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agreed to take time out of their busy schedules and serve on my doctoral committee.

Throughout my graduate studies, I had the opportunity to collaborate with may talented

individuals and I greatly benefited from their vision, ideas, and insights. I would like to ex-

tend my gratitude to Dr. Brian Baingana, Tianyi Chen, Dr. Morteza Mardani, Prof. Xiao Fu,

Prof. Geert Leus, Prof. Nikolaos Sidiropoulos, Prof. Qing Ling, Prof. Sergio Barbarossa,

Vassilis Ioannidis, Elena Ceci, Panagiotis Traganitis and Georgios Vasileios Karanikolas. The

material in this thesis has also benefited from discussions with current and former members of

the SPiNCOM group at UMN: Dimitris Berberidis, Seth Barrash, Emiliano Dall’Anese, Vas-

silis Ioannidis, Donghoon Lee, Bingcong Li, Meng Ma, Prof. Gonzalo Mateos, Prof. Daniel

Romero, Alireza Sadeghi, Fatemeh Sheikholeslami, Prof. Konstantinos Slavakis, Dr. Yunlong

Wang, Liang Zhang, and Prof. Yu Zhang. I am truly grateful to these people for their continuous

help. I would also wish to acknowledge the grants that support financially our research.

I also want to express my thanks to my great friends, some of which I’ve already mentioned

above, Cheng Jin, Agoritsa Polyzou, Ioanna Polyzou, Evangelia Christakopoulou, Konstantina

Christakopoulou, Bo Yang, and Ahmed S. Zamzam for making my Ph.D. life a wonderful ex-

perience. My family has also been the greatest source of inspiration along this journey. Special

thanks to my parents for their constant love, patience, care, and unwavering belief in me. And

for my grandparents for their understanding and support for me to pursue my dream.

Yanning Shen, Minneapolis, December 11 2018.

i



Dedication

This dissertation is dedicated to my family and friends for their unconditional love and support.

ii



Abstract

With the scale of information growing every day, the key challenges in machine learning
include the high-dimensionality and sheer volume of feature vectors that may consist of real and
categorical data, as well as the speed and the typically streaming format of data acquisition that
may also entail outliers and misses. The latter may be present, either unintentionally or inten-
tionally, in order to cope with scalability, privacy, and adversarial behavior. These challenges
provide ample opportunities for algorithmic and analytical innovations in online and nonlin-
ear subspace learning approaches. Among the available nonlinear learning tools, those based
on kernels have merits that are well documented. However, most rely on a preselected kernel,
whose prudent choice presumes task-specific prior information that is generally not available.
It is also known that kernel-based methods do not scale well with the size or dimensionality of
the data at hand. Besides data science, the urgent need for scalable tools is a core issue also
in network science that has recently emerged as a means of collectively understanding the be-
havior of complex interconnected entities. The rich spectrum of application domains comprises
communication, social, financial, gene-regulatory, brain, and power networks, to name a few.
Prominent tasks in all network science applications are those of topology identification and in-
ference of nodal processes evolving over graphs. Most contemporary graph-driven inference
approaches rely on linear and static models that are simple and tractable, but also presume that
the nodal processes are directly observable.

To cope with these challenges, the present thesis first introduces a novel online categorical
subspace learning approach to track the latent structure of categorical data ‘on the fly.’ Leverag-
ing the random feature approximation, it then develops an adaptive online multi-kernel learning
approach (termed AdaRaker), which accounts not only for data-driven learning of the kernel
combination, but also for the unknown dynamics. Performance analysis is provided in terms
of both static and dynamic regrets to quantify the novel learning function approximation. In
addition, the thesis introduces a kernel-based topology identification approach that can even ac-
count for nonlinear dependencies among nodes and across time. To cope with nodal processes
that may not be directly observable in certain applications, tensor-based algorithms that lever-
age piecewise stationary statistics of nodal processes are developed, and pertinent identifiability
conditions are established. To facilitate real-time operation and inference of time-varying net-
works, an adaptive tensor decomposition based scheme is put forth to track the topologies of
time-varying networks. Last but not least, the present thesis offers a unifying framework to deal
with various learning tasks over possibly dynamic networks. These tasks include dimensional-
ity reduction, classification, and clustering. Tests on both synthetic and real datasets from the
aforementioned application domains are carried out to showcase the effectiveness of the novel
algorithms throughout.

iii



Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Motivation and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Scalable online learning for big data . . . . . . . . . . . . . . . . . . . 2

1.1.2 Network topology identification and tracking . . . . . . . . . . . . . . 2

1.1.3 Scalable graph-adaptive learning . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis outline and published results . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Scalable subspace learning for big streaming categorical data . . . . . . 4

1.2.2 Online nonlinear learning in environments with unknown dynamics . . 4

1.2.3 Tensor-based network topology identification . . . . . . . . . . . . . . 5

1.2.4 Nonlinear network topology identification . . . . . . . . . . . . . . . . 5

1.2.5 Scalable nonlinear learning over graphs . . . . . . . . . . . . . . . . . 6

1.3 Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Scalable subspace learning for big Streaming Categorical data 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

iv



2.2 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Blind Probit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Blind Tobit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Blind Logit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Rank-Regularized ML Estimation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Online Categorical Subspace Learning . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 First-order alternating minimization algorithms . . . . . . . . . . . . . 16

2.4.2 Learning the quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Asymptotic convergence analysis . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Regret analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Classification of chess games . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.3 Interpolation of “Movie-Lens” dataset . . . . . . . . . . . . . . . . . . 32

2.6.4 Threshold adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Online nonlinear learning in environments with unknown dynamics 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Online MKL in static environments . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 RF-based single kernel learning . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Raker for online MKL . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Static regret analysis of Raker . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Online MKL in Environments with Unknown Dynamics . . . . . . . . . . . . 54

v



3.4.1 AdaRaker with hierarchical ensembles . . . . . . . . . . . . . . . . . . 54

3.4.2 Dynamic regret analysis of AdaRaker . . . . . . . . . . . . . . . . . . 57

3.5 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Synthetic data tests for regression . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Real data tests for online regression . . . . . . . . . . . . . . . . . . . 63

3.5.3 Real data tests for online classification . . . . . . . . . . . . . . . . . . 69

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7.1 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7.3 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7.5 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Tensor-based network topology identification 82
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 A Tensor Factorization Approach . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Identifiability issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Identifiability with fully known Rx . . . . . . . . . . . . . . . . . . . 91

4.4.2 Identifiability with partially known Rx . . . . . . . . . . . . . . . . . 93

4.5 Tracking dynamic network topologies . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Piecewise-invariant dynamic network topologies . . . . . . . . . . . . 95

4.5.2 Exponentially-weighted least-squares estimator . . . . . . . . . . . . . 96

4.6 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.1 Tests on static simulated networks . . . . . . . . . . . . . . . . . . . . 99

4.6.2 Simulated piecewise-constant network . . . . . . . . . . . . . . . . . . 102

4.6.3 Tests on real networks . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8.1 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8.2 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



4.8.3 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8.4 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Nonlinear network topology identification 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Preliminaries on Linear SVARMs . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 From linear to nonlinear SVARMs . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Kernel-based Sparse SVARMs . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Data-driven kernel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.1 Synthetic data tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.2 Real data tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8.1 Topology Inference via ADMM . . . . . . . . . . . . . . . . . . . . . 132

6 Online Graph-Adaptive Learning with Scalability and Privacy 135
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Kernel-based learning over graphs . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Online kernel-based learning over graphs . . . . . . . . . . . . . . . . . . . . 140

6.3.1 Batch RF-based learning over graphs . . . . . . . . . . . . . . . . . . 141

6.3.2 Online RF-based learning over graphs . . . . . . . . . . . . . . . . . . 142

6.4 Online Graph-adaptive MKL . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4.1 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6.1 Synthetic data test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6.2 Real data tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

References 156

vii



List of Tables

2.1 Runtime (seconds) and classification error comparison of the proposed online

CSL scheme against the batch MM for synthetic data under variable fraction of

misses 1− p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Runtime and MAE comparison of the proposed scheme against the batch MM

scheme under various p and different number of epochs for the Movie-Lens

dataset with d = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 MAE and classification accuracy comparison of the novel CSL scheme with,

and without threshold adaptation, under various p for binary synthetic data

when d = 5, D = 20, and T = 5, 000. . . . . . . . . . . . . . . . . . . . . . . 34

2.4 MAE and classification accuracy comparison of the CSL scheme with, and

without threshold adaptation, under various p for the chess-game dataset when

d = 5, D = 35, and T = 3, 196. . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Intervals and {σ2} for synthetic dataset. . . . . . . . . . . . . . . . . . . . . . 61

3.2 CPU time (in seconds) on synthetic datasets. RBF, POLY represents all single-

kernel methods using RBF and polynomial kernels, since they have the same

CPU time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 A summary of real datasets used in the tests. . . . . . . . . . . . . . . . . . . . 64

3.4 MSE (10−3) performance of different algorithms with stepsize 1/
√
T . . . . . . 65

3.5 MSE (10−3) performance of different algorithms with optimally chosen stepsizes. 66

3.6 MSE (10−3) versus the choice of stepsizes with complexity B = D = 50. . . . 66

3.7 A summary of CPU time (second) on real datasets. . . . . . . . . . . . . . . . 67

3.8 MSE (10−3) versus complexity. For OMKL-B, the complexity measure is the

data budget B; and for (Ada)Raker, the complexity measure is the number of

RFs D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



3.9 CPU time (second) versus complexity of B for OMKL-B, and D for (Ada)Raker. 68

3.10 Classification error (%) and runtime (second) of different algorithms with the

default stepsize 1/
√
T for RBF, OMKL and Raker, and with complexity B =

D = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 Classification error (%) of different algorithms with the dataset-specific opti-

mally chosen stepsizes for RBF, OMKL and Raker, and with complexity B =

D = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 Classification error (%) versus different choices of stepsizes with B = D = 50. 70

3.13 Classification error (%) and CPU time (second) versus complexity. . . . . . . . 71

4.1 Frequency of inference of networks depicted in Figure 4.12 out of 100 indepen-

dent runs of Algorithm 5b on different segments of data with window lengths

L = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Frequency of inference of networks depicted in Figure 4.12 out of 100 indepen-

dent runs of Algorithm 5b on the entire data set with different window lengths. 107

5.1 Comparison of global metrics associated with networks inferred from ECoG

seizure data using the linear, K-SVARM, and K-SVARM with kernel selection

scheme. Major differences between the computed metrics indicate that one

may gain insights from network topologies inferred via models that capture

nonlinear dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



List of Figures

1.1 Examples of categorical datasets . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Challenges of learning over networks . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Illustration of the considered models, namely Probit, Tobit and Logit. . . . . . 10

2.2 Empirical gradient-norm of (P3) versus time for synthetic data under variable

% of misses (1− p). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Time evolution of the two-dimensional (normalized) sketch obtained using the

Probit model at (a) t = 30; (b) t = 300; and, (c) t = 3, 000, when d = 2, and

D = 15. The ‘x’ and ‘o’ markers are for two different classes. As time goes by,

the classes become more separable. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 (a) MAE and (b) SVM classification error of CSL scheme with Tobit versus the

conventional PCA under variable compression rate p when d = 20, D = 100,

and T = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 (a) Runtime and (b) LS classification error of the novel CSL scheme versus

the MM scheme for the “King-Rook versus King-Pawn” dataset under variable

dimension d when p = 0.1, D = 35, and T = 3, 196. . . . . . . . . . . . . . . 31

2.6 MAE versus epochs under different settings of step size. . . . . . . . . . . . . 32

2.7 Quantization threshold convergence; (left) threshold evolution, and (right) thresh-

old gradient absolute value evolution for chess data. . . . . . . . . . . . . . . 33

3.1 Hierarchical AdaRaker structure. Experienced experts in the middle layer present

a Raker instance, where the size of expert cartoons is proportional to the interval

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 AdaRaker as an ensemble of Rakers with different learning rates: Each light/dark

black interval initiates a Raker learner. At slot 7, colored experts are active, and

gray ones are inactive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



3.3 MSE performance on synthetic Dataset 1: a) D = B = 20; b) D = B = 50. . . 62

3.4 MSE performance on synthetic Dataset 2: a) D = B = 20; b) D = B = 50. . . 63

4.1 An N -node directed network (blue links), with the t-th samples of endogenous

measurements per node. SEMs explicitly account for exogenous inputs (red

arrows), upon which endogenous variables may depend, in addition to the un-

derlying topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 The tensor constructed by stacking the correlation matrices admits a PARAFAC

decomposition comprising rank-one tensor outer products. . . . . . . . . . . . 89

4.3 Tensor grows per window m by a new frontal slice. . . . . . . . . . . . . . . . 96

4.4 Actual and inferred adjacency matrices with the number of windows set toM =

5, 10, and 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 EIER under varying window lengths M , and σe = 0.1: a) Ω = {(i, j)|i =

1, . . . , N, j = 1, . . . ,M}; b) 50% misses in Rx; and c) Ω = ∅. . . . . . . . . . 100

4.6 EIER for several values of M and σe = 1: a) Ω = {(i, j)|i = 1, . . . , N, j =

1, . . . ,M}; b) 50% misses in Rx; and c) Ω = ∅. . . . . . . . . . . . . . . . . . 101

4.7 Performance in blind scenario: a) EIER; b) Success rate. . . . . . . . . . . . . 102

4.8 EIER vs. m for: (a) Scenario p1; and (b) Scenario p2. . . . . . . . . . . . . . . 103

4.9 MSE vs m for: a) Scenario p1; b) Scenario p2. . . . . . . . . . . . . . . . . . 103

4.10 Actual and inferred networks at m = 200. . . . . . . . . . . . . . . . . . . . . 104

4.11 Plot of the two groups of stock prices over the observation duration with zero-

mean centering: a) technology companies; and b) online and “brick-and-mortar”

retailers. The stock ticker symbol for each company is shown in the legend (in

parentheses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Visualization of network topologies inferred from the stock price time series,

depicting: a) technology companies; and b) online and “brick-and-mortar” re-

tailers. Notice the stronger dependencies between the two competing “brick-

and-mortar” retailers, Macy’s (MCY) and Nordstrom (NDM). . . . . . . . . . 105

xi



5.1 (left) A simple illustration of a 5-node brain network; and (right) a set of five

neuronal time series (e.g., ECoG voltage) each associated with a node. Per in-

terval t, SVARMs postulate that causal dependencies between the 5 nodal time

series may be due to both the instantaneous effects (blue links), and/or time-

lagged effects (red links). Estimating the values of the unknown coefficients

amounts to learning the causal (link) structure of the network. . . . . . . . . . 114

5.2 Plot of EIER vs. measurement ratio (T/N), with simulated data generated

via a polynomial kernel of order P = 2. Note that K-SVARMs consistently

outperform LSVARMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Plot of EIER vs. (T/N) with data generated using a Gaussian kernel with

σ2 = 1; K-SVARMs uniformly lead to lower errors than linear LSVARMs over

varying SNR levels, based on empirical observations. . . . . . . . . . . . . . . 124

5.4 Plot of EIER vs. (T/N) with simulated data generated via a polynomial kernel

of order P = 2; it can be empirically observed that K-SVARMs uniformly

outperform LSVARMs across varying edge densities. . . . . . . . . . . . . . . 124

5.5 ROC curves generated under different modeling assumptions: a) K-SVARM

based on a Gaussian kernel with σ2 = 1; b) K-SVARM based on polynomial

kernel of order P = 2; and c) Linear SVARM. . . . . . . . . . . . . . . . . . . 125

5.6 Visualizations of networks inferred from ECoG data: (a) linear SVARM with

L = 1 on preictal time series; (b) linear SVARM on ictal time series; (c) K-

SVARM on preictal time series, using Gaussian kernel with σ = 1; (d) the

same K-SVARM on ictal time series; (e) K-SVARM with kernel selection on

preictal time series; and finally (f) K-SVARM with kernel selection on ictal time

series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.7 Node degrees of networks inferred from ECoG data encoded by circle radii:

(a) linear SVARM on preictal data; (b) linear SVARM on ictal data; (c) K-

SVARM on preictal time series; (d) K-SVARM on ictal data; (e) MKL-SVARM

on preictal time series; (f) MKL-SVARM on ictal time series. . . . . . . . . . . 129

5.8 Same as in Figure 5.7 for comparison based on average shortest path length of

inferred graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Inference performance versus number of nodes for synthetic dataset generated

from graph diffusion kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xii



6.2 Inference performance versus number of nodes for synthetic dataset generated

from Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Inference performance versus number of sampled nodes in temperature dataset 152

6.4 Inference performance versus number of sampled nodes in email dataset . . . . 153

6.5 Inference performance versus number of sampled nodes in Cora dataset . . . . 154

xiii



Chapter 1

Introduction

1.1 Motivation and context

We live in an era of data deluge. Pervasive media collect massive amounts of data in a wide

variety of formats. A major volume of this data originates from large-scale networks, which can

represent a wide range of physical, biological, and social phenomena. For instance, we as users

of the Facebook social network happily feed 10 billion messages per day, click the ‘like’ button

4.5 billion times, and upload 350 million new pictures each and every day. Learning from these

large volumes of network data is expected to bring significant science and engineering advances

along with consequent improvements in quality of life.

Networks are described by graphs, and identifying their topologies as well as processes

evolving over graphs emerge in various applications involving brain, gene-regulatory, and social

networks, to name a few. Knowing how graph nodes are connected is essential for understand-

ing the dependencies among nodes in the underlying networks. Albeit simple and tractable,

linear time-invariant models are limited since they are incapable of handling generally evolv-

ing topologies, as well as nonlinear and dynamic dependencies between nodal processes. To

this end, one of the main high-level goals of this dissertation is to develop a unified framework

capturing nonlinearities and dynamics present in real-world networks.

The key outcomes of this dissertation are algorithms, analysis, and application of machine

learning and statistical signal processing tools to big data analytics, including scalable nonlin-

ear learning from high-dimensional (network) data; which finds exciting applications in under-

standing the structure and dynamics of social, biological, and financial systems.

1
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(a) Movie ratings (b) Gene expressions

Figure 1.1: Examples of categorical datasets

1.1.1 Scalable online learning for big data

Principal component analysis (PCA) is arguably the most popular tool for dimensionality re-

duction, with numerous applications in science and engineering [1]. It is however primarily

designed to sketch high-dimensional data with analog-amplitude values, and does not apply to

categorical data emerging for instance, with recommender systems; see also Fig. 1.1. Cate-

gorical PCA seeks a low-dimensional sketch of the high-dimensional categorical data to render

affordable downstream machine learning tasks such as imputation, classification, and cluster-

ing; see e.g., [2–8]. However, the growing scale of nowadays ‘Big Data’ applications, such as

recommender systems (e.g., NetFlix) with millions of users rating thousands of movies, pose

extra challenges: (c1) the sheer volume of data approaches the computational and storage lim-

its; (c2) new releases demand real-time processing for recommendations; and (c3) absent data

entries, corresponding to missing user ratings. These challenges motivate well the first theme

of this thesis on online nonlinear subspace learning.

Kernel-based methods exhibit well-documented performance in various nonlinear learn-

ing tasks. Major challenges of such methods include scalability and the choice of the kernel

function, which presumes task-specific prior information. These considerations prompt algo-

rithm development and analysis of scalable, adaptive, and data-driven multi-kernel approaches

to track the unknown nonlinear learning function ‘on the fly.’

1.1.2 Network topology identification and tracking

The study of networks and interconnections among complex agents has recently emerged as a

major catalyst for collectively understanding the behavior of complex systems [9]. Such systems

are ubiquitous, and commonly arise in both natural and man-made settings. For example, online

interactions over the web are commonly facilitated through social networks such as Facebook
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(a) Massive-scale (b) Unknown nonlinearity (c) Unknown dynamics

Figure 1.2: Challenges of learning over networks

and Twitter, while sophisticated brain functions are the result of vast interactions over complex

neuronal networks. Other networks naturally emerge in settings as diverse as financial markets,

genomics and proteomics, power grids, and transportation systems, to name just a few.

Topology identification of directed networks is a prominent task in the aforementioned ap-

plication domains. For example, discovery of causal links between regions of interest in the

brain is tantamount to identifying an implicit connectivity network. Studies pertaining to reg-

ulatory interactions among genes depend upon identification of unknown links within gene-

regulatory networks. Since network structures are often unobservable, in order to facilitate net-

work analytics, one generally resorts to approaches capitalizing on measurable nodal processes

to infer the unknown topology. Most contemporary graph topology identification schemes rely

on linear and static models due to their inherent simplicity. However, in complex systems such

as gene or brain networks, these assumptions may not be feasible. This calls for nonlinear

models and scalable online algorithms to cope with these challenges; see also Figure 1.2.

1.1.3 Scalable graph-adaptive learning

Estimating functions or signals specified over graph nodes is a task emerging in all the afore-

mentioned network science applications. Functions of nodes can represent certain attributes or

classes of these nodes. In Facebook for instance, each node represents a person, and the pres-

ence of an edge can indicate that two persons are friends, while nodal attributes can be age,

gender or movie ratings of each person. In financial networks, where each node is a company,

with links denoting trade between two companies, the function of the node can represent the

category that each company belongs to, e.g., technology-, fashion-, or education-related.

In certain applications however, the size of the network may be very large, and new nodes

may join the network over time. For example, hundreds of new users are joining Facebook
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or Netflix every day, and new companies are founded in financial networks regularly. Real-

time and scalable estimation of the desired functions on these newly-joining nodes is of great

importance. Besides scalability, nodes may have firm privacy requirements, and may therefore

not be willing to reveal who their neighbors are. Most of the existing graph-aware learning

methods however, generally require exact information of the network topology information,

and therefore cannot meet privacy constraints. To this end, one of the major goals of this thesis

is to develop a scalable graph-adaptive learning method with privacy.

1.2 Thesis outline and published results

This dissertation deals with scalable and adaptive learning for big data, topology identification

and learning over graphs. Specifically, the outline and related publications are as follows.

1.2.1 Scalable subspace learning for big streaming categorical data

Common characteristics of large-scale datasets include the fact that they are often incomplete,

prone to outlying measurements and may contain categorical attributes. Furthermore, as in-

formation sources unceasingly produce data in real time, analytics must often be performed

on-the-fly, typically without a chance to reconsider previous data. These considerations justify

why extracting latent low-dimensional structure from high-dimensional data is of paramount

importance in timely inference tasks encountered with big data. The sheer volume of data and

the fact that observations are acquired sequentially over time, motivate updating previously ob-

tained analytics rather than recomputing new ones from scratch each time a new datum becomes

available. In this context, Chapter 2 advocates a new framework to efficiently track the latent

low-dimensional structures from incomplete and corrupt datasets typically encountered in prac-

tice. The proposed framework encompasses several fundamental learning tasks including im-

putation, clustering, and classification. Numerical tests for real MovieLens dataset and MINST

dataset confirm the power of the novel methods compared with existing methods [10–12].

1.2.2 Online nonlinear learning in environments with unknown dynamics

Kernel-based methods exhibit well-documented performance in various nonlinear learning tasks.

They are mainly challenged by the so-termed ‘curse of scalability,’ and the choice of the kernel
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function, which presumes task-specific prior information. Aiming to address these challenges,

Chapter 3 introduces a scalable adaptive data-driven multi-kernel learning scheme to obtain

the sought nonlinear learning function ‘on the fly’ [13,14]. Performance is analyzed in terms of

both static and dynamic regrets, which establish conditions that the novel algorithm must satisfy

in order to track nonlinear learning functions in environments with unknown dynamics. Tests

with a number of real datasets corroborate the effectiveness of the novel algorithms [15–17].

1.2.3 Tensor-based network topology identification

Structural equation modeling (SEM) is a widely used tool for directed network topology infer-

ence. However, conventional SEMs require full knowledge of exogenous inputs, which may

not be readily available in several practical settings [18, 19]. Prompted by this, Chapter 4 ad-

vocates a novel SEM-based topology inference approach that relies on factorizing a three-way

tensor, constructed from the observed nodal data, using the tensor decomposition [20,21]. Iden-

tifiability conditions are established to guarantee that the topology can be uniquely recovered.

In addition, to facilitate real-time operation and inference of time-varying networks, an adap-

tive tensor decomposition scheme is developed to track the topology-revealing tensor factors.

Extensive tests on real stock quote data demonstrate the effectiveness of the proposed tensor-

based approach in identifying the causal dependencies among stocks even when stock prices for

certain stocks are not fully available [20, 22, 23].

1.2.4 Nonlinear network topology identification

Chapter 5 further generalizes the SEMs and structural vector autoregressive models (SVARMs)

to account for (possible) nonlinear interactions among nodes, which provides a powerful tool for

identifying real-world networks [24–26]. The novel approach leverages kernels as a powerful

encompassing framework for nonlinear modeling, and results in an efficient estimator with

desirable complexity-expressibility tradeoffs. Pursuit of the novel kernel-based approach yields

an estimator that promotes edge sparsity, a property exhibited by most real-world networks,

such as brain and social networks. Experiments on a real gene expression dataset, as well as

brain datasets illustrate that the novel method can unveil interesting new edges that were not

revealed by conventional linear methods, which could shed more light on regulatory behavior

of human genes, and brain dynamics at the seizure onset [27, 28].
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1.2.5 Scalable nonlinear learning over graphs

With insights gained from previous works, Chapter 6 broadens the algorithmic and performance

analysis framework to online scalable learning over possibly dynamic networks. Our results

reveal the benefits of considering the underlying network topologies for classification and clus-

tering [29, 30], as well as dimensionality reduction of data observed over graphs [31, 32]. 1

Furthermore, real-world networks may have very large size, and nodal attributes can be un-

available to a number of nodes. Existing inference methods over graphs typically assume that

the network size is fixed. However, new nodes can emerge over time, which necessitates real

time analytics of growing network data [19]. In order to cope with newly-joining nodes, and

to meet potential privacy constraints, Chapter 6 casts inference of nodal attributes as an online

function learning task, and develops an adaptive privacy-preserving approach that is scalable

to large-size dynamic networks. The novel method is further capable of effectively providing

real-time evaluation of growing networks with newly-joining nodes without resorting to a batch

solver. In addition, the novel scheme only relies on an encrypted version of each node’s connec-

tivity in order to learn the nodal attributes, which promotes privacy. Experiments on real email

and citation network datasets corroborate the effectiveness of the proposed methods [33].

1.3 Notational conventions

Bold uppercase (lowercase) letters will denote matrices (column vectors), while operators (·)>

and λmax(·), will stand for matrix transposition and maximum eigenvalue, respectively. The

identity matrix will be denoted by I, while `p, and Frobenius norms will be denoted by ‖.‖p and

‖.‖F , respectively. The operator vec(.) will vertically stack columns of its matrix argument, to

form a vector. Finally, A ⊗ B will denote the Kronecker product of matrices A and B, while

A�B will denote their Khatri-Rao product, namely, A�B := [a1⊗b1, . . .aN ⊗bN ], where

A := [a1, . . . ,aN ] and B := [b1, . . . ,bN ]. The projection operator [a]+ := max{a,0} is

defined entrywise. Symbol † represents the Hermitian operator, while the indicator function

1{A} takes the value 1 when the event A holds, and 0 otherwise; E denotes the expectation,

while 〈·, ·〉 and 〈·, ·〉H the vector inner product in Euclidean and Hilbert spaces, respectively.

1The corresponding publication was among the finalists for best paper award at the CAMSAP-2017 conference.



