2.4, as well as in the OctoPOS [OSK+11] operating system, for which
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a reduced variant of the presented resource management was implemented and
integrated.

Similar to the Barrelfish OS, OctoPOS instantiates one kernel per core1 and uses
message passing between the individual instances. OctoPOS provides a sophisticated
Remote Procedure Call (RPC) mechanism to facilitate message passing. Resource
management decisions are made on the same cores that are used by the applications.
This means, that messages addressed to the resource manager have to be handled
on cores that potentially are executing application code that must be interrupted.
However, this does not entail preemptive multi-tasking – OctoPOS allows to execute
RPCs in a software interrupt context, i.e. interleaved with the actual application.

In the Tessellation OS, the concept of temporarily exclusive allocated resources is
called a cell, in the Barrelfish OS, this is a domain and in the OctoPOS, this is a
claim. In the remainder of this thesis, CAi is used to refer to the resources allocated
to application Ai.

1Actually, there is one instance per cache coherent tile. However, following the system model
presented earlier, there is only one core per tile.
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4. Adaptive On-the-Fly Application
Performance Modeling

This chapter is based on:

[KBH15] Kobbe S., L. Bauer, and J. Henkel. Adaptive on-the-fly application
performance modeling for many cores. In IEEE/ACM 18th Design Automation
and Test in Europe Conference (DATE´15), 2015.

Many-core systems pose the challenge of efficient system utilization, especially if
application properties and the set of concurrently executing applications rapidly vary
at runtime. Therefore, when running multiple applications in parallel, it is essential
to allocate the right set of cores to the right applications at runtime and thus to
achieve a high degree of efficiency. This not only entails the number of cores but
also their topological location on the chip. For example, the work in [MBS+05] has
shown a 42% reduction of application execution time through sophisticated mapping.

4.1. Problem Description

To be able to select the right cores dynamically, accurate performance estimates
are necessary. These estimates rely on so-called application performance models.
The performance of an application depends on the system on which it is executed,
its input data, and the system load caused by concurrently running applications.
As the number and type of concurrently executing applications is not known a
priori, estimations that are solely based on offline analysis will most likely result
in inaccurate estimates and thus in disproportionate mappings. A high number
of estimates is calculated at runtime to find a suitable allocation of cores to each
application – whenever a change in the workload triggers a new application mapping!
This requires the performance estimation to have low computational effort. Otherwise,
the resulting latency of runtime resource management hampers dynamic changes in
the workload of the system. Given a (potential) resource allocation C for application
Ai, an application performance model estimates the speedup SAi (C) application Ai
achieves. The estimated speedup SAi (C) depends on characteristic properties of Ai
as well as C.
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Please note: In this thesis, the speedup SAi (C) of an application Ai is used
as a relative performance metric, i.e. the terms “application performance” and
“application speedup” are used interchangeably.

Estimator Application 
Estimator Application 

Performance 
Monitor Performance 

Estimation 
Model 

On-the-Fly 
Adaptation   

Resource Manager 

Potential Resource 
Allocation 𝐶  

Estimated Performance / 
Speedup 𝑆𝐴𝑖 𝐶  

Figure 4.1.: Principal components and interactions of the resource manager and the
adaptive resource-aware application performance model

Sometimes, it is possible to base these estimates solely on static application
knowledge determined by offline analysis. However, the performance of an application
depends on the actual system it is executed on [HZQ+13, LNC13], its input data
[PSK+12], and the system load caused by concurrently running applications. As
the number and kind of concurrently executing applications is not known a priori,
estimations solely based on offline analysis will most likely result in inaccurate
estimates and thus in disproportionate application mappings. Therefore the achieved
performance of the application is measured. The speedup model then has to adapt
its parameters to minimize the difference of measured and estimated speedups.
Figure 4.1 shows the principal components and interactions of the resource manager
and the adaptive resource-aware application performance model.

4.2. Related Work

The importance of application performance models for many-core resource man-
agement ranges from on-chip many-core systems [ATBS13, KBL+11] over high-
performance computing [SLS07], to cloud computing and grid computing environ-
ments [DA06, KKG+11]. Here, the models are used to decide on the number of cores
that are allocated to each application.

Relevant related work is on application performance models for parallel applications
[HZQ+13, Dow98], (online) learning of application performance estimation [IDSSM05,
BIM08, HMS+11], and resource management for many-core systems that use speedup
models (with and without adaptation) [HMS+11, ATBS13, SLS07, ZA10, YGSP13]
which will be addressed in Section 5.1. In the following sections, performance models
for parallel applications and online-learning approaches are presented.
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4.2.1. Extended Amdahl’s Law for on-Chip Interconnect

Both Amdahl’s law [Amd67] that describes the theoretical maximal speedup an
application can achieve based on its sequential code segments, and Gustafson’s law
[Gus88] that describes how much the problem size could be increased when using
multiple cores do not explicitly consider the on-chip interconnect of todays and future
many-core systems – both naturally modeled an application as a pure computational
workload without explicit considerations on inter-core communication. When more
parallelism is exploited by mapping tasks onto more cores, inter-core communication
overhead may rise rapidly. The authors of [HZQ+13] propose an updated version
of both laws; however, they do not consider the (absolute or relative) topological
location of the cores.

Amdahl’s law allows to calculate the achievable speedup of an parallel application
when executing on k cores. It assumes that a fraction f of the application is
parallelizable while the reminder of the application consists of sequential code that
can not be speedup by more than one core. Equation (4.1) shows the resulting
speedup function.

S(f, k) =
1

(1− f) + f
k

(4.1)

To also include the communication of the application, in [HZQ+13] f it is split into
four fractions (see Equation (4.2)): f sc and fpc , respectively, express the sequential
and parallel fractions of the application that are spent for computation (i.e. the
parameters of Amdahl’s law) while f st and fpt express the (sequential and parallel)
fractions of the application that is used for transmission of data. f̂ is used to express
the tuple of application parameters (f sc , f

p
c , f

s
t , f

p
t ).

f sc + fpc + f st + fpt = 1 (4.2)

Additionally to the improved description of the application properties, they in-
cluded the parameter i, the number of interconnects, into the speedup function
that describes the hardware the application is executed on. It can be explained
as the number of links of a single core in the NoC of many-core processors. Equa-
tion (4.3) shows the resulting speedup function which is a two-dimensional extension
of Equation (4.1) [HZQ+13].

S
(
f̂ , k, i

)
=

1

f st + f sc + fpc
k

+
fpt
i

(4.3)

While the extended model explicitly considers the fractions of sequential and
parallel computation and communication f̂ (i.e. properties of the application) and
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properties of the hardware i, the topological location of the cores allocated to the
application is not considered. This means, that the model is not able to differentiate
between a good set for cores C and a bad one.

4.2.2. Downey’s application performance model

A generic application performance model for parallel workloads has been presented
in [Dow98]. It models achievable speedup of real-world applications when executed
on computer clusters very well. The model requires two parameters: the average
parallelism P of an application and its variance in parallelism σ. Equation (4.4),
adapted from [Dow98], shows how for a given k = |C| the speedup S#(k) of an
application is calculated if these parameters are given. High variances in parallelism
σ require a different calculation of the speedup (Equation (4.4b)) than applications
with little or no variance at all (Equation (4.4a)). The model has been validated
against various benchmark applications on shared- and distributed memory systems.
The parameters of the model correspond to measurable program characteristics. This
insight into the values and distributions of these parameters in a real workload allowed
to implement a workload generator [Fei05] which allows to generate application
profiles and workload scenarios similar to those found in parallel high-performance
computing clusters. This generated workload profiles are widely used to evaluate
many-core resource management [Fei03, SLS07, SCH11, ATBS13].

σ < 1 (low variance):

S#(k) =


kP

P+
σ(k−1)

2

if 1 ≤ k ≤ P

kP
σ(P

2
)+k(1−σ

2
)

if P ≤ k ≤ 2P − 1

P if k ≥ 2P − 1

(4.4a)

σ ≥ 1 (high variance):

S#(k) =

{
kP (σ+1)

σ(k+P−1)+P
if 1 ≤ k ≤ P + Pσ − σ

P if k ≥ P + Pσ − σ
(4.4b)

Similar to the (extended) speedup function following Amdahl’s law, the model
does not consider the topological location of allocated cores in a many-core system,
i.e. it is topology-agnostic and not resource-aware. However, because of its easy
parameterability based on offline profiling and the good match to of the estimated
speedups to the real values, the speedup model developed in this thesis [KBH15] is
based on Downey’s application performance model [Dow98].
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4.2.3. Machine Learning for Performance Prediction

Due to subtle interactions between architecture and software it is not always possible
to accurately model and predict performance for large-scale applications with an
analytic model. Other approaches to estimate the achievable performance of an appli-
cation use machine-learning techniques like artificial neuronal networks [IDSSM05].
Similar to offline-parameterized analytical speedup models, these approaches require
an exhaustive training phase before they are able to predict the achievable application
performance. Even the authors claim that a neuronal network is not yet generally
useful in the absence of an existing database, as the time required to gather each
data point in the training set is rather large.

The so far presented application performance models are parameterized offline,
i.e. they can not react to changes in e.g. the input data of an application nor to
changes in the overall workload of the system, i.e. the influence other applications
have on the achievable performance. In [BIM08], artificial neuronal networks were
implemented in hardware and continuously trained with the performance metrics of
various shared resources in a quad-core processor. They assumed one application to
execute on each core to measure the achieved performance. Based on the predictions
performance provided by the neuronal networks, a centralized controller decides,
which fraction of shared resources to assign to which core.

In contrast to [IDSSM05], the neuronal networks were adapted at runtime by
using error backpropagation learning [RHW88]. While the goal of the resource
management based on artificial neuronal networks was somewhat different to resource
management in a many-core system, it is reasonable to assume that the approach
might be adoptable to larger systems. However, the amount of additionally required
hardware is considerably high. For the quad-core system running four applications,
16 artificial neuronal networks – each consisting of 52 hardware multipliers – were
required.

4.2.4. The SElf-awarE Computing (SEEC) model

SEEC [HMS+11] is a combination of an adaptive speedup model and a resource
manager. It follows the idea of autonomic computing [Hor01, ABD+03, KC03], where
the system adapts itself to the momentary situation by means of an observe-decide-act
loop, as shown in Figure 4.2. The SEEC runtime requires the specification of all
possible actions (e.g., allocate n cores to application Ai) that can affect application
performance, each with a predefined estimated impact on system performance. At
runtime, it selects a combination of actions for each application in a way that fulfills
the goals specified by the application while maximizing the estimated performance
using a centralized control approach [MHS+10].

SEEC is capable to adapt to changes in both application and system models by
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Observe 

Decide 

Act 

SEEC 
Runtime 

API 

Application 
Developer 

SPI 

System 
Developer 

Figure 4.2.: Observe-Decide-Act Loop used by SEEC. The Application Developer uses
an application programming interface (API) to report the performance of
the application and to specify the achievable goals. The System Developer
uses the system programming interface (SPI) to specify possible system
configuration actions. The SEEC runtime selects the best combination
of actions to achieve the specified goals.

correcting the estimated impact of the different actions on the system performance.
After making a decision, it uses the Application Heartbeats framework [HES+10] to
monitor the performance of applications and to update the estimated impact of the
action with the measured values.

By defining all possible actions the sheer number of possible actions is too large in
systems with hundreds or even thousands of cores – especially when not only the
number of cores but also their topological location would be considered. Originally,
SEEC is tailored to shared-memory systems and it only considers the number of
cores. The centralized design of SEEC might impose scalability issues, see Chapter 5.

4.2.5. Summary of Related Work

In summary, there are application performance models that adapt at runtime, consider
the topological properties of the cores allocated to an application, or allow on-the-fly
performance estimates. However, there is no adaptive model suitable for on-the-fly
application performance estimation on NoC-based many-core systems considering
the topology of cores.

Therefore, this thesis proposes an adaptive on-the-fly application performance
model that considers the topological properties of the cores allocated to an application
in NoC based many-core systems. It uses a simple metric of C that can easily be
determined to estimate the achievable speedup based on the lower bound and the
upper-bound speedup of the application. To handle highly dynamic behavior of
workloads not known a priori, the application performance model is continuously
adapted at runtime.
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4.3. Empirical Analysis of Application Performance

To motivate the resource-aware application performance model developed in this
thesis, first some empirical analysis is presented. This analysis is based on a refined
application model which allows a fast design space exploration (Section 4.3.1). The
resource-awareness is achieved by considering additional properties of C than just
the number of cores k = |CAi |. Section 4.3.2 motivates why the average distance
between cores in C is a suitable choice.

4.3.1. Refined Application Model

Without the loss of generality, the phases of the applications (see Section 3.2) are
represented as task-graphs where the tasks are represented as the nodes nx in a
directed acyclic graph. This is shown in Figure 4.3a where an inner task-graph is
encapsulated in a larger block (flanked by a begin node and an end node) that is
repeatedly executed in an outer loop.

Phase P2 Phase Pn Phase Pm 

n1 n2 

nd 

nf ng 

ne 

n3 nc 

nh 

Begin 

End 

... 
... 

... 

... 

Node nb 
(Workload wb) 

Node na 
(Workload wa) 

Communication va,b 

… 

a) 

b) 

Phase P1 

𝑆𝐴𝑖,𝑃1
#,𝑏𝑏𝑏𝑏 𝑘  

𝑆𝐴𝑖,𝑃1
#,𝑤𝑤𝑤𝑏𝑏 𝑘  

𝑁𝐴𝑖,𝑃1
Φ𝑚𝑚𝑚  

𝑇𝐴𝑖,𝑃1
# 1  

𝑆𝐴𝑖,𝑃𝑚
#,𝑏𝑏𝑏𝑏 𝑘  

𝑆𝐴𝑖,𝑃𝑚
#,𝑤𝑤𝑤𝑏𝑏 𝑘  

𝑁𝐴𝑖,𝑃𝑚
Φ𝑚𝑚𝑚  

𝑇𝐴𝑖,𝑃𝑚
# 1  

Figure 4.3.: Refined application model which allows a fast design space exploration:
Application phases are represented by task graphs.

The nodes nx correspond to actual computation (expressed as workload wx for
each node nx) that the application performs and the edges correspond to the commu-
nication volume va,b between two nodes na and nb (see Figure 4.3b). The execution

time T#
Ai,Pj

(1) of each phase Pj on only one core is the sum of the workload wx of

all nodes nx ∈ Pj, as shown in Equation (4.5).
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T#
Ai,Pj

(1) =
∑
nx∈Pj

wx (4.5)

A node is ready for execution as soon as all its predecessors have finished execution
and their transmitted data has been received, similar to a Kahn Process Network
[Kah74]. Communication volume va,b is set to zero if both nodes na and nb are
executed on the same core. Otherwise, the communication causes a delay in the
NoC (see Section 3.1). The application is instrumented to allow the runtime system
to monitor the performance of the application, similar to the work presented in
[HES+10]. These measurements are used to adapt the parameters of the application
performance model, as shown in Section 4.6.

4.3.2. Influence of the topological location of resources

Based on the communication delay equation given in Equation (3.2), this thesis
proposed to improve the accuracy of application performance estimation based on
the average number of hops between the cores in C: the sum of the number of hops
w (ca, cb) between any two cores ca, cb divided by the number of these combinations
Equation (4.6a).

wavg (C) =

∑
ca∈CAi

∑
cb∈CAi\{ca}

w (ca, cb)

|C| · (|C| − 1)
(4.6a)

wavg (C) =

N∑
i=1

N∑
j=1

w (ci, cj)

N · (N − 1)
=

2

3

√
N (4.6b)

The average number of hops in C depends on the selection of the cores. For
instance for |C| = 40 out of N = 256 cores, the difference between the best case
(spatially as close to each other; 4.1 hops on average) and the worst case (spatially
as far as possible from each other; 14.5 hops on average) is significant. The values
of w#,min

avg (k) for the best case selection of cores in C (see Equation (4.7a)), and
w#,max
avg (k) for the worst case selection (see Equation (4.7b)) are shown in Figure 4.4.

w#,min
avg (k) = min

{
wavg (C)

∣∣C ⊆ C, |C| = k
}

(4.7a)

w#,max
avg (k) = max

{
wavg (C)

∣∣C ⊆ C, |C| = k
}

(4.7b)

To obtain w#,min
avg (k) and w#,max

avg (k), CAi is iteratively extended by the core with
the lowest/highest spatial distance to the cores already included in C, starting from
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the core topologically in the middle of the system for the best-case respectively the
core in the top-left corner in the worst-case. Mappings should achieve wavg (C) close
to the respective best case w#,min

avg (k) to optimize application performance. The
worst-case average distance w#,max

avg (k) represents the worst-case selection of n cores
in C that might occur when mapping the application, e.g. in a system that is heavily
loaded with other concurrent applications.
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Figure 4.4.: Average number of hops wavg (C) required to send a message between
two cores when allocating a subset C of all N=256 cores to application
Ai a) in the best case, and b) in the worst case

Figure 4.5 shows the influence that different sets of cores CAi have on the achievable
speedup for tree different applications. The first task-graph represents an application
with sparse communication. Each node in the task-graph (except the end node per
block) only depends on a few predecessors, which allows the task mapper to map
the tasks in a way that avoids frequent communications across different cores. The
second application features a medium communication density. There are up to five
inputs to each node required before the node can execute. This also means that
the topological location of the allocated cores has a bigger influence on the speedup.
The third application is based on execution traces of a real world robotic vision
application ([PSK+12], see Appendix B). Figure 4.5a), c), and e) show the influence
of the average number of required hops wavg (CAi) on the achievable speedup. The
average number of required hops wavg (CAi) between the cores in CAi almost linearly

correlates with the achieved speedup. The speedup curves S#,best
Ai

(k) and S#,worst
Ai

(k)
resulting from executing the applications on the best case (see Equation (4.8a))
respectively worst case (see Equation (4.8b)) selections of cores in C are shown in
Figure 4.5b), d), and f).

S#,best
Ai

(k) = max
{
SAi (C)

∣∣C ⊆ C, |C| = k, wavg (C) =̂w#,min
avg (k)

}
(4.8a)

S#,worst
Ai

(k) = min
{
SAi (C)

∣∣C ⊆ C, |C| = k, wavg (C) =̂w#,max
avg (k)

}
(4.8b)
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Figure 4.5.: Influence of different metrics [average number of hops in a), c), e) and
number of allocated cores in b), d), e)] on the achievable speedup
compared to execution on a single core for a many-core system of size
N=256
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4.4. Considering the Topology for Speedup
Estimation

Based on the almost linear relationship between the achieved speedup of an application
Ai and the average number of hops wavg (C) between the cores in C for any number of
cores k = |C|, this thesis proposes to use this simple metric to allow the performance
model to consider the relative topological location of the cores C to be allocated to
Ai. As the influence of wavg (C) on the speedup is different for each application, the

two corner-cases are combined: the highest achievable speedup S#,best
Ai

(k), and the

worst case speedup S#,worst
Ai

(k). To estimate the actual performance of Ai, a linear
interpolation between both values based on the value of wavg (C) is performed, as
shown in Equation (4.9).

k = |C|

SAi (C) = S#,worst
Ai

(k) +
w#,max
avg (k)− w#,min

avg (k)

wavg (C)− w#,min
avg (k)

·
(
S#,best
Ai

(k)− S#,worst
Ai

(k)
)
(4.9)

To efficiently represent the speedup curves S#,best
Ai

(k), and S#,worst
Ai

(k) the appli-
cation performance model introduced by Downey [Dow98] is used, as it captures
the behavior of real applications running on real parallel machines very well, see
Section 4.2.2 It uses two parameters (the average parallelism P of an application and
its variance in parallelism σ) to describe typical application speedup curves, similar
to the ones shown in Figure 4.5b), d), and f). Downey’s application model does not
consider the topological location of the cores, i.e. it is topology-agnostic.

4.5. Offline Parameterization of Model Parameters

To initialize the model parameters, applications are individually profiled offline.
Therefore, application Ai is executed on different sets of cores CAi starting from
one core (|CAi | = 1) through all cores in the system (CAi = C). For each number
of cores k = |CAi | the cores are once selected to be spatially as close as possible to
each other to obtain S#,best

Ai
(k) and once to be spatially as far as possible from each

other to obtain S#,worst
Ai

(k). Then Downey’s model is parameterized to match the

observed S#,best
Ai

(k) and S#,worst
Ai

(k). The parameters for Downey’s model are stored
in the parameter tuple (P best

Ai
, σbestAi

, Pworst
Ai

, σworstAi
) for each block (see Figure 4.3) of

the application. The offline analysis obviously does not cause runtime overhead.
Applications may be profiled at any time before they are executed on the system, i.e.
it is not required to know all applications at design time.
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4.6. On-the-fly Adaptation of Model Parameters

To improve the accuracy of the performance predictions, the parameters (P best
Ai

,
σbestAi

, Pworst
Ai

, σworstAi
) of the application performance model are adapted to react to

spontaneous workload variations. Therefore, the measured performance of multiple
executions is used to adapt the parameters of the model in a way that minimizes
the error between the measured speedup SmeasuredAi

(CAi) (see Section 4.6.1) and the
estimated speedup SAi (CAi). Figure 4.6 gives a high-level overview on the on-line
adaptation of the model parameters.

“End Node” reached 

error reduced 

error not 
reduced 

Store measured speedup 𝑆𝐴𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐴𝑖  and 

used set of cores 𝐶𝐴𝑖 in 𝐻𝐻𝐻𝑡𝐴𝑖 

Hill climbing heuristic:  
Reduce weighted squared estimation error 

for samples stored in 𝐻𝐻𝐻𝑡𝐴𝑖 
done 

Update Model Parameters 
𝑃𝐴𝑖
𝑏𝑚𝑚𝑏 ,𝜎𝐴𝑖

𝑏𝑚𝑚𝑏 ,𝑃𝐴𝑖
𝑤𝑤𝑚𝑚𝑏 ,𝜎𝐴𝑖

𝑤𝑤𝑚𝑚𝑏  

Figure 4.6.: High-level overview on the on-line adaptation of model parameters

4.6.1. Monitoring of Application Performance

The popular heartbeat framework [HES+10] was adapted to measure the time required
by the application to complete each phase. Applications emit heartbeats in the
start and end nodes that flank each phase. The time that passed between those two
heartbeats is the execution time TAi (CAi). The execution time Tnx ≈ wx of each
node nx is determined by subtracting its start time from its end time, to obtain the
momentary dynamic workload of the application. Whenever the end node triggered
its heartbeat, SmeasuredAi

(CAi) is calculated according to Equation (4.10).

SmeasuredAi
(CAi) =

∑
nx∈Ai

Tnx

TAi (CAi)
(4.10)
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SmeasuredAi
(CAi) and CAi then are stored in the sample history HistAi , and the

model parameters of SAi are adapted (see Section 4.6.2) to improve the accuracy of
subsequent estimations of SAi (C ′) for different C ′.

4.6.2. Heuristic Adaptation

Due to the monotonic increasing behavior of the speedup curves S#,best
Ai

(k) and

S#,worst
Ai

(k) represented with Downey’s performance model, a fast hill climbing
heuristic can be used to adapt the parameters at runtime. In the following, the
parameter tuple (P best

Ai
, σbestAi

, Pworst
Ai

, σworstAi
) is used interchangeable with SAi .

The goal of the adaptation (Listing 3) is to minimize the weighted estimation
error that is determined by comparing the measured values SmeasuredAi

(CAi) with
SAi (CAi) for the samples stored in HistAi (Listing 4). To focus on recent changes
in the workload, the weight of older samples is reduced exponentially. To avoid
miss-adaptations caused by an empty sample history HistAi , measurements from
previous executions of the application remain in the history.

The actual adaptation works by repeatedly selecting a new configuration S ′Ai based
on SAi that reduces the estimation error until no further error reduction is achieved
or the step width δ is below a threshold. One of the model parameters is either
increased or decreased, resulting in eight possible ways to configure S ′Ai based on
SAi . The configuration S ′Ai with the lowest estimation error for the values in HistAi
is chosen as the new configuration for SAi if it resulted in less error than the current
configuration. The step width δ by which the parameters are changed is reduced in
each iteration to allow for a fast adaptation of the parameters first and a fine-tuning
of the parameters in the end. As the meaningful range of the parameters σ and P
differs, the value δ by which they are changed is fit by the constant factors Wσ and
WP .

4.7. Performance Model Evaluation

In this section, the on-the-fly estimation accuracy of the application performance
model (APM) as well as the induced runtime overhead is evaluated to show its ability
to adapt to spontaneous workload variations which results in highly efficient utilization
of many-cores. The centralized hill-climbing heuristic presented in Section 5.3.1 is
used to evaluate the model. The achieved results are compared with state-of-the-art
multi-application mapping for many-core systems [YGSP13] (presented in detail in
Section 5.1.2) as well as Downey’s topology agnostic application performance model
[Dow98]. The introduced overhead is discussed. Additional results are presented in
Chapter 6.
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Listing 3: Runtime Model Adaptation

Input: SAi as (P best
Ai

, σbestAi
, Pworst

Ai
, σworstAi

)
Output: Updated SAi

Wσ ← 0.1; // step width multiplier for parameters σ
WP ← 1; // step width multiplier for parameters P
δ ← 1; // initial step width

gain← 1;
// Now use a hillclimbing heuristic to match the parameters to

the observed values

while gain > 0 and δ > 0.2 do
// assemble the eight neighboring configurations NC
NC ← (P best

Ai
± δ ·WP , σ

best
Ai

, Pworst
Ai

, σworstAi
);

NC ← NC ∪ (P best
Ai

, σbestAi
± δ ·Wσ, P

worst
Ai

, σworstAi
);

NC ← NC ∪ (P best
Ai

, σbestAi
, Pworst

Ai
± δ ·WP , σ

worst
Ai

);
NC ← NC ∪ (P best

Ai
, σbestAi

, Pworst
Ai

, σworstAi
± δ ·Wσ);

// select the neighboring configuration that results in the

lowest re-estimation error

S ′Ai ← argminS∈NC
{

HistoryErrorAi(S)
}

; // see Listing 4

gain← HistoryErrorAi(SAi)− HistoryErrorAi(S
′
Ai

);
if gain > 0 then

SAi ← S ′Ai
end
δ ← 0.9 · δ; // exponentially decrease step width

end
return SAi ;

Listing 4: History Sample Model Re-Prediction Error

Input: Speedup estimation function SAi , chronologically ordered sample
history HistAi

Output: Exponentially weighted sum of the squared estimation errors
error← 0;
α← 1; // initial weight

foreach Sample s ∈ HistAi do

error← error + α ·
(
SAi (s.CAi)− s.SmeasuredAi

(s.CAi)
)2

;
α← 0.9 · α; // exponentially decrease the weight

end
return error;
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All results were obtained by mixed-level simulation of the NoC based many-core
system with N = 256 (16x16) cores. Computation is simulated at the abstraction
level of task-graphs, i.e. at a much more detailed level than the on-the-fly application
performance estimation model. Communication is simulated for a NoC that employs
XY-Routing and considers link congestion for an accurate and mapping-dependent
simulation (see Appendix A). The performance-effective and low-complexity task
scheduling scheme presented in [THW02] was used to a) map the tasks of the
application to the cores in CAi and to b) schedule their execution. The scheduler
selects the task nx ∈ Ai with the highest upward rank value (the length of the critical
path to the exit task, including computation costs and communication costs) and
assigns that task to the core that minimizes the earliest finish time of the task. The
selection of the core the start task is mapped to had to be extended, as this selection
has noticeable impact on the applications’ performance. For the sake of simplicity,
the schedule is calculated with each core in CAi set as the core cstart the start task
is mapped to once. Eventually, the selection of cstart which resulted in the shortest
schedule with the earliest finish time was chosen.

4.7.1. Estimation Accuracy

To evaluate the accuracy of the presented application performance model, three
different application scenarios plus a full robotic vision application on various allo-
cations of cores C. The scenarios were generated with TGFF [DRW98]. The total
workload of the three applications and the number of tasks in each application is
almost the same; they only differ in their communication density. The first task-graph
represents an application with sparse communication. Each node in the task-graph
(except the end node per phase) only depends on a few predecessors, which allows
the task mapper to map the tasks in a way that avoids frequent communications
across different cores. The second application features a medium communication
density. There are up to five inputs to each node required before the node can
execute. This also means that the topological location of the allocated cores has a
bigger influence on the speedup. The third task-graph represents an application with
very dense communication between the individual tasks. For this task-graph, the
relative topological location of the allocated cores is of upmost importance. As a
real-world application example, traces of a robotic vision application [PSK+12] were
used as a malleable software pipeline [JPK+13] (see Section 2.2.4 and Appendix B
for more details).

The application performance model is compared with Downey’s topology-agnostic
application performance model from [Dow98]. Additionally, very accurate (but
computationally intensive) estimates of the achievable speedup are obtained by
mapping the application tasks to the allocated cores [THW02] and using the offline
profiled execution times to determine the expected execution time of the applications.
To compare the accuracy of these three estimates, the estimates are compared to the
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real measured speedup SmeasuredAi
(CAi) (obtained as described in Section 4.6.1).
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Figure 4.7.: Relative estimation error made when estimating the speedup of the
same application Ai executed on random allocations of cores CAi when
using the topology-agnostic model [Dow98], the proposed adaptive on-
the-fly estimation model, and the computational intensive estimation by
mapping the applications task-graph [THW02].

Figure 4.7 shows the relative error of estimations (note that the mapping efficiency
will be compared with MAMS [YGSP13] later on, but as MAMS does not perform
speedup estimates, it cannot be compared here). The instances of C were selected
randomly. In all cases, the accuracy of the proposed model is significantly better
compared to using the topology-agnostic estimate [Dow98] that does not consider
the relative topological location of the allocated cores. At comparable computational
effort (evaluated in Section 4.7.2), the proposed application performance model
predicts the speedup with an average relative error of 4.5% compared to 14.7%
[Dow98]. The computational intensive (see Section 4.7.2) estimation [THW02],
achieved by mapping the applications task-graph to the different allocations CAi , still
results in an average relative error of 1.9% caused by dynamic execution behavior.
The maximum estimation error is significantly lower than the errors that occur
with the topology-agnostic speedup estimation, leading to more efficient application
mappings, as shown in Section 4.7.4.

4.7.2. Overhead Analysis

An application performance model that is suitable for runtime resource management
should have low computational effort to allow for evaluating many different resource
allocations on-the-fly (e.g. thousands of different resource allocations in tens of
milliseconds) for frequent adaptations of the application mapping. Determining the
best-case speedup S#,best

Ai
(|C|) and the worst-case speedup S#,worst

Ai
(|C|) requires

only a small number (≤ 10) of additions/multiplications and thus completes in a
few CPU cycles. An ample computation of wavg (C) is within O(n2) with n = |CAi|.
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In practice, often only one core is added to or removed from C such that the
complexity of determining wavg (C) is reduced to O(n) by adding/removing only
the connections to the added/removed core. This results in an execution time
that is approximatively n times higher than the topology-agnostic model [Dow98],
but compared to the execution time of the task-mapping heuristic [THW02] it is
negligible. The execution time of the implementations was measured on an Intel
i5-2500 CPU. On average, for estimating the speedup of an application running
on 40 cores, Downey’s topology-agnostic model [Dow98] required 31ns (i.e. about
100 cycles) and the proposed application performance model required 1208ns. The
task-mapping heuristic [THW02] required even 2ms, a factor 2000 slower per speedup
estimation. The execution time does not depend on the number of cores in the
system; only the number of cores that is assigned to an application has an influence –
additional measurement results for 10 cores and 100 cores are shown in Figure 4.8.
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Figure 4.8.: Time required to estimate the application speedup by the topology-
agnostic model [Dow98], the proposed adaptive on-the-fly application
performance model and the exact solution that actually maps the appli-
cations tasks to cores [THW02]

Whenever an application completed execution of a phase (see Section 3.2), the
model parameters are adapted. The adaptation needs to perform at most 15 it-
erations of the outer loop in which eight configurations of SAi (C) are evaluated
against the measured samples stored in HistAi . As wavg (CAi) is already stored in
HistAi , the computational complexity of SAi (C) is reduced to the complexity of
Downey’s application performance model. Therefore, the adaptation overhead is
within O(|HistAi | · 15 · 8). By limiting |HistAi | to 10, adaptation can be finished
within 50µs, which is practicable and feasible.

4.7.3. Evaluating Application Mappings

As shown in Section 4.2, there is no directly comparable model to estimate the
speedup of an application given a potential allocation of cores C that also considers
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the topological properties of these cores. However, there are runtime application-
mapping approaches for many-core systems that try to optimize the communication
latencies without explicitly estimating the application performance. The Multi-
Application Multi-Step (MAMS) mapping method for many-core systems presented
in [YGSP13] is used as reference implementation as it has a similar optimization
goal and achieves state-of-the-art application mapping quality. See Section 5.1 for
additional details. The implicit optimization of the communication latencies is
achieved by focusing on rectangles as square as possible. MAMS only optimizes for
the topological location – to make the results comparable, MAMS was improved to
determine the ideal number of cores for each application by using the static topology-
agnostic application performance model presented in [Dow98]. In most cases the
allocation of rectangles for each application leads to a fragmentation of the application
mapping, i.e. there are cores left over that cannot be allocated to an application. As
the application mapping resulting in using the other application models consumes
all available cores, the MAMS mapping method was further improved in the way
that, after the rectangles for each application have been defined, the unallocated
cores were distributed to spatially adjacent applications. Again, the performance
model presented in [Dow98] is used to decide on which of the adjacent applications
would benefit the most from additional cores.

4.7.4. Adaptation to Workload Variations

The presented mapping heuristics are used to evaluate the benefits of the improved
accuracy and the adaptability of the proposed speedup estimation model for various
combinations of different applications in different scenarios. These scenarios have
been selected to demonstrate the adaptability of the application performance model
as well as the broad applicability to different and typical kinds of system utilization.
The speedup is determined through simulating the applications. As comparison
metric, the efficiency of the application mapping is obtained through the average
speedup per core (see Equation (4.11)).

Mapping EfficiencyE =

M∑
i=1

SAi (CAi)

N
(4.11)

In the first two scenarios, the number of concurrent applications is gradually
increased from 15 to 28 (Figure 4.9) respectively reduced from 30 to 17 (Figure 4.10).
The resulting application mappings obviously benefit from the more accurate esti-
mates of the proposed adaptive model. Due to the hill climbing behavior of the
mapping heuristic (see Section 5.3.1) and the not monotonically increasing shape of
the speedup curve determined by using the task-mapping heuristic [THW02] (see
Figure 4.5b), d), and f)), the resource-aware adaptive estimates sometimes even lead
to slightly more efficient mappings. The application mappings for these two scenarios
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are 8.0% more efficient when using the proposed application performance estimation
model compared to state-of-the-art (MAMS) runtime mapping [YGSP13].

In the third and fourth scenario, the number of applications decreases abruptly
(from 30 to 15 concurrent applications, Figure 4.11) respectively increases abruptly
(from 15 to 30 concurrent applications, Figure 4.12). Again, the resulting application
mappings achieved when using the proposed adaptive speedup model are almost
always better than the mappings from MAMS. The adaptation to the new operating
conditions is clearly visible, i.e. the application mapping efficiency increases with
each iteration after the abrupt workload change. In these two scenarios, on average
the application mapping achieved by using the adaptive estimation model resulted
in a 4.3% improvement compared to MAMS.
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Figure 4.9.: Application mapping efficiency for an increasing number of concurrent
applications: A new application is started every third iteration – starting
from 15 to 28 concurrent applications in the end

In the fifth scenario, the workload includes periodic bursts, just as they are
common in embedded control systems. Figure 4.13 shows the efficiency of the system
utilization over the time of four such bursts. Compared to MAMS, there is a slight
advantage in the time between the bursts when using the resource-aware speedup
model to decide on the application mapping. However, the workload within the bursts
is handled 6.8% more efficient, on average. Again, in all cases the topology-agnostic
speedup estimation results in the worst mappings.

For the sixth scenario (shown in Figure 4.14), the mapping efficiency is analyzed for
random changes in the workload. Such a workload is common for interactive system
utilization. Especially in the cases of multiple concurrent applications, mappings
achieved through the adaptive on-the-fly performance model outperform state-of-the-
art [YGSP13]. This is because not all applications necessarily benefit to the same
degree from spatially close cores. In contrast to MAMS, the proposed model allows
some applications to use slightly scattered sets of cores to allow allocating larger
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Figure 4.10.: Application mapping efficiency for a decreasing number of applications:
An application is terminated every third iteration – starting from 30 to
17 concurrent applications in the end. The adaptation of the proposed
model is clearly visible in the form of small improvements after each
change in the workload
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Figure 4.11.: Application mapping efficiency for an abrupt change (the number of
applications is reduced from 30 to 15) in the workload. After the
workload change the parameters of the proposed model are on-the-fly
adapted to the new workload situations
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Figure 4.12.: Application mapping efficiency for an abrupt change (the number of
applications is increased from 15 to 30) in the workload. Again, the
adaptation of the model parameters is clearly visible
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Figure 4.13.: Application mapping efficiency for periodic bursts in the workload –
e.g. as experienced in embedded control systems
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Figure 4.14.: Application mapping efficiency for random changes in the workload –
e.g. as experienced in interactive system utilization

coherent sets of cores to those applications that benefit more from the smaller average
number of hops. On average, the adaptive on-the-fly estimation results in 7.4% more
efficient application mappings than when using MAMS and it provides almost the
same mapping quality compared to the most accurate but computationally unfeasible
estimation that calculates the task-graph mapping for each estimation.

On average for the presented scenarios, the application mapping efficiency is
improved by 6.4% compared to state-of-the-art runtime application mapping for
many-cores [YGSP13]. The resulting application mappings are significantly (32%)
more efficient than the application mappings that resulted in using the topology-
agnostic speedup estimation model [Dow98].

4.8. Summary of Application Performance Modeling

An adaptive on-the-fly application performance model has been presented. The
presented results have demonstrated that the accuracy of the performance estimations
results in overall high execution efficiency when using application performance
estimates for application mapping decisions. The evaluations show that the average
estimation error is reduced from 14.7% to merely 4.5% while at the same time
significantly reducing the worst-case error. As a result, the applications profit
from better mappings compared to state-of-the-art. The work enables managing
many-core systems that exhibit rapid and spontaneous workload variations while
still maintaining high mapping quality. The on-the-fly application performance
estimation is used by the distributed resource management presented in the next
Chapter and due to its low overhead allows to keep resource management latency
low.
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5. Runtime Resource Management
for Many-Cores

This Chapter is based on the following publication:

[KBL+11] S. Kobbe, L. Bauer, D. Lohman, W. Schröder-Preikschat, and J. Henkel.
DistRM: Distributed resource management for on-chip many-core systems.
In Proceedings of the IEEE International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 119–128, 2011.

Mapping multiple applications to a set of cores and adapting each application to
the allocated cores (e.g. by choosing a different algorithmic implementation or by
increasing/decreasing the degree of parallelism) is key for an efficient utilization of
the computation resources in many-core systems. Mapping applications means to
(re-)allocate a subset of cores CAi ⊆ C to each application Ai such that no core
is assigned to two applications at the same time, i.e. for all Ai, Aj with i 6= j,
CAi ∩ CAj = ∅. The goal of runtime resource management is to dynamically select
these subsets CAi in a way that follows a predefined optimization goal (see Section 1.2).

Systems with hundreds or thousands of cores integrated on a single chip (see
Section 2.1) span a huge solution space – the problem of optimal mapping of parallel
applications to cores is known to be NP-complete [CGJ78]. The size of the search
space for an optimal mapping grows factorial with the number of cores [MMCM07].
With high dynamic workloads (i.e. resource demands that are not known a priori),
these mappings cannot be predetermined and need to be decided online.

The challenge in resource management is to a) achieve high application mapping
quality with respect to the optimization goal while at the same time b) keeping the
associated overhead and the latencies of computing the application mapping low.
In general, runtime resource management should find an efficient trade-off between
application mapping quality and the resource management overhead introduced to
the system.