Chapter 2

Scalable subspace learning for big
Streaming Categorical data

2.1 Introduction

Principal component analysis (PCA) is arguably the most popular tool for dimensionality re-

duction, with numerous applications in science and engineering [1]. It is however primarily

designed to sketch high-dimensional data with analog-amplitude values, and does not suit cate-

gorical data emerging for instance, with recommender systems. Categorical PCA seeks a low-

dimensional sketch of the high-dimensional categorical data to render affordable downstream

machine learning tasks such as imputation, classification, and clustering; see e.g., [2–8]. How-

ever, the growing scale of nowadays ‘Big Data’ applications, such as recommender systems

(e.g., NetFlix) with millions of users rating thousands of movies, pose extra challenges: (c1)

the sheer volume of data approaches the computational and storage limits; (c2) new releases

demand real-time processing for recommendations; and (c3) absent data entries, corresponding

to missing user ratings.

Relation to prior work. Past works on categorical PCA focus on binary PCA, and rely on

logistic-regression entailing (bi)linear models; see e.g., [3, 4, 6]. The work in [3] assumes that

the log-odds matrix of the data lies in a linear low-dimensional subspace. The approach in [6]

further imposes a Gaussian prior on the sketch, whereas the one in [4] promotes sparsity for the

7
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subspace to regularize the log-likelihood, which is then maximized using a batch majorization-

minimization (MM) scheme. In a similar vein, binary matrix factorization has also been em-

ployed for dimensionality reduction when batch processing is affordable; see e.g., [34–37].

Other techniques for summarizing discrete-valued data include multidimensional scaling [38],

and the k-modes algorithm [39], which extends k-means [40] to the discrete domain by adopt-

ing a proper dissimilarity measure. For streaming datasets, [8] proposes an online sketching

scheme based on logistic PCA when all data entries are present, and an online binary dictionary

learning algorithm has been developed in [11]. All in all, the prior art is for the most devel-

oped for binary data, and either assumes the data have no missing entries, or, it relies on batch

processing.

Contributions. To cope with challenges (c1)-(c3), the present chapter brings forth a novel

categorical subspace learning (CSL) scheme that unravels the latent structure behind the cat-

egorical data for three popular bilinear schemes; namely, Probit, Tobit, and Logit [41]. The

Probit model treats categorical data as quantized values of a certain analog-amplitude vector

that lies in a linear low-dimensional subspace. Tobit is the model of choice for censoring, while

the probabilistic Logit model generalizes logistic regression to the unsupervised case. The bi-

linear models in this chapter can accommodate finite-alphabet datasets, and can also interpolate

missing entries via rank regularization. To this end, the log-likelihood is regularized with a term

corresponding to the rank of the underlying analog-valued data matrix. Leveraging a decom-

posable variant of the nuclear-norm, a recursive nonconvex program is then formulated, and

solved online via stochastic alternating minimization. The resultant procedure alternates be-

tween sketching the new datum and refining the latent subspace via stochastic gradient descent

to extract the information present in the new datum. This leads to lightweight first-order iterates

that are nicely parallelizable across the latent subspace dimension, and thus implemented very

efficiently via graphical processing units (GPUs).

The deterministic Probit and Tobit models adopt pre-determined quantization thresholds,

which we further adjust to enhance the predictive power of the categorical models. To this end,

the first-order iterates are modified to jointly learn the quantizer thresholds as well as the latent

subspace. Performance of the subspace iterates is also analyzed for both finite and infinite data

streams, where the former relies on martingale sequences to prove asymptotic convergence of

the subspace to the stationary point set of the batch maximum likelihood (ML) estimator. For

finite data streams, an unsupervised notion of regret is adopted to derive sublinear regret bounds
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for the empirical cost. Extensive simulated tests are performed with synthetic and real datasets

for classification of chess-game scenaria, and interpolation of absent ratings in movie recom-

mender systems. They corroborate the convergence and effectiveness of the novel sketching

scheme in terms of accuracy and runtime relative to the existing alternatives.

To better place the present work in context, it is important to differentiate its novelties from

online dictionary learning [42, 43], and online subspace learning [44], which is the closest to

this contribution. To stand alone, the present work is motivated by dimensionality reduction

of categorical data as a feature extraction scheme for machine learning tasks. In contrast, for

analog-valued data [44] focuses on interpolation of misses, and [42, 43] deal with denoising

when no misses are present. The algorithm and its asymptotic convergence analysis are inspired

by [42, 43] and [44]. However, contrary to [42, 43] and [44], this work deals with categorical

data; it offers regret analysis for finite data streams; and performs sketch evaluation with real-

world datasets including “King-Rook versus King-Pawn” and “Movie-Lens” for chess-game

classification and movie recommendation, respectively.

The rest of this chapter is organized as follows. Section 2.2 presents preliminaries, and

states the problem. Section 2.3 formulates the ML estimator with rank regularization, based

on which Section 2.4 develops subspace learning algorithms for online sketching via stochastic

alternating minimization as well as learning the quantizer, while the performance of first-order

subspace iterates is analyzed in Section 2.5. Section 2.6 reports the numerical tests with syn-

thetic and real datasets, while conclusions are drawn in Section 2.7.

2.2 Preliminaries and Problem Statement

Consider the high-dimensional D × 1 vectors {yτ}Tτ=1 with categorical entries drawn from a

J-element alphabet S := {s0, . . . , sJ−1}. For instance, in movie recommender systems yt

represents the users’ categorical ratings (e.g., “good” or “bad”) for the t-th movie. Apparently,

each user can only rate a small fraction of movies, and thus ratings for a sizable portion of

movies may not be available. Let Ωt ⊆ {1, . . . , D} with cardinality |Ωt| (� D) denote the set

of available entries (user ratings) associated with the t-th movie. With the partial categorical

data {yt,i, i ∈ Ωt}Tt=1 ∈ SD, categorical PCA seeks a low-dimensional (sketched) set of fea-

tures {ψτ}Tτ=1 ∈ Rd (with d � D), which render affordable downstream inference tasks such

as regression, prediction, interpolation, classification, or, clustering; see e.g., [3–8]. Aiming at
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Figure 2.1: Illustration of the considered models, namely Probit, Tobit and Logit.

a related objective, the present work builds on three unsupervised categorical models that are

described next.

2.2.1 Blind Probit model

The Probit model regards S as the range space of a J-element quantization mapping

F (J)
probit(x) := sj if x ∈ (ηj , ηj+1]

for j = 0, 1, . . . , J − 1 (2.1)

with {ηj} denoting known quantization thresholds. The categorical vectors {yt}Tt=1 are then

viewed as the quantized versions of certain analog-valued data vectors that belong (or lie close)

to a linear low-dimensional subspace U . Specifically, the i-th entry admits the following quan-

tized bilinear model

yi,t = F (J)
probit(xi,t + vi,t) (2.2a)

xi,t := u>i ψt, i ∈ Ωt (2.2b)

where ψt ∈ Rd denotes the projection of yt ∈ RD onto the low-dimensional (d < D) subspace

U ; see also Fig. 2.1. Columns of the matrix U := [u1, . . . ,uD]>, where u>i ∈ Rd denotes the

i-th row of U span the linear subspace U . The noise vi,t also accounts for errors and unmodeled

dynamics.

Probit regression is widely used in practice for modeling categorical responses [45]. Con-

sider for instance the survival outcome (alive, or, dead) for patients with a certain disease over

a period of time. The patient’s survival, or, death is a binary response that depends upon several
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factors such as age, weight, gender, as well as the treatment dose and specifications.

Our goal of finding {ψt}Tt=1 and U corresponds to blind regression given finite-alphabet

{yi,t}, while for U known, it is closely related to nonblind Probit-based classification.

2.2.2 Blind Tobit model

Acquired data in practice can be censored to e.g., lie in a prescribed range, for further pro-

cessing. Given thresholds ηl and ηu, a typical censoring rule discards large data entries based

on

FItobit(x) :=


ηu x ≥ ηu
ηl x ≤ ηl
x x ∈ (ηl, ηu).

(2.3)

Alternatively, one can think of a censoring rule that removes small data entries as effected by

F II
tobit(x) :=


x x ≥ ηu
x x ≤ ηl
η x ∈ (ηl, ηu).

(2.4)

As with the Probit model, to gain practical insight about the Tobit model, note that if the

patient dies naturally within the study period, one knows precisely the survival time. However,

if the patient dies before or after the study, where no accurate data is collected, only an upper or

a lower bound is available on the patient age. Tobit models have been shown useful in big data

applications for selecting informative observations [46].

Similar to (2.2), one can postulate the censored bilinear Tobit model (see also Fig. 2.1)

yi,t = Ftobit(xi,t + vi,t) (2.5a)

xi,t := u>i ψt, i ∈ Ωt. (2.5b)

2.2.3 Blind Logit model

Probit and Tobit adopt deterministic data-generating functions F and rely on nonlinear regres-

sion to predict missing categorical (hard) data. Inspired by logistic regression, Logit relies on a
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probabilistic (soft) model to predict label probabilities [47]. Suppose {yi,t} are mutually inde-

pendent random variables, where the i-th entry yi,t is Bernoulli distributed with success prob-

ability πi,t := Pr(yi,t = 1). Define also the log-likelihood ratio xi,t := log{πi,t/(1 − πi,t)},
which upon solving for πi,t yields the Logit function π(x) := {1 + exp(x)}−1.

The Logit model postulates that the log-likelihood ratio sequence {xi,t} belongs to a linear

low-dimensional subspace spanned by the matrix U; that is, xi,t := u>i ψt for some ψt, and for

the binary case (s ∈ {0, 1}), the categorical data probability is thus expressed as

Flogit(xi,t) := Pr(yi,t = s)

=
1

1 + exp((1− 2s)xi,t)
, i ∈ Ωt. (2.6)

Likewise for the multibit Logit with each entry chosen from a J-element alphabet, J−1 bilinear

Logit models start from the log-likelihood ratio

log
Pr(yi,t = sj)

Pr(yi,t = s0)
= ψ>t u

(j)
i , j = 1, . . . , J − 1 (2.7)

where u
(j)
i is the predictor for the j-th class, and adopt the soft data model to arrive at (cf. (2.6))

Pr(yi,t = sj) =
exp(ψ>t u

(j)
i )

1 +
∑J−1

k=1 exp(ψ>t u
(k)
i )

, j = 1, . . . , J − 1. (2.8)

Different from (2.2) and (2.5) where (hard) categorical data yi,t are nonlinear functions of xi,t,

Logit deals with (soft) probability data Pr(yi,t = s), expressed in (2.8) as a nonlinear function

of xi,t. With the patient’s survival example in mind, the Logit model can predict the survival

chance within a certain period of time [45].

Given {yi,t}, the ensuing section will develop ML estimators of U and {ψt} for the three

models introduced in this section, namely (2.2), (2.5), and (2.8).

2.3 Rank-Regularized ML Estimation

In what follows the likelihood function will be derived first, when the additive noise vi,t ∼
N (0, σ2) is independent and identically distributed (i.i.d.), zero-mean Gaussian, with variance

σ2. As a result, available categorical entries {yi,t} are independent across i and t.
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For the Probit model in (2.2), the per-categorical-entry likelihood can be written as

Pr(yi,t; ui,ψt) =
J−1∏
j=0

Pr{xi,t ∈ (ηj , ηj+1]}I(yi,t=sj)

=
J−1∏
j=0

[
Q

(
ηj − u>i ψt

σ

)
−Q

(
ηj+1 − u>i ψt

σ

)]I(yi,t=sj)

(2.9)

where I(ε) is the indicator function, and Q(·) denotes the standard Gaussian tail function.

Upon collecting the low-dimensional representations in a matrix Ψ := [ψ1, . . . ,ψT ], the log-

likelihood of the available categorical data can be expressed as

logLprobit

(
{yi,τ , i ∈ Ωτ}Tτ=1; U,Ψ

)
=

T∑
τ=1

∑
i∈Ωτ

log `probit(yi,τ ; ui,ψτ ) (2.10a)

with

log `probit(yi,t; ui,ψt) :=

J−1∑
j=0

I(yi,t = sj)

× log

[
Q

(
ηj − u>i ψt

σ

)
−Q

(
ηj+1 − u>i ψt

σ

)]
. (2.10b)

For the Tobit-I model in (2.3), one can readily derive the per-entry log-likelihood as

`tobit−I(yi,t; ui,ψt) := φ

(
yi,t − u>i ψt

σ

)
I(yi,t ∈ (ηl, ηu))

+Q

(
ηu − u>i ψt

σ

)
I(yi,t = ηu)

+
[
1−Q

(
ηl − u>i ψt

σ

)]
I(yi,t = ηl) (2.11a)

with φ(·) denoting the probability density function (pdf) of the standardized Gaussian N (0, 1).

Likewise, the corresponding log-likelihood for the Tobit-II in (2.4) can be represented as

`tobit−II(yi,t; ui,ψt)
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:=

[
Q

(
ηj − u>i ψt

σ

)
−Q

(
ηj+1 − u>i ψt

σ

)]
I(yi,t = η)

+ φ

(
yi,t − u>i ψt

σ

)
I(yi,t ≥ ηu)

+ φ

(
yi,t − u>i ψt

σ

)
I(yi,t ≤ ηl). (2.11b)

The overall log-likelihood for censored data is then obtained similar to (2.10a).

Finally, for the Logit model, based on the per-datum likelihood in (2.8), the per-entry log

likelihood can be written as

`logit(yi,t; ui,ψt) :=

J−1∑
j=0

I(yi,t = sj) log

[
exp(ψ>t u

(j)
i )

1 +
∑J−1

k=0 exp(ψ>t u
(k)
i )

]
(2.12)

and consequently the overall log-likelihood can be obtained by substituting (2.12) into the coun-

terpart of (2.10a), where Probit is replaced by Logit.

So far (2.10), (2.11), and (2.12) provide the building blocks of our ML criterion for the

Probit, Tobit, and Logit model, respectively. In our ML approach however, we have not yet

accounted for the low-rank property inherent to our data {yi,t}, or, their probabilities {Pr(yi,t =

sj)}. This is the subject dealt with in the next subsection.

Collect entries xi,t = u>i ψt to form the D × 1 vector xt = Uψt. Since the stream {xt}
lies in a linear low-dimensional subspace, X := [x1, . . . ,xT ] = UΨ is a low-rank matrix. A

natural way to account for this property is to constrain the likelihood maximization over the set

of low-rank matrices. However, since minimizing rank is in general NP-hard, the nuclear norm

‖X‖∗ :=
∑

i σi(X) (where σi signifies the i-th singular value) will be adopted as a convex

surrogate for the rank [48]. These considerations prompted us to minimize the regularized

negative log-likelihood

(P1) min
X=UΨ

− logL
(
{yi,τ , i ∈ Ωτ}Tτ=1; U,Ψ

)
+λ‖X‖∗

where L collectively refers to the likelihood for any of the models in (2.2), (2.5), or (2.7). The

parameter λ also controls the dimension of the latent subspace, and it can be tuned using cross

validation. For the binary case (J = 2), the nuclear-norm regularization in (P1) has been shown

under mild conditions to offer reconstruction guarantees for the Probit and Logit models [49].
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Apparently, the regularizer in (P1) entangles the data points, and as a result it challenges the

development of efficient online solvers. To mitigate this computational challenge, the following

bilinear characterization of the nuclear-norm is adopted (cf. [44, 50, 51])

‖X‖∗ = min
{U,Ψ}

1

2

(
‖U‖2F + ‖Ψ‖2F

)
s. to X = UΨ (2.13)

where the minimization is over all possible bilinear factorizations of X. Bypassing the need

for calculating singular values of X whose size grows with time, this characterization of the

nuclear norm not only effects a surrogate of the rank constraint, but also decouples variables

across time, thus facilitating online optimization tasks [44, 50]. Utilizing (2.13) into (P1) after

dropping the min operation, yields

(P2) min
{U,Ψ}

− logL
(
{yi,τ , i ∈ Ωτ}Tτ=1; U,Ψ

)
+
λ

2

(
‖U‖2F + ‖Ψ‖2F

)
.

Since the min operation is in effect at the optimum, it can be easily seen that the solutions

of (P2) and (P1) coincide [50]. For a moderate number of data entries D and instants T , if the

entire data is available in batch, one can develop alternating minimization algorithms along the

lines of [50]. This amounts to cycling over two groups of variables, namely {U,Ψ}, to jointly

refine the sketch Ψ and the subspace U. However, for ‘Big Data’ applications with (large D)

streaming over time (T → ∞), the size of Ψ grows; thus, batch solvers become prohibitively

complex, which well motivates the recursive solvers of the ensuing section.

2.4 Online Categorical Subspace Learning

With modern ‘Big Data’ applications, the massive amount of available data makes it impractical

to store and process the data in an offline fashion. Furthermore, in many settings, the data are

acquired sequentially over time and there is a need for real-time processing. In either case,

practical limitations call for online schemes, capable of refining the sketch by adjusting the

learned subspace to each new datum ‘on the fly.’ With this in mind, we recast (P2) to minimize
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the following empirical cost

(P3) min
{ψτ}tτ=1,U

1

t

t∑
τ=1

gτ

(
{yi,τ}i∈Ωτ ;ψτ ,U

)
where the instantaneous cost gτ corresponding to the τ -th datum is given by

gτ
(
{yi,τ}i∈Ωτ

;ψτ ,U
)

:= −
∑
i∈Ωτ

log `(yi,τ ;ψτ ,ui) +
λ

2t

D∑
i=1

‖ui‖22 +
λ

2
‖ψτ‖22. (2.14)

It is important to recognize that different from our schemes in [50] and [44], which rely on

analog-valued data, the nonlinear cost in (P3) entails categorical data and Gaussian tail functions

that challenge algorithmic derivations. This is further elaborated next.

2.4.1 First-order alternating minimization algorithms

To effectively solve (P3) for streaming data, an iterative alternating minimization (AM) method

is adopted, where the iteration index coincides with the acquisition time. The sought AM

scheme comprises two learning steps. Upon acquiring {yi,t}i∈Ωt at time instant t, the first

step (S1) embeds the data into the latent low-dimensional subspace, updates the features ψt,

and as a byproduct imputes the missing data entries. Subsequently, step (S2) refines the latent

subspace according to the latest imputed datum.

In (S1), given the subspace at the previous update U[t− 1], the embedding is obtained as

ψt = arg min
ψ∈Rd

gt
(
{yi,t}i∈Ωt ;ψ,U[t− 1]

)
. (2.15)

This amounts to a nonlinear ridge-regression task, given categorical {yi,t}i∈Ωt with misses,

along with their predictors {ui[t− 1]}i∈Ωt corresponding to the rows of U[t− 1]. In the binary

Probit model, the embedding ψt can also be viewed as the classifying hyperplane that assigns

vectors ui[t − 1], i ∈ Ωt, to their labels. With this interpretation, the j-th absent entry can be

imputed by projecting uj [t−1] onto the hyperplane ψt that is then quantized to return the label

sign(u>j [t− 1]ψt). Similarly, if the Logit model is adopted, (2.15) can be viewed as training a

binary logistic regression classifier.
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Algorithm 1 Online rank-regularized ML sketching for the Probit model

input: {yi,τ , i ∈ Ωτ}Tτ=1, {µt}, λ
initialize U[0] at random.
for t = 1, 2, . . . do

(S1) Sketching via first-order Algorithm 1a or
second-order Algorithm 1b

ψt = arg minψ∈Rd gt
(
{yi,t}i∈Ωt ;ψ,U[t− 1]

)
(S2) Parallel subspace refinement (i ∈ {1, . . . , D})
zij,t−1 := σ−1(ηj − u>i [t− 1]ψt)

fi,t :=
∑J−1

j=0 I(yi,t = sj)
[
φ(zij,t−1)− φ(zij+1,t−1)

]
wi,t :=

∑J−1
j=0 I(yi,t = sj)

[
Q(zij,t−1)−Q(zij+1,t−1)

]
ui[t] =

{
(1− λµt/t)ui[t− 1] + µt(fi,t/wi,t)ψt, i ∈ Ωt

(1− λµt/t)ui[t− 1], i /∈ Ωt

end for
return

(
U[t], {ψτ}tτ=1

)

The optimization problem (2.15) involves only d� D variables, and can be readily solved

using off-the-shelf solvers, such as gradient descent or Newton method. The recursions for the

Probit model are derived after regularizing (2.10) as in (2.14), and the corresponding iterates

are listed in Algorithm 1.

With the sketch {ψτ}tτ=1 at hand, (S2) proceeds to update the subspace in (P3). This

is however a daunting task since for the considered categorical models the regularized loss

gt relates to the latent subspace U in a complicated way (through functions of the Gaussian

pdf for the Probit and Tobit, and exponential functions for the Logit model), which precludes

closed-form solutions. To bypass this computational hurdle, we will adopt an inexact solution

of (P3). The basic idea leverages the empirical cost of (P3) to incorporate the information of the

latest datum through a stochastic gradient descent iteration. In essence, at iteration (time) t the

old subspace estimate is updated by moving (with an appropriate step size) along the opposite

gradient direction of gt incurred by the latest datum. All in all, this yields the recursion

ui[t] = ui[t− 1]− µt∇uigt
(
{yi,t}i∈Ωt ;ψt,U[t− 1]

)
(2.16)
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Algorithm 1a Gradient-descent algorithm to obtain the sketch for the Probit model

input: {yi,t, i ∈ Ωt}, {ηj}, {βk}, λ, K, σ, U[t− 1]

initialize: ψ(0)
t

for k = 1, . . . ,K do

aij,t−1 = σ−1(ηj − u>i [t− 1]ψ
(k−1)
t )

εi :=
∑J−1

j=0 I(yi,t = sj)

[
φ(aij,t)−φ(aij+1,t)

Q(aij,t−1)−Q(aij+1,t−1)

]
ψ

(k)
t = (1− βk)ψ(k−1)

t + βk
∑

i∈Ωt
εiui[t− 1]

end for
return ψ

(K)
t

where µt is the step size that can vary across time.

For the Probit model, the gradient is simply obtained as

∇uig
(probit)
t

(
{yi,t}i∈Ωt ;ψt,U[t− 1]

)
= − f(ui[t− 1],ψt)

w(ui[t− 1],ψt)
ψt +

λ

t
ui[t− 1] (2.17)

where the scalar functions f and w are given by

f(ui[t− 1],ψt) :=
J−1∑
j=0

I(yi,t = sj)
[
φ(zij,t−1)− φ(zij+1,t−1)

]
with zij,t−1 := σ−1(ηj − u>i [t− 1]ψt), and

w(ui[t− 1],ψt) :=
J−1∑
j=0

I(yi,t = sj)
[
Q
(
zij,t−1

)
−Q(zij+1,t−1)

]
.

For the Tobit-I model, the gradient is expressed as

∇uig
(tobit−I)
t

(
{yi,t}i∈Ωt ;ψt,U[t− 1]

)

=


−(yi,t−u>i [t−1]ψt)

σ2 ψt + λ
t ui[t− 1], yi,t ∈ (ηl, ηu)

φ(ziu,t)

σQ(ziu,t)
ψt + λ

t ui[t− 1], yi,t = ηu
φ(zil,t)

σQ(zil,t)
ψt + λ

t ui[t− 1], yi,t = ηl

(2.18)
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Algorithm 1b Newton method to obtain the sketch for the Probit model

input: {yi,t, i ∈ Ωt}, {ηj}, {βk}, λ, K, σ, U[t− 1]

initialize: ψ(0)
t

for k = 1, 2, . . . ,K do
aij,t−1 := σ−1(ηj − u>i [t− 1]ψ

(k−1)
t )

θi,t :=

J−1∑
j=0

I(yi,t = sj)×
[
aij,t−1φ(aij,t−1)− aij+1,t−1φ(aij+1,t−1)

]
fi,t :=

∑J−1
j=0 I(yi,t = sj)

[
φ(aij,t−1)− φ(aij+1,t−1)

]
wi,t :=

∑J−1
j=0 I(yi,t = sj)

[
Q(aij,t−1)−Q(aij+1,t−1)

]
∇ψt

gt = −∑i∈Ωt

fi,t
wi,t

ui[t− 1] + λψ
(k−1)
t

∇2
ψt

gt = −∑i∈Ωt

[
f2i,t
w2
i,t
− θi,t

wi,t

]
ui[t− 1]u>i [t− 1] + λI

ψ
(k)
t = ψ

(k−1)
t − βk(∇2

ψt

gt)
−1∇ψt

gt

end for
return ψ

(K)
t

where ziu,t−1 := σ−1
(
ηu − u>i [t− 1]ψt

)
, and likewise for zl,t−1. For the Tobit-II model, we

have

∇uig
(tobit−II)
t

(
{yi,t}i∈Ωt ;ψt,U[t− 1]

)
=

 −
φ(zil,t−1)−φ(ziu,t−1)

Q(zil,t−1)−Q(ziu,t−1)
ψt + λ

t ui[t− 1], yi,t ∈ (ηl, ηu)

−(yi,t−u>i [t−1]ψt)
σ2 ψt + λ

t ui[t− 1], yi,t = ηl, or ηu.
(2.19)

Finally, one can arrive at the gradient of the binary Logit model that is given by

∇uig
(logit)
t

(
{yi,t}i∈Ωt ;ψt,U[t− 1]

)
=

(2yi,t − 1) exp{(2yi,t − 1)u>i [t− 1]ψt}
1 + exp{(2yi,t − 1)u>i [t− 1]ψt}

ψt +
λ

t
ui[t− 1]. (2.20)

The subspace update (2.16) amounts to exactly solving a first-order approximation of the

cost in (P3). The overall procedure is summarized in Algorithm 1 only for the Probit model,
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but it also applies for the Tobit and Logit models with obvious modifications for the gradient

correction terms.

Remark 1 (Computational cost): The subspace update in Algorithm 1 is parallelizable across

rows of U (D), and can be efficiently implemented on GPUs. The major complexity emanates

from running the iterative Algorithm 1a or 1b, for obtaining ψt. Fixing the maximum number

of inner iterations to K, this demands O(Kd2D) operations for Algorithm 1b, and O(KdD)

operations for Algorithm 1a. Our empirical observations suggest that even an inexact solution

of (S1) obtained by running Algorithm 1b with a few iterations K suffices for Algorithm 1

to converge. The remaining operations entail multiplications and additions of order O(D).

The overall cost of the Algorithm 1 per iteration is O(Kd2D), which is affordable since d is

generally small.

2.4.2 Learning the quantizer

The Probit model discussed in the previous sections requires quantization thresholds {ηj}J−1
j=0

to be available. These thresholds however add degrees of freedom, which can enhance the

predictive power of the Probit based approach to modeling categorical data. While one can

derive the general multibit case, to simplify exposition, consider the binary case with a single

threshold η that is assumed fixed over time. With this in mind, (2.2) boils down to

yi,t = sign(u>i ψt + vi,t − η). (2.21)

To sketch big categorical data obeying (2.21), both ui and η must be selected jointly. An

estimate of these parameters can be found by jointly maximizing the rank-regularized likelihood

in (P2), where the per-entry log-likelihood is now replaced by

log `probit(yi,t; ui,ψt, η) =
1 + yi,t

2
log Q

(
η − u>i ψt

σ

)
+

1− yi,t
2

log Q

(
u>i ψt − η

σ

)
.

Accordingly, the updates for {ui} and η are obtained by applying stochastic gradient descent to

the empirical loss in (P3).

The sketch and subspace updates are similar to (2.15) and (2.16), while η is updated as

η[t] = η[t− 1]− γt∇ηgt
(
{yi,t}i∈Ωt ;ψt,U[t], η

)
(2.22)



21

where the gradient with respect to η is readily expressed as

∇ηgt = −
∑
i∈Ωt

ζi,t−1 (2.23)

where ζi,t−1 := −bi,t−1σ
−1φ(bi,t−1)/Q (bi,t−1), and bi,t−1 := σ−1yi,t

(
η[t− 1]− u>i [t− 1]ψt

)
.

Albeit more complex, analogous updates are possible for the multibit Probit, and likewise

for designing the quantizer when Tobit and Logit models are adopted.

2.5 Performance Analysis

This section establishes convergence of the first-order iterates in Algorithm 1 for the considered

categorical models, namely Probit, Tobit, and Logit. Both asymptotic and non-asymptotic anal-

yses for infinite and finite data streams are considered. The asymptotic analysis relies heavily

on quasi-martingale sequences [42], while for non-asymptotic analysis we draw from regret

metric advances in online learning [8, 52–54].

2.5.1 Asymptotic convergence analysis

For infinite data streams, convergence analysis of our categorical subspace learning schemes is

inspired by [42], and our precursors in [44] and [50]. In order to render analysis tractable, the

following assumptions are adopted.

(as1) The data streams {yt}∞t=1 and sampling patterns {Ωt}∞t=1 form an i.i.d. process; and

(as2) the subspace sequence {U[t]} lies in a compact set.

To begin, rewrite the rank-regularized empirical cost in (P3) as

min
U∈RD×d

Ct(U) :=
1

t

t∑
τ=1

gτ (ψτ ,U). (2.24)

As argued earlier in Section 2.4, minimization of (2.24) becomes increasingly complex compu-

tationally as t grows. The subspace U[t] is estimated by the stochastic gradient-descent (SGD)

iteration with an appropriate step size. Define the approximate cost

Čt(U) =
1

t

t∑
τ=1

ǧτ (ψτ ,U) (2.25)
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where ǧt is a quadratic upperbound for gt(·) based on the second-order Taylor approximation

around the latest subspace estimate U[t− 1]; that is

ǧt(ψt,U) = gt(ψt,U[t− 1]) + 〈∇Ugt(ψt,U[t− 1]),U−U[t− 1]〉 (2.26)

+
αt
2
‖U−U[t− 1]‖2F (2.27)

with αt ≥ ‖∇2
Ugt(ψt,U[t− 1])‖. It is useful to recognize that the quadratic surrogate ǧt(·) is

a tight approximation for gt, since (i) it is an upperbound, i.e., ǧt(ψt,U) ≥ gt(ψt,U), ∀U;

and (ii), it is locally tight, i.e., ǧt(ψt,U[t − 1]) = gt(ψt,U[t − 1]), with (iii) locally tight

gradient, i.e., ∇ǧt(ψt,U[t− 1]) = ∇gt(ψt,U[t− 1]). Taking the gradient of Čt w.r.t. U, and

after simple rearrangements as elaborated in [44], SGD iterations can be seen as minimizing the

approximate cost (2.25). Furthermore, gt is smooth as asserted next.

Lemma 1: Under (as2), upon defining δ1 := ∆/σ2, δ2 := (∆2/σ2 + 1)/σ2, and ∆ :=

ηJ−1 − η0, for the gradient and Hessian of the per-entry loss for the Probit model, it holds that

‖∇uig
(probit)
t

(
ψt,U

)
‖2 ≤ δ1‖ψt‖2 +

λ

t
‖ui‖2 (2.28)

‖∇2
uig

(probit)
t

(
ψt,U

)
‖ ≤ δ2‖ψt‖22 +

λ

t
(2.29)

and consequently the per-entry cost g(probit)
t

(
ψt,U

)
, and∇g(probit)

t

(
ψt,U

)
are Lipschitz con-

tinuous.

Proof: See the Appendix .

The convergence of subspace iterates can then be established following the machinery de-

veloped in [42]. In the sequel, technical details are skipped due to space limitations, but they

follow arguments similar to those in [44]. The proof sketch entails the following two main steps.

(Step1) The approximate cost Čt(U[t]) asymptotically converges to Ct(U[t]), which is,

limt→∞ |Ct(U[t])− Čt(U[t])| = 0. The convergence follows the quasi-martingale property of

{Čt} in the almost sure (a.s.) sense owing to the tightness of the surrogate function ǧt.

(Step2) Due to the regularity of gt, asymptotic convergence of {Ct(U[t])− Čt(U[t])} → 0

implies convergence of the associated gradient sequence, namely {∇Ct(U[t])−∇Čt(U[t])} →
0, which ultimately leads to∇Ct(U[t])→ 0.

The projection coefficients ψt can be solved exactly using Newton iterations due to the

convexity of gt(ψt,U[t − 1]), when the subspace is frozen at U[t − 1]. This is formalized in
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the next lemma.

Lemma 2: Under the Probit, Tobit-II, and Logit models, the per-entry regualrized-loss gt(ψ,U)

is bi-convex for the block variables ψ and ui.

Proof: See the Appendix 2.8.2.

All in all, combining the previous arguments with Lemmas 1 and 2, the asymptotic conver-

gence claim for the iterations of Algorithm 1 can be asserted as follows.

Proposition 1: Suppose (as1)-(as2) hold, and choose the step-size sequence {µt = 1/ᾱt}
where ᾱt ≥ ct, and δ2‖ψt‖2 + λ/t ≤ αt ≤ c′ for constants c, c′ > 0, and δ2 as in Lemma 1.

Then, the subspace sequence {U[t]} satisfies limt→∞∇UCt(U[t]) = 0, which means that the

subspace iterates asymptotically converge to the stationary-point set of the batch ML estimator

(P1).

Remark 2: Independence under (as1) is customary for tractability of analysis when studying

the performance of online (adaptive) algorithms. Still, in accordance with the adaptive filtering

folklore (see e.g., [55, p. 109]) the upshot of the analysis based on i.i.d. data extends accurately

to the pragmatic setting whereby the data and missing patterns exhibit temporal correlations.

Furthermore, compactness under (as2) can be ensured by imposing a norm constraint, namely

‖U‖F ≤ B, which simply normalizes the updated subspace per iteration of the stochastic

gradient descent.

2.5.2 Regret analysis

For finite data streams, we will rely on the unsupervised formulation of regret analysis to assess

the performance of online iterates, in terms of interpolating misses and denoising the available

categorical data. Regret analysis was originally introduced for the online supervised learning

scenario [53], where the ground-truth label is revealed after prediction to incur a loss whose

gradient is used to guide the learning. In the considered unsupervised sketching task however,

the true labels are not revealed, which challenges regret analysis. Unsupervised variations of

regret have been lately introduced to deal with online dictionary learning [52], and sequential

logistic PCA [8].

Prompted by the alternating nature of iterations, we adopt a variant of the unsupervised

regret to assess the goodness of online subspace estimates in representing the partially available

data. Specifically, at iteration t, we use the previous update U[t − 1] to span the recent partial
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data, namely, yi,t, i ∈ Ωt. With gt(ψt,U[t−1]) being the loss incurred by the estimate U[t−1]

for predicting the t-th datum, the cumulative online loss for a stream of size T is given by

C̄T :=
1

T

T∑
τ=1

gτ (ψτ ,U[τ − 1]). (2.30)

Further, we will assess the cost of the last estimate U[T ] using

ĈT =
1

T

T∑
τ=1

gτ (ψτ ,U[T ]). (2.31)

Comparing the losses in (2.25), (2.30), and (2.31), with CT := minUCT (U), it clearly holds

that

ČT ≥ ĈT ≥ C̄T ≥ CT . (2.32)

Accordingly, for the sequence {U[t]}Tt=1, define the online regret

RT := ĈT − C̄T . (2.33)

Our next goal is to investigate the convergence rate of the sequence {RT } to zero as T grows.

This is important particularly because it is known from Proposition 1 that |Čt − Ct| → 0 as

t → ∞, and as a result |C̄t − Ct| → 0 (cf. (2.32)). Due to the nonconvexity of the online

subspace iterates, it is challenging to directly analyze how fast the online cumulative loss C̄t
approaches the optimal batch cost Ct. Instead, we will investigate whether Ĉt converges to C̄t.

In the sequel, to derive regret bounds we focus on the Probit model. However, the same

analysis caries over to develop regret bounds for the Tobit and Logit models too.

Proposition 2: If {U[t]} and {ψt} are uniformly bounded, i.e., ‖U[t]‖F ≤ Bu, and ‖ψt‖2 ≤
Bψ for constants Bu, Bψ > 0, choosing a constant step size µt = µ, leads to a bounded regret

as

RT ≤
B2(ln(T ) + 1)2

2µT
+

5B2

6µT

where B := (λBu + δ1Bψ)/ρ is a constant not dependent of T , δ1 as in Lemma 1, and ρ
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denotes the strong convexity constant on C̄T .

Remark 3(Subpace Projection): Instead of assuming bounded subspace iterates, namely ‖U[t]‖F ≤
Bu, one can alternatively introduce an additional projection onto theBu-ball given by {U| ‖U‖F ≤
Bu}. This additional projection does not alter the asymptotic convergence result in Proposition

2 due to the non-expansiveness of the projection operator.

To place Proposition 2 in context, relevant regret analyses have been carried out for the

dictionary learning [52], and the sequential logistic PCA [8]. Different from our scheme, [52]

deals with overcomplete dictionary updates with sparsity-regularized projection coefficients,

and assumes that the estimation error is uniformly bounded. The regret bound obtained in [8]

for logistic PCA also assumes no absent data entires, and it is relatively loose since the regret

does not vanish as T →∞.

The proof technique of Proposition 2 relies on the following lemma, which asserts that the

distance between successive subspace estimates vanishes as fast as o(1/t), a property that will

be instrumental to establish sub-linearity of the regret later.

Lemma 3: [50] Under (as2), it holds that

‖U[t]−U[t− 1]‖F ≤
B

t

for some constant B := (λBu + δ1Bψ)/ρ, where ρ denotes the strong convexity constant of

C̄t.

Proof: See the Appendix 2.8.3.

Toward bounding the regret, consider the difference of the iterates (cf. (2.16))

U[t]−U[t− 1] = −µt∇Ugt(ψt,U[t− 1]). (2.34)

Taking the Frobenius norm on both sides yields

‖U[t]−Ut− 1‖F = µt‖∇Ugt(ψt,U[t− 1])‖F (2.35)

and after appealing to Lemma 3, we arrive at

‖∇Ugt(ψt,U[t− 1])‖F ≤
B

µtt
. (2.36)
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On the other hand, it is easy to verify that (cf. (2.35))

‖U[t]−U[T ]‖2F
= ‖U[t− 1]−U[T ] + U[t]−U[t− 1]‖2F
= ‖U[t− 1]−U[T ]‖2F + µ2

t ‖∇Ugt(ψt,U[t− 1])‖2F
− 2µt〈U[t]−U[T ],∇Ugt(ψt,U[t− 1])〉

which after re-arranging yields

〈U[t]−U[T ],∇Ugt(ψt,U[t− 1])〉

=
‖U[t− 1]−U[T ]‖2F

2µt
+
µt‖∇Ugt(ψt,U[t− 1])‖2F

2
− ‖U[t]−U[T ]‖2F

2µt
. (2.37)

Thanks to the separability of gt, along with its convexity (cf. Lemma 2), one can establish the

inequality

gt(ψt,U[T ])− gt(ψt,U[t− 1]) ≥ 〈U[T ]−U[t− 1],∇Ugt(ψt,U[t− 1])〉. (2.38)

Using (2.38), this yields the following upper bound

T
[
C̄T − ĈT

]
=

T∑
t=1

[gt(ψt,U[t− 1])− gt(ψt,U[T ])] ≤
T∑
t=1

〈U[t− 1]−U[T ],∇Ugt(ψt,U[t− 1])〉.

(2.39)

Substituting (2.37) into (2.39), and combining with (2.36), leads to

T
[
C̄T − ĈT

]
≤ ‖U[0]−U[T ]‖2F

2µ1

+
T∑
t=1

(
1

2µt+1
− 1

2µt

)
‖U[t− 1]−U[T ]‖2F +

B2

2

T∑
t=1

1

µtt2
. (2.40)
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Regarding the first term in the right hand side of (2.40), it can be further bounded by

‖U[0]−U[T ]‖2F
2µ1

=
1

2µ1
‖U[0]−U[1] + U[1]−U[2] + · · ·+ U[T − 1]−U[T ]‖2F

≤ 1

2µ1
(‖U[0]−U[1]‖F + · · ·+ ‖U[T − 1]−U[T ]‖F )2

=
1

2µ1

(
T∑
t=1

‖U[t]−U[t− 1]‖F
)2

≤ 1

2µ1

(
T∑
t=1

B

t

)2

≤ B2

2µ1
(ln(T ) + 1)2 (2.41)

where the first inequality follows from the triangle inequality, while the last two inequalities are

due to Lemma 3 and the property of harmonic series, respectively. Upon choosing a constant

step size µt = µ, the last term in (2.40) can be bounded by [56]

B2

2µ

T∑
t=1

1

t2
≤ 5B2

6µ
(2.42)

and after some algebra one arrives at

C̄T − ĈT ≤
B2(ln(T ) + 1)2

2µT
+

5B2

6µT

which completes the proof of Proposition 2.

2.6 Numerical Tests

Performance of the novel online categorical subspace learning schemes is assessed in this sec-

tion via simulated tests on both synthetic and real-world datasets. The real ones include: (D1)

“King-Rook versus King-Pawn” chess-game dataset [57]; and (D2) “Movie-Lens” user-movie

rating dataset [58].
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Figure 2.2: Empirical gradient-norm of (P3) versus time for synthetic data under variable % of
misses (1− p).

2.6.1 Synthetic data

Synthetic categorical data {yt}Tt=1 with D = 25 across T = 5, 000 time instants are generated

after quantizing the real-valued process {xt = Uψt}Tt=1 to the alphabet S := {1, . . . , 5}.
The underlying low-dimensional sketch is drawn equiprobably from two populations, namely

ψi,t ∼ N (−1, 0.04) for the first class; and ψi,t ∼ N (+1, 0.04) for the second class. Matrix

U ∈ RD×d is generated with entries drawn from the standardized normal distribution. Uniform

quantizer is adopted with thresholds ηj := −J+1+2j
J−1 xmax, j = 0, 1, . . . , J − 1, where xmax

denotes the maximum absolute entry of xt. To simulate the missing entries, a subset of entries

are dropped uniformly at random with probability 1− p.

Throughout the tests a constant step size µt = 0.01 is adopted for the subspace update, and

the rank controlling parameter is set to λ = 0.1. The results are averaged over 100 independent

trials.

Convergence of Algorithm 1 under various percentages of missing data is demonstrated in

Fig. 2.2 depicting the empirical gradient-norm (w.r.t. U) of (P3) over time. It is evident that

after about 1, 200 iterations, the online algorithm with random initialization attains a stationary

point of (P2). To highlight the merits of the novel scheme, the batch majorization-minimization

(MM) scheme of [4] is also implemented. In essence, MM relies on the Logit model with

binary data (J = 2), and thus one needs first to obtain binary categorical data to make it



29

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c)

Figure 2.3: Time evolution of the two-dimensional (normalized) sketch obtained using the Pro-
bit model at (a) t = 30; (b) t = 300; and, (c) t = 3, 000, when d = 2, and D = 15. The ‘x’ and
‘o’ markers are for two different classes. As time goes by, the classes become more separable.

operational. Setting d = 8, the low-dimensional sketch returned by both algorithms is used to

classify the data using a linear SVM classifier. The resulting runtime as well as the classification

error (fraction of miss-classified data) for our scheme and MM are listed in Table 2.1 for a

fraction of absent entries. It is apparent that our online scheme exhibits considerable advantage

in runtime and accuracy over the batch MM scheme, while also offering real-time sketching and

classification of data ‘on the fly.’

To further illustrate the operation of real-time sketching, we consider data from the binary

quantization model yi,t = sign(u>i ψt + vi,t) with vi,t ∼ N (0, 0.01), and U ∈ RD×d generated

from the standardized normal distribution. The true two-dimensional sketch ψt ∈ R2 is drawn

equiprobably as [1, 1]> for the first class, and [−1,−1]> for the second class. The normal-

ized sketch {ψ̂τ}tτ=1 obtained from the proposed algorithm is depicted in Fig. 2.3 at different

time instants t = 30, 300, 3000. The number of data points in sequential acquisition (which

corresponds to the time instant), coincides with the iteration index. The sketch corresponding

two different classes are shown with ‘x’ and ‘o’ markers. Apparently, the sketches obtained at

the very beginning cannot be well separated as the latent subspace has not been quite learned.

However, as more data points are processed, the latent subspace is learned more accurately, and

consequently the later data points are assigned to the correct classes.

The Tobit model in Section II.B deals with censored data and is not directly comparable

with the Probit and Logit models. To assess the performance of Tobit, synthetic analog-valued

data are generated based on the bilinear model xt = Uψt + vt, with D = 100, d = 20,

T = 200. Entries of U and vt are drawn from an i.i.d. standardized normal distribution, and
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online CSL
p runtime (sec) classification error (%)

0.1 3.0333 42.17
0.3 2.5925 17.20
0.5 2.7029 4.76
0.7 2.8967 2.18

MM [4]
0.1 8.1267 43.86
0.3 6.4973 32.62
0.5 7.5499 17.01
0.7 9.2077 8.31

Table 2.1: Runtime (seconds) and classification error comparison of the proposed online CSL
scheme against the batch MM for synthetic data under variable fraction of misses 1− p.

the sketch is also picked as ψt = 1 for the first class and ψt = −1 for the second class. The

data is then censored by choosing the thresholds ηl = −1, ηu = 1. Both the proposed online

Tobit scheme and the conventional PCA are run to return the sketch. Figure 2.4(a) illustrates

the mean-absolute-error MAE = 1/T
∑T

t=1 ‖yt − ŷt‖1, which clearly shows the performance

gain offered by the Tobit scheme in terms of interpolation accuracy. SVM classification [41] is

then carried out, and the accuracy is plotted in Fig. 2.4(b) for various fraction of misses. One

can observe that the novel CSL scheme improves classification accuracy consistently by about

30%− 50% relative to the conventional PCA, which in turn indicates the importance of taking

censoring into consideration for feature extraction.

2.6.2 Classification of chess games

In this experiment, we considered the chess-game dataset “King-Rook versus King-Pawn” ac-

quired across T = 3, 196 scenarios, each with D = 35 binary (J = 2) data signifying nominal

attributes. The online sketch returned by Algorithm 1 is used to group games in two classes,

namely “white-can-win” and “white-cannot-win,” upon averaging the classification outcomes

over 100 independent runs. Both Probit and Logit models are tested. As evidenced by Fig.

2.5(a) with 90% random misses (p = 0.1), our novel approach achieves considerable runtime

advantage over the MM scheme for sketching the partial data, especially when the dimension

of the latent subspace is in the order of a few dozens. With the low-dimensional sketch at hand,
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Figure 2.4: (a) MAE and (b) SVM classification error of CSL scheme with Tobit versus the
conventional PCA under variable compression rate p when d = 20, D = 100, and T = 200.
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Figure 2.5: (a) Runtime and (b) LS classification error of the novel CSL scheme versus the
MM scheme for the “King-Rook versus King-Pawn” dataset under variable dimension d when
p = 0.1, D = 35, and T = 3, 196.

LS classification [41] is performed, and the resultant error is plotted in Figure 2.5(b) under

different compression ratios. Our novel CSL-based schemes consistently improve the classifi-

cation accuracy by about 5% relative to MM, indicating that the adopted models better match



32

ML-online MM [17]
epochs =3 epochs =6

p runtime MAE runtime MAE runtime MAE
0.7 4.5980 0.7832 8.5167 0.7566 40.926 0.7872
0.8 4.5458 0.7745 7.9642 0.7534 40.568 0.7903
0.9 4.7814 0.7724 7.7265 0.7436 35.700 0.7874

Table 2.2: Runtime and MAE comparison of the proposed scheme against the batch MM
scheme under various p and different number of epochs for the Movie-Lens dataset with d = 6.
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Figure 2.6: MAE versus epochs under different settings of step size.

the considered real-world dataset. In addition, the Probit and Logit models provide similar per-

formance when d is small, while Logit slightly outperforms Probit when d is large. Note that

our schemes use only a single epoch over the dataset.

2.6.3 Interpolation of “Movie-Lens” dataset

The “Movie-Lens” dataset (D2) is considered to evaluate the interpolation capability of the

novel CSL scheme. This dataset originally contains discrete ratings with values in S :=

{∞,∞.5,∈ . . . ,5} given by D = 671 users for T = 9, 066 movies [58]. To test the pro-

posed method, as well as the MM scheme all ratings were rounded to have only integer values.

Note that the time dimension here indexes the released movies over time. To highlight the merits

of the novel CSL schemes, a fraction p of the ratings was randomly sampled as training data to
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learn the latent subspace, and sketching was performed using our scheme and the MM one. Di-

mension d = 6 is selected for the latent subspace. Due to the small size of the training dataset,

a single pass would lead to unsatisfactory learning accuracy when initialized randomly. Hence,

to improve the ability of our scheme to learn the subspace, multiple epochs were allowed over

the data, where the first pass was initialized randomly, and the resulting subspace formed the

initial value for the next round, and so on. The resulting subspace and sketch are then used to

interpolate the missing ratings. The runtime and MAE are listed in Table 2.2. It can be verified

that the novel approach outperforms the MM scheme in terms of both runtime and prediction

accuracy. For instance, when 30% of ratings are missing, with six epochs over the data, our

scheme offers around 5% gain in prediction accuracy in nearly five times lower runtime.

Finally, we study the sensitivity of the CSL to the number of epochs, and the rank penalty

parameter λ. For the Probit model, the MAE is depicted in Fig. 2.6 as epochs increase. Upon

choosing a constant step size the MAE decays quickly for the first few epochs, and after almost

40 epochs it converges. Similar behavior is observed for diminishing step size.
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Figure 2.7: Quantization threshold convergence; (left) threshold evolution, and (right) threshold
gradient absolute value evolution for chess data.

2.6.4 Threshold adaptation

In this section, convergence and effectiveness of our quantization threshold adaptation is tested

for the binary synthetic data described in Sec. 2.6.1. It is observed from Fig. 2.7(a) that by
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online CSL
p Runtime (sec) MAE classification error (%)

0.6 4.4117 0.3464 6.57
0.7 4.4146 0.3341 6.02
0.8 4.4782 0.2910 4.64
0.9 5.8252 0.2792 4.07

online CSL with threshold adaptation
0.6 4.8325 0.2967 6.32
0.7 4.7555 0.2846 5.19
0.8 4.6931 0.2737 4.52
0.9 5.1522 0.2668 3.69

Table 2.3: MAE and classification accuracy comparison of the novel CSL scheme with, and
without threshold adaptation, under various p for binary synthetic data when d = 5, D = 20,
and T = 5, 000.

learning η, the threshold approaches the ground-truth value of η = 0. The interpolation error as

well as the SVM-classification error using the resulting sketch are reported in Table 2.3. Clearly,

the threshold adaptation improves the interpolation accuracy by about 17% relative to the CSL

scheme that uses the fixed threshold η = 0.5.

Threshold adaptation is also evaluated on the real chess-game data classification. The per-

formance reported in Table 2.4 shows again 3.7% accuracy improvement relative to the non-

adaptive scheme. It is also empirically observed in Fig. 2.7(b) that with the joint quantization

threshold and CSL, the threshold iterates converge to a stationary point of the nuclear-norm

regularized ML estimator.

2.7 Conclusions and Future Directions

Effective sketching approaches were developed in this chapter for large-scale categorical data

that are incomplete and streaming. Low-dimensional Probit, Tobit and Logit models were con-

sidered and learned, using a maximum likelihood approach regularized with a surrogate of the

nuclear norm. Leveraging separability of this regularizer, and employing stochastic alternat-

ing minimization, online algorithms were subsequently developed to sketch the data ‘on the

fly.’ The resultant learning task refines the latent subspace upon arrival of a new datum, and
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online CSL
p Runtime (sec) MAE classification error (%)

0.6 1.5521 0.7751 24.62
0.7 1.7344 0.7740 24.59
0.8 1.7949 0.7736 24.52
0.9 2.1000 0.7729 24.36

online CSL with threshold adaptation
0.6 1.8037 0.7725 23.73
0.7 2.2913 0.7724 23.67
0.8 2.1271 0.7729 23.31
0.9 2.2210 0.7708 23.16

Table 2.4: MAE and classification accuracy comparison of the CSL scheme with, and without
threshold adaptation, under various p for the chess-game dataset when d = 5, D = 35, and
T = 3, 196.

then forms the sketch by projecting the imputed datum onto the latent subspace. This leads to

first-order, lightweight, and parallelized iterations. The quantization thresholds are also learned

along with the subspace to enhance the modeling flexibility. Performance of the novel algo-

rithms was assessed for both infinite and finite data streams, where for the former asymptotic

convergence was established, while for the latter sublinear regret bounds were derived. Sim-

ulated tests were carried out on both synthetic and real datasets to confirm the efficacy of the

novel schemes for real-time movie recommendation and chess-game classification tasks.

There are still intriguing questions beyond the scope of the present study, that are worth

pursuing as future research. One direction pertains to utilizing kernels for nonlinear subspace

modeling in an online and computationally efficient fashion. Improving robustness of the cat-

egorical subspace learning for dynamic environments with time-varying subspaces is another

important avenue to explore. It is also important to extend the proposed CSL scheme to scenar-

ios (the case in recommender systems) where both the ambient dimension (D) and time (T ) can

possibly increase over time.
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2.8 Appendix

2.8.1 Proof of Lemma 1

Assuming yi,t = ηj without loss of generality, gradient and Hessian are first derived in closed

form

∇uig
(probit)
t

(
ψt,U

)
= −σ−1

[
φ(zij,t−1)− φ(zij+1,t−1)

Q(zij,t−1)−Q(zij+1,t−1)

]
ψt +

λ

t
ui (2.43)

∇2
uig

(probit)
t

(
ψt,U

)
= σ−2

{[
φ(zij,t−1)− φ(zij+1,t−1)

Q(zij,t−1)−Q(zij+1,t−1)

]2

−
zij,t−1φ(zij,t−1)− zij+1,t−1φ(zij+1,t−1)[

Q(zij,t−1)−Q(zij+1,t−1)
] }

ψtψ
T
t +

λ

t
I (2.44)

where zij,t−1 := σ−1(ηj − u>i [t− 1]ψt). Let us also define

rj : = −
φ(zij,t−1)− φ(zij+1,t−1)

Q(zij,t−1)−Q(zij+1,t−1)
=

1

Q(zij,t−1)−Q(zij+1,t−1)

∫ zij+1,t−1

zij,t−1

εφ(ε)dε. (2.45)

Since zij,t−1 < zij+1,t−1, we have

zij,t−1(Q
(
zij,t−1

)
−Q(zij+1,t−1)) ≤

∫ zij+1,t−1

zij,t−1

εφ(ε)dε

≤ zij+1,t−1(Q
(
zij,t−1

)
−Q(zij+1,t−1)) (2.46)

and therefore,

rj ∈ [zij,t−1, z
i
j+1,t−1] ≤ σ−1(ηj − ηj−1). (2.47)

Hence, one can simply bound the gradient as ‖∇uigt
(
ψt,U

)
‖2 ≤

∥∥(ηJ−1 − η1)ψt/σ
2 + λui/t

∥∥
2
.