This Chapter presents the distributed resource management developed in the scope
of this thesis which is able to flexibly react to changes of the resource demands of
applications by adaptively selecting the employed resource management strategy.
Thereby, it is able to find a good initial mapping of applications fast and to optimize
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the application mapping gradually with a very low overhead. It uses the concept
of a Multi-Agent-System (see Section 2.3) to achieve scalability by focusing on
local decision making based locally available information. The Chapter first gives
an overview on related work (Section 5.1) and on the targeted optimization goals
(Section 5.2). It then shows how mapping decisions may be made in a centralized
fashion (Section 5.3). The resulting latency from centralized decision making is
analyzed to motivate the need for scalable resource management. In the rest of
this Chapter, the distributed resource management for many-cores that has been
developed in the scope of this thesis is presented.

5.1. Related Work

A large body of research work has been conducted in the area of resource management
for many-core systems. These works can be classified into offline (e.g. [JSCT08,
MMCM07, KKJC02, BK90]), mixed approaches that utilize offline pre-calculated
mappings that are selected at runtime (e.g. [SBR+12, HMS+11, SGB+09]), and
online approaches (e.g. [ATBS13, YGSP13, SLS07, DA06]).

If the workload of a system is known at design time and if it does not change at
runtime, the mapping can be decided offline for malleable as well as for fixed-size
applications (see Section 2.2). An optimal (e.g. [JSCT08]) or near-to-optimal solution
can be found by applying exhaustive and stochastic search methods and heuristic
approaches [MMCM07, KKJC02]. To speed up the offline search, parallel approaches
have been presented [BK90].

However, all offline approaches are based on a priori knowledge about all possible
system states and thus they cannot react to unforeseen situations or interactive
operation of the system. Especially if the workload varies dynamically [CCD+08],
offline approaches cannot be applied.

Mixed approaches address this situation by pre-calculating possible application
mappings and then select the appropriate mapping at runtime. This also means
that all applications that should be executed and all possible combinations thereof
must be known a priori, however, the sequence of execution can vary. In [SGB+09],
a compositional heuristic to solve the multi-dimensional multiple-choice knapsack
(MMKP) problem, that models application mapping, is presented. The heuristic
is based on an offline analysis of the Pareto optimal mappings for all applications.
There is one central instance in the system that selects the best application mapping
from the pre-calculated solutions at runtime. Dynamic workloads (i.e. applications
that dynamically change their resource demands [CCD+08]) are not supported. In
[SBR+12], the “distributed application layer” is presented which is scalable as it uses
a hierarchy of monitoring and controlling infrastructure. However, all application
mappings are offline pre-calculated for any combination of applications that should
be executed. Therefore, the approach is also unsuitable for dynamic workloads.
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Pure online application mapping approaches are able to react to changes in the
workload of the system by adjusting the application mapping for combinations of
different applications that may not be known at design-time, i.e. the application
mapping is not predetermined but decided at runtime. Usually, online mapping ap-
proaches trade off application mapping quality against scalability and computational
feasibility. If the number of cores in the many-core system allows for centralized
resource management, approaches like [SLS07, YGSP13] achieve considerably good
application mappings. However, their computational complexity hinders their utiliza-
tion for many-core systems. Parallel approaches utilize multiple cores to speed up the
application mapping. For instance [SS11] relies on a parallel binary search to decide
the number of cores to allocate to each application, however, it only decides on the
number of cores to allocate to each application and does not consider the topology of
the resources. In the following Subsections, selected approaches for online resource
management from different domains are presented.

5.1.1. Grid- and Cloud-Computing

The idea behind grid computing is to make computation resources of many different
and often geographically distributed computers available to highly parallel appli-
cations and to create a big virtual computation environment [BFH03, FK03]. The
applications typically stem from the domain of scientific computing. To use a grid
for an application, the computation must be separable into many individual work
packages that then are scheduled to the computers allocated to the application in the
grid. This easily allows the applications to be malleable, which – despite the totally
different computation platforms – creates similarities to the application model and
also the resource management presented in this thesis.

Resource management in a grid is typically part of the middle-ware, whereof
centralized as well as distributed approaches exist [DA06]. For instance AppLeS
[BWC+03] (Application Level Scheduling) uses a distributed approach to allocated
resources in a grid to applications. Each application aims at optimizing its own
execution efficiency. Therefore AppLeS incorporates static and dynamic resource
information, performance predictions, application and user-specific information, and
scheduling techniques that adapt to application execution on-the-fly [BWC+03]. A
brief overview on the steps involved in AppLeS is shown in Figure 5.1. An economy
based bargaining for resources in a grid has been presented in Nimrod/G [BAG00]
which tries to find sufficient resources to meet the application’s deadline, and adapts
set of computers it is using for each application depending on the competition among
other applications for them.

Both (and most other resource managers for grid computing) rely on the Globus
toolkit [Fos01], a layered architecture in which high-level global services are built
on top of distributed local services, e.g. the Globus Resource Allocation Manager
(GRAM) [CFK+98] that uses an abstract resource description language to perform
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Figure 5.1.: Resource management performed per application in the AppLeS grid
management. Resource discovery and selection rely on the Globus toolkit
[Fos01] (adapted from [BWC+03])

resource allocation, or the Globus Metacomputing Directory Service (MDS) [FFK+97]
that provides dynamic information on the state and structure of the grid to resource
brokers like AppLeS or Nimrod/G for resource discovery. However, these approaches
tend to involve a large computational effort and they demand many communication
resources for resource management. This disadvantage of large overhead can be
tolerated as in difference to the resource management developed in the scope of this
thesis, application (re-)mappings are executed infrequently and applications tend
to execute for multiple hours or even days. That is why these approaches are not
applicable in highly dynamic systems where frequent changes in the workload (as
expected for next-generation processing platforms [CCD+08]) are targeted.

The idea behind cloud computing [FZRL08] is different from grid computing –
cloud computing provides on demand centrally managed computation resources to
applications for a dynamic fee. Computation resources are made available in the
form of virtual computers that are instantiated if the application requires additional
resources and released afterwards. The mapping of virtual computers to physical
resources is transparent to the application. Initializing a new virtual computer is
not instantaneous; cloud hosting platforms introduce several minutes delay in the
hardware resource allocation [IKLL12]. The virtual computers can be used to form
a grid computing environment or to (temporary) extend an existing grid [OPF09].
Assuming that the cloud provider provides “unlimited” computation resources,
the goal of resource management is no longer to provide the best performance
to an application but to meet the desired application performance at the lowest
cost. Resource management approaches for cloud computing (e.g. [ZA10]) typically
optimize towards this goal by predicting the workload and adapting the resource
allocation respectively.
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5.1.2. The Multi-Application Multi-Step Mapping Method

The Multi-Application Multi-Step (MAMS) mapping method for many-core sys-
tems presented in [YGSP13] represents a centralized runtime resource management
heuristic for many-core systems. Similar to the resource management presented in
this thesis, MAMS first selects and allocates a set of cores CAi to each application
Ai before the application tasks are mapped to these cores. MAMS itself does not
support malleable applications – in Section 5.3.2, MAMS is combined with [SLS07]
to realize a centralized resource management that supports malleable applications.

In [YXSP10] the weighted communication of an application (WCA) is defined as
the sum of the products of the communication volumes of the messages sent between
all tasks of the application Ai and the communication distance between the cores to
which the tasks have been mapped. In [YXSP10], the WCA is used as optimization
function to achieve a good application performance. However, determining the WCA
of an application Ai given an allocation of cores CAi requires to first map the tasks
to the cores, a computationally intensive operation that hampers the evaluation of
many different allocations. MAMS [YGSP13] picked up the idea of minimizing the
WCA to optimize the application performance, without mapping the application
tasks. To achieve minimized WCAs, the selection of CAi works by finding empty
rectangles on the chip that can accommodate the applications Ai. Cores within a
rectangular area of the chip are spatially close to each other and therefore result in
small WCAs. The implicit optimization of the communication latencies is achieved
by focusing on rectangles as square as possible. With other words: the problem of
application mapping is turned into the problem of managing empty rectangles on a
2d-mesh network, similar to the problem presented in [BKS00].

5.1.3. Distributed Management for Malleable Applications

The distributed resource management presented in [ATBS13] shares the application
model, and the system model, and parts of the management protocol with the first
incarnation of the distributed resource management DistRM [KBL+11] presented in
this thesis. The application mapping is performed online, with support for malleable
applications. The work presented in [ATBS13] does not rely on a central instance
that facilitates application mapping. Instead, it uses multiple dedicated cores for
resource management.

The many-core system is divided into multiple regions of same size. One dedicated
core per region is responsible for managing the cores within the region that are
momentary not allocated to an application and for maintaining a list of applications
that do have cores allocated in the region. Additionally, each application uses one
dedicated core to manage its own cores and the adaptation of the application to the
allocated cores, similar to the Agents that are used in this thesis. The use of dedicated
cores for resource management allowed to simplify the resource management protocol
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and thus the communication overhead compared to DistRM [KBL+11]. However,
Chapter 6 will show that due to the relative large size of the regions, the overall
computation overhead is higher. Due to the dedication of multiple cores to resource
management, less cores are available for application execution. [ATBS13] is evaluated
in detail in Section 6.4.2.

5.2. Resource Management Optimization Goals

Resource management decisions following an global optimization goal. In this thesis,
the decisions are steered by a so-called utility function which is used to calculate a
comparable value for the utility UAi,Pj (Cx) of a set of cores Cx for application Ai
in phase Pj. The term utility function is adopted from economics and describes
the “ability of a commodity to satisfy needs or wants”. The notion of UAi (Cx)
refers to the utility of the core for application Ai in its momentary active phase.
To compare different application mappings, the mapping quality Q (A1, A2, . . . , AM)
is used to express the overall application mapping quality, where a higher value of
Q (A1, A2, . . . , AM) means a better fulfillment of the targeted global optimization
goal.

The optimization goal can be changed without modifying the presented protocols
and algorithms, e.g. towards an optimization of energy consumption or, by including
dynamic system monitoring information, towards an optimization of system health
(e.g. by avoiding hot regions of the chip). Depending on the selected optimization
goal, UAi (Cx) and Q (A1, A2, . . . , AM) have to be defined.

In the scope of this thesis, two goals are presented: a) the maximization of
the average speedup of all concurrently executed applications (Section 5.2.1), and
b) the minimization of the make-span of all concurrently executed applications
(Section 5.2.2).

5.2.1. Maximization of the Average Speedup

The maximization of the average speedup of the concurrently executing applications
leads to an efficient (efficiency is defined as the achieved speedup per core, see
Equation (3.4)) operation of a many-core system, especially in cases with highly
dynamic workloads. The average overall speedup SaverageA1,A2,...,AM

is calculated as shown
in Equation (5.1), the resulting optimization goal is straight forward: maximize
the average speedup as shown in Equation (5.2). The resulting mapping quality
QSaverage (A1, A2, . . . , AM) (Equation (5.4) equals the average speedup SaverageA1,A2,...,AM

of
all concurrently executing applications. The maximization of the average speedup
of the concurrently executed applications leads to the reduction of the average
turnaround time of applications. The turnaround time is one of the metrics used to
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evaluate operating system scheduling algorithms [FR98] and is defined as the time
span between the time T readyAi

an application Ai is ready for execution and the time
TmakeAi

the application finished computation.

SaverageA1,A2,...,AM
=

M∑
i=1

SAi (CAi)

M
(5.1)

Optizimation Goal: maximize SaverageA1,A2,...,AM
(5.2)

Application Mapping Quality: Q
Saverage

Ai
(CAi) = SAi (CAi) (5.3)

Overall Mapping Quality: QSaverage (A1, A2, . . . , AM) = SaverageA1,A2,...,AM
(5.4)

U
Saverage

Ai
(Cx) =

{
SAi (CAi)− SAi (CAi \ Cx) if Cx ⊆ CAi
SAi (CAi ∪ Cx)− SAi (CAi) if Cx 6⊆ CAi

(5.5)

The utility function U
Saverage

Ai
(Cx) expresses the gain in speedup application Ai

receives from using the cores Cx. It is directly based on the application performance
model presented in Chapter 4. As shown in Equation (5.5) the utility function

U
Saverage

Ai
(Cx) is calculated by subtracting the achievable speedup of application Ai

without using the cores in Cx from the achievable speedup when additionally using
the cores in Cx. Depending on whether the set of cores Cx is already allocated to
application Ai (i.e. Cx ⊆ CAi), Cx is imaginary removed from/added to CAi .

5.2.2. Minimization of the Make-Span

The make-span TmakeA1,A2,...,AM
of a set of applications {A1, A2, . . . , AM} is defined as the

latest completion of any of these applications, as shown in Equation (5.6). Minimizing
the make-span (Equation (5.7)) is meaningful in batch-processing situations where a
batch of applications is started at the same time and the completion of all applications
is required in order to obtain the result or start the execution of the next set of
applications. Obviously, the mapping quality QTmake (A1, A2, . . . , AM) is better, the
lower the make-span TmakeA1,A2,...,AM

is. As the mapping quality is defined as “higher is
better”, the reciprocal value of TmakeA1,A2,...,AM

is used to describe the mapping quality

QTmake (A1, A2, . . . , AM) as shown in Equation (5.9).
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An optimization of the make-span is only possible, if all applications are able
to estimate T finishAi

(CAi) based on the relative progress pAi , the total execution

time T#
Ai

(1) of the application on one core, and the estimate of the momentary

speedup SAi (CAi) (see Equation (3.5)). The utility function U
Tmake

Ai
(Cx) is based

on T finishAi
(CAi). As shown in Equation (5.10) the utility function U

Tmake

Ai
(Cx) is

calculated by subtracting the time application Ai requires to complete computation
when using the cores in Cx from the time required when not using the cores in Cx.
Depending on whether the set of cores Cx is already allocated to application Ai (i.e.
Cx ⊆ CAi), Cx is imaginary removed from/added to CAi .

TmakeA1,A2,...,AM
= max

i∈{1,...,M}
T finishAi

(CAi) (5.6)

Optizimation Goal: minimize TmakeA1,A2,...,AM
(5.7)

Application Mapping Quality: Q
Tmake

Ai
(CAi) =

1

T finishAi
(CAi)

(5.8)

Overall Mapping Quality: QTmake (A1, A2, . . . , AM) =
1

TmakeA1,A2,...,AM

(5.9)

U
Tmake

Ai
(Cx) =

{
T finishAi

(CAi \ Cx)− T
finish
Ai

(CAi) if Cx ⊆ CAi
T finishAi

(CAi)− T
finish
Ai

(CAi ∪ Cx) if Cx 6⊆ CAi
(5.10)

5.3. Centralized Resource Management

With a given optimization goal (Section 5.2), a performance estimation function
(Chapter 4) and constraints (Section 1.2), resource management basically means
to solve the resulting optimization problem. Due to the NP-completeness of the
problem [CGJ78] and the factorial growth of the search space [MMCM07], it is not
possible to solve the problem optimally at runtime for large many-core systems.
Therefore, heuristics are required. This Section presents two heuristics for resource
management. Both always aim at the globally best solution – potentially resulting
in big changes in the mapping whenever an application begins a new phase with
different computational demands, or an additional application is executed on the
system, or an application terminates.
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5.3.1. Hill-climbing Optimization

The first heuristic is a hill-climbing optimization that achieves the resource allocation
by greedily (re-)allocating the cores in C among the applications {A1, A2, . . . , AM} as
long as this (re-)allocation improves the overall mapping quality Q (A1, A2, . . . , AM)
determined by the respective optimization goal. The respective commented pseudo-
code is presented in Listing 5. In contrast to a simple greedy allocation that allocate
each core only once to the momentary best application, the resulting mappings
consider the dependency of the application performance and the spatial distribution
of the cores (see Section 4.4) by repeatedly reallocating cores until no improvement
in Q (A1, A2, . . . , AM) is achieved.

5.3.2. Iterative Optimization

The second heuristic is actually a combination of the heuristics presented in [SLS07]
which is used to decide the number of cores to allocate to each application, and
the MAMS heuristic presented in [YGSP13] which is used to actually map the
applications to the many-core system (see Section 5.1.2). The first heuristic has
been chosen because it produces competitive, near-to-optimal resource allocations
for malleable applications for a broad range of input data without the need for
fine-tuning [SLS07]. It is an iterative greedy selection scheme that achieves efficient
resource utilization, as cores are not wasted on poorly scalable applications. Listing 6
shows the respective pseudo code, adapted from [SLS07].

Use [SLS07] to decide 
on number of cores 

Greedy distribution of 
remaining cores 

Use [YGSP13] to map 
applications 

Figure 5.2.: Combination of [SLS07] and [YGSP13] to achieve an application mapping

Listing 6 itself does not create mapping decisions. A mapping heuristic algorithm
like MAMS [YGSP13] needs to be applied to achieve an actual mapping of the
applications to the cores on the chip – Figure 5.2 shows the resulting application
mapping flow which is used in this thesis. First Listing 6 is used to decide on the
number of cores that should be allocated to each application. Then, the MAMS
application mapping method [YGSP13] is used to map the applications to cores. As
this might lead to cores not allocated to any application, these remaining cores are
greedily allocated to the applications.
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Listing 5: Centralized Hill-climbing Application Mapping

Input: Initial application mapping {CA1 , CA2 , . . . , CAM} for a set of
applications {A1, A2, . . . , AM}, and the respective utility functions
UAi (·)

Output: Updated application mapping {CA1 , CA2 , . . . , CAM}

gain ←∞;
while gain > 0 do

ratingbefore ← Q (A1, A2, . . . , AM);

// Analyze for each core in the system, whether it would be

better to (re-)assign it to a different application

foreach c ∈ C do
Amax ← —;
utilitymax ← 0;
// Select application Amax with the highest utility for c
foreach Ai ∈ {A1, A2, . . . , AM} do

utility← UAi ({c}); // see Section 5.2

if utility > utilitymax then
utilitymax ← utility;
Amax ← Ai;

end

end
// Select application Aj that c is momentary allocated to

Aj ← {A1, A2, . . . , AM} | c ∈ CAj ;
if Aj 6= Amax then

// Reallocate the core from Aj to Amax
CAj ← CAj \ {c};
CAmax ← CAmax ∪ {c};

end

end
ratingafter ← Q (A1, A2, . . . , AM);

gain← ratingafter − ratingbefore;

// if gain > 0 then the (re-)allocation resulted in an better

fulfillment of the optimization goal and another

optimization is attempted

end
return {CA1 , CA2 , . . . , CAM};
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Listing 6: Iterative Greedy Optimization Algorithm [SLS07]

Input: Set of applications {A1, A2, . . . , AM} and the respective utility
functions U#

Ai
(·)

Output: Suitable number of cores |CAi| to allocate to each application

foreach application Ai do
|CAi | ← 1; // allocate one core to Ai
unmark(Ai);

end
while unmarked application exists and cores available do

Greedily choose application Aj that would benefit the most from an

additional core using U#
Aj

(·);∣∣CAj ∣∣← ∣∣CAj ∣∣+ 1; // allocate one additional core to Aj
Calculate finishing time of all applications;
if overall finishing time did not improve then∣∣CAj ∣∣← ∣∣CAj ∣∣− 1; // Aj does not improve the total finishing

time

mark(Aj);
Recalculate finishing time of all applications;

end

end
return {|CA1| , |CA2| , . . . , |CAM |};
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5.3.3. Latency in Centralized Resource Management

Both presented heuristics solve the optimization problem at runtime. When ignoring
the communication overhead (i.e. all application information is available to the
resource manager and the mapping decisions are not communicated back to the
applications), the decision latencies only consist of the time required to compute
the mapping heuristics. To get an idea of these latencies, both heuristics have been
implemented and benchmarked on one core of an Intel Core i5-4550 CPU. The
average resulting computation latency of both heuristics for various combinations
of system sizes (number of cores N) and numbers of applications M is shown in
Figure 5.3. The pure computation latency to determine an application mapping
in a 1024 (32x32) core system with e.g. 48 concurrent applications is in the order
of seconds. As the mapping has to be calculated whenever the resource demands
of applications change, this limits the adaptability of the resource management.
Especially for starting new applications, these latencies are significant. Obviously,
the CPU used to benchmark the heuristics is more powerful than a typical core
embedded in a Many-Core System. Therefore the presented values only show the
lack of scalability and are expected to be even higher when executed on a weaker
CPU core. Additional communication delays worsen the total resource management
latencies. However, the measurements also show that for smaller Many-Core systems,
the scalability of the algorithms for lower numbers of cores is sufficient.
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Figure 5.3.: Time required (in ms) to make a mapping decision, measured on an
Intel Core i5-4550 for the two presented centralized mapping heuristics:
a) Iterative optimization and b) Hill-climbing optimization
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5.4. Scalable Distributed Resource Management

As shown in Section 5.3.3, centralized resource management imposes scalability issues
when applied to Many-Core systems. A viable approach to achieve scalability is to
decouple the optizimation problem from the number of cores N in the system and
to parallelize the problem. Therefore, to achieve a high degree of scalability of the
resource management, one local resource manager is employed per application for a)
managing the cores CAi of the respective application Ai, and b) communicating the
related resource demands to the other resource managers with the goal to achieve a
chip-wide coordinated resource management.