Resorting to the triangle inequality, we obtain

‖∇uig
(probit)
t

(
ψt,U

)
‖2 ≤ δ1‖ψt‖2 +

λ

t
‖ui‖2 (2.48)

where δ1 := ∆/σ2, and ∆ := ηJ−1 − η0 is the quantization range.
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Likewise, we have

−
zij,t−1φ(zij,t−1)− zij+1,t−1φ(zij+1,t−1)[

Q(zij,t−1)−Q(zij+1,t−1)
]

=1− 1

Q(zij,t−1)−Q(zij+1,t−1)

∫ zij+1,t−1

zij,t−1

ε2φ(ε)dε ≤ 1

which implies that the Hessian can simply be bounded by

‖∇2
uig

(probit)
t

(
ψt,U

)
‖ ≤

r2
j + 1

σ2
‖ψt‖22 +

λ

t
(2.49)

and thus,

‖∇2
uih

(probit)
t

(
ψt,U

)
‖ ≤ δ2‖ψt‖22 +

λ

t
(2.50)

where δ2 := (∆2/σ2 + 1)/σ2. Hence, the compactness assumption (as2) implies that the

gradient and Hessian are bounded. The differentiability of gt then leads to Lipschitz continuity

of gt and ∇gt.

2.8.2 Proof of Lemma 2

According to the gradient expression in (2.17), the Hessian for the Probit cost function can be

written as

∇2
uig

(probit)
t

(
ψt,U

)
=

{[
f(ui,ψt)

w(ui,ψt)

]2

− m(ui,ψt)

w(ui,ψt)

}
ψtψ

>
t +

λ

t
I (2.51)

where

m(ui,ψt) := zij,t−1φ(zij,t−1)− zij+1,t−1φ(zij+1,t−1)

f(ui,ψt) := φ(zij,t−1)− φ(zij+1,t−1)

w(ui,ψt) := Q
(
zij,t−1

)
−Q(zij+1,t−1)
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From (2.47) and the definition of m(ui[t− 1],ψt), we have

zij,t−1f(ui,ψt) ≤ m(ui,ψt) ≤ zij+1,t−1f(ui,ψt). (2.52)

If rj > 0, then zij+1,t−1 > 0, which in combination with (2.52) yields

[
f(ui,ψt)

w(ui,ψt)

]2

− m(ui,ψt)

w(ui,ψt)
≥ r2

j − zij,t−1rj = rj(rj − zij,t−1) ≥ 0. (2.53)

Similarly, if rj < 0, it follows that

[
f(ui,ψt)

w(ui,ψt)

]2

− m(ui,ψt)

w(ui,ψt)
≥ r2

j − zij+1,t−1rj = rj(rj − zij+1,t−1) ≥ 0. (2.54)

Clearly (2.53) and (2.54) imply that the Hessian matrix in (2.51) is positive definite. Hence, the

entry-wise cost gt(·) is convex w.r.t. ui. Likewise, due to its symmetry w.r.t. ui and ψt, the

cost gt(·) is convex w.r.t. ψt.

For the binary Logit model, the Hessian of the function can be represented as (cf. (2.17))

∇2
uig

(logit)
t

(
ψt,U

)
=

{
(2yi,t − 1)2 exp(u>i ψt)

1 + exp((2yi,t − 1)u>i ψt)

}
ψtψ

>
t +

λ

t
I

=

{
exp(u>i ψt)

1 + exp((2yi,t − 1)u>i ψt)

}
ψtψ

>
t +

λ

t
I (2.55)

where the last equation comes from the fact that |2yi,t − 1| = 1. It is clear that

exp(u>i ψt)

1 + exp((2yi,t − 1)u>i ψt)
> 0 (2.56)

and hence ∇2
uig

(logit)
t

(
ψt,U

)
� 0. Likewise, the Hessian matrix of ψ for a fixed subspace U

is also positive definite because the objective function is symmetric with respect to ui and ψt.

Hence, the entry-wise cost function is per-block convex in terms of ui and ψt.

For the Tobit-II model in (2.19), the gradient looks similar to that of the Probit model for

yi,t ∈ (ηl, ηu), and the only difference appears in the threshold values, which will not influence
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convexity of the function. In fact, for yi,t = ηu or yi,t = ηl, we arrive at

∇2
uig

(tobit−II)
t

(
ψt,U

)
=

1

σ2
ψtψ

>
t +

λ

t
I (2.57)

which is positive definite. Likewise, the Hessian matrix of ψ for a fixed U is also positive

definite due to the symmetry of ui and ψt. Hence, the entry-wise cost is per-block convex in

terms of ui and ψt.

2.8.3 Proof of Lemma 3

First, observe that ∇C̄t(U[t]) = ∇C̄t+1(U[t + 1]) = 0 by construction of the algorithm.

Meanwhile, since C̄t(U) is strongly convex (cf. Lemma 2), the mean-value theorem implies

C̄t(U[t+ 1]) ≥ C̄t(U[t]) +
ρ

2

∥∥U[t+ 1]−U[t]
∥∥2

F

C̄t+1(U[t]) ≥ C̄t+1(U[t+ 1]) +
ρ

2

∥∥U[t+ 1]−U[t]
∥∥2

F

where ρ denotes the strong convexity constant of C̄t(U[t + 1]). Upon defining the function

νt(U) := C̄t(U)− C̄t+1(U), we arrive at

∥∥U[t+ 1]−U[t]
∥∥2

F
≤ 1

ρ

∣∣νt(U[t+ 1])− νt(U[t])
∣∣. (2.58)

Based on the definition of C̄(U[t+ 1]), we further have

νt(U) =
1

t

t∑
τ=1

gτ (ψτ ,U)− 1

t+ 1

t+1∑
τ=1

gτ (ψτ ,U)

=
1

t(t+ 1)

t∑
τ=1

gτ (ψτ ,U)− 1

t+ 1
gt+1(ψτ+1,U). (2.59)

Combining Lemma 1 with (2.59), establishes that νt(U) is Lipschitz continuous, and thus

∣∣νt(U[t+ 1])− νt(U[t])
∣∣ ≤ λBu + δ1Bψ

t+ 1

∥∥U[t+ 1]−U[t]
∥∥
F

(2.60)
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which after using (2.58) yields

∥∥U[t+ 1]−U[t]
∥∥
F
≤ λBu + δ1Bψ

(t+ 1)ρ
. (2.61)

Accordingly, Lemma 3 holds with B := (λBu + δ1Bψ)/ρ.



Chapter 3

Online nonlinear learning in
environments with unknown dynamics

3.1 Introduction

Function approximation emerges in various learning tasks such as regression, classification,

clustering, dimensionality reduction, as well as reinforcement learning [59–61]. Among them,

the emphasis here is placed on supervised functional learning tasks: given a set of data samples

{(x1, y1), . . . , (xT , yT )}Tt=1 with xt ∈ Rd and yt ∈ R, the goal is to find a function f(·)
such that the discrepancy between each pair of yt and f(xt) is minimized. Typically, such

discrepancy is measured by a cost function C(f(xt), yt), which requires to find f(·) minimizing∑T
t=1 C(f(xt), yt). While this goal is too ambitious to achieve in general, the problem becomes

tractable when f(·) is assumed to belong to a reproducing kernel Hilbert space (RKHS) induced

by a kernel [59]. Comparable to deep neural networks, functions defined in RKHS can model

highly nonlinear relationship, and thus kernel-based methods have well-documented merits for

principled function approximation. Despite their popularity, most kernel methods rely on a

single pre-selected kernel. Yet, multi-kernel learning (MKL) is more powerful, thanks to its

data-driven kernel selection from a given dictionary; see e.g., [60, 62–64], and [65].

In addition to the attractive representation power that can be afforded by kernel methods,

several learning tasks are also expected to be performed in an online fashion. Such a need nat-

urally arises when the data arrive sequentially, such as those in online spam detection [66], and

time series prediction [67]; or, when the sheer volume of data makes it impossible to carry out

41
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data analytics in batch form [68]. This motivates well online kernel-based learning methods that

inherit the merits of their batch counterparts, while at the same time allowing efficient online

implementation. Taking a step further, the optimal function may itself change over time in envi-

ronments with unknown dynamics. This is the case when the function of interest e.g., represents

the state in brain graphs, or, captures the temporal processes propagating over time-varying net-

works. Especially when variations are due to adversarial interventions, the underlying dynamics

are unknown. Online kernel-based learning in such environments remains a largely uncharted

territory [68, 69].

In accordance with these needs and desiderata, the primary goal of this contribution is an

algorithmic pursuit of scalable online MKL in environments with unknown dynamics, along

with their associated performance guarantees. Major challenges come from two sources: i) the

well-known “curse” of dimensionality in kernel-based learning; and, ii) the defiance of track-

ing unknown time-varying functions without future information. Regarding i), the representer

theorem renders the size of kernel matrices to grow quadratically with the number of data [70],

thus the computational complexity to find even a single kernel-based predictor is cubic. Fur-

thermore, storage of past data causes memory overflow in large-scale learning tasks such as

those emerging in e.g., topology identification of social and brain networks [27, 28], which

makes kernel-based methods less scalable relative to their linear counterparts. For ii), most on-

line learning settings presume time invariance or slow dynamics, where an algorithm achieving

sub-linear regret incurs on average “no-regret” relative to the best static benchmark. Clearly,

designing online schemes that are comparable to the best dynamic solution is appealing though

formidably challenging without knowledge of the dynamics [68, 71].

3.1.1 Related works

To put our work in context, we review prior art from the following two aspects.

• Batch kernel methods. Kernel methods are known to suffer from the growing dimen-

sionality in large-scale learning tasks [60]. Major efforts have been devoted to scaling up

kernel methods in batch settings. Those include approaches to approximating the kernel

matrix using low-rank factorizations [72, 73], whose performance was analyzed in [74].

Recently, random feature (RF) based function estimators have gained popularity since
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the work of [75] and [76], whose variance has been considerably reduced through an or-

thogonality promoting RF modification [77]. These approaches assume that the kernel is

known, a choice crucially dependent on domain knowledge. Enabling kernel selection,

several MKL-based approaches have emerged, see e.g., [62–64, 78, 79], and their perfor-

mance gain has been documented relative to their single kernel counterparts. However,

the aforementioned methods are designed for batch settings, and are either intractable or

become less efficient in online setups. When the sought functions vary over time and es-

pecially when the dynamics are unknown (as in adversarial settings), batch schemes fall

short in tracking the optimal function estimators.

• Online (multi-)kernel learning. Tailored for streaming large-scale datasets, online kernel-

based learning methods have gained due popularity. To deal with the growing complexity

of online kernel learning, successful attempts have been made to design budgeted ker-

nel learning algorithms, including techniques such as support vector removal [68, 80],

and support vector merging [81]. Maintaining an affordable budget, online multi-kernel

learning (OMKL) methods have been reported for online classification [69, 82, 83], and

regression [84, 85]. Devoid of the need for budget maintenance, online kernel-based

learning algorithms based on RF approximation [75] have been developed in [86–88],

but only with a single pre-selected kernel. More importantly, existing kernel-based learn-

ing approaches implicitly presume a static environment, where the benchmark is provided

through the best static function (a.k.a. static regret) [53]. However, static regret is not a

comprehensive metric for dynamic settings, where the optimal kernel also varies over

time and the dynamics are generally unknown as with adversarial settings.

3.1.2 Our contributions

The present chapter develops an adaptive online MKL algorithm, capable of learning a nonlinear

function from sequentially arriving data samples. Relative to prior art, our contributions can be

summarized as follows.

c1) For the first time, RFs are employed for scalable online MKL tackled by a weighted

combination of advices from an ensemble of experts - an innovative cross-fertilization of online

learning to MKL. Performance of the resultant algorithm (abbreviated as Raker) is bench-

marked by the best time-invariant function approximant via static regret analysis.
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c2) A novel adaptive approach (termed AdaRaker) is introduced for scalable online MKL

in environments with unknown dynamics. AdaRaker is a hierarchical ensemble learner with

scalable RF-based modules that provably yields sub-linear dynamic regret, so long as the accu-

mulated variation grows sub-linearly with time.

c3) The novel algorithms are compared with competing alternatives for online nonlinear

regression on both synthetic and real datasets. The tests corroborate that Raker and AdaRaker

exhibit attractive performance in both accuracy and scalability.

Outline. Section 3.2 presents preliminaries, and states the problem. Section 3.3 develops the

Raker for online MKL in static environments, and Section 3.4 develops its adaptive version for

online MKL in environments with unknown dynamics. Section 5.6 reports numerical tests with

both synthetic and real datasets, while conclusions are drawn in Section 3.6.

3.2 Preliminaries and Problem Statement

This section reviews briefly basics of kernel-based learning, to introduce notation and the

needed background for our novel online MKL schemes.

Given samples {(x1, y1), . . . , (xT , yT )}Tt=1 with xt ∈ Rd and yt ∈ R, the function ap-

proximation task is to find a function f(·) such that yt = f(xt) + et, where et denotes an

error term representing noise or un-modeled dynamics. It is supposed that f(·) belongs to a

reproducing kernel Hilbert space (RKHS), namely H := {f |f(x) =
∑∞

t=1 αtκ(x,xt)}, where

κ(x,xt) : Rd×Rd → R is a symmetric positive semidefinite basis (so-termed kernel) function,

which measures the similarity between x and xt. Among the choices of κ specifying different

bases, a popular one is the Gaussian given by κ(x,xt) := exp[−‖x− xt‖2/(2σ2)]. A kernel is

reproducing if it satisfies 〈κ(x,xt), κ(x,xt′)〉H = κ(xt,xt′), which in turn induces the RKHS

norm ‖f‖2H :=
∑

t

∑
t′ αtαt′κ(xt,xt′). Consider the optimization problem

min
f∈H

1

T

T∑
t=1

C(f(xt), yt) + λΩ
(
‖f‖2H

)
(3.1)

where depending on the application, the cost function C(·, ·) can be selected to be, e.g., the

least-squares (LS), the logistic or the hinge loss; Ω(·) is an increasing function; and, λ > 0 is

a regularization parameter that controls overfitting. According to the representer theorem, the
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optimal solution of (3.1) admits the finite-dimensional form, given by [70]

f̂(x) =
T∑
t=1

αtκ(x,xt) := α>k(x) (3.2)

where α := [α1, . . . , αT ]> ∈ RT collects the combination coefficients, and the T × 1 ker-

nel vector is k(x) := [κ(x,x1), . . . , κ(x,xT )]>. Substituting (3.2) into the RKHS norm, we

find ‖f‖2H :=
∑

t

∑
t′ αtαt′κ(xt,xt′) = α>Kα, where the T × T kernel matrix K has en-

tries [K]t,t′ := κ(xt,xt′); thus, the functional problem (3.1) boils down to a T -dimensional

optimization over α, namely

min
α∈RT

1

T

T∑
t=1

C(α>k(xt), yt) + λΩ
(
α>Kα

)
(3.3)

where k>(xt) is the tth row of the matrix K. While a scalar yt is used here for brevity, coverage

extends readily to vectors {yt}.
Note that (3.1) relies on: i) a known pre-selected kernel κ; and ii) having {xt, yt}Tt=1 avail-

able in batch form. A key observation here is that the dimension of the variableα in (3.3) grows

with time T (or, the number of samples in the batch form), making it less scalable in online im-

plementation. In the ensuing section, an online MKL method will be proposed to select κ as a

superposition of multiple kernels, when the data become available online.

3.3 Online MKL in static environments

In this section, we develop an online learning approach that builds on the notion of random fea-

tures [75, 77], and leverages in a unique way multi-kernel approximation – two tools justifying

our acronym Raker used henceforth.

3.3.1 RF-based single kernel learning

To cope with the curse of dimensionality in optimizing (3.3), we will reformulate the functional

optimization problem (3.1) as a parametric one with the dimension of optimization variables not

growing with time. In this way, powerful toolboxes from convex optimization and online learn-

ing in vector spaces can be leveraged. We achieve this goal by judiciously using RFs. Although
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generalizations will follow, this subsection is devoted to RF-based single kernel learning, where

basics of kernels, RFs, and online learning will be revisited.

As in [75], we will approximate κ in (3.2) using shift-invariant kernels that satisfy κ(xt,xt′) =

κ(xt − xt′). For κ(xt − xt′) absolutely integrable, its Fourier transform πκ(v) exists and rep-

resents the power spectral density, which upon normalizing to ensure κ(0) = 1, can also be

viewed as a probability density function (pdf); hence,

κ(xt − xt′) =

∫
πκ(v)ejv

>(xt−xt′ )dv := Ev

[
ejv
>(xt−xt′ )

]
(3.4)

where the last equality is just the definition of the expected value. Drawing a sufficient number

of D independent and identically distributed (i.i.d.) samples {vi}Di=1 from πκ(v), the ensemble

mean in (3.4) can be approximated by the sample average

κ̂c(xt,xt′) :=
1

D

D∑
i=1

ejv
>
i (xt−xt′ ) := ζ†V(xt)ζV(xt′) (3.5)

where V := [v1, . . . ,vD]> ∈ RD×d, symbol † represents the Hermitian (conjugate-transpose)

operator, and ζV(x) the complex RF vector

ζV(x) :=
1√
D

[
ejv
>
1 x, . . . , ejv

>
Dx
]>

. (3.6)

Taking expected values on both sides of (3.5) and using (3.4) yields Ev[κ̂c(xt,xt′)] = κ(xt,xt′),

which means κ̂c is unbiased. Likewise, κ̂c can be shown consistent since Var[κ̂c(xt,xt′)] ∝
D−1 vanishes as D → ∞. Finding πκ(v) requires d-dimensional Fourier transform of κ,

generally through numerical integration. For a number of popular kernels however, πκ(v) is

available in closed form. Taking the Gaussian kernel as an example, where κG(xt,xt′) =

exp
(
‖xt−xt′‖22/(2σ2)

)
, has Fourier transform corresponding to the pdf πG(v) = N (0, σ−2I).

Instead of the complex RFs {ζV(xt)} in (3.6) forming the linear kernel estimator κ̂c in (3.5),

one can consider its real part κ̂(xt,xt′) := <{κ̂c(xt,xt′)} that is also an unbiased estimator

of κ. Defining the real RF vector zV(x) := [<>{ζV(xt)},=>{ζV(xt)}]>, this real kernel

estimator becomes (cf. (3.5))

κ̂(xt,xt′) = z>V(xt)zV(xt′) (3.7)
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where the 2D × 1 real RF vector can be written as

zV(x) =
1√
D

[
sin(v>1 x), . . . , sin(v>Dx), cos(v>1 x), . . . , cos(v>Dx)

]>
. (3.8)

Hence, the nonlinear function that is optimal in the sense of (3.1) can be approximated by a

linear one in the new 2D-dimensional RF space, namely (cf. (3.2) and (3.7))

f̂RF(x) =
T∑
t=1

αtz
>
V(xt)zV(x) := θ>zV(x) (3.9)

where θ> :=
∑T

τ=1 ατz
>
V(xτ ) is the new weight vector of size 2D whose dimension does not

increase with number of data samples T .

While the solution f̂ in (3.2) is the superposition of nonlinear functions κ, its RF approxi-

mant f̂RF in (3.9) is a linear function of zV(x). As a result, the loss becomes

Lt
(
f(xt)

)
:= C(f(xt), yt) + λΩ

(
‖f‖2H

)
= C

(
θ>zV(xt), yt

)
+ λΩ

(
‖θ‖2

)
(3.10)

where ‖θ‖2 :=
∑

t

∑
t′ αtαt′z

>
V(xt)zV(xt′) := ‖f‖2H; and the online learning task is

min
θ∈R2D

T∑
t=1

L
(
θ>zV(xt), yt

)
, with L

(
θ>zV(xt), yt

)
:= C

(
θ>zV(xt), yt

)
+ λΩ

(
‖θ‖2

)
.

(3.11)

Compared with the functional optimization in (3.1), the reformulated problem (3.11) is para-

metric, and more importantly it involves only optimization variables of fixed size 2D. We can

thus solve (3.11) using the online gradient descent iteration, e.g., [89]. Acquiring xt per slot t,

its RF zV(xt) is formed as in (3.8), and θt+1 is updated ‘on the fly,’ as

θt+1 = θt − ηt∇L(θ>t zV(xt), yt) (3.12)

where {ηt} is the sequence of stepsizes that can tune learning rates, and∇L(θ>t zV(xt), yt) the

gradient at θ = θt. Iteration (3.12) provides a functional update since f̂RF
t (x) = θ>t zV(x), but

the upshot of involving RFs is that this approximant is in the span of {zV(x), ∀x ∈ X}. Since

E[κ̂] = κ, we find readily that E[f̂RF] = f̂ ; in words, unbiasedness of the kernel approximation

ensures that the RF-based function approximant is also unbiased.
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Variance-reduced RF. Besides unbiasedness, performance of the RF approximation is also

influenced by the variance of RFs. Note that the variance of κ̂ in (3.7) is of order O(D−1),

but its scale can be reduced if V is formed to have orthogonal rows [77]. Specifically for a

Gaussian kernel with bandwidth σ2, recall that V = σ−1G in (3.8), where each entry of G is

drawn from N (0, 1). For the variance-reduced orthogonal (O)RF with D = d, one starts with

Q-R factorization of V = QR, and uses the d× d factor Q along with a diagonal matrix Λ, to

form [77]

VORF = σ−1 ΛQ (3.13)

where the diagonal entries of Λ are drawn i.i.d. from the χ distribution with d degrees of

freedom, to ensure unbiasedness of the kernel approximant. For D > d, one selects D = νd

with ν > 1 integer, and generates independently ν matrices each of size d × d as in (3.13).

The final VORF is formed by concatenating these d × d sub-matrices. The upshot of ORF is

that [77] Var(κ̂ORF(xt,xt′)) ≤ Var(κ̂(xt,xt′)). As we have also confirmed via simulated

tests, ORF-based function approximation can attain a prescribed accuracy with considerably

less ORFs than what required by its RF-based counterpart.

The RF-based online single kernel learning scheme in this section presumes that κ is known

a priori. Since this is not generally possible, it is prudent to adaptively select kernels by super-

imposing multiple kernel functions from a prescribed dictionary. This superposition will play a

key role in the RF-based online MKL approach presented next.

3.3.2 Raker for online MKL

Specifying the kernel that “shapes” H is a critical choice for single kernel learning, since dif-

ferent kernels yield function estimates of variable accuracy. To deal with this, combinations

of kernels from a prescribed and sufficiently rich dictionary {κp}Pp=1 can be employed in (3.1).

Each combination belongs to the convex hull K̄ := {κ̄ =
∑P

p=1 ᾱpκp, ᾱp ≥ 0,
∑P

p=1 ᾱp = 1},
and is itself a kernel [59]. With H̄ denoting the RKHS induced by κ̄ ∈ K̄, one then solves (3.1)

withH replaced by H̄ := H1
⊕ · · ·⊕HP , where {Hp}Pp=1 represent the RKHSs correspond-

ing to {κp}Pp=1 [90].

The candidate function f̄ ∈ H̄ is expressible in a separable form as f̄(x) :=
∑P

p=1 f̄p(x),

where f̄p(x) belongs to Hp, for p ∈ P := {1, . . . , P}. To add flexibility per kernel in our



49

ensuing online MKL scheme, we let wlog {f̄p = wpfp}Pp=1, and seek functions of the form

f(x) :=
P∑
p=1

w̄pfp(x) ∈ H̄ (3.14)

where f := f̄/
∑P

p=1wp, and the normalized weights {w̄p := wp/
∑P

p=1wp}Pp=1 satisfy w̄p ≥
0, and

∑P
p=1 w̄p = 1. Plugging (3.14) into (3.1), MKL solves the nonconvex problem

min
{w̄p},{fp}

1

T

T∑
t=1

C

 P∑
p=1

w̄pfp(xt), yt

+ λΩ

∥∥∥∥∥∥
P∑
p=1

w̄pfp

∥∥∥∥∥∥
2

H̄

 (3.15a)

s. to

P∑
p=1

w̄p = 1, w̄p ≥ 0, p ∈ P (3.15b)

fp ∈ Hp, p ∈ P. (3.15c)

If Ω is convex over f , then (3.15a) is biconvex, meaning it is convex wrt {fp} ({w̄p}) when

{w̄p} ({fp}) is given. Leveraging biconvexity, existing batch MKL schemes solve (3.15) via

alternating minimization that is known not to scale well with P and T [63, 64, 90].

To deal with scalability, our novel approach will leverage for the first time (O)RFs in a

uniquely principled MKL formulation to end up with an efficient online learning approach. To

this end, we will minimize a cost that upper bounds that in (3.15a), namely

min
{w̄p},{fp}

1

T

T∑
t=1

P∑
p=1

w̄p C (fp(xt), yt) + λ
P∑
p=1

w̄p Ω
(
‖fp‖2Hp

)
s. to (3.15b) and (3.15c)

(3.16)

where Jensen’s inequality confirms that under (3.15b) the cost in (3.16) upper bounds that of

(3.15a). A key advantage of (3.16) is that its objective is separable across kernel ‘atoms.’

We will exploit this separability jointly with the RF-based function approximation per ker-

nel, to formulate our scalable online MKL task as

min
{w̄p},{f̂RF

p }

T∑
t=1

P∑
p=1

w̄p Lt
(
f̂RF
p (xt)

)
s. to (3.15b) and f̂RF

p ∈
{
f̂p(x)=θ>zVp(x)

}
(3.17)
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where we interchangeably use Lt(f̂(xt)) as defined in (3.10) and L
(
θ>zV(xt), yt

)
as in (3.11).

We will efficiently solve (3.17) ‘on-the-fly’ using our Raker algorithm, and what more, we will

provide analytical performance guarantees. Our iterative solution will update separately each

f̂RF
p as in Section 3.3.1 using the scalable (O)RF-based function approximation scheme. Given

xt, an RF vector zp(xt) will be generated per p from pdf πκp(v) (cf. (3.8)), where we let

zp(xt) := zVp(xt) for notational brevity. Hence, for each p and slot t, we have

f̂RF
p,t (xt) = θ>p,tzp(xt) (3.18)

and as in (3.12), θp,t is updated via

θp,t+1 = θp,t − η∇L(θ>p,tzp(xt), yt). (3.19)

As far as solving for w̄p,t, since it resides on a probability simplex (3.15b), our idea is to

employ a multiplicative update (a.k.a. exponentiated gradient descent), e.g., [89]. Specifically,

the un-normalized weights are found first as

wp,t+1 = arg min
wp

η Lt
(
f̂RF
p,t (xt)

)
(wp − wp,t) +DKL(wp‖wp,t) (3.20)

where DKL(wp‖wp,t) := wp log(wp/wp,t) is the KL-divergence. It can be readily verified that

(3.20) admits the following closed-form update

wp,t+1 = wp,t exp
(
−ηLt

(
f̂RF
p,t (xt)

))
(3.21)

where η ∈ (0, 1) is a chosen constant that controls the adaptation rate of {wp,t}. Having found

{wp,t} as in (3.21), the normalized weights in (3.14) are obtained as w̄p,t := wp,t/
∑P

p=1wp,t.

Update (3.21) is intuitively pleasing because when f̂RF
p,t contributes a larger loss relative to other

f̂RF
p′,t with p′ 6= p at slot t, the corresponding wp,t+1 decreases more than the other weights in

the next time slot. In other words, a more accurate RF-based approximant tends to play more

important role in predicting the upcoming data.

Remark 1. The update (3.21) resembles the online learning paradigm, a.k.a. online prediction

with (weighted) expert advices [91, 92]. Building on but going beyond OMKL in [84], the

idea here is to view MKL with RF-based function approximants as a weighted combination of



51

Algorithm 2b Raker for online MKL in static environments
1: Input: Kernels κp, p = 1, . . . , P , step size η > 0, and number of random features D.
2: Initialization: θ1 = 0.
3: for t = 1, 2, . . . , T do
4: Receive a streaming datum xt.
5: Construct zp(xt) via (3.8) using κp for p = 1, . . . , P .
6: Predict f̂RF

t (xt) :=
∑P

p=1 w̄p,tf̂
RF
p,t (xt) with f̂RF

p,t (xt) in (3.18).
7: Observe loss function Lt, incur Lt(f̂RF

t (xt)).
8: for p = 1, . . . , P do
9: Obtain loss L(θ>p,tzp(xt), yt) or Lt(f̂RF

p,t (xt)).
10: Update θp,t+1 via (3.19).
11: Update wp,t+1 via (3.21).
12: end for
13: end for

advices from an ensemble of P function approximants (experts). Besides permeating benefits

from online learning to MKL, what is distinct here relative to [91, 92] is that each function

approximant also performs online learning for self improvement (cf. (3.19)).