The resource management is achieved by a Multi-Agent-System, as introduced
in Section 2.3. Compared to centralized resource management, this reduces the
computation complexity of resource management, as per mapping decision, only
a subset of the system resources and applications is considered which reduces the
decision latencies significantly. Agents do not demand system-wide synchronization
or knowledge of the global system state. Interaction and communication takes place
locally to avoid communication bottlenecks to ensure scalability.

In the scope of this thesis two different strategies for Agent based resource man-
agement and a combination of both strategies to an adaptive strategy have been
developed:

� The DistRM strategy [KBL+11] is presented in Section 5.4.3

� The low-effort strategy optimized for fine-tuning an existing application map-
ping is presented in Section 5.4.5

� The adaptive strategy selection AStra that dynamically selects which strategy
to use is presented in Section 5.4.6

In all cases, the immediate goal of the Agents interactions is the pairwise re-
allocation of cores to/from applications Ai and Aj to optimize the combined mapping
quality of both applications with the adjusted sets of cores C ′Ai and C ′Ai is higher
than the mapping quality CAi and CAj with the sets of cores before the re-allocation,
as shown in Equation (5.11). The targeted optimization goal is defined by QAi

(CAi),
as shown in Section 5.2. For system-wide coordinated allocation of cores, Agents are
selfless and cooperative, i.e. they strictly follow the global optimization goal.

QAi

(
C ′Ai
)

+QAj

(
C ′Aj

)
≥ QAi

(CAi) +QAj

(
CAj

)
(5.11)

Agents repeatedly and continuously perform application mapping optimizations.
This follows the idea of gossip protocols as presented in Section 2.3.2, i.e. the
continuous optimization of the allocation of subsets of cores to applications eventually
converges the global state to an optimal solution almost surely [RNV09, WZT13].
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As the delay between individual optimization trials has influence on the application
mapping quality as well as the resource management overhead (see Section 6.2.2),
AStra (presented in Section 5.4.6) uses an adaptive delay to automatically achieve a
good trade-off.

5.4.1. Multi-Agent System Infrastructure

To implement the Multi-Agent-System, some infrastructure is necessary. It is carefully
designed in a way that it does not hamper the scalability and in that it keeps the
overhead low.

Proxy Agents

One part of the infrastructure is executed on each core and acts as a proxy for the
Agent that momentarily allocated the core. The proxy Agent knows where the actual
Agent is located, i.e. the core where the Agent code runs and where the Agent’s data
structures reside. Note that the Agent responsible for an application that executes a
task on core ci might actually execute on another core cj. The proxy infrastructure
on core ci is able to forward messages sent by other Agents to its Agent on core cj.
This mechanism allows communicating with the Agent that allocated a certain core
without knowing the Agent’s location. When the set of cores allocated to Ai changes,
only the infrastructure information at the respective cores in CAi is updated.

Distributed Directory Service

A distributed directory service contains the information, which Agents have acquired
cores within a certain region on the chip. One of these directories is instantiated
per region of 25 cores each in a 5x5 core grid, as sketched in Figure 5.4. Whenever
an Agent initially allocates one of the cores within the region to its application, it
registers itself at the corresponding directory. When it releases the last core from the
region, it updates the directory accordingly. The resulting protocol state machine is
shown in Figure 5.5. The directory does not contain information on which cores or
how many cores the Agents manage within the region. Directories do not exchange or
synchronize information. These limitations support the scalability, as all information
is kept local at any point in time. Due to the reduced amount of information stored
in the directory, updating causes only negligible overhead.

Management of Idle Resources

Another part of the infrastructure is a special kind of Agents that manage the idle
cores Cidle of the system, denoted as Idle-Agents. At system initialization, all N cores
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Figure 5.4.: Sketch on how the Agents register themselves at the distributed directory
service and on how the directory service is spread throughout the Many-
Core system

Idle

Register Agent
-
/
A
C
K

R
E
G
/
-

Un-Register Agent

U
N
R
E
G
/
-

-
/
A
C
K

Register AgentQuery Agents

D
R
E
Q
/
-

-
/
D
I
N
F
O
*

Figure 5.5.: Protocol State Machine used for the distributed directory service. There
is no synchronization between directories

Message Definitions

REG Registers an Agent at the directory. Registration takes place
as soon as the first core inside the directory area is allocated to
the Agent

UNREG Removes an Agent registration from the directory service. Un-
registration takes place when the Agent released the last core
inside the directory area

DREQ Requests information from the directory
DINFO Message containing information on which Agents are registered

at the directory. It does not contain information on which
cores the respective Agents have allocated, as this information
is not stored in the directory

ACK Generic acknowledgment
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in C are distributed among the Idle-Agents. One Idle-Agent is instantiated per 25
cores (5x5 core grid) to reduce the number of cores each Idle-Agent initially manages.
Whenever an application terminates, the applications Agent turns into an Idle-Agent.
Similarly, when an Idle-Agent has no more cores to manage, it terminates. The
concept of Idle-Agents allows to use the presented protocols without a special case
for idle cores – there is always a responsible Agent for any core in the system.

Application 
Agent Idle-Agent 

Application terminates Lost last core 

Application initialization 

System initialization 

Figure 5.6.: State transitions of an (Idle-)Agent

5.4.2. Application Interface

Each Agent manages the set CAa of the cores that it has allocated to its appli-
cation Aa. Each Agent is able to evaluate the utility UAi (CAi) of the cores CAa
(and additional/different cores) momentarily allocated to its application Aa for the
momentary phase Pj because it knows the parameters of the application performance
model SAi,Pj , and the best suited number of cores NΦmax

Aa,Pj
of the current phase. The

Agent is triggered by its application Aa by an APP REQ signal whenever these pa-
rameters change, i.e. when a new phase is about to begin. The Agent informs its
application about the availability of additional cores and cores that must no longer
be used, e.g. when they got reserved for another application. The application sends
a core available signal as soon as the task currently mapped to such a core has
completed execution. Whenever the set of cores CAa changes, the Agent informs its
application, such that the application can use additional or different cores. Figure 5.7
depicts the interface between an application and its Agent.

The application marks cores as ‘used’, as soon as a task is mapped to it. Whenever
the interaction between two Agents results in a re-allocation of cores that are marked
as ‘used’ from application Aa to another application Ab, these cores are marked as
‘reserved’. As soon as the tasks of Aa that use the reserved cores finish execution, the
cores are removed from CAa and the Agent of Aa informs the Agent of Ab regarding
their availability to complete the re-allocation. Listing 7 shows the respective pseudo
codes.
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…   Application 𝐴𝑎  Agent 

APP_REQ(𝑆𝑃, 𝑁𝑃𝛷) 

GAIN_CORE 

LOSE_CORE 

CORE_AVAILABLE 

Task Finished 
Other Agents 

Figure 5.7.: Interaction of Applications and their Agents

Listing 7: Application - Agent Interface

SignalApplicationGainCore(cg):
if new Task T ready then

flags[cg].set(used);
StartTask(T on cg); // reconfigure application

end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SignalApplicationLoseCore(cl):

if flags[cl].isSet(used) then
flags[cl].set(reserved);
SignalTaskTermination(T on cl); // reconfigure application

end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SignalTaskFinished(cf):

flags[cf ].clear(used);
if flags[cf ].isSet(reserved) then

SignalAgentCoreAvailable(cf );
flags[cf ].clear(reserved);

else
if new Task T ready then

flags[cf ].set(used);
StartTask(T on cf ); // reconfigure application

end

end
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5.4.3. Strategy for Coarse Changes - DistRM

On top of the presented infrastructures, the Agents use different strategies respectively
protocols to perform the resource management. The first presented strategy for
coarse changes – DistRM [KBL+11] – is used by the resource management Agents
to send requests for core re-allocations to larger regions Creq on the chip as shown in
Figure 5.8. A region of size r is a set of cores Creq that is defined as core cc and all
cores that are within a Manhattan distance1 of r to core cc.

Request Offers Result Confirmation 
        

Core used by: Application B Application C Requested Core(s) Application A 

Figure 5.8.: Sketch on the DistRM strategy: Application B’s Agent requests a region,
collects replies from affected Agents, and decides which cores to re-
allocate to its application

Each request contains information about the current mapping CAreq of the re-
questing Agent’s application Areq as well as the parameters of the speedup function
(see Chapter 4) of the momentary application phase Pj. All Agents that already
allocated some of the cores in that region to their application receive the request
through the Agent System infrastructure (see Section 5.4.1) and evaluate, whether
or not the cores in Creq are more beneficial to the requesting application Areq than
for the own application. The requesting Agent collects the replies that contain the
information about which cores Coffered could potentially be re-allocated to its appli-
cation Areq and then chooses among all these cores which ones to finally re-allocate.
A confirmation is sent to each participating Agent and thus, the local application
mapping quality for the requested region is improved.

Multiple of these local optimizations may take place in parallel, leading to a
fast (re-)allocation of cores to applications. The re-allocation latency (but also the
computational complexity for generating the replies and for selecting cores from
multiple replies) grow quadratically with the number of cores in the requested regions
Creq. However, the computational complexity is independent of the size of the
many-core system, which makes it scalable for future systems. The fast re-allocation
of multiple cores between applications makes this strategy suitable to coarse changes

1The Manhattan distance equals the sum of the horizontal and vertical hops used to get from one
point to another in a mesh network, see Equation (3.2).
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in resource demands (e.g. initial application mapping as shown in Section 5.4.4 or
executing a highly parallel phase after an almost sequential one that resulted in an
allocation of only a few cores to the application).

Application 𝐴𝑟𝑟𝑟 

Requesting 
Agent 

Agent Agent 

Application 𝐴𝑥  Application 𝐴𝑦 

Distributed    
Directory 

… 

… 

… 

1 

2 

6 

7 

10 

3 

5 5 

4 8 

9 

Figure 5.9.: Interaction of the components of the resource management while request-
ing new cores for application Areq

Figure 5.9 presents a flow through the individual components of the Agent System
when using the DistRM strategy. In the first step 1O the application Areq informs its
Agent about changing resource demands by sending an APP REQ signal. The Agent
then chooses regions on the chip to allocate cores there 2O, as detailed later. In each
trial, a limited number of regions on the chip are requested in parallel. Therefore,
the Agent of Areq looks up those Agents that momentarily manage cores in that
region 3O and then requests these Agents 4O to evaluate which of the cores allocated
to their applications could be allocated to the application of the requesting Agent
5O (see Section 5.4.3). They send their offers Coffer (containing the parameters that

describe the speedup function (see Chapter 4) of their momentary application phase)
back to the requesting Agent 6O. Multiple offers are evaluated by the requesting
Agent 7O. All cores Cselected ⊆ Coffer that help increasing the overall application
mapping quality are allocated to the requesting application Areq, as detailed later.
Note that not all offered cores are chosen, e.g. if the Agent has received multiple
offers or its own application’s situation has changed. The Agent then informs offering
Agents, whether or not their offer had been selected for re-allocation of cores between
the applications and which cores are affected 8O. The Agents that were selected
to release cores inform their own applications to reconfigure and resize 9O while in
parallel the requesting application Areq is informed 10O and reconfigures itself for its
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new set of cores CAreq ∪ Cselected.

A more general description of the DistRM strategy is given by its protocol state
machine shown in Figure 5.10. It specifies the legal usage and sequence of the
different messages and signals.

DistRM: Request Region Selection

The Agent first examines regions Creq spatially close to its own position on core
ca, but with each iteration, the probability to use more distant regions increases.
The search is performed in a loop until at least one core is offered to the requesting
application Areq. As the Agent is not aware of the global system state, it randomly
selects Creq1 , . . . , Creqm as PotentialRegions on the chip and aims allocating cores.
Up to MAX PAR REQS requests are performed in parallel to speed up the search.
Therefore, first the Agent randomly selects multiple potential regions on the chip and
then performs a pre-selection of regions before initiating the actual requests. To reduce
the average communication distance, regions close to the seed core ca are preferred in
the pre-selection process. The longer the Agent (unsuccessfully) tries to allocate cores
for its application Areq, the higher the probability becomes to use regions that are
more distant from the seed core ca. Therefore, nearby (visualized as ’avoided distance‘
in Figure 5.11) regions are removed from the list of potential regions with an always-
increasing probability, as the Agent most probably examined them before. Note that
– with a low probability – not all nearby regions are removed from PotentialRegions
to account for changes in the application mapping situation that might result
in successful requests in later trials. If more than MAX PAR REQS regions
remain within PotentialRegions, the most distant remaining ones are removed,
too. Figure 5.11 shows a sketch on how this leads to an continuous exploration of
different regions on the chip around the core ca. Listing 8 shows the pseudo code
that implements the described behavior.

DistRM: Request Handling

A greedy heuristic is deployed to decide which of the cores Coffer of applica-
tion Aofferer are offered to Areq if the Agent of application Aofferer receives a request.
The key idea is to re-allocate the cores within a given region to the applications
such as the total gain gaintotal = gainAreq − lossAofferer is maximized (see Listing 9).
To calculate the respective gain and loss, The utility function UAi (Cx) is used to
pursue the global optimization goal as shown in Section 5.2. The selection of cores
continues until gaintotal is maximized, i.e. when the selection of another core creq
results in a lower value than the so far achieved gaintotal All offered cores Coffer
are reserved for the Agent of the requesting application Areq. The reservation is
removed after the Agent received the decision, which (if any) of the offered cores are
re-allocated to the requesting application Areq.
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Figure 5.10.: Protocol State Machine for the DistRM Strategy

Message Definitions

APP REQ Signal emitted by the application to trigger the resource man-
agement to update the resource allocation to the resource de-
mands of the application, e.g. when a new phase is about to
begin

REQUEST Message containing a parametric description of the resource
demands of the application (i.e. the parameters of the appli-
cation performance model) and a description of the resources
currently allocated to the application. Receiving Agents reply
with an OFFER message

OFFER Message containing a set of cores Coffered that might be trans-
fered to the requesting application together with a parametric
description of the respective costs

ACCEPT Message sent to an offering Agent when offered Resources
should be transfered to the requesting application

REJECT Message sent to an offering Agent when none of the offered
Resources should be transfered to the requesting application to
allow the release the respective reservations

OK Generic signal that the action succeeded
NOT OK Generic signal that the action failed

DONE Generic signal that the action completed
ACK Generic acknowledgment

NACK Generic negative acknowledgment, i.e. the request failed
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Listing 8: Selection regions the Agent use to allocate cores in

Input: Core ca that was chosen as seed core for searching resources for
application Areq

Output: A set of Offers that contain possible cores to allocate to Areq

tries← 0;
Offers← ∅;
while Offers = ∅ and tries < MAX TRIES do

tries← tries+ 1;
PotentialRegions← selectRandomRegions();
// Randomized elimination of regions to request resources in.

The longer the Agent searches, larger distances are

allowed, i.e. with a growing probability nearby regions

are removed

foreach Creq ∈ PotentialRegions do
if distance(Creq, ca) < (tries ∗ MAX DIST

MAX TRIES
) and rand(0, 1) >

(1/tries) then
PotentialRegions = PotentialRegions− Creq ;

end

end
// Now remove the most distant potential regions

while |PotentialRegions| > MAX PAR REQS do
remove most distant Creq from PotentialRegions;

end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
// request ‘offers’ for cores in the remaining regions

foreach Creq ∈ PotentialRegions in parallel do
SendMessage REQUEST(Creq);

end
wait until timeout or until all OFFER messages have been received;
foreach Offer ∈ received OFFER message do

Offers← Offers ∪Offer;
end

end
return Offers;
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Listing 9: Algorithm used by DistRM to handle a request

Input: Incoming request for cores in Cregion from Areq, containing the utility
function UAreq (·)

Output: The set of cores Coffered that Application Aofferer offers to Areq

Coffered ← ∅;
gaintotal ← 0;
gainiteration ← 0;
repeat

gainiteration ← 0;

foreach Core creq ∈
((
CAofferer \ Creservations

Aofferer

)
∩ Cregion

)
\ Coffered do

gainAreq ← UAreq (Coffered ∪ creq); // see Section 5.2

lossAofferer ← UAofferer (Coffered ∪ creq);
if gainAreq − lossAofferer > gainiteration then

gainiteration ← gainAreq − lossAofferer ;
cGreedyChoice ← creq;

end

end
if gainiteration > gaintotal then

Coffered ← Coffered ∪ cGreedyChoice ;
end

until gainiteration < gaintotal;
Creservations
Aofferer

← Creservations
Aofferer

∪ Coffered; // reserve until confirmation

return SendMessage OFFER(Areq, Coffered);
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1st try 2nd try 3rd try 4th try 

Seed Core 𝑐𝑎 Core within the avoided distance 

Middle of a potential region Requested potential region  

Figure 5.11.: Sketch on how the area around core ca in which regions Creq are
probabilistically removed from the potential regions grows with each
unsuccessful trial. This leads to an continuous exploration of different
regions on the chip around the core ca while nearby regions are re-
requested with a low probability

DistRM: Selection of Cores from Offers

As the Offers were assembled by each Agent without knowing what the other
Agents might offer, the superset of the offered cores Coffered1 ∪ . . . ∪ Cofferedm
typically contains more cores than required for optimizing the local application
mapping. Therefore, after the Agent of application Areq received the Offers, it
needs to select which of the offered cores to allocate to Areq. The individual Offers
may be accepted fully, partially or not at all. The selection uses a similar algorithm
as the generation of theses Offers. The Agent greedily picks the cores from the
superset of all offered cores that would, if allocated to Areq, improve the overall
application mapping quality the most until no further gain in application mapping
quality could be achieved.

Subsequently, all Agents that offered cores are informed which cores Ctakeni have
been selected from their offered cores Cofferedi . They use this information to inform
their application about the upcoming loss of theses cores or to release the reservation
(or both if only a subset of the cores has been selected). After the offering Agents
eventually confirmed the availability of the selected cores, they are allocated to the
requesting application Areq. Listing 10 shows the respective pseudo code.

Note that each Agent periodically independently requests cores and then selects
cores for reallocation from the received Offers (see Section 5.4.6). Therefore,
after a certain delay, the Agents that offered cores to Areq will receive another
request from Areq’s Agent that – at that point in time – reflects the situation
after the previous Offers have been processed. This way, even without global
synchronization, information is disseminated throughout all Agents. This principle
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Listing 10: DistRM Selection of cores from Coffered

Input: The Offers (each containing Cofferedi) generated by the replying
Agents

Output: The set of cores Ctaken that will be allocated to the requesting
application Areq

Coffers ←
⋃
Cofferedi ;

Ctaken ← ∅;
repeat

gaintotal ← 0;
foreach Core ctake ∈ Coffers \ Ctaken do

gainAreq ← UAreq (Ctaken ∪ ctake);
lossAofferer ← UAofferer

((
Cofferedofferer ∩ Ctaken

)
∪ ctake

)
;

if gainAreq − lossAofferer > gaintotal then
gaintotal ← gainAreq − lossAofferer ;
cGreedyChoice ← ctake;

end

end
if gaintotal > 0 then

Ctaken ← Ctaken ∪ cGreedyChoice ;
end

until gaintotal <= 0;
foreach Cofferedi ∈ Offers in parallel do

if Ctaken ∩ Cofferedi = ∅ then
// No core from this offer has been selected, inform

offering Agent to release the respective reservation

SendMessage REJECT(Ai, Cofferedi);

else
SendMessage ACCEPT(Ai, Cofferedi , Ctaken ∩ Cofferedi);

end

end
wait until all confirming ACK messages have been received;
return Ctaken;
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allows DistRM and Astra to scale huge numbers of cores, at the cost of slightly
suboptimal decisions that are periodically revisited and improved.

5.4.4. Initialization of New Applications

When a new application Areq is about to start running on the system, its Agent is
initiated on a random core ca first. Randomness is applied to achieve load balancing
without the need for global system state knowledge. The randomly chosen initial
core ca acts as a seed for searching cores to allocate to Areq, however, it might not
be part of the set of cores CAreq that gets allocated to the application. The DistRM
mechanisms (presented in detail in Section 5.4.3) are used to allocate the initial set of
cores to the new application Areq. After the allocation, the Agents state is migrated
from ca to one of the cores in CAreq . The flowchart of the application initialization
process is shown in Figure 5.12.
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Figure 5.12.: Flowchart followed for initializing a new application Areq. The high-
lighted steps are part of the DistRM strategy and detailed in Listing 8

5.4.5. Low-Effort Strategy for Fine-Tuning

The weakness of the so far presented DistRM strategy is the management of small
changes in the application mapping as – in the worst case – for each application
optimization request multiple other Agents receive the request and have to reply.
This leads to an unreasonable effort for a potentially small gain. Therefore, the
proposed low-effort strategy only considers individual cores creq by optimizing the
local mapping of two spatially neighboring applications Areq, Aowner instead of
considering whole regions, where (at least before the request) creq is allocated to
Aowner and Areq is searching for additional cores. If Areq achieves the higher benefit
for core creq (see Section 5.4), its Agent will request to allocate it to Areq. Otherwise

another core c′req is analyzed. Agents select these cores creq in the boundary Cboundary
Areq
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Figure 5.13.: Sketch on how application Ab’s Agent uses the low-effort strategy to
improve the application mapping

(defined by the topological neighborhood of the cores in CAreq , see Equation (5.12)
and Figure 5.14) of the cores CAreq they already manage.
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Core allocated to an other Application 

Core in the boundary of Application Ai  

Core allocated to Application Ai 

Figure 5.14.: The boundary Cboundary
Ai

of Application Ai

Considering only single cores creq per request significantly reduces the computation
complexity and communication. However, to improve the application mapping
quality comparable to a request in DistRM (i.e. where the allocation of multiple
cores is changed), multiple cycles of the low-effort strategy need to be performed –
inducing a higher overhead (many messages sent through the NoC and many requests
to be processed). Thus, the low-effort strategy is most-suited for a fine-tuning of
the application’s mapping after coarse decisions have been made. Figure 5.13 and
Figure 5.15 show the optimization process for application mapping.

The algorithm behind the low-effort strategy is split into two parts. The first part
shown in Listing 11 is the requesting part where each Agent periodically scans the
application boundary Cboundary

Areq
progressively for new cores. Once a core creq has been

chosen, the utility UAreq (creq) for that core is calculated and – if that core has not
been requested by the Agent in the recent past – a C REQUEST message containing
the utility of creq to application Areq is sent to core creq (Step 1O in Figure 5.15).
The infrastructure (see Section 5.4.1) running on core creq forwards the message 2O
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C_REQUEST 

  Agent “A” 
(requester) 
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Figure 5.15.: Message-Sequence chart of interactions between Agents in the low-effort
strategy

to the Agent that is currently managing core creq. To keep the overhead low, the
requesting Agent makes sure, no unnecessary requests are send (i.e. previous attempt
failed, so the attempt would fail again if the system state had not changed in the
meantime). The Agent does not explicitly wait for a reply to its requests. Instead,
a C OFFER message is send to the requesting Agent if the re-allocation of the core
would be beneficial. The complete protocol state machine of the low-effort strategy
is shown in Figure 5.16.

Listing 12 shows, how an Agent handles an incoming request (Step 3O in Fig-
ure 5.15). When its application benefits less from core creq than the rating of the
requesting Agent, then the core is re-allocated to the requesting application. When
core creq is momentarily not in use by the application, the re-allocation takes place
immediately (case ‘a)’ in Figure 5.15). Otherwise (case ‘b)’ in Figure 5.15), core creq
is reserved for the requesting Agent and the application-local scheduler is informed to
release the core (Step 5O). The reservation for core creq can be overwritten, if in the
meantime another Agent with an even higher rating of the core sends a respective
request. As soon as the currently executing task finishes execution on core creq, a core
available message is sent to the Agent which then offers core creq to the requesting
Agent with the so far highest request rating – along with the current benefit of
the core (Steps 6O and 7O). The offer is confirmed in a three-way handshake if the
re-allocation is still beneficial. Requests from previous Agents with a lower request
rating are discarded.
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Listing 11: Low Effort Strategy: Request Generation

// periodically executed to optimize the application mapping

Counter ← 0; // used to limit the number of trials to find creq
while Counter < MAX TRIES do

Select random core creq from the application boundary Cboundary
Areq

;

if last req time[creq] ≤ now()−REQ DELAY then
RU ← UAreq (creq); // Request Utility, see Section 5.4

SendMessage C REQUEST(creq, RU); // handled in Listing 12

last req time[creq] ← now();

else
// creq has recently been requested, better try an other

core

Counter ← Counter + 1;

end

end

Listing 12: Low Effort Strategy: Request Handling

Input: Requested Core creq, Requesting Agent RA, Request Utility RU
Output: Message sent to RA, depending on the availability and utility of creq

if UAofferer (creq) < RU then
// Requesting application Areq has a higher utility for creq
if flags[creq].isSet(inuse) then // reserve core for RequestingAgent

if not flags[creq].isSet(reserved) or creq.resv utility < RU then
flags[creq].set(reserved);
resv utility[creq] ← RU ;
reserved for[creq] ← RA;
SendSignal ApplicationLoseCore(creq);
// see Section 5.4.2

end

else
CAofferer ← CAofferer \ {creq};
SendMessage C OFFER(RA, creq);

end

end
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Figure 5.16.: Protocol State Machine for the Low-Effort Strategy

Message Definitions

C REQUEST Message requesting the transfer of an individual core creq to
Areq. Contains the evaluation of UAreq (creq)

C OFFER Message sent in reply to C REQUEST if it is beneficial to allocate
the core creq to Areq. The core creq is reserved for Areq until a
request with a higher value of UAx (creq) is received

C ACCEPT Message that initiates the actual reallocation of creq to Areq
after it has been offered to Areq

90



5.4 Scalable Distributed Resource Management

5.4.6. Adaptive Strategy Selection - AStra

Agents are able to manage the resources of a Many-Core system by using both
of the so far presented strategies. Both optimize the overall application mapping
towards the same global goal (see Section 5.2). However, they quite differ in a)
the optimization latency and b) the management overhead. DistRM introduces
the same overhead for each attempt to optimize the overall application mapping
quality – independently of the success of these attempts. The low-effort strategy
optimizes the application mapping gradually with a very low overhead. However, the
accumulated overhead of multiple gradual improvements compared to a successful
optimization attempt of the DistRM strategy is higher.

Therefore, the adaptive strategy AStra combines both strategies. Each Agent
individually and adaptively selects which strategy is used to perform the application
mapping optimization. The goal is the optimization of the overall application mapping
quality while reducing the resource management related overhead. The adaptive
selection enables a trade-off between the invested overhead and the expectable gain
in application mapping quality. The selection is based on application knowledge
about the best-suited number of cores NΦmax

Ai
of an application Ai, the number of

cores |CAi | momentarily allocated to application Ai, and the local system state as
observed by the previous interactions with other Agents.

Each Agent performs the application mapping independently in a loop. Figure 5.18
gives an overview on how the employed strategy is selected. Figure 5.17 shows the
joint protocol state machine.

Within the first step of the optimization loop 2O, the Agent checks whether the
size of the current set of cores |CAi | is close to the best-suited number of cores NΦmax

Ai,Pj

for the current phase Pj of application Ai. The dynamically adapted weight ω is
used to adapt the strategy selection to the system load, i.e. if ω = 1, the Agent will
use the DistRM strategy, until |CAi | = NΦmax

Ai,Pj
and then use the low-effort strategy

only for fine tuning. The exponential moving average of the values of |CAi | /NΦmax
Ai,Pj

is used to determine ω (see Equation (5.13)). When application Ai starts a new
phase 1O (i.e. its resource demands change) ω is reset to the momentary value of
|CAi | = NΦmax

Ai,Pj
. Thus, when the system is under heavy load and the Agent is not able

to achieve the best-suited number of cores NΦmax
Ai,Pj

, ω will decrease. With a smaller

ω, the Agent will select the low-effort strategy for larger differences from |CAi | to
NΦmax
Ai,Pj

to reduce the generated overhead.

In the next step ( 3O or 4O), the Agent executes the selected strategy. Afterwards 5O,
the Agent a) informs its application Ai about changes in CAi and b) updates the value
of the exponential moving average ω of |CAi | /NΦmax

Ai,Pj
according to Equation (5.13).

ωn =
1

10
· |CAi |
NΦmax
Ai,Pj

+
9

10
· ωn−1 (5.13)
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Figure 5.18.: AStra’s resource management loop that is executed by each Agent,
containing the decision flow followed for deciding, which strategy to use

To reduce the resource management overhead, the optimization loop runs slower
(i.e. the delay between two successive optimization attempts is increased) when a)
the number of available cores |CAi | is close to the desired number of cores NΦmax

Ai
or

b) the last attempts to optimize the application mapping were not successful. As
the number of unsuccessful attempts Failcount represents the current system load,
it is considered stronger (i.e. squared) in the calculation of the delay to overwrite
the decrease of delay caused by missed resource demands in a heavily loaded system.
Listing 13 shows details on how the delay is dynamically adapted. The whole
optimization loop is triggered whenever the delay expires 6O or the characteristic
application properties change (i.e. a new phase is about to begin) 1O.

5.5. Summary of Runtime Many-Core Resource
Management

Managing the resources of a large on-chip many-core system (a NP-Hard problem) in
centrally leads to serious issues in terms of computational complexity and thus high
latencies when the number of cores gets too large. The computational complexity is
caused by evaluating different potential application mappings based on an application
performance model as well as the decision making process itself. This Chapter has
shown that the presented distributed resource management for many-core systems is
a suitable means to address the scalability issues of centralized resource management
with an increasing number of cores. The presented Agent-based distributed resource
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Listing 13: Adaptive optimization delay

if Last Attempt successfull then
Failcount← Failcount ∗ 0.9; // exponential falloff

else
Failcount← Failcount+ 1;

end
Delay ← BASE DELAY ;
if Last used Strategy was Low-Effort Strategy then

Delay ← Delay/10;
end

Delay ← Delay ∗
NΦmax
Ai,Pj

|CAi |
∗ (1 + Failcount2);

// The factor NΦmax
Ai,Pj

/|CAi | decreases the delay proportionally to

the relative demand of additional resources

// Failcount grows if application mapping can not be improved ⇒
increase delay to avoid potentially unsuccessful requests and

thus reduce the overhead. It is used squared to overwrite

the decrease caused by unmet resource demands in a heavily

loaded system.

management allows distributing the resource-management related computation effort
over many cores in parallel. As each Agent only takes care of a reduced subset
of the large search space, the computational complexity for each of these parallel
working Agents and thus the resource management latency is also significantly smaller.
An adaptive strategy selection for distributed runtime resource management was
presented which selects the resource management strategy (options: the DistRM
strategy for coarse changes, or a low-effort strategy for fine-tuning) adaptively.
Chapter 6 will show, that the application mapping quality of distributed approaches
is almost as good as it would be with a centralized heuristic even when using a
conservative comparison, while significantly improving the scalability.
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6. Evaluation and Comparison

This chapter first evaluates the different distributed resource management strategies
presented in this thesis (the low-effort strategy in Section 6.1, DistRM in Section 6.2,
and AStra in Section 6.3) and then compares them in Section 6.5 to a state-of-the-art
distributed resource management approach [ATBS13] (see Section 5.1.3) on various
numbers of cores N = |C| in the many-core system for various application scenarios.
To enable the evaluation of resource management on different system configurations,
the application scenario needs to fit to the system configuration – e.g. an application
scenario that makes use of a 16 core system is not suitable to fully utilize a 1024 core
system. Therefore the widely used (e.g. [CB00, Fei03, SCH11, PYL13, ATBS13])
workload generator for many-core resource management evaluation provided by
[Dow98] is used. The workload characteristics are based on benchmarks of real
workloads on real parallel machines (additional details are given in Appendix B).

However, the generated application scenarios are limited to applications with a
single phase, i.e. the applications do not change their scalability at runtime. Therefore,
multiple generated application profiles are combined to create larger applications that
consist of multiple phases, i.e. each phase in the application model (see Section 3.2)
corresponds to one generated application. To keep the amount of work that needs to
be performed per application within realistic bounds, the amount of work per phase is
divided by the number of phases of the application. At the end, this results in different
application scenarios consisting of 8, 16, or 32 concurrent parallel applications with
1, 10, or 100 phases each (e.g., 100 phases represents about 33 iterations of the
motivational example consisting of three phases as shown in Section 1.2.1) per system
configuration. The achievable parallelism per phase Pj, the best-suited number of
cores NΦmax

Ai,Pj
per phase Pj, and the amount of work TAi,Pj (1) to be performed for

each application Ai varies according to the boundaries defined by [Dow98]. This
means that each application changes its scalability never, ten, or 100 times during its
execution to cause low, moderate, or high stress on the resource management. Real-
world examples of these application scenarios are high-performance computing with
basically no scalability changes during application execution, so-called “Recognition
Mining Synthesis” workloads [CCD+08] with an moderate change of scalability with
respect to the processed input data, and interactive utilization of the system with
continuously changing application phases.

The different distributed resource management strategies are also compared to the
centralized resource manager presented in Section 5.3.2 as reference for the mapping
quality (see Section 5.2). The centralized manager is a heuristic that provides
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considerably good application mappings. However, it is not optimized for many-core
systems with hundreds or thousands of cores where the centralized manager induces
a high overhead in terms of communication and computation complexity (evaluated
in Section 6.4.1 and Section 5.3). In contrast to the presented distributed resource
management on many-core systems, it would turn into a bottleneck and limit the
dynamic management of the many-core system. In the conservative comparisons,
it is assumed that centralized resource management is feasible while ignoring the
induced overhead and latencies.

The respective resource managers were evaluated in a system-level simulation
environment for many-core systems (see Appendix A). Source-code annotation
[BHK+00] was used to determine the computation effort and a NoC simulator to
determine the communication effort. The simulations are able to evaluate which
core ci had to perform how many resource management related calculations and how
many messages of which size the NoC had to transfer over which distance.

A native bare-metal implementation [BKH14] in the cycle accurate many-core
simulator [LRC+11], and an native implementation [PKH12] running as middleware
on the Intel SCC (see Section 2.1.2 and Appendix D) were used to validate these
estimates. For instance, evaluating the utility function Equation (4.9) for a set of 25
cores takes 2513 cycles in the cycle-accurate measurement whereas the source-code
annotation results in 3159 estimated instructions. On average, executing Listing 8
to select the regions to request cores in takes 5313 cycles in the cycle-accurate
measurement compared to 4613 estimated instructions. Even though the estimated
number of instructions may not be an absolutely comparable number, it is still a very
accurate way of comparing the relative overhead of different approaches/algorithms
given the same input data.

Please note: Source-code annotation is a more accurate metric to determine the
computation effort than the ones used in [KBL+11] and [ATBS13]. Both only
counted how often the function to calculate of the utility of cores for an application
was executed. However, the computational complexity of that function differs
significantly depending on the number of analyzed cores. Therefore, the presented
results differ from the ones presented in [KBL+11] and [ATBS13].

The communication effort represents the overall utilization of the communication
infrastructure. It is determined by the sum of the length s of all messages multiplied
by the distance w each message took through the NoC (see Section 3.1), as shown in
Equation (6.1).

Communication Effort =

#messages∑
i=1

wi ∗ si (6.1)

To ensure a fair comparison, all approaches were simulated using identical applica-
tion scenarios and system model configurations (see Chapter 3).
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6.1 Low-Effort Strategy

The evaluation focuses on evaluating the resource management strategies and their
overhead. AStra is not limited to a specific application and/or hardware platform,
it is applicable as long as applications are able to adopt themselves to varying sets
of cores, e.g. by using master/slave parallelism and starting/terminating workers
depending on the cores available to the application (or more sophisticated means,
as described in Section 2.2). Therefore, the evaluation of the resource management
strategies does not consider application-internal overheads like scheduling tasks to
cores, synchronization, and data transfer, as this overhead depends on the specific
application implementation and hardware platform and there is no way to generalize
this overhead. Considering the application-internal overhead might result in a lower
absolute overall application performance. However, the centralized resource manager
modifies the set of cores of all applications very frequently, i.e. always when any
one of the applications triggers the resource management. Therefore, the relative
system performance that is used to evaluate the application mapping quality of
the distributed resource management strategies compared to centralized resource
management might even be higher when considering these details. This results in a
conservative evaluation of the application mapping quality of the distributed resource
management strategies.

To account for stochastic components in the resource management strategies, each
configuration is simulated ten times. The average results of these runs are presented
and discussed in the following.

6.1. Low-Effort Strategy

The low-effort strategy for distributed resource management aims to iteratively
improve the application mapping while considering only a single core at each opti-
mization trial, see Section 5.4.5. Each Agent executes the strategy in a loop until
its application finishes execution. The Agents wait for a certain time between two
consecutive optimization attempts to limit the resource management overhead. The
influence of this delay between optimization trials and the application mapping
quality for 16 concurrently executed applications is shown in Figure 6.1 for an 256
core system and a 1024 core system in Sub-Figures a) and b) respectively. The
application mapping quality quantifies how efficient the resource management is able
to operate the system. It is determined by the selected optimization goal, as presented
in Section 5.2. In the presented results, it is based on the average speedup of the
concurrently executing applications (see Section 5.2.1). The centralized resource
manager is used as reference for the mapping quality while ignoring its overhead.
It is clearly visible that the mapping quality correlates with the delay between the
optimization trials. However, the overhead grows significantly for smaller delays. As
shown in Section 5.4.6, this insight is exploited in the AStra Strategy by means of
an adaptive delay between optimization trials.
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Figure 6.1.: The influence of the delay between optimization trials of the low-effort
strategy and the application mapping quality of 16 applications concur-
rently executed on an 256 core system and on a 1024 core system in
Sub-Figures a) and b) respectively. The application mapping quality is
given as a relative value of the achieved mapping quality of the potentially
infeasible central resource manager while ignoring its overhead.

6.1.1. Scalability Analysis

In Figure 6.2 the scalability of the low-effort strategy is evaluated with respect to the
number of concurrently executing applications and the number of cores in the systems.
For the presented results, the delay between consecutive optimization trials of each
Agent is set to 100ms as it provides a good trade-off between the mapping quality and
the induced overhead. However, the relative values scale with the delay as shown in
Figure 6.1. Sub-Figures a), b) and c) show the computation effort for various system
sizes from 16 to 1024 cores for 8, 16 and 32 concurrent applications. Sub-Figures d),
e) and f) show the respective communication effort, and Sub-Figures g), h) and i)
the application mapping quality relative to the centralized resource manager while
ignoring its overhead. Only the resource management related communication and
computation is shown (i.e. the application internal communication is omitted).