In summary, our Raker for static (or slow-varying) dynamics is listed as Algorithm 2b.

Memory requirement and computational complexity. At the t-th iteration, our Raker in

Algorithm 2b needs to store a real 2D RF vector, and its corresponding weight vector per κp.

Hence, the memory required is of order O(dDP ). Regarding computational overhead, the per-

iteration complexity (e.g., calculating inner products) is again of order O(dDP ). Compared

with the complexity ofO(tdP ) for OMKL by [84], or, O(t3P ) when matrix inversion required

for the batch MKL, e.g., [65], the Raker is clearly more scalable, as t grows. Even when

OMKL is confined to a budget of B past samples, the corresponding complexity of O(dBP )

is comparable to that of Raker. This speaks for Raker’s merits, whose performance guarantees

will be proved analytically, and also demonstrated by numerical tests to outperform budgeted

schemes.

Application examples: Online MKL regression and classification. To appreciate the use-

fulness of RF-based online MKL, consider first nonlinear regression, where given samples

{xt ∈ Rd, yt ∈ R}Tt=1, the goal is to find a nonlinear function f ∈ H, such that yt = f(xt)+et.

The criterion is to minimize the regularized prediction error of yt, typically using the LS loss
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L(f(xt), yt) := [yt − f(xt)]
2 + λ‖f‖2H, whose gradient is (cf. (3.19))

∇L
(
θ>p,tzp(xt), yt

)
= 2(θ>p,tzp(xt)− yt)zp(xt) + 2λθp,t. (3.22)

It is clear that the per iteration complexity of Raker is only related to the dimension of zp(xt),

and does not increase over time.

For nonlinear classification, consider kernel-based perceptron and kernel-based logistic

regression, which aim at learning a nonlinear classifier that best approximates either yt or

the pdf of yt conditioned on xt. With binary labels {±1}, the perceptron solves (3.1) with

L(f(xt), yt) = max(0, 1 − ytf(xt)) + λ‖f‖2H, which equals zero if yt = f(xt), otherwise it

equals 1. Raker’s gradient in this case is (cf. (3.19))

∇L
(
θ>p,tzp(xt), yt

)
= −2ytC(θ>p,tzp(xt), yt)zp(xt) + 2λθp,t. (3.23)

Accordingly, given xt, logistic regression postulates that Pr(yt = 1|xt) = 1/(1 + exp(f(xt))).

Here the gradient of Raker takes the form (cf. (3.19))

∇L
(
θ>p,tzp(xt), yt

)
=

2yt exp(ytθ
>
p,tzp(xt))

1 + exp(ytθ
>
p,tzp(xt))

zp(xt) + 2λθp,t. (3.24)

To compare alternatives on equal footing, the numerical tests in Section 5.6 will deal with

kernel-based regression and classification.

3.3.3 Static regret analysis of Raker

To analyze the performance of Raker, we assume that the following conditions are satisfied.

(as1) Per slot t, the loss function L(θ>zV(xt), yt) in (3.11) is convex w.r.t. θ.

(as2) For θ belonging to a bounded set Θ with ‖θ‖ ≤ Cθ, the loss is bounded; that is,

L(θ>zV(xt), yt) ∈ [−1, 1], and has bounded gradient, meaning, ‖∇L(θ>zV(xt), yt)‖ ≤ L.

(as3) Kernels {κp}Pp=1 are shift-invariant, standardized, and bounded, that is, κp(xi,xj) ≤
1, ∀xi,xj; and w.l.o.g. they also have bounded entries, meaning ‖x‖ ≤ 1.

Convexity of the loss under (as1) is satisfied by the popular loss functions including the

square loss and the hinge loss. As far as (as2), it ensures that the losses, and their gradients
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are bounded, meaning they are L-Lipschitz continuous. While boundedness of the losses com-

monly holds since ‖θ‖ is bounded, Lipschitz continuity is also not restrictive. Considering

kernel-based regression as an example, the gradient is (θ>zV(xt) − yt)zV(xt) + λθ. Since

the loss is bounded, e.g., ‖θ>zV(xt) − yt‖ ≤ 1, and the RF vector in (3.8) can be bounded

as ‖zV(xt)‖ ≤ 1, the constant is L := 1 + λCθ using the Cauchy-Schwartz inequality. Ker-

nels satisfying conditions in (as3) include Gaussian, Laplacian, and Cauchy [75]. In general,

(as1)-(as3) are standard in online convex optimization (OCO) [53, 89], and in kernel-based

learning [75, 86, 90].

With regard to the performance of an online algorithm, static regret is commonly adopted

as a metric by most OCO schemes to measure the difference between the aggregate loss of

an OCO algorithm, and that of the best fixed function approximant in hindsight, e.g., [53, 89].

Specifically, for a generic sequence {f̂t} generated by an RF-based kernel learning algorithm

A, its static regret is

Regs
A(T ) :=

T∑
t=1

Lt(f̂t(xt))−
T∑
t=1

Lt(f∗(xt)) (3.25)

where f̂t will henceforth represent f̂RF
t without the superscript for notational brevity; and, f∗(·)

is obtained as the batch solution

f∗(·) ∈ arg min
{f∗p , p∈P}

T∑
t=1

Lt(f∗p (xt)) with f∗p (·) ∈ arg min
f∈Fp

T∑
t=1

Lt(f(xt)) (3.26)

with Fp := Hp, and Hp representing the RKHS induced by κp. Using (3.25) and (3.26), we

first establish the static regret of our Raker approach in the following lemma.

Lemma 4: Under (as1), (as2), and with f̂∗p as in (3.26) withFp := {f̂p|f̂p(x) = θ>zp(x), ∀θ ∈
R2D}, the sequences {f̂p,t} and {w̄p,t} generated by Raker satisfy the following bound

T∑
t=1

Lt
( P∑
p=1

w̄p,tf̂p,t(xt)

)
−

T∑
t=1

Lt
(
f̂∗p (xt)

)
≤ lnP

η
+
‖θ∗p‖2

2η
+
ηL2T

2
+ ηT (3.27)

where θ∗p is associated with the best RF function approximant f̂∗p (x) =
(
θ∗p
)>

zp(x).

Proof: See Appendix 3.7.1.

Besides Raker’s static regret bound, the next theorem compares the Raker loss relative to
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that of the best functional estimator in the original RKHS.

Theorem 1 1 Under (as1)-(as3) and with f∗p in (3.26) belonging to the RKHS Hp, for a fixed

ε > 0, the following bound holds with probability at least 1− 28
(σp
ε

)2
exp

(−Dε2
4d+8

)
T∑
t=1

Lt

 P∑
p=1

w̄p,tf̂p,t(xt)

− min
p∈{1,...,P}

T∑
t=1

Lt
(
f∗p (xt)

)
≤ lnP

η
+

(1 + ε)C2

2η
+
ηL2T

2
+ ηT+εLTC (3.28)

where C is a constant, while σ2
p := EπκpV [‖v‖2] is the second-order moment of the RF vector

norm. Setting η = ε = O(1/
√
T ) in (3.28), the static regret in (3.25) leads to

Regs
Raker(T ) = O(

√
T ). (3.29)

Proof: See Appendix 3.7.2.

Observe that the probability of (3.28) to hold grows as D increases, and one can always

find a D to ensure a positive probability for a given ε. Bearing this in mind, we will henceforth

use “with high probability” (w.h.p.) to summarize the sense (3.28) and (3.29) hold. Theorem 1

establishes that with proper choice of parameters, the Raker achieves sub-linear regret relative

to the best static function approximant in (3.26).

3.4 Online MKL in Environments with Unknown Dynamics

Our Raker in Section 3.3 combines an ensemble of kernel learners ‘on the fly,’ and performs on

average as the “best” fixed function, thus fulfilling the learning objective in environments with

zero (or slow) dynamics. To broaden its scope to environments with unknown dynamics, this

section introduces an adaptive Raker approach (termed AdaRaker).

3.4.1 AdaRaker with hierarchical ensembles

As with any online learning algorithm, the choice of η in (3.19) and (3.21) affects the perfor-

mance critically. Especially in environments with unknown dynamics, a large η improves the

tracking ability of fast-varying functions, while a smaller one allows improved estimation of
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Figure 3.1: Hierarchical AdaRaker structure. Experienced experts in the middle layer present a
Raker instance, where the size of expert cartoons is proportional to the interval length.

slow-varying parameters {θt, wp,t}. The optimal choice of ηt clearly depends on the variability

of the optimal function estimator [68,71]. Selecting {ηt} however, is formidably challenging if

the environment dynamics are unknown.

Toward addressing this challenge, our idea here is to hedge between multiple Raker learners

with different learning rates. Specifically, we view each Raker instance in Algorithm 2b as a

black box algorithm AI , where the subscript I represents the algorithm running on interval

I := [I, Ī] starting from slot I to slot Ī . Let a pre-selected set I collect all these intervals, the

design of which will be specified later. At the beginning of each interval I ∈ I, a new instance

of the online Raker algorithm AI is initialized with an interval-specific learning rate η(I) :=

min{1/2, η0/
√
|I|} with constant η0 > 0. Allowing for overlap between intervals, multiple

Raker instances {AI} will be run in parallel. Consider now collecting all active intervals at the

current slot t in the set

I(t) := {I ∈ I | t ∈ [I, Ī]}, ∀t ∈ T . (3.30)

For each Raker instance AI with I ∈ I(t), let f̂ (I)
t (·) denote its output at time t that

combines multiple kernel-based function estimators, and Lt(f̂ (I)
t (xt)) represent the associated
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Algorithm 3b AdaRaker for online MKL in dynamic environments

1: Initialization: learner weights {h(I)
1 }, and their learning rates {η(I)}.

2: for t = 1, 2, . . . , T do
3: Obtain f̂ (I)

t (xt) from each Raker instance AI , I ∈ I(t).
4: Predict f̂t(xt) via a weighted combination (3.33).
5: Observe loss function Lt, and incur Lt(f̂t(xt)).
6: for I ∈ I(t) do
7: Incur loss Lt(f̂ (I)

t (xt)).
8: Update f̂ (I)

t via Raker in Algorithm 2b.
9: Update weights h(I)

t+1 via (3.31).
10: end for
11: end for

instantaneous loss. The output of the ensemble learner A at time t is the weighted combination

of outputs from all learners, namely {f̂ (I)
t , ∀I ∈ I(t)}. With h(I)

t denoting the weight of the

Raker instance AI , we will update it online via

h
(I)
t+1 =


0, if t /∈ I
η(I), if t = I

h
(I)
t exp

(
− η(I)r

(I)
t

)
, else

(3.31)

where I is the first time slot of interval I , and the loss of AI relative to the overall loss is

r
(I)
t = Lt(f̂t(xt))− Lt(f̂ (I)

t (xt)), ∀I ∈ I(t). (3.32)

Intuitively thinking, one would wish to decrease (increase) the weights of those instances with

small (large) losses in future rounds. Using update (3.31), and defining the normalized weight

as h̄(I)
t := h

(I)
t /

∑
J∈I(t) h

(J)
t , the overall output is given by

f̂t(x) :=
∑
I∈I

h̄
(I)
t f̂

(I)
t (x) with f̂

(I)
t (x) :=

∑
p∈P

w̄
(I)
p,t f̂

(I)
p,t (x) (3.33)

where {w̄(I)
p,t } are the kernel combination weights generated by Raker AI (cf. (3.21)).

The AdaRaker scheme is summarized in Algorithm 3b, and depicted in Figure 3.1.

Selecting judiciously variable-length intervals in I can affect performance critically. Such a
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Figure 3.2: AdaRaker as an ensemble of Rakers with different learning rates: Each light/dark
black interval initiates a Raker learner. At slot 7, colored experts are active, and gray ones are
inactive.

selection criterion for achieving interval regret has been reported in [93]. Instead, our pursuit is

a hierarchical ensemble design for online MKL in environments with unknown dynamics using

scalable RF-based function approximants. This hierarchical design is well motivated because

with long intervals, the Raker loss per interval is relatively low in slow-varying settings, but

higher as the dynamics become more pronounced. On the other hand, a short interval can

hedge against a possibly rapid change, but its performance on each interval could suffer if the

objective stays nearly static. Bearing these tradeoffs in mind, we present next a simple yet

efficient interval partitioning scheme.

Illustration of interval sets: Consider partitioning the entire horizon into intervals of length

20, 21, 22, . . .. Intervals of length 2j with a given j ∈ N are consecutively assigned without

overlap starting from t = 2j . In the non-overlapping case, define a set of intervals Ij = [Ij , Īj ]

such that each interval’s length is |Ij | = Īj−Ij+1 = 2j , j ∈ N. For this selection of intervals,

each time slot t is covered by a set of at most dlog2 te intervals, which forms the active set of

intervals I(t) at time t. See the diagram in Fig. 3.2.

3.4.2 Dynamic regret analysis of AdaRaker

The static regret in Theorem 1 is with respect to a time-invariant optimal function estimator

benchmark. In dynamic environments however, this optimal function benchmark may change

over time - what justifies this subsection’s performance analysis of AdaRaker.

Our analysis will rely on the dynamic regret that is related to tracking regret, and has been
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introduced in [71, 94] to quantify the performance of online algorithms. The dynamic regret is

defined as (cf. (3.25))

Regd
A(T ) :=

T∑
t=1

Lt(f̂t(xt))−
T∑
t=1

Lt(f∗t (xt)) (3.34)

where the benchmark is the aggregate loss incurred by a sequence of the best dynamic functions{f∗t }
from F formed by the union of function spacesHp induced by {κp}, given by

f∗t (·) ∈ arg min
{f∗p,t, p∈P}

Lt(f∗p (xt)) with f∗p,t(·) ∈ arg min
f∈Hp

Lt(f(xt)) (3.35)

Comparing (3.26) with (3.35) we deduce that the dynamic regret is always larger than the static

regret in (3.25). Thus, a sub-linear dynamic regret implies a sub-linear static regret, but not vice

versa. Given {Lt}, AdaRaker generates functions {f̂t} to minimize the dynamic regret.

To assess the AdaRaker performance, we will start with an intermediate result on the static

regret associated with any sub-interval I ⊆ T .

Lemma 5: Under (as1)-(as3), the static regret on any interval I ⊆ T is given by

Regs
A(|I|) :=

∑
t∈I
Lt(f̂t(xt))−

∑
t∈I
Lt(f∗I (xt)) (3.36)

where |I| denotes the length of interval I , and the best time-invariant function approximant is

f∗I ∈ arg minf∈
⋃
p∈P Hp

∑
t∈I Lt(f(xt)), withHp denoting the RKHS induced by κp. Then for

any interval I ⊆ T and fixed positive constants C0, C1, the following bound holds

Regs
AdaRaker(|I|) ≤ C0

√
|I|+ C1 lnT

√
|I|, w.h.p. (3.37)

Proof: See Appendix 3.7.3.

Lemma 5 establishes that by combining Raker learners with different learning rates, AdaRaker

can achieve sub-linear static regret over any interval I with arbitrary interval length. This also

holds for intervals overlapping with multiple intervals; see e.g., the red interval in Fig. 3.2.

Clearly, the best fixed solution in (3.36) is interval specific, which can vary over different in-

tervals. This is qualitatively why the function approximants generated by AdaRaker can cope
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with a time-varying benchmark. Such an intuition will in fact become quantitative in the next

theorem, which establishes the dynamic regret for AdaRaker.

Theorem 2 2 Suppose (as1)-(as3) are satisfied, and define the accumulated variation of online

loss functions as

V({Lt}Tt=1) :=
T∑
t=1

max
f∈F

∣∣Lt+1(f(xt+1))−Lt(f(xt))
∣∣ (3.38)

where F :=
⋃
p∈P Hp. Then AdaRaker can afford a dynamic regret in (3.34) bounded by

Regd
AdaRaker(T ) ≤(2 + C0 + C1 lnT )T

2
3V 1

3 ({Lt}Tt=1)

=Õ
(
T

2
3V 1

3 ({Lt}Tt=1)
)
, w.h.p. (3.39)

where Õ neglects the lower-order terms with a polynomial log T rate.

Proof: See Appendix 3.7.4.

Theorem 2 asserts that AdaRaker’s dynamic regret depends on the variation of loss functions

in (3.38), and on the horizon T . Interesting enough, whenever the loss functions do not vary on

average, meaning V({Lt}Tt=1) = o(T ), AdaRaker achieves sub-linear dynamic regret. To this

end, it is useful to present an example where this argument holds.

Intermittent switches: With Lt 6= Lt+1 defining a switch, consider that the number of

switches is sub-linear over T ; that is,
∑T

t=1 1(Lt 6= Lt+1) = T γ , ∀γ ∈ [0, 1). Then it fol-

lows that V({Lt}Tt=1) = O(T γ), since the one-slot variation of the loss functions is bounded.

Other setups with sub-linear accumulated variation emerge, e.g., when the per-slot variation

decreases as V(Lt) = O(tγ−1), ∀γ ∈ [0, 1). Besides dynamic losses, sub-linear dynamic

regrets can be also effected by confining the variability of optimal function estimators.

Theorem 3 3 Suppose the conditions of Theorem 2 hold, and define the regret relative to an

m-switching dynamic benchmark as RegmA(T ) :=
∑T

t=1Lt(f̂t(xt))−
∑T

t=1 Lt(f̌∗t (xt)), where

{f̌∗t } is any trajectory from{{
f̌∗t
}T
t=1
∈ ⋃p∈P Hp

∣∣∣∑T
t=1 1(f̌∗t 6= f̌∗t−1) ≤ m

}
. (3.40)
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With C0 and C1 denoting some universal constants, it then holds w.h.p. that

RegmAdaRaker(T )≤(C0+C1 lnT )
√
Tm=Õ

(√
Tm

)
. (3.41)

Proof: See Appendix 3.7.5.

Theorem 3 asserts that without prior knowledge of the environment dynamics, the dynamic

regret of AdaRaker is sub-linearly growing with time, provided that the number of changes

of the optimal function estimators is sub-linear in T ; that is, RegmAdaRaker(T ) = o(T ) given

m = o(T ). Therefore, our AdaRaker can track the optimal dynamic functions, if the optimal

function varies slowly over time; e.g., it does not change in the long-term average sense. While

the conditions to guarantee optimality in dynamic settings may appear restrictive, they are prac-

tically relevant, since abrupt changes or adversarial samples will likely not happen at each and

every slot in practice.

3.5 Numerical Tests

This section evaluates the performance of our novel algorithms in online regression tasks using

both synthetic and real-world datasets.

In the subsequent tests, we use the following benchmarks.

RBF: the online single kernel learning method using Gaussian kernels, a.k.a. radial basis func-

tions (RBFs), with bandwidth σ2 = {0.1, 1, 10} (cf. RBF01, RBF1, RBF10);

POLY: the online single kernel method using polynomial kernels, with degree d = {2, 3} (cf.

POLY2, POLY3);

LINEAR: the online single kernel learning method using a linear kernel;

AvgMKL: the online single kernel learning method using the average of candidate kernels

without updating the weights;

OMKL: the popular online (O)MKL algorithm without a budget [84];

OMKL-B: the OMKL algorithm on a budget for regression modified from its single kernel

version [68], with the kernel combination weights updated as (3.21);

M-Forgetron: the online multi-kernel based Forgetron modified from its single kernel version

[80], with the kernel combination weights updated as in (3.21);
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Time index [1, 200] [201, 1000] [1001, 2000] [2001, 2300] [2301, 3000]

σ2 0.01 1 10 0.01 1

Time index [3001, 3500] [3501, 4300] [4301, 5100] [5101, 5900] 5901, 6500
σ2 10 0.01 1 0.01 0.1

Table 3.1: Intervals and {σ2} for synthetic dataset.

AdaMKL: the adaptive version of OMKL that operates in a similar fashion as Algorithm 3b,

but instead of using our Raker as an ensemble, it adopts OMKL as an instance AI . Note that

AdaMKL, OMKL-B, and M-Forgetron have not been formally proposed in existing works, but

we introduced them here only for comparison purposes. All the considered MKL approaches

use a dictionary of Gaussian kernels with σ2 = {0.1, 1, 10}, and AvgMKL, OMKL, AdaMKL,

OMKL-B, and M-Forgetron also include a linear, and a polynomial kernel with order of 2

into their kernel dictionary. For all MKL approaches, the stepsize for updating kernel com-

bination weights in (3.21) is chosen as 0.5 uniformly, while the stepsize for updating per-

kernel function estimators will be specified later in each test. The regularization parameter

is set equal to λ = 0.01 for all approaches. Entries of {xt} and {yt} are normalized to lie in

[0, 1]. Regarding AdaMKL and AdaRaker, multiple instances are initialized on intervals with

length |I| := 20, 21, 22, . . ., along with the corresponding learning rate on the interval I as

η(I) := min{1/2, 10/
√
|I|}; see the example in Figure 3.2. All the results in the tables were

reported using the performance at the last time index.

3.5.1 Synthetic data tests for regression

This subsection presents the synthetic data tests for regression.

Data generation. In this test, two synthetic datasets were generated as follows.

For Dataset 1, the feature vectors {xt ∈ R10}14,000
t=1 are generated from the standardized Gaus-

sian distribution, while yt is generated as yt =
∑t

τ=1 ατκτ (xt,xτ ), where {αt} is generated as

αt = 1 + et with et ∼ N (0, σ2
α) and σα = 0.01, while {κt} are kernel functions that change

overtime: for t ∈ [1, 8000]
⋃

[18001, 26000], κt is a Gaussian kernel with σ2 = 1, while for

t ∈ [8001, 18000]
⋃

[26001, 36000] the Gaussian kernel has σ2 = 10. Therefore, the underly-

ing nonlinear relationship between xt and yt undergoes intermittent changes, which come from

corresponding changes in the optimal kernel combinations.

Dataset 2 is generated with more variance and switching points. Specifically, the feature
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Figure 3.3: MSE performance on synthetic Dataset 1: a) D = B = 20; b) D = B = 50.

vectors are generated from the standardized Gaussian distribution, while yt is generated as

yt =
∑t

τ=1 ατκτ (xt,xτ ), where {κt} change over 10 intervals with different σ2; see Table

3.1.

Testing performance. The performance of all schemes is tested in terms of the mean-square

(prediction) error MSE(t) := (1/t)
∑t

τ=1 (yτ − ŷτ )2 in Figure 3.3 and Figure 3.4, and their

CPU time is listed in Table 3.2. For OMKL-B, B = 20 and 50 most recent data samples were

kept in the budget; and for RF-based Raker and AdaRaker approaches, D = 20 and 50 orthog-

onal random features were used by default. The default stepsize is chosen as 1/
√
T for RBF,

POLY, LINEAR, AvgMKL, OMKL, OMKL-B and Raker. In both tests, AdaRaker outper-

forms the alternatives in terms of MSE, especially when the true nonlinear relationship between

xt and yt changes; e.g., compare the MSE of KL-RBF and Raker with that of AdaRaker at

t = 8000, 18000, 26000 in Figure 3.3, and t = 200, 2000, 3000, 3500 in Figure 3.4. This

corroborates the effectiveness of the novel AdaRacker method that can flexibly select learn-

ing rates according to the variability of the environments, and adaptively combine multiple

kernels when the optimal underlying nonlinear relationship is varying over time. In addition,

MKL approaches including our Raker approach enjoy lower MSE than that of the single-kernel

approaches as well as the simple AvgMKL approach, which is also aligned with our design

principle of developing MKL schemes that broaden generalizability of a kernel-based learner

over a larger function space.
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Figure 3.4: MSE performance on synthetic Dataset 2: a) D = B = 20; b) D = B = 50.

Table 3.2 records the CPU time of all benchmark algorithms running tests on two differ-

ent datasets. It can be observed that leveraging the RF-based approximation, the proposed

AdaRaker and Raker algorithms are much faster than AdaMKL and OMKL; hence, they are

preferable especially for large-scale datasets. Although the CPU time of OMKL-B with a bud-

get size B = 20 or B = 50 is relatively low, OMKL-B does not perform as well as AdaRaker

and Raker algorithms. Therefore, the AdaRaker and Raker approaches attain a sweet-spot in

the performance-complexity tradeoff.

3.5.2 Real data tests for online regression

To further evaluate our algorithms in real-world scenarios, the present subsection is devoted

to testing and comparing on several popular real datasets.

Datasets description. Performance is tested on benchmark datasets from UCI machine learning

repository [95].

• Twitter dataset consists of T = 14, 000 samples from a popular micro-blogging platform

Twitter, where xt ∈ R77 include features such as the number of new interactive authors,

and the length of discussion on a given topic, while yt represents the average number of

active discussion (popularity) on a certain topic [96]. A larger dataset with T = 100, 000

is also included for testing only (Ada)Raker and OMKL-B, since other methods do not

scale to such a large T .
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Dataset 1 Dataset 2
Setting D = B = 20 D = B = 50 D = B = 20 D = B = 50

AdaMKL 318.52 27.29
OMKL 157.10 5.47

RBF 47.83 1.06
POLY2 6.01 0.47
POLY3 28.27 1.24

LINEAR 4.80 0.35
AvgMKL 144.85 5.02
OMKL-B 3.75 4.05 0.72 0.77

Raker 1.39 1.53 0.18 0.20
AdaRaker 21.94 24.24 3.32 3.54

Table 3.2: CPU time (in seconds) on synthetic datasets. RBF, POLY represents all single-kernel
methods using RBF and polynomial kernels, since they have the same CPU time.

Dataset # features (d) # samples (T ) feature type
Twitter 77 14, 000 real & integer

Twitter (Large) 77 100, 000 real & integer
Tom’s hardware 96 10, 000 real & integer

Energy 27 18, 600 real
Air quality 13 9, 358 real

Table 3.3: A summary of real datasets used in the tests.

• Tom’s hardware dataset contains T = 10, 000 samples from a worldwide new technol-

ogy forum, where a 96-dimensional feature vector includes the number of discussions

involving a certain topic, while yt represents the average number of display about a cer-

tain topic on Tom’s hardware [96].

• energy dataset consists of T = 18, 600 samples, with each xt ∈ R27 describing the

humidity and temperature indoors and outdoors, while yt denotes the energy use of light

fixtures in the house [97].

• air quality dataset collects T = 9, 358 instances of hourly averaged responses from

five chemical sensors located in a polluted area of Italy. The averaged sensor response

xt ∈ R13 contains the hourly concentrations of e.g., CO, Non Metanic Hydrocarbons,

and Nitrogen Dioxide (NO2), where the goal is to predict the concentration of polluting

chemicals yt in the air [98].
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Algorithms/ Datasets Twitter Tom’s Energy Air
RBF (σ2 = 0.1) 27.0 14.4 28.9 26.3
RBF (σ2 = 1) 13.5 17.0 28.8 12.7
RBF (σ2 = 10) 23.3 18.8 28.8 15.5

POLY2 12.7 22.3 28.8 7.34
POLY3 20.4 22.7 28.9 5.91

LINEAR 8.57 19.5 28.8 10.7
AvgMKL 14.4 17.5 28.7 11.9
OMKL 8.55 14.3 28.1 6.4

AdaMKL 16.1 18.4 30.4 10.1
OMKL-B (B = 50) 27.0 22.1 73.3 35.9

Raker (D = 50) 3.0 3.4 19.3 2.0
AdaRaker (D = 50) 2.6 1.9 13.8 1.3

Table 3.4: MSE (10−3) performance of different algorithms with stepsize 1/
√
T .

To highlight the effectiveness of our approaches, the datasets mainly include time series

data, where non-stationarity is more likely to happen; see Table 4.1 for a summary.

MSE performance. The MSE performance of each algorithm on the aforementioned datasets

is presented in Table 3.4. By default, we use the complexity B = D = 50 for OMKL-B

and (Ada)Raker, and the stepsize 1/
√
T for RBF, POLY, LINEAR, AvgMKL, OMKL, OMKL-

B and Raker. To boost the performance of each algorithm, their MSE when using manually

tuned stepsizes is also reported in Table 3.5, which selects the best stepsize on each dataset

among {10−3, 10−2, · · · , 103}/
√
T . A common observation is that leveraging the flexibility of

multiple kernels, MKL methods in most cases outperform the algorithms using only a single

kernel. By simply averaging over all the kernels, AvgMKL outperforms most of single kernel

methods, but performs worse than the adaptive kernel combination methods. This confirms that

relying on a pre-selected kernel function is not sufficient to guarantee low fitting loss, while

allowing the MKL approaches to select the best kernel combinations in a data-driven fashion

holds the key for improved performance.

In most tested datasets, Raker obtains function approximants with lower MSE relative to

MKL alternatives without RF approximation. Furthermore, incorporating multiple Raker in-

stances with variable learning rates, AdaRaker consistently yields the lowest MSE in all the

tests. As it has been shown in the synthetic data test, the sizable performance gain of AdaRaker

appears when the underlying nonlinear models change in the tested time-series datasets. This
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Algorithms/ Datasets Twitter Tom’s Energy Air
RBF (σ2 = 0.1) 17.2 3.3 16.6 8.1
RBF (σ2 = 1) 3.3 5.1 16.4 2.8
RBF (σ2 = 10) 5.6 13.6 16.4 18.9

POLY2 8.1 15.9 16.2 3.3
POLY3 20.4 20.7 16.2 4.6

LINEAR 2.7 4.8 16.3 2.9
AvgMKL 7.1 6.2 16.3 2.8
OMKL 4.2 3.3 16.2 2.4

AdaMKL 16.1 18.4 30.4 10.1
OMKL-B (B = 50) 9.9 11.8 19 7.1

Raker (D = 50) 2.9 2.6 13.8 1.3
AdaRaker (D = 50) 2.6 1.9 13.8 1.3

Table 3.5: MSE (10−3) performance of different algorithms with optimally chosen stepsizes.

MSE OMKL-B Raker AdaRaker
Stepsize 1/

√
T 0.5/

√
t 0.1/

√
t Tuned 1/

√
T 0.5/

√
t 0.1/

√
t Tuned /

Twitter 27.0 27.1 29.6 9.9 3.0 17.9 4.3 2.9 2.6
Tom’s 22.1 22.1 22.6 11.8 3.4 2.0 7.6 2.6 1.9
Energy 73.3 74.1 79.5 19.0 19.3 29.5 25.1 13.8 13.8

Air 35.9 35.9 40.1 7.1 2.0 29.1 4.0 1.3 1.3
Twitter (Large) 20.7 27.2 28.0 11.3 3.2 3.1 3.3 3.0 2.7

Table 3.6: MSE (10−3) versus the choice of stepsizes with complexity B = D = 50.

observation is aligned with our design principle of AdaRaker; that is, when the optimal func-

tion predictor varies slowly (fast), AdaRaker tends to select a Raker instance with small (large)

learning rate. Interesting enough, even with adaptive learning rate, AdaMKL does not perform

as well as OMKL in some tests. This is partially because unlike AdaRaker with fixed number

of RFs, each instance in AdaMKL involves a different number of support vectors (samples).

The instance operating on the longest interval contains at most T/2 support vectors, which may

deteriorate performance relative to OMKL with T support vectors.

Table 4.2 further compares the MSE performance of AdaRaker with OMKL-B and Raker

using different stepsizes. Clearly, the performance of OMKL-B and Raker is sensitive to the

choice of stepsizes. While the optimal stepsize varies from dataset to dataset, selecting a con-

stant stepsize 1/
√
T generally leads to better performance than a diminishing one of O(1/

√
t).

In the online scenarios however, the choice 1/
√
T may not be feasible if T is unknown ahead

of time. In contrast, AdaRaker obtained the best MSE performance without knowing T , and
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Algorithms/ Datasets Twitter Tom’s Energy Air

RBF 54.7 32.5 26.6 1.71
POLY2 2.25 1.16 2.42 0.58
POLY3 5.62 2.97 7.90 1.51

LINEAR 1.83 0.98 196 0.39
AvgMKL 148.4 81.6 82.4 5.29
OMKL 153.5 81.9 83.3 5.90

AdaMKL 164.1 102.7 117.9 35.3
OMKL-B (B = 50) 1.89 1.42 2.02 0.89

Raker (D = 50) 0.51 0.38 0.65 0.28
AdaRaker (D = 50) 8.64 6.03 10.94 5.28

Table 3.7: A summary of CPU time (second) on real datasets.

without the need of stepsize selection, which confirms that AdaRaker is capable of adapting its

stepsize to variable environments with unknown dynamics.

Computational complexity. The CPU time of all the considered schemes is recorded under

all the tests; see Table 3.7. It is evident that in all tests, our RF-based MKL methods including

Raker and AdaRaker are computationally more efficient than other MKL methods except that

OMKL-B is faster than AdaRaker. Intuitively speaking, the per-slot complexity of Raker does

not grow with time, since it requires computing only one inner product of two 2D-dimensional

vectors per kernel learner, while the computational complexity of AdaMKL, OMKL, POLY,

LINEAR, AvgMKL, and RBF increases with time at least linearly. With a fixed budget size,

OMKL-B enjoys light-weight updates that leads to a lower CPU time than alternatives, but

higher than Raker. However, given such a limited budget of data, OMKL-B exhibits higher

MSE than AdaRaker and Raker; see MSE in Tables 3.4 and 4.2.

Running multiple instances of Raker in parallel, the complexity of AdaRaker is reasonably

higher than Raker (roughly log T times higher), but its runtime is still only around 10% of that

of AdaMKL, and significantly lower than other single-kernel alternatives especially when the

actual feature dimension d is higher than the number of random features D. The computational

advantage of our MKL algorithms in this test also corroborates the quantitative analysis at

the end of Section 3.3.2. Regarding the tradeoff between learning accuracy and complexity, a

delicate comparison among OMKL-B, Raker and AdaRaker follows next.

Accuracy versus complexity. To further understand the tradeoff between complexity and learn-

ing accuracy, the performance of three scalable methods AdaRaker, Raker and OMKL-B is
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MSE OMKL-B Raker AdaRaker

Complexity 10 50 100 10 50 100 10 50 100

Twitter 28.9 27.0 26.1 5.9 3.0 3.0 3.8 2.6 2.6
Tom’s 22.7 22.1 21.7 8.1 3.4 2.3 7.0 1.9 1.8
Energy 79.1 73.3 67.9 25.7 19.3 16.4 18.7 13.8 13.3

Air pollution 36.7 35.9 35.8 10.1 2.0 1.7 4.3 1.3 1.2
Twitter (Large) 25.0 20.7 19.0 3.9 3.2 3.0 3.3 2.7 2.7

Table 3.8: MSE (10−3) versus complexity. For OMKL-B, the complexity measure is the data
budget B; and for (Ada)Raker, the complexity measure is the number of RFs D.

Time OMKL-B Raker AdaRaker
Complexity 10 50 100 10 50 100 10 50 100

Twitter 1.42 1.89 2.84 0.42 0.51 0.80 7.58 8.64 11.65
Tom’s 1.00 1.42 2.81 0.41 0.38 0.56 5.09 6.03 8.98
Energy 1.84 2.02 2.32 0.58 0.65 0.76 9.96 10.94 12.47

Air pollution 0.82 0.89 0.97 0.24 0.28 0.32 4.09 5.28 5.29
Twitter (Large) 12.90 16.34 23.6 6.07 6.63 8.42 67.10 78.10 109.40

Table 3.9: CPU time (second) versus complexity of B for OMKL-B, and D for (Ada)Raker.

tested under different parameter settings, e.g., D, the number of random features, and B, the

number of budgeted data. The MSE performance is reported in Table 3.8 after one pass of all

data in each dataset, while the corresponding CPU time is in Table 3.9.

Not surprising, all three algorithms require longer CPU time as the complexity (in terms

of B or D) increases. For given complexity (same B and D), Raker requires the lowest CPU

time, and its MSE is also markedly lower than that of OMKL-B in all tests. On the other hand,

AdaRaker always attains the lowest MSE, and its performance gain is remarkable especially in

the Energy and Air pollution datasets. For Twitter (Large) dataset, the performance of AdaRaker

does not improve as RFs increase from D = 50 to D = 100, which implies that D = 50 is

enough to provide reliable kernel approximation in this dataset. Considering that AdaRaker is

embedded with concurrent log t Raker instances at time t, its CPU time is relatively higher.

However, one would expect a major reduction in the number of concurrent instances and thus

markedly lower CPU time, if a larger basic interval size (instead of base number 2 in Figure

3.2) is incorporated in AdaRaker real implementation.
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Classification error CPU time

Algorithms/Datasets Movement Devices Activity Movement Devices Activity
RBF (σ2 = 0.1) 43.1 6.67 0.46 2.76 2.13 4.42
RBF (σ2 = 1) 41.3 28.1 5.21 2.79 2.04 4.42
RBF (σ2 = 10) 40.3 31.8 41.1 2.62 2.09 4.43

POLY2 43.5 14.3 3.13 1.63 0.31 0.81
POLY3 43.6 25.2 2.39 4.75 0.57 1.79

LINEAR 43.8 47.4 4.30 1.26 0.21 0.60
AvgMKL 41.7 23.9 3.16 10.2 6.72 14.67
OMKL 38.2 16.0 0.60 10.27 7.07 14.46

AdaMKL 3.5 0.86 0.98 33.77 10.51 21.46
M-Forgetron (B = 50) 1.64 0.53 1.14 0.92 0.27 0.53

Raker (D = 50) 9.74 2.54 0.58 0.40 0.12 0.21
AdaRaker (D = 50) 1.10 0.36 0.34 6.76 1.73 3.56

Table 3.10: Classification error (%) and runtime (second) of different algorithms with the de-
fault stepsize 1/

√
T for RBF, OMKL and Raker, and with complexity B = D = 50.

At this point, one may wonder how many RFs are enough for Raker and AdaRaker to guar-

antee the same online learning accuracy as that of OMKL-B with B samples. While this in-

triguing question has been recently studied in the batch setting with an answer of D = O(
√
B)

RFs [99], its thorough treatment in the online setting constitutes our future research.

3.5.3 Real data tests for online classification

In this section, the performance of Raker and AdaRaker is tested on real datasets for the online

classification task. We use the logistic loss as the learning objective function with the regu-

larization parameter λ = 0.005 for all considered approaches except for the perceptron-based

Forgetron algorithm. Kernels and all other parameters such as the default stepsizes, are chosen

as those in the regression task.

Datasets description. We test classification performance on the following datasets.

• Movement dataset consists of T = 13, 197 temporal streams of received signal strength

(RSS) measured between the nodes of a wireless sensor network, with each xt ∈ R4

comprising 4 anchor nodes [100]. Data has been collected during user movements at the

frequency of 8 Hz (8 samples per second). The RSS samples in the dataset have been

rescaled to lie in [−1, 1]. The binary label yt indicates whether the user’s trajectory will

lead to a change in the spatial context (here a room change) or not.
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Classification error

Algorithms/Datasets Movement Devices Activity
RBF (σ2 = 0.1) 28.9 5.16 0.26
RBF (σ2 = 1) 1.27 0.42 0.53

RBF (σ2 = 10) 1.10 0.36 1.14
POLY2 8.19 1.7 0.56
POLY3 15.2 17.3 0.45

LINEAR 7.46 30.7 0.60
AvgMKL 1.69 2.26 0.48
OMKL 1.10 0.36 0.29

AdaMKL 3.50 0.86 1.00
M-Forgetron (B = 50) 1.64 0.53 1.14

Raker (D = 50) 1.10 0.28 0.24
AdaRaker (D = 50) 1.10 0.36 0.34

Table 3.11: Classification error (%) of different algorithms with the dataset-specific optimally
chosen stepsizes for RBF, OMKL and Raker, and with complexity B = D = 50.

OMKL Raker AdaRaker
Stepsize 1/

√
T 1/

√
t 10/

√
t Tuned 1/

√
T 1/

√
t 10/

√
t Tuned /

Movement 38.2 39.5 22.3 1.10 12.1 8.60 1.79 1.10 1.10
Devices 16.0 13.2 6.06 0.36 2.54 2.04 0.53 0.28 0.36
Activity 0.60 0.53 0.50 0.29 0.58 0.52 0.54 0.24 0.34

Table 3.12: Classification error (%) versus different choices of stepsizes with B = D = 50.

• Electronic Device dataset consists of T = 3, 600 samples collected as part of a govern-

ment sponsored study called ‘Powering the Nation,’ where the feature vectors xt ∈ R60

represent electricity readings from different households over 15 mins, sampled within a

month [101]. Binary label yt represents the type of electronic devices used at the certain

interval of time time: dishwasher or kettle.

• Human Activity dataset consists of T = 7, 352 samples collected from a group of 30

volunteers wearing a smartphone (Samsung Galaxy S II) on their waist to monitor ac-

tivities [102]. Feature vectors {xt ∈ R30} here measure e.g., triaxial acceleration and

angular velocity, while binary label yt represents the activity during a certain period:

walking or not walking.

Classification performance. The classification error (1/T )
∑T

t=1 max{0, sign(−ytŷt)} and

the CPU time of each algorithm on these datasets are summarized in Table 3.10 when a default
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Classification error CPU time

Algorithms/ Datasets Movement Devices Activity Movement Devices Activity
M-Forgetron (B = 10) 1.60 0.53 1.14 0.92 0.26 0.53
M-Forgetron (B = 50) 1.64 0.53 1.14 0.92 0.27 0.53
M-Forgetron (B = 100) 1.42 0.53 1.14 0.94 0.29 0.53
Raker (D = 10) 26.3 8.37 3.26 0.35 0.10 0.18
Raker (D = 50) 9.74 2.54 0.58 0.40 0.12 0.21
Raker (D = 100) 4.65 1.53 0.43 0.46 0.15 0.26
AdaRaker (D = 10) 2.46 0.66 0.68 6.13 0.65 3.22
AdaRaker (D = 50) 1.10 0.36 0.34 6.76 1.73 3.56
AdaRaker (D = 100) 1.10 0.36 0.34 7.55 2.04 4.22

Table 3.13: Classification error (%) and CPU time (second) versus complexity.

stepsize 1/
√
T is used for POLY, LINEAR, RBF, AvgMKL, OMKL and Raker. The budget of

M-Forgetron is set at B = 50 samples, while Raker and AdaRaker adopt D = 50 RFs. As with

the regression tests, it is evident that AdaRaker attains the highest classification accuracy and

the Raker has the lowest CPU time among all competing algorithms. Without having to tune

stepsizes, the performance of AdaMKL and M-Forgetron is also competitive in this case. To

explore the best performance of each algorithm, the classification performance under manually

tuned stepsizes is reported in Table 3.11, where each algorithm uses the best stepsize among

{10−3, 10−2, · · · , 103}/
√
T for each dataset. With the optimally chosen stepsizes, the perfor-

mance of all algorithms improves, and Raker even achieves slightly lower classification error

than AdaRaker in some datasets. This is reasonable since compared to Raker with the offline

tuned stepsize, AdaRaker will incur some error due to the online adaptation to several (possibly

suboptimal) learning rates.

To corroborate the effectiveness of our algorithms in adapting to unknown dynamics (e.g.,

unknown time horizon T and variability), Table 3.12 compares the performance of AdaRaker

with OMKL and Raker using default, diminishing and optimally tuned stepsizes. Similar to

regression tests, the performance of Raker and OMKL is sensitive to the stepsize choice, while

AdaRaker achieves the desired performance by combining learners with different learning rates.

By simply averaging over all the kernels, AvgMKL outperforms single kernel methods in most

cases, but performs much worse than OMKL and (Ada)Raker methods. Note that the Raker also

achieves competitive classification accuracy when the constant stepsize 1/
√
T is used. Such a

choice is however not always feasible in practice, since it requires knowledge of how many data
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samples will be available ahead of time.

Accuracy versus complexity. In this experiment, we test classification performance in terms

of both classification error and CPU time for different levels of complexity; see Table 3.13. We

use the number of support vectors B for M-Forgetron, and the number of RFs D for Raker

and AdaRaker to represent different levels of complexity, and compare their performance using

the default stepsize. It is expected that CPU time increases as the complexity increases, and

the classification error decreases as the complexity grows. For all three datasets, the AdaRaker

achieves the lowest classification error, and the Raker outperforms the M-Forgetron while at the

same time it is more efficient computationally.

3.6 Summary

This chapter dealt with kernel-based learning in environments with unknown dynamics that

also include static or slow variations. Uniquely combining advances in random feature based

function approximation with online learning from an ensemble of experts, a scalable online

multi-kernel learning approach termed Raker, was developed for static environments based on

a dictionary of kernels. Endowing Raker with capability of tracking time-varying optimal func-

tion estimators, AdaRaker was introduced as an ensemble version of Raker with variable learn-

ing rates. The key modules of the novel learning approaches are: i) the random features are for

scalability, as they reduce the per-iteration complexity; ii) the preselected kernel dictionary is

for flexibility, that is to broaden generalizability of a kernel-based learner over a larger function

space; iii) the weighted combination of kernels adjusted online accounts for the reliability of

learners; and, iv) the adoption of multiple learning rates is for improved adaptivity to changing

environments with unknown dynamics.

Complementing the principled algorithmic design, the performance of Raker is rigorously

established using static regret analysis. Furthermore, without a-priori knowledge of dynamics,

it is proved that AdaRaker achieves sub-linear dynamic regret, provided that either the loss or

the optimal learning function does not change on average. Experiments on synthetic and real

datasets validate the effectiveness of the novel methods.
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3.7 Appendix

3.7.1 Proof of Lemma 4

To prove Lemma 4, we introduce two intermediate lemmata as follows.

Lemma 6: Under (as1), (as2), and f̂∗p as in (3.26) with Fp := {f̂p|f̂p(x) = θ>zp(x), ∀θ ∈
R2D}, let {f̂p,t(xt)} denote the sequence of estimates generated by Raker with a pre-selected

kernel κp. Then the following bound holds true w.p.1

T∑
t=1

Lt(f̂p,t(xt))−
T∑
t=1

Lt(f̂∗p (xt))≤
‖θ∗p‖2

2η
+
ηL2T

2
(3.42)

where η is the learning rate, L is the Lipschitz constant in (as2), and θ∗p is the corresponding

parameter (or weight) vector supporting the best estimator f̂∗p (x) = (θ∗p)
>zp(x).

Proof: Similar to the regret analysis of online gradient descent [53], using (3.12) for any fixed

θ, we find

‖θp,t+1 − θ‖2 =‖θp,t − η∇L(θ>p,tzp(xt), yt)− θ‖2 (3.43)

=‖θp,t − θ‖2 + η2‖∇L(θ>p,tzp(xt), yt)‖2 − 2η∇>L(θ>p,tzp(xt), yt)(θp,t − θ).

Meanwhile, the convexity of the loss under (as1) implies that

L(θ>p,tzp(xt), yt)− L(θ>zp(xt), yt) ≤ ∇>L(θ>p,tzp(xt), yt)(θp,t − θ). (3.44)

Plugging (3.44) into (3.43) and rearranging terms yields

L(θ>p,tzp(xt), yt)−L(θ>zp(xt), yt) ≤
‖θp,t − θ‖2 − ‖θp,t+1 − θ‖2

2η
+
η

2
‖∇L(θ>p,tzp(xt), yt)‖2.

(3.45)

Summing (3.45) over t = 1, . . . , T , with f̂p,t(xt) = θ>p,tzp(xt), we arrive at

T∑
t=1

(
L(f̂p,t(xt), yt)−L(θ>zp(xt), yt)

)
≤ ‖θp,1−θ‖

2 − ‖θp,T+1 − θ‖2
2η

+
η

2

T∑
t=1

‖∇L(θ>p,tzp(xt), yt)‖2
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(a)

≤ ‖θ‖
2

2η
+
ηL2T

2
(3.46)

where (a) uses the Lipschitz constant in (as2), the non-negativity of ‖θp,T+1 − θ‖2, and the

initial value θp,1 = 0. The proof of Lemma 6 is then complete by choosing θ = θ∗p =∑T
t=1 α

∗
p,tzp(xt) such that f̂∗p (xt) = θ>zp(xt) in (3.46). Lemma 6 establishes that the static

regret of the Raker is upper bounded by some constants, which mainly depend on the stepsize

in (3.19) and the time horizon T .

In addition, we will bound the difference between the loss of the solution obtained from

Algorithm 2b and the loss of the best single kernel-based online learning algorithm. Specifically

the following lemma holds:

Lemma 7: Under (as1) and (as2), with {f̂p,t} generated from Raker, it holds that

T∑
t=1

P∑
p=1

w̄p,tLt(f̂p,t(xt))−
T∑
t=1

Lt(f̂p,t(xt)) ≤ ηT +
lnP

η
(3.47)

where η is the learning rate in (3.21), and P is the number of kernels in the dictionary.

Proof: Letting Wt :=
∑P

p=1wp,t, the weight recursion in (3.21) implies that

Wt+1 =
P∑
p=1

wp,t+1 =
P∑
p=1

wp,t exp
(
−ηLt

(
f̂p,t(xt)

))

≤
P∑
p=1

wp,t

(
1− ηLt

(
f̂p,t(xt)

)
+ η2Lt

(
f̂p,t(xt)

)2
)

(3.48)

where the last inequality holds because exp(−ηx) ≤ 1− ηx+ η2x2, for |η| ≤ 1. Furthermore,

substituting w̄p,t := wp,t/
∑P

p=1wp,t = wp,t/Wt into (3.48), it follows that

Wt+1 ≤
P∑
p=1

Wtw̄p,t

(
1− ηLt

(
f̂p,t(xt)

)
+ η2Lt

(
f̂p,t(xt)

)2
)

= Wt

(
1− η

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)
. (3.49)



75

Using 1 + x ≤ ex, ∀x, (3.49) leads to

Wt+1 ≤Wt exp

(
− η

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)
. (3.50)

Telescoping (3.50) from t = 1 to T , we have (W1 = 1)

WT+1 ≤ exp

(
− η

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)
. (3.51)

On the other hand, for any p, the following holds true

WT+1 ≥ wp,T+1 = wp,1

T∏
t=1

exp(−ηLt
(
f̂p,t(xt)

)
)

= wp,1 exp

(
− η

T∑
t=1

Lt
(
f̂p,t(xt)

))
. (3.52)

Combining (3.51) with (3.52), we arrive at

exp

(
−η

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)

≥wp,1 exp

(
−η

T∑
t=1

Lt
(
f̂p,t(xt)

))
. (3.53)

Taking the logarithm on both sides of (3.53), we find that (cf. wp,1 = 1/P )

−η
T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
≥−η

T∑
t=1

Lt
(
f̂p,t(xt)

)
− lnP(3.54)

which leads to

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
≤

T∑
t=1

Lt
(
f̂p,t(xt)

)
+η

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
+

lnP

η
(3.55)

and the proof is complete since Lt
(
f̂p,t(xt)

)2
≤ 1 and

∑P
p=1 w̄p,t = 1.
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Moreover, since Lt(·) is convex under (as1), Jensen’s inequality implies that

Lt
( P∑
p=1

w̄p,tf̂p,t(xt)

)
≤

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
. (3.56)

Plugging (3.56) into (3.47) in Lemma 7, we arrive at

T∑
t=1

Lt
( P∑
p=1

w̄p,tf̂p,t(xt)

)
≤

T∑
t=1

Lt
(
f̂p,t(xt)

)
+ ηT +

lnP

η

(a)

≤
T∑
t=1

Lt
(
f̂∗p (xt)

)
+

lnP

η
+
‖θ∗p‖2

2η
+
ηL2T

2
+ ηT (3.57)

where (a) follows because θ∗p is the optimal solution for any given kernel κp. This proves the

claim in Lemma 4.

3.7.2 Proof of Theorem 1

To derive the performance bound relative to the best function estimator f∗(xt) in the RKHS,

the key step is to bound the error of approximation. For a given shift-invariant κp, the maximum

point-wise error of the RF kernel approximant is uniformly bounded with probability at least

1− 28
(σp
ε

)2
exp

(−Dε2
4d+8

)
, by [75]

sup
xi,xj∈X

∣∣∣z>p (xi)zp(xj)− κp(xi,xj)
∣∣∣ < ε (3.58)

where ε > 0 is a given constant, D the number of features, while d represents the dimension

of x, and σ2
p := Ep[‖v‖2] is the second-order moments of the RF vector norm. Henceforth, for

the optimal function estimator (3.26) in Hp denoted by f∗p (x) :=
∑T

t=1 α
∗
p,tκp(x,xt), and its

RF-based approximant f̌∗p :=
∑T

t=1 α
∗
p,tz
>
p (x)zp(xt) ∈ Fp, we have

∣∣∣∣∣
T∑
t=1

Lt
(
f̌∗p (xt)

)
−

T∑
t=1

Lt
(
f∗p (xt)

)∣∣∣∣∣ (a)

≤
T∑
t=1

∣∣Lt (f̌∗p (xt)
)
− Lt(f∗p (xt))

∣∣
(b)

≤
T∑
t=1

L

∣∣∣∣∣
T∑
t′=1

α∗p,t′z
>
p (xt′)zp(xt)−

T∑
t′=1

α∗p,t′κp(xt′ ,xt)

∣∣∣∣∣
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(c)

≤
T∑
t=1

L
T∑
t′=1

|α∗p,t′ |
∣∣∣z>p (xt′)zp(xt)− κp(xt′ ,xt)

∣∣∣
(3.59)

where (a) follows from the triangle inequality; (b) uses the Lipschitz continuity of the loss, and

(c) is due to the Cauchy-Schwarz inequality. Combining with (3.58), yields∣∣∣∣∣
T∑
t=1

Lt(f̌∗p (xt))−
T∑
t=1

Lt(f∗p (xt))

∣∣∣∣∣ ≤
T∑
t=1

Lε
T∑
t′=1

|α∗p,t′ | ≤ εLTC, w.h.p. (3.60)

where the equality follows from C := maxp
∑T

t=1 |α∗p,t|. Under the kernel bounds in (as3), the

uniform convergence in (3.58) implies that supxt,xt′∈X z>p (xt)zp(xt′) ≤ 1 + ε, w.h.p., which

in turn leads to

∥∥θ∗p∥∥2
:=

∥∥∥∥∥
T∑
t=1

α∗p,tzp(xt)

∥∥∥∥∥
2

=

∣∣∣∣∣
T∑
t=1

T∑
t′=1

α∗p,tα
∗
p,t′z

>
p (xt)zp(xt′)

∣∣∣∣∣ ≤ (1 + ε)C2 (3.61)

where we again used the definition of C.