Please note: The number of cores in the system N indicated on the x-axis of
all following diagrams grows quadratically (i.e. 16, 64, 144, . . . ). Therefore, a
linear relationship of the respective effort and the number of cores in the system
looks like quadratic growth and a linear shape of the presented curves actually
represents a “better than linear” scalability

Different application scenarios are evaluated: In Sub-Figures a), d) and g) the
scalability of the applications stays constant over their whole execution time, i.e.
they consist of only one phase (see Section 3.2) and a steady state in which no
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Figure 6.2.: The computation effort (a), b) and c)), communication effort (d), e) and
f)) and the relative application mapping quality compared to centralized
resource management (g), h) and i)) achieved by the low-effort strategy
for various application scenarios and many-core system configurations
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further optimization is meaningful is achievable. In Sub-Figures b), e) and h) the
applications change their scalability ten times and in Sub-Figures c), f) and u)
100 times respectively, i.e. they represent (highly) dynamic workload scenarios that
benefit from a continuous adaptation of the application mapping.

The computation effort as well as the communication effort scale better than
linearly with the number of cores in the system and the number of concurrently
executing applications. With more cores in the system, on average more cores are

allocated to each application Ai and therefore the size of the boundary
∣∣∣Cboundary

Ai

∣∣∣
(see Section 5.4.5) of each application grows. As Agents do not re-request cores that
had been requested recently, the number of cores in the application boundary directly
influences the number of requests sent to other Agents and thus on the computation
and communication overhead. In case that there are more applications ready for
execution than there are cores in the system, the Agents that do not have cores
allocated for their application repeatedly send out (unsuccessful) requests which
cause the small peak of computation and communication overhead in Sub-Figures c)
and d) in the case of 32 applications but only 16 cores in the system.

With the selected delay of 100ms between optimization trials, the low-effort
strategy achieves considerably good results on systems with less than about 100 cores.
However, it is obvious that the low-effort strategy alone is not suitable for resource
management of larger systems as there are too many possible cores Cboundary

Ai
in each

applications Ai boundary to evaluate in time. As shown in Sub-Figure 6.1 b), even
10ms between each optimization trial do not result in good application mappings
while significantly increasing the induced overhead.

In summary, the low-effort strategy requires a comparably (see Section 6.5) low
computation and communication overhead to perform the resource management and
is very scalable with respect to the number of applications and the number of cores in
the system. However, the achieved application mapping quality degrades significantly
for growing system sizes. While it is possible to improve the application mapping
quality by means reducing the delay between subsequent optimization trials, this also
increases the overhead significantly. An adaptive delay that automatically trades off
the induced overhead against the achieved gains in application mapping quality is
introduced in the AStra Strategy (Section 5.4.6) and evaluated in Section 6.3.

6.2. DistRM Strategy

The DistRM strategy (explained in detail in Section 5.4.3) also performs the resource
management in an loop until its application finishes execution. In each optimization
trial, one or multiple requests are sent in parallel to whole regions (i.e. multiple
spatially neighboring cores) that affect one or multiple other Agents that momentary
have cores allocated in these regions. In Section 6.2.1 the influence of the number
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of cores per request and the number of parallel request per optimization trial is
analyzed. Section 6.2.2 shows how the delay between two consecutive optimization
trials of each Agent influence to overall mapping quality and the induced overhead.
To complete the evaluation of the DistRM strategy, it’s scalability with respect to
the number of concurrently executing applications and the number of cores in the
many-core system is analyzed in Section 6.2.3.

6.2.1. Number of Cores per Request and Parallel Requests

The influence of the number of cores considered per optimization request and the
number of parallel requests on the computation effort, communication effort and the
resulting application mapping quality when using the DistRM strategy on a 1024
core system is shown in Figure 6.3. The respective evaluations on a 256 core system
are shown in Figure 6.4.
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Figure 6.3.: Influence of the number of cores per optimization request and the number
of parallel requests on the computation effort, communication effort
and the resulting application mapping quality when using the DistRM
strategy on a 1024 core system

As expected, the computation effort grows quadratically with the number of
cores REQ SIZE in the requested regions. To keep the computation effort and thus
the latency of each request manageable, the number of cores per request region
should stay rather low. However, too small numbers of cores per region result in
comparably bad application mappings. When comparing the application mapping
quality achieved with only four cores per request on a 256 core system with the one
achieved on a 1024 core system, it is noticeable, that the 1024 core system suffers
from a higher degradation than the 256 core system. Therefore, in the following
experiments, the number of cores in the request regions is adapted to the number of
cores in the many-core system according to Equation (6.2). The resulting values of
REQ SIZE for different many-core system configurations are shown in Table 6.1.
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Figure 6.4.: Influence of the number of cores per optimization request and the number
of parallel requests on the computation effort, communication effort
and the resulting application mapping quality when using the DistRM
strategy on a 256 core system

REQ SIZE = d 4
√
Ne2 (6.2)

Table 6.1.: Request region size for different many-core system configurations

System Size N 16 64 144 256 400 576 784 1024
REQ SIZE 4 9 16 16 25 25 36 36

The effect of the number of parallel requests on the computation effort looks
surprising at first as there is no huge difference in the computation effort (but
also in the application mapping quality) when going from two to three or four
requests in parallel. This is caused by the effect that actually too many cores from
multiple different Agents are offered (and thus reserved) to a requesting Agent.
Not all of these cores are actually selected and a REJECT message is send to the
offering Agents. Within the time frame between sending the OFFER message and
receiving the REJECT message, these cores are ruled out of evaluation when receiving
other requests (see Section 5.4.3). As the biggest fraction of the computation
effort is caused by calculating the utility function for requested and/or offered
cores, the overall computation effort does not increase further. In contrast, the
communication effort increases basically linearly with the number of parallel requests
as multiple (potentially unsuccessful) REQUEST, OFFER, and REJECT messages have to
be transmitted. As there is also no significant improvement in application mapping
quality, the number of parallel requests is set to two in the following evaluations.
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6.2 DistRM Strategy

6.2.2. Optimization Delay

Just as with the low-effort strategy (evaluated in Section 6.1), the mapping quality
of the DistRM strategy increases with shorter delays between the optimization trials.
Figure 6.5 shows how the delay between optimization trials influences the induced
overhead as well as the resulting application mapping quality when using the DistRM
strategy on a 256 core system (Sub-Figure a)) and on a 1024 core system (Sub-Figure
b)).
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Figure 6.5.: The influence of the delay between optimization trials of the DistRM
strategy and the application mapping quality of 16 applications concur-
rently executed on an 256 core system and on a 1024 core system in
Sub-Figures a) and b) respectively. The application mapping quality is
given as a relative value of the achieved mapping quality of the potentially
infeasible central resource manager while ignoring its overhead.

The correlation between the induced overhead and the resulting application map-
ping quality when using the DistRM strategy is not as strong as when using the
low-effort strategy, i.e. shorter delays increase the overhead significantly without
necessarily increasing the application mapping quality. The drop in computation
effort in case of 10ms delay between consecutive optimizations compared to a delay
of 25ms is caused by requests received by the Agents before previous OFFER messages
have been replied and thus the resulting reservations have been not been released.
As momentary reserved cores are not considered for replying to incoming REQUEST

message (see Section 5.4.3), the computation effort is actually reduced – similar
to the case of too many parallel requests sent out by the Agents evaluated in the
previous Section. The communication effort, however, is significantly increased.

Therefore, in the following evaluations, the delay between two consecutive opti-
mization trials of the DistRM strategy is set to 500ms, as this delay provides a good
trade-off between application mapping quality and induced overhead. Applications
that change their scalability profile at runtime – i.e. applications that consist of
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multiple phases, see Section 3.2 – may trigger optimization trials earlier, i.e. whenever
a new phase is about to begin or after 500ms have passed since the last optimization
trial.

6.2.3. Scalability Analysis

The scalability of the DistRM strategy is analyzed similar to the low-effort strategy in
Section 6.1.1. The respective results are shown in Figure 6.6. Again, Sub-Figures a),
b) and c) show the computation effort for various system sizes from 16 to 1024 cores
for 8, 16 and 32 concurrent applications. Sub-Figures d), e) and f) show the respective
communication effort, and Sub-Figures g), h) and i) the application mapping quality
relative to the centralized resource manager while ignoring its overhead. Different
application scenarios are evaluated: In Sub-Figures a), d) and g) the scalability of
the applications stays constant over their whole execution time, i.e. they consist of
only one phase (see Section 3.2) and a steady state in which no further optimization
is meaningful is achievable. In Sub-Figures b), e) and h) the applications change
their scalability ten times and in Sub-Figures c), f) and u) 100 times respectively, i.e.
they represent (highly) dynamic workload scenarios that benefit from a continuous
adaptation of the application mapping.

The overall computation and communication effort in all scenarios scales linearly
with the number of concurrently executing applications and the number of cores in the
many-core system. Again, please note the quadratic growth of the number of cores
shown on the x-axis. In case of frequent changes in the workload (Sub-Figures c), f),
and i)), the induced overhead grows significantly as the time that passes between
changes in the scalability is shorter than the selected delay between optimization
trials. In case of moderate changes in the workload (Sub-Figures b), e) and h)) there
is a slightly increase overhead compared to the case of steady workload (Sub-Figures
a), d) and g)) as the time that passes between changes in the scalability is about the
same than the delay between the periodic optimization trials.

Using the DistRM strategy with the parameters presented in Section 6.2.1 results
in considerably good application mappings on systems with up to 20x20 cores. The
drop in application mapping quality for more cores in the system suggests that a more
aggressive configuration would result in better application mapping quality for larger
systems at the cost of an increased overhead. AStra, presented in Section 5.4.6 and
evaluated in Section 6.3 addresses this weakness by means of a dynamic adaptation
of the delay between optimization trials to improve the application mapping quality
as well as to reduce the induced overhead in case no improvement is achievable.

Compared with the low-effort strategy, DistRM induces a higher computation and
communication overhead to perform the resource management. A direct comparison
is given in Section 6.5. Still, DistRM is very scalable with respect to the number
of applications and the number of cores in the system. The achieved application
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Figure 6.6.: The computation effort (a), b) and c)), communication effort (d), e) and
f)) and the relative application mapping quality compared to centralized
resource management (g), h) and i)) achieved by DistRM for various
application scenarios and many-core system configurations
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mapping quality is generally higher than when using the low-effort strategy. With
the current configuration, especially on many-core systems with a large number
of cores the mapping quality might be improved by means of larger requests as
shown in Figure 6.3, or by more frequent optimization trials as shown in Figure 6.5,
or both. However, both possibilities would result in an increased overhead. The
next Section 6.3 will show, how AStra manages to improve the application mapping
quality while at the same time reduces the induced resource management related
overhead.

6.3. AStra: Adaptive Strategy Selection

AStra is an adaptive strategy that combines the two so far evaluated strategies (the
low-effort strategy and DistRM) to perform the resource management. As shown in
Section 5.4.6, the resource management is performed in a loop by each Agent until its
application finishes execution. In contrast to the so far evaluated strategies, the delay
between consecutive executions of that optimization loop is adapted to the current
system state. The influence of the minimal allowed delay between optimization trials
is evaluated in Section 6.3.1. AStra adaptively selects which strategy to use for the
application mapping optimization. An evaluation of how this selection is performed
in different application scenarios and how the adaptive delay is used to reduce the
induced overhead is presented in Section 6.3.2. Finally, Section 6.3.3 analyses the
scalability of AStra and presents the achieved application mapping quality.

6.3.1. Influence of Optimization Delay

Figure 6.7 shows how the minimal allowed delay between optimization trials influences
the induced overhead as well as the resulting application mapping quality when using
AStra on a 256 core system (Sub-Figure a)) and on a 1024 core system (Sub-Figure
b)). Similar to the so far evaluated resource management strategies, the mapping
quality of AStra increases with shorter delays between the optimization trials. In
contrast to the other strategies, AStra uses an adaptive delay, i.e. the stated delay
is the minimal delay between consecutive optimization trials. This allows to select
an lower minimal delay than for using the DistRM strategy without inducing huge
amounts of computation and communication overhead. In the following evaluations,
a conservative value of 100ms is used. In the following Section 6.3.2 it is shown how
this delay is adapted at runtime.

6.3.2. Adaptation Evaluation

The key advantage of AStra is the adaptive selection of the resource management
strategy. The basic idea is to select the DistRM strategy to achieve huge changes
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Figure 6.7.: The influence of the minimal allowed delay between optimization trials of
the AStra strategy and the application mapping quality of 16 applications
concurrently executed on an 256 core system and on a 1024 core system
in Sub-Figures a) and b) respectively. The application mapping quality is
given as a relative value of the achieved mapping quality of the potentially
infeasible central resource manager while ignoring its overhead.

in the application mapping (e.g. when starting a new application) and to use the
low-effort strategy otherwise, see Section 5.4.6. Figure 6.8 shows the selection of the
respective strategy for different scenarios for applications that do not change their
resource demands at runtime. At the start of the simulation, eight applications start
execution. Sub-Figure a) shows the number of cores allocated to each application in
each time-step. All applications immediately can start execution, after about two
seconds, all cores are allocated to applications. At simulation time 10,000ms four
additional applications start execution. The re-allocation of cores to these additional
applications is performed in several milliseconds. At simulation time 20,000ms, five
applications are terminated. The gradual re-allocation of the released resources is
clearly visible.

A detailed analysis of the application mapping optimization trials and the number
of allocated resources for two selected applications AA and AB is given in Sub-Figures
b) and c), respectively. Application AA is highlighted in green in Sub-Figure a),
Application AB is highlighted in red. The vertical lines indicated by color, which
resource management strategy was used at which point in time. A red vertical
line indicates, that the DistRM strategy was used, a blue vertical line indicates an
optimization trial with the low-effort strategy. The distance between red and/or
blue vertical lines indicates the adaptive delay between consecutive optimization
trials. Grey vertical lines indicate that the applications Agent answered an incoming
resource request.

For both applications it is clearly visible how first the DistRM strategy is used
to allocate the initial set of cores with a very low latency. Afterwards, mostly the
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Figure 6.8.: Adaptation to different scenarios of applications that do not change their
scalability at runtime. Sub-Figure a) shows the distribution of cores
among applications over time, Sub-Figures b) and c) detail application
mapping optimization trials and the number of allocated resources
for two selected applications AA and AB. Sub-Figure d) summarizes
the employed resource management trials of all concurrently operating
Agents
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Figure 6.9.: Adaptation to different scenarios of applications that frequently change
their scalability at runtime, i.e. no steady application mapping state
exists. Sub-Figure a) shows the distribution of cores among applications
over time, Sub-Figures b) and c) detail application mapping optimization
trials and the number of allocated resources for two selected applica-
tions AA and AB. Sub-Figure d) summarizes the employed resource
management trials of all concurrently operating Agents
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low-effort strategy is used for gradual fine-tuning. Once a stable state is reached, the
delay between consecutive optimization trials increases. Whenever there is a change
in the workload (e.g. at simulation times 10,000ms, 20,000ms, and about 60,000ms),
the resource management gets very active to achieve a stable state again. Once this
state is reached, the delay between the optimization trials grows again. Sub-Figure
d) shows the accumulated resource management trials of all concurrently operating
Agents, i.e. the height of the bars shows the sum of resource management trials per
100ms. The employed strategy is indicated by its color code.

A similar analysis is given in Figure 6.9. However in that application scenario,
applications consist of multiple phases and frequently change their scalability. This
also frequently invokes mapping optimizations as shown in Sub-Figures b), c) and
d). As the applications permanently change their scalability, no steady application
mapping state exists. Reacting to these frequent changes would not be feasible
when using a centralized resource manager that requires several seconds to decide
the application mapping. However, frequent changes also lead to an increase of
the induced overhead of distributed resource management, as evaluated in the next
Section 6.3.3.

The adaptive selection of the employed strategy allows to reduce the overall
overhead of distributed resource management without inducing high latencies for
e.g. starting the execution of additional applications. Figure 6.10 shows how the
reduction of the communication overhead is achieved for an application scenario of
16 concurrent applications that frequently change their scalability, executed on an
256 core system. The figure shows the communication effort required to perform the
resource management when using DistRM, AStra, or the low-effort strategy. When
using AStra, in the beginning, mostly the DistRM strategy is selected to perform
the application mapping (resulting in a communication pattern similar to DistRM).
As soon as an initial application mapping has been found, AStra more often selects
the low-effort strategy to a) further optimize the application mapping and b) adapt
to small changes – eventually leading to a communication pattern similar to the
one of the low-effort strategy. As applications complete their computations, the
resource management related communication volume gradually decreases. When the
last application terminated, the respective line in the chart discontinues.

6.3.3. Scalability Analysis

The results of the scalability analysis of AStra are shown in Figure 6.11. Again,
Sub-Figures a), b) and c) show the computation effort for various system sizes
from 16 to 1024 cores for 8, 16 and 32 concurrent applications. Sub-Figures d),
e) and f) show the respective communication effort, and Sub-Figures g), h) and i)
the application mapping quality relative to the centralized resource manager while
ignoring its overhead. Different application scenarios are evaluated: In Sub-Figures
a), d) and g) the scalability of the applications stays constant over their whole
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Figure 6.10.: Communication effort required to perform the resource management
when using DistRM, AStra, or the low-effort strategy for an application
scenario of 16 concurrent applications that frequently change their
scalability, executed on an 256 core system

execution time, i.e. they consist of only one phase (see Section 3.2) and a steady
state in which no further optimization is meaningful is achievable. In Sub-Figures
b), e) and h) the applications change their scalability ten times and in Sub-Figures
c), f) and u) 100 times respectively, i.e. they represent (highly) dynamic workload
scenarios that benefit from a continuous adaptation of the application mapping.

Similar to the DistRM strategy, the computation and communication effort grows
with frequent changes in the workload (Sub-Figures c), f), and i)). However, the
effort stays within absolutely feasible bounds compared to centralized resource man-
agement. Especially in 1024 core systems the computation complexity of centralized
resource management would not allow adopting the application mapping to the
frequent changes in highly dynamic workload scenarios in time (see Section 5.3.3 and
Section 6.4.1). All application scenarios show that the computation effort as well as
the communication effort scale linearly with the number of cores in the system. In
case of no (Sub-Figures a) and d)) or moderate (Sub-Figures b) and e)) dynamic in
the workload, the effort also scales linearly with the number of concurrently executing
applications. In case of highly dynamic workload scenarios (Sub-Figures c) and f)),
the effort does not directly correlate with the number of concurrently executing
applications, i.e. the resource management is actively optimizing the application
mapping all the time anyways, such as additional applications only induce a small
additional overhead.

As discussed in Section 6.5, compared to the DistRM strategy, the computation
and communication effort is reduced. The application mapping quality is generally
very good and close to the application mapping quality achieved by the centralized
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Figure 6.11.: The computation effort (a), b) and c)), communication effort (d), e) and
f)) and the relative application mapping quality compared to centralized
resource management (g), h) and i)) achieved by AStra for various
application scenarios and many-core system configurations
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resource management when using a conservative comparison by assuming centralized
resource management is feasible and ignoring its overhead and latencies.

6.4. Reference Implementations

The different distributed resource management strategies presented in this thesis are
compared to the centralized resource management heuristic presented in Section 5.3.
A detailed evaluation of the computation and communication effort of the centralized
resource management heuristic is presented in Section 6.4.1. Additionally, the strate-
gies have been compared to the state-of-the-art distributed resource management
[ATBS13], presented in Section 5.1.3. A detailed evaluation of [ATBS13] is given in
Section 6.4.2.

6.4.1. Centralized Resource Management

The computation effort and communication effort of centralized resource management
(as presented in Section 5.3) for the different application scenarios are shown in
Figure 6.12. As before, in Sub-Figures a) and d) the scalability of the applications
stays constant over their whole execution time, i.e. they consist of only one phase
(see Section 3.2) and a steady state in which no further optimization is meaningful is
achievable. In Sub-Figures b) and e) the applications change their scalability ten
times and in Sub-Figures c) and f) 100 times respectively, i.e. they represent (highly)
dynamic workload scenarios.

The centralized resource management is triggered whenever a) a new application
is about to start execution, b) an application changes its scalability (i.e. a new
phase is about to begin), and c) an application finished its computations. After
the centralized resource management computed the updated application mapping,
it informs all applications about their updated resource allocation. The frequent
communication of the resource manager with all concurrently executing applications
causes a high communication effort and might cause a bottleneck situation within
the communication infrastructure surrounding the central resource manager.