Lemma 4 together with (3.60) and (3.61) leads to the regret of the proposed Raker algorithm

relative to the best static function inHp, that is given by

T∑
t=1

Lt
( P∑
p=1

wp,tf̂p,t(xt)

)
−

T∑
t=1

Lt(f∗p (xt))

=

T∑
t=1

Lt
( P∑
p=1

wp,tf̂p,t(xt)

)
−

T∑
t=1

Lt
(
f̌∗p (xt)

)
+

T∑
t=1

Lt
(
f̌∗p (xt)

)
−

T∑
t=1

Lt(f∗p (xt))

≤ lnP

η
+
ηL2T

2
+ ηT +

(1 + ε)C2

2η
+ εLTC, w.h.p. (3.62)

which completes the proof of Theorem 1.
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3.7.3 Proof of Lemma 5

Using Theorem 1 with η = ε = O(1/
√
T ), it holds w.h.p. that

T∑
t=1

Lt
( P∑
p=1

wp,tf̂p,t(xt)

)
−

T∑
t=1

Lt(f∗p∗(xt))≤
(

lnP +
C2

2
+
L2

2
+ LC

)√
T := c0

√
T

(3.63)

where p∗ := arg minp∈P
∑T

t=1 Lt
(
f̂∗p (xt)

)
. At the end of interval I , we then deduce that the

static regret of the Raker learner AI is (cf. (3.36))

Regs
AI (|I|) =

∑
t∈I
Lt
(
f̂

(I)
t (xt)

)
−
∑
t∈I
Lt(f∗I (xt))≤ c0

√
|I|, w.h.p. (3.64)

where f̂ (I)
t (xt) is defined in (3.33), and f∗I ∈ arg minf∈

⋃
p∈P Hp

∑
t∈I Lt(f(xt)). To this end,

we sketch the main steps leading to Lemma 5 as follows.

For every interval I , the static regret of the AdaRaker can be decomposed as

Regs
AdaRaker(|I|) =

∑
t∈I
Lt
(
f̂t(xt)

)
−
∑
t∈I
Lt
(
f̂

(I)
t (xt)

)
+
∑
t∈I
Lt
(
f̂

(I)
t (xt)

)
−
∑
t∈I
Lt(f∗I (xt))

:= R1 +R2 (3.65)

where the first two sums in (3.65) represented byR1 capture the regret of the Ada-Raker learner

A relative to the Raker learner AI ; while the last two sums in (3.65) forming R2 denote the

static regret ofAI on this interval. Notice thatR2 directly follows from (3.64), whileR1 can be

bounded following the same steps in Lemma 7. Different from the kernel selections however,

the crux is that the number of Raker learners (experts) |I(t)| is time-varying.

A tight bound can be derived via the Sleeping Experts reformulation of [93, 103], where an

expert that has never appeared is thought of as being asleep for all previous rounds. For a looser

bound, we assume the experts (instances {AI}) ever appeared until t are all active; that is, the

total number of experts is upper bounded by t log t, since at most log t experts are run during

time t. Using (3.48)-(3.55), we have that

R1 ≤ η(I)|I|+ ln(t log t)

η(I)
=
√
|I| (1 + ln t+ ln(log t)) ≤

√
|I| (1 + 2 ln t) (3.66)
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where η(I) := 1/
√
|I|, and ln(log t)≤ ln(t). With (3.64), for any interval I ∈ I, we have

Regs
AdaRaker(|I|) =

√
|I| (1 + c0 + 2 ln t) ≤

√
|I| (1 + c0 + 2 lnT ) . (3.67)

Since the static regret bound (3.65) holds only at the end of such interval, the bound (3.67) only

holds for those intervals (collected in I) (re)initializing Raker instance AI .
The next step is to show that (3.67) holds for any interval I ⊆ T , possibly I /∈ I. This

is possible whenever the interval set I is properly designed, e.g., the interval partition given in

Section 4.1. For any interval I , define the set of subintervals covered by I as I‖I := {I ′ ⊆
I, I ′ ∈ I}. As argued in [93, Lemma 5], interval I can be partitioned into two sequences of non-

overlapping but consecutive intervals, given by {I−m, . . . , I0} ⊆ I‖I and {I1, . . . , In} ⊆ I‖I ,

the lengths of which satisfy |Ik+1|/|Ik| ≤ 1/2, ∀k ∈ [1, n − 1] and |Ik|/|Ik+1| ≤ 1/2, ∀k ∈
[−m,−1]. Therefore, we have (using

∑∞
k=1

√
2−kT0 ≤ 4

√
T0)

Regs
AdaRaker(|I|) =

n−1∑
k=1

Regs
Ada(|Ik|) +

−1∑
k=−m

Regs
Ada(|Ik|) ≤ C0

√
|I|+ C1 lnT

√
|I|

(3.68)

where the inequality follows from (3.67) with |I| replaced by |Ik| (≤ |I|), and C0, C1 are

constants depending on c0. This completes the proof of Lemma 5.

3.7.4 Proof of Theorem 2

To start, the dynamic regret in (3.34) can be decomposed as

Regd
A(T ) :=

T∑
t=1

Lt(f̂t(xt))−
T∑
t=1

Lt(f∗(xt)) +
T∑
t=1

Lt(f∗(xt))−
T∑
t=1

Lt(f∗t (xt)) (3.69)

where f∗(·) is the best fixed function in (3.26), and f∗t (·) is the best dynamic function in (3.35),

both of which belong to the union of spaces
⋃
p∈P Hp. In (3.69), the first difference of sums is

the static regret of AdaRaker, while the second difference of sums is the relative loss between

the best fixed function and the best dynamic solution in the common space.

Intuitively, if the time horizon T is large, then the average static regret will become small,

but the gap between the two benchmarks is large. With the insights gained from [71, 104], T
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essentially trades off the values of two terms. Thus, splitting T into sub-horizons {Ts}, s =

1, . . . , bT/∆T c, each having length ∆T , the dynamic regret of AdaRaker can be bounded by

Regd
AdaRaker(T ) =

bT/∆T c∑
s=1

∑
t∈Ts

(
Lt(f̂t(xt))−Lt(f∗Ts(xt))

)
+

bT/∆T c∑
s=1

∑
t∈Ts

(
Lt(f∗Ts(xt))−Lt(f∗t (xt))

)
:=

bT/∆T c∑
s=1

R1 +

bT/∆T c∑
s=1

R2 (3.70)

where the first sum over Ts we define as R1 can be bounded under AdaRaker from Lemma 5,

while the second sum over Ts that we define as R2 depends on the variability of the environ-

ments V({Lt}), can be bounded by [71, Prop. 2]

R2 ≤ 2∆TV({Lt}t∈Ts). (3.71)

Together with Lemma 5, it follows that

Regd
AdaRaker(T ) ≤

bT/∆T c∑
s=1

(
(C0 + C1 lnT )

√
∆T + 2∆TV({Lt}t∈Ts)

)
= (C0 + C1 lnT )

T√
|∆T |

+ 2|∆T |V({Lt}Tt=1), w.h.p. (3.72)

Since (3.37) in Lemma 5 holds for any interval ∆T ⊆ T , after selecting ∆T so that |∆T | =(
T/V({Lt}Tt=1)

) 2
3 , we arrive at

Regd
AdaRaker(T ) ≤ (C0 + C1 lnT )T

2
3V 1

3 ({Lt}Tt=1) + 2T
2
3V 1

3 ({Lt}Tt=1), w.h.p. (3.73)

which completes the proof of Theorem 2.

3.7.5 Proof of Theorem 3

Suppose that the m-switching dynamic solution {f̌∗t } changes at slots t1 = 1, . . . , tm, and

define the m sub-intervals that partition T := {1, . . . , T} as T1 := [1, t2 − 1], T2 := [t2, t3 −
1], . . ., and Tm := [tm, T ]. To use the bound in Lemma 5, we decompose the regret of AdaRaker
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relative to the m-switching dynamic solution {f̌∗t } by

RegmAdaRaker(T )
(a)
=

m∑
s=1

∑
t∈Ts

(
Lt(f̂t(xt))− Lt(f̌∗ts(xt))

)
(b)

≤
m∑
s=1

∑
t∈Ts

(
Lt(f̂t(xt))− Lt(f∗Ts(xt))

)
(3.74)

where (a) holds because the definition of {f̌∗t } in (3.40) implies that f̌∗t = f̌∗ts , ∀t ∈ Ts, and

(b) because the best fixed function is given by f∗Ts ∈ arg minf∈f∈
⋃
p∈P Hp

∑
t∈Ts Lt(f(xt)).

Therefore, using the regret bound of Lemma 5 in (3.37), we have

RegmAdaRaker(T ) ≤
m∑
s=1

Regs
A(|Ts|) ≤ (C0 + C1 lnT )

m∑
s=1

√
|Ts|. (3.75)

Holder’s inequality further implies that

RegmAdaRaker(T ) ≤ (C0 + C1 lnT )

(
m∑
s=1

(1)2

) 1
2
(

m∑
s=1

(√
|Ts|
)2
) 1

2

≤ (C0 + C1 lnT )
√
Tm, w.h.p. (3.76)

which completes the proof of Theorem 3.



Chapter 4

Tensor-based network topology
identification

4.1 Introduction

The study of networks and network phenomena has recently emerged as a major catalyst for

collectively understanding the behavior of complex systems [9, 105, 106]. Such systems are

ubiquitous, and commonly arise in both natural and man-made settings. For example, online in-

teractions over the web are commonly facilitated through social networks such as Facebook and

Twitter, while sophisticated brain functions are the result of vast interactions within complex

neuronal networks; see e.g., [107] and references therein. Other networks naturally emerge in

settings as diverse as financial markets, genomics and proteomics, power grids, and transporta-

tion systems, to name just a few.

While some of these networks are directly observable, due to e.g., presence of physical or

engineered links between nodes, most complex networks have hidden topologies, which must

first be inferred in order to conduct meaningful network analytics [9, Ch. 7]; see also [108–110].

Prominent among these are SEMs, a family of statistical approaches for causal (a.k.a., path)

analysis in complex systems, with several applications specifically tailored to graph topology in-

ference; see e.g., [28,111–113]. In a nutshell, SEMs capture the relationship between observed

nodal processes or measurements, and the unknown causal network. The key contribution of

SEMs is two-fold: a) they are conceptually simple, often resorting to tractable linear models;

82
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and b) SEMs explicitly account for the role played by exogenous or confounding inputs in ob-

served nodal processes, which turn out to be critical in resolving directional ambiguities [114].

In settings where measurement of exogenous inputs is costly or impractical, contemporary

SEMs are quite limited with regard to unique identification of hidden network topologies. For

example, in financial networks comprising stocks as nodes and their interdependencies as links,

publicly-traded stock prices (endogenous) are known to depend on stock purchases (exogenous)

by investors, whose details are often unknown to the public for privacy reasons. On the other

hand, each publicly-traded company may broadcast monthly statistical summaries of purchases

of its stock. Assuming that such statistical information is known or obtainable, the present

chapter advocates novel approaches that capitalize on factorization of carefully constructed ten-

sors, or multi-modal arrays. As demonstrated later, inference of the network topology is shown

possible under reasonable conditions, using only correlation information of the exogenous in-

puts. The crux of our novel framework lies in positing that exogenous inputs exhibit piecewise-

stationary correlations, from which three-way tensors are constructed using a special instance

of SEMs.

By leveraging the well-known parallel factor (PARAFAC) tensor decomposition [115], it

is shown that edge connectivity information is captured through one of the factors, while iden-

tifiability of the network topology is guaranteed due to uniqueness of the factorization. Inter-

estingly, casting the problem as tensor decomposition also opens up opportunities to blindly

estimate both the unknown topology and local correlation matrices of the exogenous inputs;

see also [116, 117]. PARAFAC decomposition is a powerful tool for multilinear algebra intro-

duced by [118], and its merits have been permeated within diverse application domains [119],

e.g., wireless communications [120], blind source separation [121, 122], as well as community

detection on graphs [123, 124]. The present chapter broadens these well-documented merits to

tasks involving network topology inference. Numerical tests on simulated and real data corrob-

orate the efficacy of the novel approach.

Since most real-world networks are time-varying, the advocated tensor-based approach is

accordingly extended to track topology changes. Moreover, nodal data are often acquired in

real-time streams, rendering batch inference algorithms impractical. Toward satisfying the dual

need to mitigate batch computational overhead, and track dynamic topologies, an online variant

of the novel algorithm is developed. Motivated by the adaptive PARAFAC decomposition [44,

125], a novel real-time estimator is put forth to track the topology-revealing tensor factors, using
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second-order statistics of the exogenous inputs.

To place this work in context, several prior studies have focused on tracking time-varying

networks from nodal processes. For example, dynamic information diffusion networks were

tracked via maximum likelihood estimators in [126], while a sparse piecewise stationary graph-

ical model was put forth to track undirected networks in [127]. Dynamic SEMs were also

advocated for inference of dynamic and directed cascade networks in [112]. More recent work

in [128] resorted to hidden Markov models (HMMs) to track diffusion links.

PARAFAC decompositions have previously been advocated in e.g., blind source separation

(BSS) tasks, which separate source signals from their mixed observations; see e.g., [121, 122]

[129]. However, tensor-based SEMs present unique challenges not encountered in traditional

BSS problems addressed by these prior works, namely: i) network topologies are not directly re-

vealed by tensor decomposition factors, which suggests leveraging properties inherent to SEMs;

and ii) the inherent scaling and permutation ambiguities are affordable compromises in BSS, but

intolerable in the context of topology identification. Identifiability conditions developed in this

chapter aim to address these challenges. Tensor factorizations have also recently been adopted

in network analytics, graph mining, and sensor networks. For instance, several community

detection approaches leverage the flexibility of tensors to capture more complex connectivity

patterns such as cliques and egonets; see e.g., [123, 130], and [131]. On the other hand, [132]

puts forth a tensor-based blind identification strategy to jointly recover transmitted data, and

the network connectivity in collaborative wireless sensor networks. Nevertheless, the approach

advocated by [132] is markedly different from the present one because; i) it relies on coding sen-

sor data with a known coding matrix; and ii) it can only guarantee identifiability of unweighted

graphs.

The rest of this section is organized as follows. Preliminaries and a formal statement of

the problem are given in Section 4.2, while Section 4.3 casts the problem as a tensor factoriza-

tion. Section 4.4 presents identifiability results for the proposed framework, while a topology

tracking algorithm is developed in Section 4.5. Finally, results of corroborating numerical tests

on both synthetic and real data are presented in Section 4.6, while concluding remarks and a

discussion of ongoing and future directions are given in Section 4.7.
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Figure 4.1: An N -node directed network (blue links), with the t-th samples of endogenous
measurements per node. SEMs explicitly account for exogenous inputs (red arrows), upon
which endogenous variables may depend, in addition to the underlying topology.

4.2 Preliminaries and Problem Statement

Consider a network G(V, E) that comprisesN nodes, with its topology captured by an unknown

adjacency matrix A ∈ RN×N . Let aij denote entry (i, j) of A, which is nonzero only if there is

an edge between nodes i and j; see Figure 4.1. It will generally be assumed that G is a directed

graph, that is A is a non-symmetric matrix (A 6= A>).

Suppose the network abstracts a complex system with measurable inputs and an observable

output process that propagates over the network following directed links. Let xit denote the in-

put to node i at slot t, and yit the t-th observation of the propagating process measured at node

i. In the context of brain networks, yit could represent the t-th time sample of an electroen-

cephalogram (EEG), or functional magnetic resonance imaging (fMRI) measurement at region

i, while xit could be a controlled stimulus that affects a specific region of the brain. In social

networks (e.g., Twitter or Facebook) over which information diffuses, yit could represent the

timestamp when subscriber i tweeted or shared a specific viral story, while xit could measure

their level of interest in the story; see also [112].

In general, SEMs postulate that yit depends on two classes of variables, namely: i) measure-

ments of the diffusing process {yjt}j 6=i (a.k.a. endogenous variables); and ii) external inputs

xit (a.k.a. exogenous variables). Most contemporary SEM approaches posit that yit depends

linearly on both {yjt}j 6=i and xit, during interval t; that is [112, 133]

yit =
∑
j 6=i

aijyjt︸ ︷︷ ︸
endogenous term

+ biixit︸ ︷︷ ︸
exogenous term

+eit (4.1)
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where [A]ij := aij , and eit denotes an “error” term that captures unmodeled dynamics. Al-

though (4.1) apparently captures “instantaneous” (within each slot) interactions, depending on

the application, the per-slot duration can be chosen so that e.g., a measurement at the begin-

ning of slot j can causally affect the measurement at node i at the end of the same slot when

the network has reached a steady state. The coefficients {aij} and {bii} are unknown, and

aij 6= 0 signifies that a directed edge from j to i is present. Collecting nodal measurements

yt:=[y1t . . . yNt]
>, and xt:=[x1t . . . xNt]

> per slot t, and temporarily assuming that ejt = 0,

the noise-free version of (4.1) can be compactly written as

yt = Ayt + Bxt (4.2)

where [A]ii = 0 and B := Diag(b11, . . . , bNN ) denotes a diagonal coefficient matrix.

Note that with B diagonal, (4.1) implicitly assumes that each node is associated with a single

exogenous input. In fact, it is possible to generalize (4.1) to settings where a single exogenous

input may be applied to several nodes, or where a single node may be the recipient of multiple

inputs. This amounts to relaxing the restriction on B, allowing it to take values from the set

of non-diagonal square matrices. In addition, in more general SEMs xt and yt are indirectly

observed latent variables, each adhering to measurement models, namely uyt = Cyyt+δyt and

uxt = Cxxt + δxt, with corresponding noise terms δyt and δxt; see e.g., [133] for details. In

this case, the noisy version (yt = Ayt+Bxt+et) of (4.2) is often referred to as the structural

model. This chapter deals with settings where xt and yt are directly observable, and there is no

extra measurement model. Different from conventional SEM settings where exogenous inputs

{xt}Tt=1 are assumed known explicitly, the present chapter only assumes partial knowledge of

second-order statistics {xt}. The problem statement can now be formally stated as follows.

Problem statement: Given second-order statistics of {yt}Tt=1, and either full or partial second-

order statistics of {xt}Tt=1, the goal is to recover and track the underlying directed network

topology A.

4.3 A Tensor Factorization Approach

Building upon (4.1), this section puts forth a novel tensor factorization approach to unveil the

hidden network topology. To this end, the following assumptions are adopted.
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(as0) Exogenous data {x(m)
t } are piecewise-stationary over time segments t ∈ [τm, τm+1 −

1],m = 1, . . . ,M + 1, each with a fixed correlation matrix Rx
m := E{x(m)

t (x
(m)
t )>};

(as1) Entries of xt are zero mean and uncorrelated per t; that is, E{xitxjt} = 0,∀i 6= j;

(as2) Matrix (I−A) is invertible; and

(as3) Matrix B is diagonal with nonzero diagonal entries.

Under (as0) and (as2), it is possible to rewrite (4.2) as

yt = (I−A)−1Bxt = Axt (4.3)

where A := (I−A)−1B, and superscript (m) has been dropped with the understanding that t

stays within one segment, and thus (4.3) holds ∀m. The per segment correlation matrix Ry
m :=

E{yty>t } is thus given by (cf. (4.3))

Ry
m = ARx

mA>, t ∈ [τm, τm+1 − 1]. (4.4)

Under (as1), one can express (4.4) as the weighted sum of rank-one matrices as

Ry
m = ADiag(ρxm)A> =

N∑
i=1

ρxmiαiα
>
i (4.5)

where αi denotes the ith column of A, and ρxm := [ρxm1 . . . ρ
x
mN ]>, with ρxmi := E(x2

it), for

t ∈ [τm, τm+1 − 1].

Consider the three-way tensor Ry ∈ RN×N×M , constructed by setting the m-th slice

[Ry]:,:,m = Ry
m. Letting αjiβkiγli denote the (j, k, l) entry of the tensor outer product αi ◦

βi ◦ γi, where αji := [αi]j (resp. βik and γil), it turns out that Ry can be written as (see also

Figure 4.2)

Ry =

N∑
i=1

αi ◦αi ◦ rxi (4.6)

with entry (j, k, l) given by

[Ry]jkl =
N∑
i=1

αjiαkir
x
li (4.7)
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where rxi := [ρx1i . . . ρ
x
Mi]
>. Interestingly, (4.6) amounts to the so-termed partial symmetric

PARAFAC decomposition of Ry into factor matrices A, A, and Rx := [rx1 . . . r
x
N ] ∈ RM×N ;

see e.g., [115]. Although Ry
m is generally unknown, it can be readily estimated using sample

averaging as

R̂y
m =

1

τm+1 − τm

τm+1−1∑
t=τm

yty
>
t , m = 1, . . . ,M (4.8)

from endogenous measurements.

The present chapter relies on this three-way tensor constructed from second-order statistics

of the nodal measurements, and leverages the uniqueness properties inherent to PARAFAC

decompositions to identify the hidden network topology; see e.g., [134] for key uniqueness

results. Indeed, a number of standard PARAFAC decomposition algorithms can be adopted to

estimate A; e.g., via alternating least-squares (ALS) iterations. Under reasonable conditions, it

will be possible to recover A, once A has been found. The next proposition formally states the

sufficient conditions required to uniquely identify A, after determing of A from the PARAFAC

decomposition.

Proposition 3: If (as2) and (as3) hold, then A can be uniquely expressed in terms of A as

A = I−
(
Diag(A−1)

)−1 A−1.

Proof: See Appendix 4.8.1.

Regarding the decomposition in (4.6), one can make the following important observations:

(i) rank(Ry) = N , where tensor rank is defined as the number of summands in (4.6); (ii) two

factors of Ry are identical; and (iii) the tensor formulation in (4.6) only involves the second-

order statistics {rxi }, instead of explicit knowledge of the exogenous inputs {xt}Tt=1.

Consider Rx
Ω known a priori, where Ω denotes the index set of the available entries of Rx,

i.e., [Rx
Ω]i,j = rxij for (i, j) ∈ Ω. Given noisy tensor data, these considerations (i)–(iii) prompt

the next criterion for obtaining the wanted factors

(Ẑ1, Ẑ2, Ẑ3) = arg min
Z1,Z2,Z3

∥∥∥∥Ry −
N∑
n=1

z1n ◦ z2n ◦ z3n

∥∥∥∥2

F

s.t. Z1 = Z2, [Z3]i,j = [Rx
Ω]i,j , ∀(i, j) ∈ Ω (P1)
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Figure 4.2: The tensor constructed by stacking the correlation matrices admits a PARAFAC
decomposition comprising rank-one tensor outer products.

where zin denotes the n-th column of matrix Zi. Note that (P1) can be solved via partially

symmetric PARAFAC decomposition, even when noise is present, using e.g., the individual

differences in multidimensional scaling [135]. Upon obtaining the estimated factors Ẑ1, Ẑ2 and

Ẑ3, matrix Â can be found as (cf. Proposition 3)

Â = Ẑ1 (4.9)

Â = I−
(

Diag(Â
−1

)
)−1

Â
−1
. (4.10)

Unlike [114] where explicit knowledge of the exogenous inputs is assumed to ensure model

identifiability, our novel approach here establishes that knowledge of the second-order statis-

tics captured through Rx could suffice. Detailed conditions under which the novel approach

uniquely identifies the topology will be provided in Section 4.4. Algorithm 4b summarizes the

resulting network topology inference scheme. It is assumed that one is given endogenous mea-

surements {yt}Tt=1, as well as Rx
Ω. It is also worth pointing out that S1 constructs Ry from

endogenous data using the sample correlation matrices in (4.8), since local correlation matrices

{Ry
m}Mm=1 are not explicitly known. The prescribed threshold η in S4 is employed to determine

the presence of edges. Its selection will be discussed in Section 4.6.

Remark 1: The PARAFAC decomposition generally assumes no prior knowledge about Rx;

that is, Ω = ∅ in (P1). In principle, one can estimate the topology even without correlation

information of the exogenous inputs. Interestingly, this amounts to blindly estimating the topol-

ogy and exogenous correlation matrices, which is of considerable merit when measurement of

external inputs is impossible, or rather costly.
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Algorithm 4b Topology inference via tensor decomposition

Input: Rx
Ω, {yt}, M , η

S1. Tensor construction:
Set m-th frontal slice of Ry ∈ RN×N×M to
R̂y
m = 1

τm+1−τm
∑τm+1−1

t=τm yty
>
t , m = 1, . . . ,M

S2. PARAFAC decomposition via e.g., [135]:
Solve (P1) to find (Ẑ1, Ẑ2, Ẑ3)

S3. SEM estimates for topology inference:
Â = Ẑ1

Â = I−
(

Diag(Â
−1

)
)−1

Â
−1

S4. Edge identification:
[Â]ij 6= 0 if [Â]ij > η, otherwise [Â]ij = 0, ∀(i, j)

4.4 Identifiability issues

Although casting network topology identification task as a tensor decomposition problem leads

to enhanced flexibility, one has to contend with identifiability issues common to both matrix and

tensor factorizations. In order to establish identifiability conditions for A and B, this section

will first explore conditions under which A is uniquely identifiable. To this end, a couple of

definitions are in order.

Definition 1. The Kruskal rank of a matrix Z ∈ RN×M (denoted hereafter as kr(Z)) is defined

as the maximum number k such that any combination of k columns of Z constitutes a full rank

submatrix.

Definition 2. Essential uniqueness of a tensor factorization refers to uniqueness up to scaling

and permutation ambiguity.

With Definitions 1 and 2 in mind, consider PARAFAC decomposition for a three way tensor

P = (U,V,W). Theorem 4 establishes sufficient conditions for essential uniqueness of the

tensor decomposition; see [136] and [134] for further details and a proof of the theorem.

Theorem 4 Let (U,V,W) denote the PARAFAC factors obtained by decomposing a three-way

tensor P into K rank-one tensors. If Kruskal’s condition holds, namely,

kr(U) + kr(V) + kr(W) ≥ 2K + 2 (4.11)
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and there exists an alternative set of matrices (Ū, V̄,W̄) constituting a PARAFAC decomposi-

tion of P, then there exists a permutation matrix Π, and diagonal scaling matrices Λ1, Λ2, Λ3,

such that Λ1Λ2Λ3 = I, Ū = UΠΛ1 , V̄ = VΠΛ2, and W̄ = WΠΛ3.

Proof: See [136] for a general proof with complex entries.

As a prerequisite to identification of A, the following proposition establishes essential

uniqueness of A, based on the tensor-based interpretation advocated in the prequel.

Proposition 4: If kr(Rx) ≥ 2, then A := (I−A)−1B is uniquely identifiable up to a scaling

and permutation ambiguity via PARAFAC decomposition of Ry.

Proof: Upon recognizing that rank(Ry) = N from (4.6), in order for (4.11) to hold, we need

2kr(A) + kr(Rx) ≥ 2N + 2. (4.12)

Under (as2) and (as3), matrices (I − A) and B are invertible, which implies that A = (I −
A)−1B is invertible, and hence kr(A) = N . From (4.12), essential uniqueness can thus be

guaranteed as long as kr(Rx) ≥ 2, which completes the proof.

Note that essential uniqueness is not sufficient for identification of the hidden network topol-

ogy, due to the inherent permutation and scaling ambiguities. To this end, we will subsequently

pursue identifiability conditions for settings where Rx may be fully, or partially available, or

even completely unavailable on a case-by-case basis.

4.4.1 Identifiability with fully known Rx

First, we will explore identifiability of the topology when Rx is completely known, while high-

lighting the importance of information about exogenous inputs {xt}. It is worth mentioning

that identifiability result for the general tensor decomposition with a known factor have been

derived in [137].

Theorem 5 If xt and yt obey the SEM in (4.2), for all t = 1, . . ., with A and B satisfying (as2)

and (as3), respectively, and if Rx is known and satisfies kr(Rx) ≥ 2, then A can be uniquely

identified via Algorithm 4b.