Additionally, the centralized scheme always aims at the globally best solution
independent of the current application mapping (resulting in changes in the mapping
of almost every application whenever it is activated), whereas the distributes resource
managers presented in this thesis perform local changes such that no complete
application has to be migrated to another set of cores. In the presented results free
task migrations are assumed, which is not realistic for real world systems – in fact,
task migrations are expensive in terms of network bandwidth and migration latency
[JAFH11], thus the presented comparison with the centralized scheme is conservative.
This also means that a more sophisticated mapping scheme would be used for the

113



Evaluation and Comparison

C
om

pu
ta

tio
n 

Ef
fo

rt
 

[In
st

ru
ct

io
ns

] x
10

8 
C

om
m

un
ic

at
io

n 
Ef

fo
rt

 
[B

yt
e*

H
op

] x
 1

06 

10 Scalability Changes 
per Application 

100 Scalability Changes 
per Application 

No Scalability Changes 

 
 

 
 

 

   

8 Applications 16 Applications 32 Applications

(a) (b) (c) 

(d) (e) (f) 

0

5

10

15

20

25

30

35

40

System Size [Cores] System Size [Cores] System Size [Cores] 

0

10

20

30

40

50

60

70

80

90

System Size [Cores] System Size [Cores] System Size [Cores] 

Figure 6.12.: The computation effort (a), b) and c)), and the communication effort
(d), e) and f)) required by the centralized resource management for
various application scenarios and many-core system configurations
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centralized resource manager to reduce the number of task migrations. This would
come with a much higher (potentially infeasible) computational effort compared
to the used one. In both cases (i.e. frequent task migration or more sophisticated
mapping scheme), the application mapping quality of the centralized scheme would
be reduced compared to this conservative comparison. This also shows that the
slightly decreased application mapping quality achieved by the distributed resource
management is acceptable when considering its significantly reduced overhead. As
the achieved application mapping quality (without considering the related overhead
and latencies) of the centralized resource management is used as reference for all
distributed resource managers, the application mapping quality is always 100% and
is thus not shown in Figure 6.12.

As shown in Sub-Figures a), b), and c) the computation effort grows quadratically
with the number of concurrently executing applications as well as with the number of
cores in the system. On average for all analyzed application scenarios and many-core
system configurations, the computation effort of the centralized resource management
heuristic is more than two orders of magnitude higher than the accumulated effort
of all concurrently executing Agents managing the same application scenarios. The
computation effort of each individual Agent is less than one thousandth of the
centralized resource management. The communication effort (Sub-Figures d), e),
and f)) grows about linearly with the number of concurrently executing applications
as well as the number of cores in the system.

6.4.2. State-of-the-Art Distributed Resource Management

The protocol used in the state-of-the-art distributed resource management [ATBS13]
is quite similar to the DistRM strategy presented in this thesis. However, it uses
dedicated cores for resource management that are not available to the applications:
one dedicated manager core per application and multiple dedicated controller cores
per system. This leads to the situation that e.g. in a system with 64 cores, 4
controller cores, and 16 concurrent applications, only 46 cores are available for the
actual applications (see Section 5.1.3. In DistRM and AStra however, the resource
management works as a system service interleaved with the applications on the
same cores. To allow a fair and conservative comparison, all resource management
approaches are implemented with the ability to coexist with applications executing
on the same cores, i.e. all cores are available for applications.

Figure 6.13 summarizes the computation effort, the communication effort and
the resulting application mapping quality for the different application scenarios.
[ATBS13] achieves considerably good application mappings in all application sce-
narios. To perform the resource management, the many-core system is divided into
multiple regions of same size. For systems with up to 144 cores, [ATBS13] divides
the chip into four regions, for larger many-core systems, the chip is divided into
16 regions. Resource re-allocation optimizations always take place per region and

115



Evaluation and Comparison

C
om

pu
ta

tio
n 

Ef
fo

rt
 

[In
st

ru
ct

io
ns

] x
10

7 
C

om
m

un
ic

at
io

n 
Ef

fo
rt

 
[B

yt
e*

H
op

] x
 1

06 
M

ap
pi

ng
 Q

ua
lit

y 
(R

el
at

iv
e 

to
 C

en
tr

al
) 

10 Scalability Changes 
per Application 

100 Scalability Changes 
per Application 

No Scalability Changes 

 
 

 
 

 

   

8 Applications 16 Applications 32 Applications

0
2
4
6
8

10
12
14
16
18
20

System Size [Cores] 

0

2

4

6

8

10

12

System Size [Cores] 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

System Size [Cores] 

System Size [Cores] System Size [Cores] 

System Size [Cores] System Size [Cores] 

System Size [Cores] System Size [Cores] 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 6.13.: The computation effort (a), b) and c)), communication effort (d), e) and
f)) and the relative application mapping quality compared to centralized
resource management (g), h) and i)) achieved by [ATBS13] for various
application scenarios and many-core system configurations
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consider all cores in the region as well as all applications that momentary do have
cores allocated within the region. This explains the small peak in computation effort
and communication effort in case of the 64 core system.

As the number of cores per region grows linearly with the number of cores in the
many-core system and the optimization algorithm has quadratic complexity with
respect to the number of cores, the overall computation effort grows quadratically
with the number of cores in the system. This limits the scalability of the approach and
increases the latency of the individual optimization trials. The communication effort
scales linearly with the number of cores in the system (as on average more information
is transmitted over longer distances) and with the number of concurrently executing
applications. However, the reliance in a fixed infrastructure allowed [ATBS13] to
improve the communication effort compared to DistRM.

6.5. Comparison

This Section compares the four different distributed resource management strategies
with each other. First, the average values of the achieved mapping quality, the
computation effort, and the communication effort for all application scenarios are
presented in Section 6.5.1 and Section 6.5.2. A detailed comparison considering the
respective application scenarios is given in Section 6.5.3.

6.5.1. Application Mapping Quality

The average application mapping quality of the different distributed resource man-
agement strategies is shown in Figure 6.14. As before, the mapping quality is given
relative to centralized resource management while ignoring its computational com-
plexity and the resulting latencies evaluated in Section 6.4.1 and Section 5.3.3. An
average application mapping quality of e.g. 85% does not look too good at first,
however, the computation effort and communication effort to achieve these mappings
is feasible in all cases as evaluated in the previous sections and allows to find these
mappings with low latencies.

On average for all evaluated application scenarios and many-core system configura-
tions, the low-effort strategy achieves an application mapping quality of 69.5% of the
centralized resource management. However, in the worst-case it only achieves 27.6%.
Especially on many-core systems with a larger number of cores, the low-effort strategy
is not suitable for resource management. When applied to many-core systems with
a smaller number of cores it achieves considerably good application mappings (e.g.
89.9% on a 64 core system), however, centralizes resource management is still feasible
on theses systems. Table 6.2 summarizes the worst-case, best-case, and the average

117



Evaluation and Comparison

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4x4 8x8 12x12 16x16 20x20 24x24 28x28 32x32

Av
er

ag
e 

M
ap

pi
ng

 Q
ua

lit
y 

(R
el

at
iv

e 
to

 C
en

tr
al

) 

System Size [Cores] 

Low-Effort

DistRM

AStra

ATBS'13

 
 

 
 

 

   

 
 

 
 

 
 

   

Figure 6.14.: Average application mapping quality of the different distributed re-
source management strategies in relation to the application mapping
quality of centralized resource management, ignoring the feasibility and
latencies of centralized resource management

application mapping quality achieved when using the low-effort strategy on various
numbers of cores N .

The DistRM strategy achieves application mappings that have on average 85.6% of
the application mapping quality which the centralized resource management achieves.
Compared with the low-effort strategy, the application mapping quality on average
does not degrade significantly with a higher number of cores in the many-core
system. However, in the worst-case only 65.2% are achieved. AStra addresses this
weakness and improves the worst-case to 77.0%. On average over all evaluated
application scenarios and system configurations, AStra achieves 91.0% application
mapping quality compared to potentially infeasible centralized resource management.
Table 6.3 and Table 6.4 give a summary of the worst-case, best-case, and the average
application mapping quality achieved when using DistRM and AStra, respectively.

The state-of-the-art distributed resource management [ATBS13] on average achieves
an application mapping quality of 86.3% of centralized resource management. In
the worst-case, [ATBS13] achieves 67.1% mapping quality of the centralized resource
management. For most application scenarios, [ATBS13] achieves slightly better
application mappings than DistRM, however – except on many-core systems with a
small number of cores – the application mapping quality is always worse than AStra.

On average AStra achieves a 6.4% better application mapping quality than Dis-
tRM and a 5.4% improvement compared to state-of-the-art [ATBS13]. Even more
important, the worst-case application mapping quality is improved by 18.1% com-
pared to DistRM and 14.7% compared to [ATBS13]. Additionally, the influence of
the application scenario on the mapping quality is reduced from 18.1% (DistRM)
respectively 12.3% ([ATBS13]) down to 7.5% when using AStra.
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Table 6.2.: Relative Average Application Mapping Quality of the Low-Effort Strategy

N 16 64 144 256 400 576 784 1024
worst-case 96.3% 84.3% 73.3% 60.8% 49.5% 39.0% 31.9% 27.7%

average 98.3% 89.9% 82.6% 73.2% 64.6% 56.0% 48.8% 43.0%
best-case 99.8% 95.3% 89.4% 85.5% 76.6% 68.6% 64.3% 59.3%

Table 6.3.: Relative Average Application Mapping Quality of DistRM

N 16 64 144 256 400 576 784 1024
worst-case 88.6% 91.3% 90.6% 82.2% 76.2% 71.9% 65.2% 67.5%

average 92.7% 95.3% 94.4% 87.8% 84.7% 80.2% 75.0% 74.4%
best-case 97.0% 98.4% 99.2% 98.1% 91.3% 88.3% 85.2% 84.7%

6.5.2. Overhead Comparison

Two categories of overhead are analyzed: a) the computation effort and b) the
communication effort.
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Figure 6.15.: Average Computation Overhead

Figure 6.15 shows the average computation effort of all analyzed application
scenarios. On average, AStra is able to reduce the computation overhead by 56.9%
compared to DistRM. [ATBS13] achieves the resource management with a lower
number of total requests than DistRM. However, these requests also cover larger
regions of the chip. As the computational complexity per request scales with the
region size, the computation effort is actually higher than the ones of DistRM (on
average 29.0%, and up to 65.9% on a 1024 core system) and AStra (on average 199%,
and up to 242% on a 1024 core system).

Figure 6.16 shows the communication effort required by the analyzed resource
management strategies. Only the resource management related communication is
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Table 6.4.: Relative Average Application Mapping Quality of AStra

N 16 64 144 256 400 576 784 1024
worst-case 98.3% 96.0% 93.2% 89.0% 88.1% 81.9% 77.0% 77.6%

average 99.2% 97.1% 96.1% 92.8% 89.9% 85.7% 83.4% 83.7%
best-case 100.0% 98.7% 99.4% 97.7% 91.7% 88.7% 87.3% 88.0%

Table 6.5.: Relative Average Application Mapping Quality of [ATBS13]

N 16 64 144 256 400 576 784 1024
worst case 98.1% 94.4% 84.9% 77.5% 77.9% 76.4% 72.7% 67.1%

average 98.9% 96.1% 88.1% 83.9% 82.8% 83.0% 80.2% 77.3%
best case 99.7% 98.0% 90.6% 90.2% 86.9% 87.3% 86.6% 83.6%

shown, i.e. the application internal communication is omitted. The message sizes
s of the low-effort strategy stay constant for all many-core system configurations.
Only the average communication distance between interacting Agents grows with
the number of cores in the many-core system, resulting in a moderate growth of the
communication volume with growing system sizes. DistRM and [ATBS13] have a
similar overall communication effort. While [ATBS13] improved the communication
scheme and requires less messages to perform the resource management compared
with DistRM, the average size of the messages and the average distance between the
cores is larger which almost negates the improved communication protocol. AStra
reduces the communication effort by adaptively selecting the resource management
strategy and often uses the low-effort strategy. This leads, on average, to an reduction
of the communication effort by 69.3%. A detailed analysis on how AStra adaptively
selects the resource management strategy is given in Section 6.3.2.
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Figure 6.16.: Average Communication Overhead
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6.5.3. Detailed Comparison

The properties of the low-effort strategy, DistRM, AStra and [ATBS13] are already
evaluated and discussed in Section 6.1, Section 6.2, Section 6.3, and Section 6.4.2,
respectively. However, the direct comparison gives a direct visual impression on how
the different properties influence the respective effort.

As before, the resource management strategies are evaluated for the various
application scenarios and many-core system configurations. Figure 6.17 shows the
application mapping quality relative to centralized resource management, Figure 6.18
shows the computation effort, and Figure 6.19 the communication effort. In the
respective Sub-Figures a), b), and c) the scalability of the applications stays constant
over their whole execution time, i.e. they consist of only one phase (see Section 3.2)
and a steady state in which no further optimization is meaningful is achievable. In
Sub-Figures d), e) and f) the applications change their scalability ten times and in
Sub-Figures g), h) and i) 100 times respectively, i.e. they represent (highly) dynamic
workload scenarios that benefit from a continuous adaptation of the application
mapping. The number of concurrently executing applications is varied between eight
(Sub-Figures a), d), and g)), 16 (Sub-Figures b), e), and h)), and 32 (Sub-Figures c),
f), and i)).

6.6. Summary of Evaluation and Comparison

This Chapter gave an comprehensive analysis of the different distributed resource-
management strategies presented in this thesis. The linear (or even better than linear)
scalability with respect to the number of cores in the many-core system and the
number of concurrently executing applications of the adaptive resource-management
strategy AStra was shown. Profound analysis of the strategy selection and the
adaptive optimization delay and the influence of the different configuration parameters
completed this analysis. On average, AStra achieves an 5.4% improved application
mapping quality compared to state-of-the-art distributed resource management
[ATBS13] and requires only 33.4% of the computation effort and 30.7% of the
communication effort for the same application scenarios and many-core system
configurations. The computation effort of the centralized resource management
heuristic presented in Section 5.3 is more than two orders of magnitude higher than
the accumulated computation effort of AStra handling the same application scenarios.
On average, AStra still manages to achieve 91.0% of the application mapping quality
when using a conservative comparison and ignoring the overhead and latencies of
the centralized resource manager.
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Figure 6.17.: Comparison of the achieved relative application mapping quality of the
different distributed resource management strategies for the various
application scenarios and many-core system configurations
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Figure 6.18.: Comparison of the computation effort of the different distributed re-
source management strategies for the various application scenarios and
many-core system configurations
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Figure 6.19.: Comparison of the communication effort of the different distributed
resource management strategies for the various application scenarios
and many-core system configurations
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7. Conclusion and Outlook

To conclude this thesis, this chapter first recapitulates the contributions of this
thesis. Then, potential future research topics based on top of the scalable distributed
resource management are presented and discussed.

7.1. Thesis Summary

Managing the resources of a large on-chip many-core system (a NP-Hard problem)
centrally leads to serious issues in terms of computational complexity and thus high
latencies when the number of cores gets too large. The computational complexity is
caused by evaluating different potential application mappings based on an application
performance model as well as the decision making process itself. In order to address
these issues, an adaptive on-the-fly application performance model and a fully
distributed resource management were developed in the scope of this thesis. This
thesis has shown that the presented distributed resource management for many-
core systems is a suitable means to address the scalability issues of centralized
resource management with an increasing number of cores and concurrently executing
applications.

When deciding an application mapping, not only the number of cores allocated
to each application is of importance. Because of communication latencies between
the individual application tasks mapped to these cores also the selection of these
cores and their relative topological position on the chip matters. The adaptive
on-the-fly application performance model considers the topological properties of
the cores allocated to an application in NoC based many-core systems. It uses a
simple metric that can easily be determined to estimate the application performance
based on the lower bound and the upper-bound performance of the application. To
handle highly dynamic behavior of workloads not known a priori, the application
performance model is continuously adapted at runtime. The improved accuracy of
the performance estimations results in overall high execution efficiency when the
model is used for application mapping decisions. The evaluations show that the
average estimation error is reduced from 14.7% to merely 4.5% while at the same time
significantly improving the accuracy and reducing the worst-case error. As a result,
the applications profit from better mappings compared to state-of-the-art. The
on-the-fly application performance estimation model enables managing many-core
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systems that exhibit rapid and spontaneous workload variations while maintaining
the mapping quality.

To make the decision making for resource management highly scalable, the prin-
ciples of a Multi Agent System [Wei99] are employed and one dedicated Agent
per application is used as resource manager. The computations of an Agent are
performed on the same cores as the application and thus, the overall computational
effort of the resource management is distributed throughout the many-core system.
This provides important advantages such as inherent parallelism and the avoidance
of computational bottlenecks as only the local application mapping is considered and
optimized. Additionally, the communication of the resource management Agents
occurs locally in different regions of the chip instead of concentrating in one point.
The combined advantages of the on-the-fly application performance modeling and
the Multi Agent System make the resource management scalable and less intrusive
to the actual applications.

The initial resource management strategy presented in this thesis DistRM
[KBL+11] was designed as a distributed system without any global synchroniza-
tion or global communication. Therefore it scales with the size of the many-core
system and the number of applications. Results show that DistRM works as well
in 64 (8x8) core systems as in 1024 (32x32) core systems. The design principles of
DistRM inspired other research groups that adapted the ideas and improved upon
them, e.g. [ATBS13].

DistRM is based on periodic application mapping optimizations that trigger
the analysis and modification of multiple application mappings to achieve coarse
changes with a low latency. However, the overhead that is required to perform small
changes in the application mapping is as high as the overhead for coarse changes,
e.g. to determine the initial application mapping. This overhead leads to a large
delay between two optimization runs once an initial application mapping has been
found – DistRM is therefore not optimized to react to frequent small changes in the
application resource demands.

To address this weakness, this thesis combines the complex DistRM strategy with
another low-effort strategy in order to implement an adaptive strategy (AStra) for
low overhead distributed resource management. The main idea behind it is as follows:
to compensate the weaknesses and to amplify the strengths of these two resource
management strategies, AStra adaptively switches between these two basic resource
management strategies at runtime.

As a result, AStra was the first approach to employ two inter-operable strategies for
distributed resource management to achieve a highly efficient resource management.
To select the employed strategy, it exploits application knowledge on a) the best-
suited number of cores NΦmax

Ai
for an application Ai at any time during execution, b)

the local system state, and c) the set of cores CAi already allocated to application Ai.

The proposed adaptive strategy AStra is able to flexibly react to changes of the
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resource demands of an application and to find good application mappings fast. It can
optimize the application mapping gradually with a very low overhead. Compared to
state-of-the-art distributed resource management [ATBS13], the overall application
mapping quality is improved by 5%. At the same time, the computational effort
is reduced by 67% on average and the communication effort by 69% on average.
The computation effort of a centralized resource management heuristic is more than
two orders of magnitude higher than the accumulated computation effort of AStra
handling the same application scenarios. On average, AStra still manages to achieve
91.0% of the application mapping quality when using a conservative comparison and
ignoring the overhead and latencies of the centralized resource manager. This makes
AStra an optimal choice for managing the resources of future many-core systems
with low latencies and a low overhead.

7.2. Future Work

The fully distributed architecture of the resource management presented in this thesis
not only enables highly scalable resource management, it also allows improving the
reliability of the system. As there is no single point of failure, parts of the chip
may fail without having an impact on the still operational parts. The protocols
used for resource management only have to be extended slightly to deal with lost or
corrupted messages. Obviously, applications executing on a failed piece of hardware
will produce no results, or – even worse – wrong results. Therefore, a goal of future
work might be to detect failing hardware before they actually fail and not use them
for application mapping. This might entail building a dynamic ‘chip map’ that
contains information on which resources are available for application mapping. When
coupled with a dynamic resource discovery, this also allows a plug-and-play style
addition of hardware components to the Network-on-Chip.

Due to the power density of current and future technology nodes and the resulting
thermal issues, future many-core systems are not expected to be able to operate all
of their cores at the same time – a problem known as ‘dark silicon’. Dark silicon
management includes deciding which resources to operate a which performance
levels and will become an integral part of resource management. To enable resource
management avoiding (temporally) unavailable cores due to dark silicon management
decisions, a similar concept to the previously mentioned dynamic chip map might be
used. A more scalable solution might incorporate specialized Agents that represent
the dark silicon management decisions. While they might implement the regular
protocols used by the Agent System, they could allocate individual cores that are
affected by dark silicon management on purpose and will not give them away until
the system state allows their utilization for application execution again.

Another research topic is the extension of the application performance estimation
towards heterogeneous computation resources and communication channels to the
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memory. Based on the application implementation and the kind of heterogeneous
resources, the application might only support execution on certain kinds of resources
or perform suboptimal on the ‘wrong’ kind of hardware. The challenge here lies in
finding a parameterizable generic representation of the application and the hardware
platform that is not specific to an individual application. Also, the performance
estimation should still be lightweight in order to avoid high decision latencies.

Finally, a research direction might be the translation of quality requirements
requested by the application (such as the desired degree of predictability, the level
of timeliness or the amount of performance for a certain computation period) to
actual resource demands and the resulting application mapping. This would allow
application designers to specify typical application demands (e.g. the execution of a
specific part of the application 25 times per second) without knowing the hardware
properties of the many-core system and use these demands for application mapping
optimization instead of ‘blindly’ improving the overall application performance, e.g.
with respect to dark silicon optimizations.
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A. Many-Core and Multi-Agent
Simulation

Two simulation environments were used to evaluate the resource management pre-
sented in this thesis. The first one is a system-level simulation that allows for
relatively fast design space exploration. It is presented in Appendix A.1. All pre-
sented protocols and algorithms are implemented and developed in this simulator. It
uses source-code annotations to estimate the computation latencies and overhead.
The estimations are based on an implementation in a cycle-accurate many-core
simulator (Appendix A.2) and an implementation on the Intel SCC (see Section 2.1.2,
[PKH12]). All results presented in Chapter 6 are obtained by system-level simulation.

A.1. System-Level Simulation

A simplified class diagram of the system-level many-core simulator is shown in
Figure A.1. Especially the GUI (Graphical User Interface) is omitted to avoid
cluttering of the diagram. The GUI is very useful for analyzing the application
mapping decisions and developing resource management protocols. A screenshot of
such a simulation is shown in Figure A.2. To accelerate simulation, the GUI may be
completely disabled.

The core of the simulator is the central Event Queue which manages the momentary
simulation time and holds a queue of Events that await processing. Each Event

has a timestamp which indicates at which simulated time it should be handled.
Events may be scheduled for later points in simulation time or may be enqueued
to the momentary simulation time. Once all events that had been scheduled to
the momentary simulation time are handled, the simulation continues with the
earliest next enqueued Event. Most components in the simulator interact through
events. Therefore, they inherit specialized classes from the generic Event class that
indicates the desired payload and the corresponding Event Handler. Therefore,
most components of the simulator inherit from the Event Handler class.

As an example for using the event queue, assume an Agent wants to send a
REQUEST message through the NoC to an other Agent. Therefore it creates a
AgentRequestMessage object that contains the necessary information to perform
the request. The AgentRequestMessage class inherits from Message class that
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Figure A.1.: Simplified class diagram of the system-level many-core simulator used
in this thesis
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A.1 System-Level Simulation

Figure A.2.: Screenshot of the system-level simulator
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contains the information required by the NoC. The Message class itself inherits from
the Event class which allows to use the Event Queue. The AgentRequestMessage

message is given to the NoC model which simulates the path of the message through
the NoC. When the message arrived at the targeted core, the specialized Event

Handler of the addressed Agent is executed.

In the following Subsections, the most important components of the Simulator are
presented.

A.1.1. Workload Models

The workload model is responsible for instantiating new applications and for pur-
posefully terminating applications to dynamically generate stress for the resource
management. Different workload generators have been implemented:

� A parser for workload configuration files produced by Downey’s workload
generator (see Appendix B.1). The generated workload resembles the workload
generally found in high performance computing environments and is widely used
(e.g. [ZWB00, CB00, Fei03, SCH11, SLS07, PYL13, ATBS13]) for evaluating
many-core resource management.

� A workload generator that produces random workloads that emulate interactive
utilization of a many-core system

� A scenario based workload generator that produces predefined workload pat-
terns, e.g. an always growing/shrinking number of applications, or repetitive
impulses, etc.. These scenarios allow to evaluate corner-cases in resource
management.

A.1.2. Application Models

The application model is responsible for generating computation load on the cores,
for generating traffic in the NoC, and of course for triggering the resource manager
whenever the applications resource demands change. Depending on the frequency
of these changes, the stress for the resource manager grows with a growing number
of concurrent applications. The application model provides a generic interface to
the resource manager, independent on the actual implementation of the application
model. The following kinds of application models are implemented:

� A model for malleable applications. The model is based on Downey’s application
model [Dow98], however, it uses the application performance model presented
in this thesis to calculate the speedup instead. To increase the stress on
the resource manager, the applications are separated in different phases with
different scalability. The resource manager is triggered whenever a new phase
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is about to begin to allow an optimization of the application mapping. The
model allows adding and removing cores to/from the set of cores allocated to
an application at any point in time.

� The software-pipeline model presented in Section 2.2.4. It uses application
traces of real applications for parametrization (see Appendix B.2). The model
allows adding cores to the set of cores allocated to an application at any point
in time. Cores may be removed from the set of cores allocated to an application
whenever the pipeline stage currently assigned to these cores completed the
execution of the momentary iteration. Communication between the pipeline
stages use the NoC model.

� A task-graph application model [KKH13]. It includes a parser for task-graph
definitions in the TGFF format (see Appendix B.3). It uses the scheduling
heuristic presented in [THW02] to schedule the execution of tasks on assigned
cores. Communication between the application tasks use the NoC model.

A.1.3. Resource Management Models

The most important component in the simulator is the resource management model.
It receives requests from applications and uses on of the implemented resource
managers to decide the application mapping based on these requests. Various
resource managers have been implemented and evaluated in the simulator. The most
important ones are presented in detail in this thesis:

� Centralized resource managers decide the mapping of all applications at once.
Two centralized resource managers have been implemented:

– The hill-climbing heuristic, presented in Section 5.3.1

– State-of-the-art centralized MAMS multi application multi step mapping
method, presented in Section 5.3.2.

� Distributed Agent based resource management and the necessary infrastructure
(see Section 5.4.1). Distributed resource managers decide the mapping of
local areas on the chip for only a few applications. Multiple decisions take
place concurrently and repeatedly. The Agent based resource management
uses different strategies to achieve the resource management. Implemented
strategies are:

– The DistRM, presented in Section 5.4.3

– The low-effort Strategy, presented in Section 5.4.5

– The adaptive Strategy AStra, presented in Section 5.4.6

– State-of-the-art distributed resource management [ATBS13], presented in
Section 5.1.3
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A.1.4. NoC Model

The NoC model simulates communication in the many-core system. It uses the event
queue to propagate messages through the NoC. Once a message has received the
target core, an event is enqueued to trigger an action in the receiving component. The
NoC model uses xy-routing. Measurements using the Network-on-Chip of the Intel
SCC (see Section 2.1.2) were performed to improve the delay calculation [PKH12].

A.2. Cycle-Accurate Simulation

Additionally to the system-level simulation, parts of the Agent System have been im-
plemented [BKH14] within the cycle-accurate many-core simulator Hornet [LRC+11].
Hornet is a NoC simulator that includes a MIPS CPU simulator per core in the NoC.
This allows to execute native MIPS code (e.g. compiled C code) in a cycle-accurate
bare-metal environment. Hornet provides a small library that allows receiving and
sending messages through the NoC. Thus, the Agent System was re-implemented to
run in this environment. The resulting software architecture is shown in Figure A.3.

The Hornet simulator was enhanced [BKH14] to allow the measurement of the
execution time of individual parts of the executed application by means of syscalls.
This allowed to obtain cycle-accurate evaluations of the algorithms used by the Agents
in relation to various input data and parameter configuration. These measurements
augment the effort estimation performed in the system-level simulator.

Hornet Simulator Code running on simulated MIPS CPUs

NoC 

Simulator

MIPS 

Simulator

Memory 

Simulator

NoC 

Interface

Packet 

Handler

Directory 

Service

Agent Application

Figure A.3.: Software architecture of the cycle-accurate simulation of the Agent
System
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B. Workload Parameters

To evaluate the resource management and the performance estimation model pre-
sented in this thesis, synthetic workload as well as application traces was used. In
the following, Downey’s workload generator, malleable software pipelines and the
Task Graphs For Free [DRW98] utility are briefly presented.

B.1. Downey’s Application Model

A generic application speedup model for parallel workloads has been presented in
[Dow98]. It models achievable speedup of real-world applications when executed
on computer clusters very well. The model has been validated against various
benchmark applications on shared- and distributed memory systems. The parameters
of the model correspond to measurable program characteristics. This insight into
the values and distributions of these parameters in a real workload allowed to
implement a workload generator [Fei05] which allows to generate application profiles
and workload scenarios similar to those found in parallel high-performance computing
clusters. The generated workload resembles the workload generally found in high
performance computing environments and is widely used (e.g. [ZWB00, CB00, Fei03,
SCH11, SLS07, PYL13, ATBS13]) for evaluating many-core resource management.
To evaluate the distributed resource management presented in this thesis, workload
profiles generated by [Fei05] were used. Therefore, to generate suitable application
profiles, the workload generator had to be compiled for different system sizes, resulting
in different binaries Workload 4, Workload 8, . . . , Workload 32. These binaries were
executed multiple times to generate various workload profiles. In the following, the
script used to run execute these binaries as well as one example of a generated
workload profile are shown.

137



Workload Parameters

File: generate workload.pl

#!/usr/bin/perl

my @Cores = (4*4, 8*8, 12*12, 16*16, 20*20, 24*24, 28*28, 32*32);

my @Procs = (8, 16, 32);

for ($run=0; $run<10; $run++) {

foreach $NumCores (@Cores) {

foreach $NumProcs (@Procs) {

‘./Workload_$NumProcs $run 0.75 0 10 $NumCores >

files/WL_$NumCores\_$NumProcs\_$run‘;

}

}

}

File: WL 16 32 0 (Generated Workload Profile)

ReadyTime Total Workload Parameter P Parameter s

0.000 4455.42 8.91 1.57

1.061 7.21 6.42 1.54

7.837 118.39 32.69 0.73

8.398 9527.62 33.96 1.43

14.126 1.18 3.85 0.27

35.389 55.12 2.05 0.22

52.850 168.90 104.90 1.23

58.013 189.21 15.44 1.95

60.991 193.92 71.47 0.80

75.459 33.94 88.14 1.84

76.056 192.47 1.61 0.38

77.390 32.75 1.43 0.04

109.087 10.84 217.53 1.80

124.250 220.88 8.01 1.52

128.883 203.58 1.24 0.88

129.705 1352.25 4.84 1.48

141.616 971.28 2.51 0.88

143.765 27.20 3.56 1.79

148.077 14252.43 26.16 1.31

157.507 10297.93 9.11 1.63

158.576 124.57 3.31 1.90

180.520 6705.09 34.98 0.86

195.079 2591.57 5.50 0.89
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214.280 15.84 21.88 0.83

215.403 2.81 2.01 0.99

215.579 11499.28 44.49 0.77

227.026 18.95 3.63 1.17

248.608 1512.45 2.01 1.59

251.984 2.11 194.12 0.11

271.899 11.03 83.42 1.47

272.279 598.59 67.55 0.19

279.776 2.19 1.47 0.41

B.2. Malleable Software Pipelines

Software pipelines (see Section 2.2.4) are a well-established means to parallelize
stream-processing applications, among which are very common image/video and
networking applications [TKA02]. They consist of multiple stages, each processing
subsequent iterations on a stream of input data. Each stage i requires the time ci to
compute each iteration. The output data oi of one stage i forms the input data ei+1

of its direct successor. There is no further communication. A malleable software
pipeline [JPK+13] can reduce the number of its stages (and thus the number of cores
used) at runtime by fusing consecutive stages (see Figure 2.6) so they can be mapped
to the same core. The “robotic vision” application is such a malleable software
pipeline. The following (shortened) trace (from [JPK+13]) has been generated on
the Intel SCC many-core processor ([HDH+10], see Section 2.1.2).

File: RoboticVisionPipeline.txt (Application Trace)

# PIPELINE TRACE

NUM_STAGES = 20

NUM_ITERATIONS = 900

STAGE = 0

AVG_HEAP_SIZE = 22729595

AVG_STACK_SIZE = 40960

AVG_RUNTIME = 0

AVG_COMMVOL = 4

STAGE = 1

AVG_HEAP_SIZE = 22729595

AVG_STACK_SIZE = 40960

AVG_RUNTIME = 15740

AVG_COMMVOL = 10

STAGE = 2

AVG_HEAP_SIZE = 22729595
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AVG_STACK_SIZE = 40960

AVG_RUNTIME = 15513

AVG_COMMVOL = 14

STAGE = 3

AVG_HEAP_SIZE = 22729581

AVG_STACK_SIZE = 40960

AVG_RUNTIME = 2533

AVG_COMMVOL = 14

. . .

STAGE = 16

AVG_HEAP_SIZE = 23656243

AVG_STACK_SIZE = 40960

AVG_RUNTIME = 216

AVG_COMMVOL = 926648

STAGE = 17

AVG_HEAP_SIZE = 23656243

AVG_STACK_SIZE = 40960

AVG_RUNTIME = 216

AVG_COMMVOL = 926648

STAGE = 18

AVG_HEAP_SIZE = 23656243

AVG_STACK_SIZE = 40960

AVG_RUNTIME = 198

AVG_COMMVOL = 1838126

STAGE = 19

AVG_HEAP_SIZE = 20891469

AVG_STACK_SIZE = 40960

AVG_RUNTIME = 1560

AVG_COMMVOL = 0

B.3. TGFF: Task Graphs For Free

The TGFF [DRW98] utility generates task graphs, e.g. to evaluate scheduling or
resource management algorithms. In this thesis, three different task graphs were
generated to evaluate the resource-aware application speedup model presented in
Section 4.6.2.

The total workload of the three applications and the number of tasks in each
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application is almost the same; they only differ in their communication density.
The first task-graph represents an application with sparse communication. Each
node in the task-graph (except the end node per phase) only depends on a few
predecessors, which allows the task mapper to map the tasks in a way that avoids
frequent communications across different cores. The second application features a
medium communication density. There are up to five inputs to each node required
before the node can execute. This also means that the topological location of the
allocated cores has a bigger influence on the speedup. The third task-graph represents
an application with very dense communication between the individual tasks. For
this task-graph, the relative topological location of the allocated cores is of upmost
importance. In the following sections, the TGFF configuration files as well as the
resulting task graphs for these three applications are shown.
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B.3.1. Sparse Communication

File: sparse communication.tgffopt

tg_cnt 1

task_cnt 300 1

task_degree 1 30

tg_write

eps_write

table_label COMMUN

table_cnt 1

table_attrib price 80 20

type_attrib exec\_time 50 20

trans_write

table_label EXEC

table_cnt 1

pe_write

Figure B.1.: Task Graph generated by TGFF with a sparse communication pattern.
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B.3.2. Medium Communication

File: medium communication.tgffopt

tg_cnt 1

task_cnt 300 1

task_degree 5 30

tg_write

eps_write

table_label COMMUN

table_cnt 1

table_attrib price 80 20

type_attrib exec_time 50 20

trans_write

table_label EXEC

table_cnt 1

pe_write

Figure B.2.: Task Graph generated by TGFF with a medium communication pattern.
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B.3.3. Dense Communication

File: dense communication.tgffopt

tg_cnt 1

task_cnt 300 1

task_degree 30 30

tg_write

eps_write

table_label COMMUN

table_cnt 1

table_attrib price 80 20

type_attrib exec_time 50 20

trans_write

table_label EXEC

table_cnt 1

pe_write

Figure B.3.: Task Graph generated by TGFF with a dense communication pattern.
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C. Many-Core Hardware
Demonstrator Platform

A prototyping platform consisting of several Atmel 8-bit ATXmega micro-controllers
was developed for demonstrating the internal state and the ongoing communications
on a real distributed system [SKH11]. By using four serial interfaces per core, a
2d-mesh network is realized. The platform is based on modules consisting of four
cores that can be stacked to large system sizes with up to 65280 (255x256) cores (see
Figure C.1 and Figure C.2).

2,0 3,0 

3,1 2,1 

0,0 1,0 

1,1 . . . 

. . . 

. . . 

. . . 

0,1 

. . . X-1,0 X,0 

X,1 X-1,1 

. . . 

. . . 

. . . 

Core at 
Address 

(x,y) 
PCB Connector UART Link 

2 MBit/s 

Figure C.1.: Architecture of the demonstrator platform

a) b) c) 

Figure C.2.: Photos of a) a module consisting of four nodes, b) two modules stacked,
and c) the Many-Core demonstration platform running AStra on 80
cores. The platform underlines the feasibility of the proposed approach
but was not used to obtain any of the presented results!

The firmware [SKH12] running on each micro-controller emulates a Network-on-
Chip by providing a reliable end-to end communication across the platform. It allows
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to execute multiple, independent, concurrent jobs at the same time. Different Agent
strategies are implemented. Due to the modular design of the firmware, it is easy to
extend the system by implementing new tasks and agents. The firmware allows to
re-program the application and Agent implementation across the platform without
the need to connect each individual micro-controller to the host-PC.

Due to the limitations of the platform (e.g. the micro-controllers handle the NoC-
like communication and message routing in software) it is not suitable for performance
measurements (this is far better accomplished in the simulation). No results presented
in this thesis are obtained by using the prototyping platform. However, it is suitable
for indicating a) the feasibility of a fully distributed resource management and b) the
low resource demands of AStra. Table C.1 shows the static memory footprint of the
implementation and the used lines of C code for the different components running
on the platform, configured to be able to support 100 cores [SKH12]. With growing
system sizes, the static RAM demand for the Agent-Base grows with 1 byte per
additional core. The Agents additionally use dynamic memory for request handling.

Table C.1.: Static Memory Footprint (Bytes) and #Lines of Code used for the
implementation of the presented resource management and infrastructure

Flash RAM LoC
Firmware 7196 3376 1812

Middleware 4976 624 1106
Agent-Base 2944 134 533

DistRM 1344 - 227
Low-Effort 880 - 161

AStra 180 12 39

Hardware Profile “Many-Core Demonstrator”

Number of cores: 4 – 65280 (255x256)
Core architecture: 8Bit AVR
Core clock speed: 32 MHz

Cores per cache coherent domain: 1
Primary means of communication: Message-Passing

Communication infrastructure topology: 2d-Mesh Network
Communication infrastructure bandwidth: 2 MBit/s per link

4 links per core
On-Chip memory (per core): 16 kByte

Operating system support: Custom [SKH12]
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D. Implementation on the Intel SCC

In [PKH12], DistRM [KBL+11] was implemented on the Intel SCC (see Section 2.1.2
and [HDH+10]). The implementation confirmed the simulation results on a real many-
core system. To further improve the accuracy of the many-core system simulation, the
performance and latencies of the Intel SCC communication libraries (iRCCE, RCCE,
RCKMPI, and Linux TCP/IP-Sockets) were evaluated and compared. The individual
algorithms used by DistRM were implemented and benchmarked individually.

To compose a full implementation of DistRM, a component based middleware that
abstracts form the Intel SCC’s communication libraries and offers a more suitable
communication interface to the resource management approach specific software
components was created. The respective software architecture is shown in Figure D.1.
However, the implementation evaluation has shown that the Intel SCC running one
Linux Kernel instance per core does not provide an optimal evaluation environment
due to the high latencies and variance in the measurements.

Agent System Implementation (DistRM) 
 
 
 
 

Communication Library (iRCCE) 

Middle Ware 

Agent Directory Service Application 

Linux 

SCC Hardware 

Figure D.1.: Implementation of DistRM on the Intel SCC
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