Proof: Suppose there is an alternative triplet (A′,A′,Rx′), also decomposing Ry intoN rank-

one tensors in (P1). Theorem 4 asserts that there is a permutation matrix Π, and diagonal
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scaling matrices {Λ1,Λ2,Λ3} so that

Λ1Λ2Λ3 = I (4.13)

and

A′ = AΠΛ1 (4.14a)

A′ = AΠΛ2 (4.14b)

Rx′ = RxΠΛ3 (4.14c)

where one can readily deduce from (4.14a) and (4.14b) that Λ1 = Λ2. On the other hand, when

Rx is known a priori, i.e., Rx
Ω = Rx, the constraint in (P1) yields Rx′ = Rx. Consequently,

(4.14c) can be written as

Rx =RxΠΛ3 (4.15)

for which the following holds.

Lemma 8: For permutation matrix Π, scaling matrix Λ3, and Rx satisfying the inequality

kr(Rx) ≥ 2, (4.15) holds true if and only if

Λ3 = I (4.16a)

Π = I. (4.16b)

Proof: See Appendix 4.8.2.

Next, substituting (4.16b) into (4.14a), and letting Λ = Λ1 = Λ2, one obtains

A′ = AΛ. (4.17)

for which the next lemma holds true.

Lemma 9: If the PARAFAC solution obtained in S3 of Algorithm 4b satisfies Â = AΛ, then

A can be uniquely identified; that is, Â = A.

Proof: See Appendix 4.8.3.

Combining Lemma 9 with (4.17) completes the proof of Theorem 5.
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Remark 2: The result of Lemma 8 can be obtained as a special case of that in [137], where

identifiability results for general tensor decompositions with a known factor have been reported.

Notwithstanding, identifiability of tensor factors is not identical to identifiability of network

topology. As Lemma 9 asserts, in order to guarantee recovery of a unique topology, the tensor

factor A need to be identified just up to scaling ambiguity, which is different from “essential

uniqueness” that can also afford ambiguity within a permutation matrix.

4.4.2 Identifiability with partially known Rx

The last subsection assumed that second-order statistics of xt were available for all time slots

m = 1, . . . ,M . However, ample empirical evidence suggests that such information may not be

fully available at times. For instance, not all statistics of the stock prices may be available to a

given investor in financial markets over time. In brain connectivity studies, one may only have

explicit knowledge about exogenous variables in some experimental settings, but not others.

Such limitations motivate the analysis of identifiability in settings where one only has access

to partial information about second-order statistics of exogenous inputs; that is, Rx contains

misses.

In order to capture the partial availability of Rx, suppose Ωi denotes set of indices corre-

sponding to known entries per column i of Rx. Furthermore, let řji denote a sub-vector of rxi ,

whose entries are indexed by Ωi ∪ Ωj (recall that rxi denotes the i-th column of Rx). Based on

these definitions, the next theorem establishes identifiability conditions for settings where Rx

is only partially available.

Theorem 6 If řji and řij are linearly independent for any i 6= j, then the network adjacency

matrix A can be uniquely identified via Algorithm 4b.

Proof: Suppose there exists an alternative PARAFAC solution (Ǎ, Ǎ, Řx) that also decom-

poses Ry into N rank-one tensors (cf. S2 in Algorithm 4b). According to Theorem 4, there

exists a permutation matrix Π̌ and diagonal scaling matrices {Λ̌1, Λ̌2, Λ̌3} such that

Λ̌1Λ̌2Λ̌3 = I (4.18)

and

Ǎ = AΠ̌Λ̌1 (4.19a)
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Ǎ = AΠ̌Λ̌2 (4.19b)

Řx = RxΠ̌Λ̌3 (4.19c)

where from (4.14a) and (4.14b), it is clear that Λ̌1 = Λ̌2. On the other hand, when Rx is

partially known; that is, [Řx]i,j = [Rx]i,j , for (i, j) ∈ Ω, then (4.19c) can be written as

[Rx]i,j =[RxΠ̌Λ̌3]i,j , ∀ (i, j) ∈ Ω. (4.20)

The rest of the proof of Theorem 6 builds on the following lemma.

Lemma 10: For a given permutation matrix Π̌, and scaling matrix Λ̌3, if Rx satisfies the

condition in Theorem 5, then (4.20) holds true if and only if

Π̌ = I (4.21a)

Λ̌3 = I. (4.21b)

Proof: See Appendix 4.8.4.

Upon substituting of (4.21a) into (4.19a), and letting Λ̌ = Λ̌1 = Λ̌2, it turns out that

Ǎ = AΛ̌ (4.22)

and the conclusion of Theorem 5 follows from Lemma 9.

Remark 3: The central premise of Theorem 5 is that even when Rx contains misses, it is

possible to uniquely identify the adjacency matrix A. In turn, this facilitates the combination of

information pertaining to nodal processes from different time slots towards the task of inference

of the hidden network topology, even though complete correlation information is unavailable

for all the nodes.

Our novel tensor-based topology identification approach advocated so far focuses on set-

tings where the network topology does not vary with time. The rest of the chapter goes beyond

this assumption, and explores scenarios where the link structure may even evolve over time,

with the ultimate goal of tracking the network topology, possibly in real time.
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4.5 Tracking dynamic network topologies

It has hitherto been taken for granted that all past data are available, and the developed tensor-

based approaches will operate in batch mode. In fact, Algorithm 4b is conducted entirely offline,

with Ry obtained or computed a priori. However, practical constraints often render it impossible

to operate in batch mode; for instance, nodal data in large-scale networks (e.g., modern social

media and the web) can only be acquired in real-time streams since any attempts to store such

data for batch processing will quickly overwhelm operators.

Equally important is the observation that most real-world networks evolve over time, namely,

new edges and nodes may appear, while others become obsolete during the observation period.

Consequently, even if a batch approach were to overcome challenges due to the sheer scale

of the data, the inferred networks would represent a single aggregate perspective of several

evolving network topologies at best. In lieu of these challenges, this section extends the novel

tensor-based approach to track changes to the network topologies in real time.

4.5.1 Piecewise-invariant dynamic network topologies

Suppose that the network exhibits a piecewise-constant topology, captured by the sequence of

unknown adjacency matrices {Am ∈ RN×N , t ∈ [τm, τm+1−1]}Mm=1, overM time segments.

Each entry (i, j) of Am is nonzero only if a directed edge exists from node i to j, and it will be

denoted by amij . Similarly associating each node with a single exogenous input, one obtains the

following SEM

yjt =
∑
i 6=j

amij yit + bmjjxjt + ejt, t ∈ [τm, τm+1 − 1] (4.23)

per m = 1, . . . ,M , with ejt similarly capturing unmodeled dynamics, while coefficients {amij }
and {bmjj} are unknown. With yt, xt, and et previously defined, (4.23) can be written in vector

form as

yt = Amyt + Bmxt + et (4.24)

where [Am]ij = amij and Bm := Diag(bm11, . . . , b
m
NN ). Based on (4.24), we will develop an

algorithm to track {Am,Bm}Mm=1 using measured endogenous variables, and the sequence of
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Figure 4.3: Tensor grows per window m by a new frontal slice.

correlation matrices {Rx
m}Mm=1.

Key to the novel topology tracking algorithm is recognizing that the tensor-based approach

of Section 4.3 can be extended to settings where the network exhibits piecewise-constant topol-

ogy variations. To this end, define Am := (I−Am)−1Bm, and consider a tensor with them-th

slice

Ry
m = AmRx

mA>m, t ∈ [τm, τm+1 − 1] (4.25)

sequentially appended at t = τm+1, for m = 1, . . . ,M ; see also (4.5) and Figure 4.3. Allowing

Ry to grow sequentially along one mode is well motivated for real-time operation, where data

may be acquired in a streaming manner. In this case, unveiling the evolving network topology

calls for approaches that are capable of tracking tensor factors. In fact, the topology tracking

algorithm developed next builds upon a prior sequential tensor factorization approach, namely,

PARAFAC via recursive least-squares tracking (PARAFAC-RLST); see e.g., [125] for details.

4.5.2 Exponentially-weighted least-squares estimator

Let r̄ym := vec(Ry
m) denote the vectorization of Ry

m, and note that r̄ym can be written as r̄ym =

Hmρ
x
m, where Hm := Am�Am is an N2×N matrix, and ρxm is defined after (4.5). To track

Hm, we advocate an exponentially-weighted least-squares estimator, namely,

Ĥm = arg min
H

m∑
l=1

βm−l‖r̄yl −Hρxl ‖22 (4.26)

for m = 1, . . . ,M , where β ∈ (0, 1] denotes a forgetting factor, which facilitates tracking

topology changes by down-weighing past data when β < 1.

Letting fm(H) :=
∑m

l=1 β
m−l‖r̄yl −Hρxl ‖22 denote the cost function per segment m, and
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taking the gradient with respect to H, one obtains

∇fm(H) = 2
m∑
l=1

βm−l
(
r̄yl −Hρxl

)
(ρxl )>. (4.27)

Setting∇fm(H) = 0, and solving for Hm yields

Hm = QmP−1
m (4.28)

where Qm :=
∑m

l=1 β
m−lr̄yl (ρ

x
l )> and Pm :=

∑m
l=1 β

m−lρxl (ρxl )>. Further inspection of Pm

and Qm reveals that the updates admit recursive forms as follows

Pm := βPm−1 + ρxm(ρxm)> (4.29)

Qm := βQm−1 + r̄ym(ρxm)>. (4.30)

Moreover, letting Wm := P−1
m , one can resort to the matrix inversion lemma to recursively

compute inverses as

Wm = β−1

[
Wm−1 −

Wm−1ρ
x
m(ρxm)>Wm−1

β + (ρxm)>Wm−1ρxm

]
. (4.31)

It is worth pointing out that the simple recursive updates (4.29) - (4.31) lead to a markedly

reduced computational burden, while only requiring fixed memory storage costs.

Once Hm is estimated, Am := [α1m, . . . ,αNm] can be recovered by recalling that the ith

column of Hm is given by

him = αim ⊗αim = vec(αimα
>
im). (4.32)

Recognizing that H̄im := αimα
>
im is a rank one matrix, αim can be estimated via the leading

eigenvector of H̄im, namely

α̂im ≈ λ
1
2
max(H̄im)vmax(H̄im) (4.33)

where the eigen-pair {λmax(H̄im),vmax(H̄im)} denotes the leading eigenvalue of H̄im, and its

corresponding eigenvector, both obtainable via the power iteration [138]. This is carried out

per column of Am to obtain Âm := [α̂1m, . . . , α̂Nm], while Am can be estimated as (cf.
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Algorithm 5b Tensor-based network topology tracking

Input: {ρxm}Mm=1, {yt}, β, W0, Q0 = 0, η
for m = 1, . . . ,M do

S1. Tensor formation
Set frontal slice m of Ry to R̂y

m as in (4.8)

S2. Variable updates:
Qm := βQm−1 + r̄ym(ρxm)>

Update Wm via (4.31)
Uptate α̂im via (4.33), for i = 1, . . . N

S3. SEM estimates for topology tracking:
Estimate Âm via (4.34).

Return Âm

end for
Edge identification:
[Âm]ij 6= 0 if [Âm]ij > η, otherwise [Âm]ij = 0, ∀(i, j)

Proposition 3)

Âm = I−
(

Diag(Â
−1

m )
)−1

Â
−1

m . (4.34)

Algorithm 5b lists the steps involved in tracking evolving network topologies via the scheme

advocated in this section.

Remark 4 (Initialization): Matrix Pm in (4.29) is rank deficient when m ≤ N , rendering the

update in (4.28) impossible. This can be addressed by setting W0 = P−1
0 = aI, for a very large

constant a (e.g., a = 105). Since P−1
m is a variance estimate of Ĥm, this initialization amounts

to placing little confidence in the initial values. Matrix Q0 is initialized as an all-zero matrix.

4.6 Numerical Tests

In order to assess the effectiveness of the novel algorithms, this section presents test results from

experiments conducted on both simulated and real network data. Consideration was given to

scenarios involving both static and dynamic networks.
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4.6.1 Tests on static simulated networks

Data generation. A Kronecker random graph comprising N = 64 nodes was generated from

a prescribed “seed matrix”

S0 :=


0 0 1 1

0 0 1 1

0 1 0 1

1 0 1 0


in order to obtain a binary-valued 64 × 64 matrix via repeated Kronecker products, namely

S = S0 ⊗ S0 ⊗ S0; see also [139]. Using the binary matrix S to describe the zero and nonzero

entries of the topology, the Kronecker graph with adjacency matrix A was then constructed

by randomly sampling each entry from a uniform distribution with aij ∼ Unif(0.2sij , 0.5sij).

To generate synthetic endogenous measurements, the observation horizon was set to T = ML

time-slots, which were partitioned intoM windows of fixed length L, using pre-selected bound-

aries {τm}M+1
m=1 with τ1 = 1 and L := τm+1 − τm, for several values of L and M . Per

t ∈ [τm, τm+1 − 1], exogenous inputs were sampled as xt ∼ N (0, σ2
mI), with {σm}Mm=1 set to

M distinct values. With et sampled i.i.d. from N (0, σ2
eI), yt was generated using the SEM,

that is, yt = (I−A)−1(Bxt + et), where B is a diagonal matrix with [B]jj drawn uniformly

from the interval [2, 3].

In order to conduct PARAFAC decompositions, an implementation in the open source Ten-

sorlab 3.0 toolbox was adopted [140]. Upon running Algorithm 4b, an edge was declared

present if the estimate âij was found to exceed a prescribed threshold η = 0.2. The edge

identification error rate (EIER) is tested for multiple experimental settings, which is defined as

EIER :=
‖S− Ŝ‖0
N(N − 1)

× 100% (4.35)

with the operator ‖ · ‖0 denoting the number of nonzero entries of its argument. Matrix S ∈
{0, 1}N×N denotes the ground-truth binary edge indicator matrix, while Ŝ denotes its estimate

obtained by the novel scheme.

Experiments were run for different values of M , and error plots were generated using EIER

values averaged over 100 independent runs.
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Figure 4.4: Actual and inferred adjacency matrices with the number of windows set to M =
5, 10, and 20.
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Figure 4.5: EIER under varying window lengths M , and σe = 0.1: a) Ω = {(i, j)|i =
1, . . . , N, j = 1, . . . ,M}; b) 50% misses in Rx; and c) Ω = ∅.

Results. Figure 4.4 depicts actual and inferred adjacency matrices, resulting from one realiza-

tion of Algorithm 4b for M ∈ {5, 10, 20}, with L = 1, 000 per experiment. As shown in the

plot, fewer edges are erroneously identified as the number of windows M increases. This is

not really surprising because the probability that the condition in Theorem 5 is satisfied will

improve with larger M .



101

500 1000 1500 2000

Window length (L)

0

5

10

15

20

25

30

35

E
IE

R
 (

%
)

M=5

M=10

M=20

(a)

500 1000 1500 2000

Window length (L)

0

5

10

15

20

25

30

35

E
IE

R
 (

%
)

M=5

M=10

M=20

(b)

500 1000 1500 2000

Window length (L)

0

5

10

15

20

25

30

35

E
IE

R
 (

%
)

M=5

M=10

M=20

(c)

Figure 4.6: EIER for several values of M and σe = 1: a) Ω = {(i, j)|i = 1, . . . , N, j =
1, . . . ,M}; b) 50% misses in Rx; and c) Ω = ∅.

Figures 4.5 and 4.6 plot the observed error performance over several window lengths (L),

when noise variance is set to σ2
e = 0.01 and σ2

e = 1, respectively. In both figures, the fol-

lowing settings are considered: (a) Rx is fully available; (b) random omission of entries in Rx

with probability 0.5; and (c) the completely blind case, that is, Ω = ∅. In all three scenarios,

there is a general increase in edge identification accuracy with L, since wider window lengths

yield improved estimates of the correlation matrices per window. Not surprisingly, the semi-

blind topology inference approach in Section 4.4-B outperforms the completely blind alternative

(Ω = ∅), since one presumably has more prior information available. On the other hand, in the

completely blind case, Algorithm 4b still results in a reliable estimate of the network topology

with low edge identification error. In several real-world applications, exogenous variables are

often unavailable or costly to measure, hence performance benchmarks for the developed algo-

rithm in such blind settings are of considerable interest. To facilitate further assessment of the

stability of the novel algorithm when operating in blind scenarios, an extended experiment was

carried out as follows. Per experiment trial, an unweighted Erdös-Renyi random graph with 5

nodes was generated, with the probability that any node pair is connected by an edge set to 0.4,

and then Algorithm 4b was run with Ω = ∅. For this experiment, Figure 4.7 (a) depicts the

resulting EIER performance, averaged over 100 independent runs. Figure 4.7 (b) depicts the

success rate of the experiments, with a trial is considered successful if EIER = 0. It is clear

from the results that the majority of trials succeeded in exact identification of all edges. This is

an exciting empirical result that demonstrates the potential for the proposed algorithm to pro-

vide reliable estimates in blind settings, even under the presence of noise. The implications of

this empirical result are well-motivated in real-world applications, where exogenous inputs are
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Figure 4.7: Performance in blind scenario: a) EIER; b) Success rate.

unavailable to eliminate the inherent permutation ambiguity.

4.6.2 Simulated piecewise-constant network

Data generation. An initial 64-node network was generated with adjacency matrix A0 via the

Kronecker random graph model, as detailed in the previous subsection. Edge weights in the

initial non-zero support of A0 were varied over time windows, following two edge-variation

patterns: p1) amij = a0
ij + 0.1sin(0.01m), for m = 1, . . . , 200; and p2) amij = 0 with probability

0.2 at the 50th and 100th time windows. For L = 500, L = 2, 000, and L = 3, 000, endogenous

measurements were simulated over T = ML time-slots, partitioned into M windows of fixed

length L. The window boundaries were preselected as {τm}M+1
m=1 , with τ1 = 1 and L :=

τm+1 − τm. Per t ∈ [τm, τm+1 − 1], exogenous inputs were sampled as xt ∼ N (0, σ2
mI), with

{σ2
m}Mm=1 set to M distinct values. With et sampled i.i.d. from N (0, 10−2I), yt was similarly

generated using the SEM, that is, yt = (I−Am)−1(Bxt + et), where [B]jj ∼ U [2, 3].

Results. Algorithm 5b was run on the simulated data using β = {0.99, 0.95, 0.9}, with an edge

declared present if âij exceeded a threshold η = 0.2. Algorithm performance was assessed with

respect to both EIER, and the empirical mean-square error (E-MSE), defined as E-MSE :=

‖Am − Âm‖2F /(N(N − 1)). In addition, both error metrics were averaged over 100 runs

per experiment. It is generally observed that tracking performance is not very sensitive to the

selection of β.
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Figure 4.8: EIER vs. m for: (a) Scenario p1; and (b) Scenario p2.

0 20 40 60 80 100 120 140 160 180 200

Number of time windows (m)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

N
M

S
E

=0.99

=0.95

=0.9

0 20 40 60 80 100 120 140 160 180 200

Number of time windows (m)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

N
M

S
E

=0.99

=0.95

=0.9

(a) (b)

Figure 4.9: MSE vs m for: a) Scenario p1; b) Scenario p2.

As shown by both Figures 4.8 and 4.9, Algorithm 5b tracks the evolution of the network

remarkably well. During windows where the edge support is known to change, error metrics

increase in value, but gracefully return to lower values. Figure 4.10 depicts heatmaps of actual

and inferred adjacency matrices, obtained by running Algorithm 5b during the window indexed

by m = 200 for scenario p2).
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Figure 4.10: Actual and inferred networks at m = 200.
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Figure 4.11: Plot of the two groups of stock prices over the observation duration with zero-mean
centering: a) technology companies; and b) online and “brick-and-mortar” retailers. The stock
ticker symbol for each company is shown in the legend (in parentheses).

4.6.3 Tests on real networks

Data description. To conduct tests on real-world networks, historical stock price data were

downloaded through a free Yahoo application program interface (API) [141]. Historical closing

prices were obtained as time series for dates ranging from December 23, 2011 to September 30,

2016 (1, 200 days in total). The stock time series were grouped into two clusters, namely: a)

large technology companies (Exxon-Mobil, Intel, Microsoft, Yahoo, and General Electric), and

b) online and brick-and-mortar retailers (Bon-Ton, E-bay, Macy’s, and Nordstrom). Choices of
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(a) (b)

Figure 4.12: Visualization of network topologies inferred from the stock price time series, de-
picting: a) technology companies; and b) online and “brick-and-mortar” retailers. Notice the
stronger dependencies between the two competing “brick-and-mortar” retailers, Macy’s (MCY)
and Nordstrom (NDM).

which stocks were classified under the two groups were based on prior knowledge of historical

inter-dependencies existing among them in financial markets. For instance, a significant drop

in Intel stock prices often signals changes in share prices for Microsoft, Intel, and sometimes

General Electric.

Results. For this set of experiments, the combined multivariate time series were adopted as

endogenous variables
(
{yt}1,200

t=1

)
, after a pre-processing step in which they were centered to

have zero mean; see Figure 4.11 for a plot of the centered time series. Furthermore, money

invested in the stocks constitutes exogenous inputs
(
{xt}1,200

t=1

)
, which are not known in this

case, since such information is generally not privy to the public, hence Ω = ∅. Furthermore, it

was observed that most stock prices tend to exhibit steady quarterly trends (rising or falling),

and the window length was consequently set to L ∈ {60, 80, 100}. Algorithm 4b was then run

with Ω = ∅, to infer the causal dependencies between the selected stock prices.

According to the discussion in Section 4.4, there is no guarantee of identifiability in the

completely blind setting. Fortunately, the simulated tests depicted by Figure 4.7 demonstrate

that when the network has a few nodes, there is a high probability of successful recovery of the
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Data segment Network 1 Network 2
t ∈ {1, . . . , 1, 200} 92 68
t ∈ {1, . . . , 1, 000} 86 86
t ∈ {1, . . . , 800} 78 60

t ∈ {201, . . . , 1, 200} 56 92

Table 4.1: Frequency of inference of networks depicted in Figure 4.12 out of 100 independent
runs of Algorithm 5b on different segments of data with window lengths L = 100.

true network in the presence of noise. Based on this empirical observation, it is reasonable to

expect that if only a few stocks are selected, then many trials will yield the true network upon

running Algorithm 4b with random initializations. To this end, 100 independent runs of Algo-

rithm 4b were conducted with random initializations, and the edge detection threshold was set

to 0.1 maxij |âij |. This is admittedly an ad hoc threshold, and investigation of more sophisti-

cated approaches is possible from e.g., [142]. It turned out that most estimates yielded the same

support for Â, with very slight variations in actual values of its entries. Consequently, a simple

scheme was adopted to infer the network topology from the ensemble of estimates. Unique

topologies based on the support of Â for the 100 realizations were enumerated, and a majority

voting scheme was adopted to reach consensus on the final topology. The most frequent network

topologies from the experiments are depicted by Figure 4.12. The figure shows very strong de-

pendencies in the first group of technology companies, while the second plot shows stronger

inter-dependencies between Macy’s and Nordstrom than the others. Interestingly, both Macy’s

and Nordstrom are well-known “brick-and-mortar” retailers and competitors. The stronger de-

pendence between them seems to agree with the expectation that changes in the price of one

would be expected to indirectly impact the other.

Furthermore, Table 4.1 lists the frequency of appearance (out of 100 independent trials) of

the networks depicted in Figure 4.12 for varying data segments, upon running Algorithm 5b.

Similarly, the same frequencies resulting from running Algorithm 4b with different window

lengths on the entire dataset are shown in Table 4.2. It is clear from these tables that the same

network topologies are inferred with high probability in most of the cases.
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Window length (L) Network 1 Network 2
100 92 68
80 89 71
60 53 55

Table 4.2: Frequency of inference of networks depicted in Figure 4.12 out of 100 independent
runs of Algorithm 5b on the entire data set with different window lengths.

4.7 Summary

This chapter put forth a novel approach for inference of network topologies from the statistics

of nodal processes. Leveraging SEMs, the network topology inference task was reformulated

as a constrained PARAFAC tensor decomposition. Recognizing the inherent uniqueness chal-

lenges, conditions under which the network can be uniquely identified were derived. Unlike

conventional SEMs, which require exact information of the exogenous inputs in order to guar-

antee identifiability, it was proven that the novel tensor-based approach is capable of uniquely

identifying the network topology only with partial information of the second-order statistics of

nodal exogenous inputs.

The framework was further extended to facilitate real-time sequential estimation of the net-

work topology by developing a novel topology tracking algorithm. An exponentially weighted

least-squares estimator was advocated for the topology tracking problem, making it possible to

efficiently solve the problem “on the fly.” To assess the effectiveness of the novel approaches,

extensive numerical tests were conducted on both simulated data and historical stock prices of

several publicly-traded corporations.

In order to broaden the scope of this work, there are several intriguing directions for future

investigation, namely: a) developing algorithms that are capable of exploiting prior knowledge

pertaining to the network structure e.g., edge sparsity or power law degree distributions; and b)

distributed implementation of the novel algorithms, which is well-motivated, especially when

dealing with large-scale networks.
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4.8 Appendix

4.8.1 Proof of Proposition 3

Since diagonal entries of A are all zero, and B−1 is a diagonal matrix with nonzero entries, A
is invertible; that is,

A−1 = B−1(I−A). (4.36)

Clearly, the diagonal entries of A−1 coincide with those of B−1, which implies that

B =
(
Diag

[
A−1

])−1
. (4.37)

Recognizing that BA−1 = I−A, one can write

A = I−BA−1 = I−
(
Diag(A−1)

)−1 A−1 (4.38)

which completes the proof.

4.8.2 Proof of Lemma 8

First, note that (4.15) can be written as

Rx −RxΠΛ3 = 0M×N (4.39)

and recall that Π is a permutation matrix; hence, each constituent column in Π comprises zeros

with the exception of a single entry set to one. Letting πij denote the (i, j)-th entry of Π,

assume without loss of generality that πij = 1 and πkj = 0, ∀k 6= i. Consequently, with

pj ∈ RN representing column j of P := ΠΛ3, one can equivalently write

pj = [0, . . . , 0, πijλj︸ ︷︷ ︸
entry i

, 0, . . . , 0]> (4.40)
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where λj 6= 0 denotes the j-th diagonal entry of Λ3. Extracting the j-th column on both sides

of (4.39), namely,

rxj −Rxpj = 0M×1 (4.41)

and combining (4.40) and (4.41), one obtains

rxj = πijλjr
x
i . (4.42)

When i 6= j, (4.42) implies that rxi and rxj are linearly dependent, which contradicts the condi-

tion kr(Rx) ≥ 2 in Lemma 8. Hence, for (4.42) to hold for some nonzero λj , it is necessary

that i = j, which is equivalent to requiring πjj = 1 and λj = 1. Since this holds for any j, one

deduces that

Π = I, Λ3 = I. (4.43)

4.8.3 Proof of Lemma 9

Recalling from Algorithm 4b that

Â = I−
(

Diag(Â
−1

)
)−1

Â
−1

and substituting Â = AΛ, one obtains

Â = I−
(
Diag

[
(AΛ)−1

])−1
(AΛ)−1

= I−
(
Diag

[
(A)−1

])−1
ΛΛ−1A−1

= I−
(
Diag(A−1)

)−1 A−1. (4.44)

Comparing with Proposition 3, it is clear that Â = A, which concludes the proof.

4.8.4 Proof of Lemma 10

First, assume without loss of generality that column j of the permutation matrix Π̌ satisfies

π̌ij = 1 and π̌kj = 0, ∀k 6= i, with π̌ij denoting entry (i, j) of Π̌. Since p̌j ∈ RN , the j-th
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column of P̌ := Π̌Λ̌3 can be written as

p̌j := [0, . . . 0, π̌ij λ̌j︸ ︷︷ ︸
entry i

, 0, . . . , 0]> (4.45)

with λj 6= 0 representing the j-th diagonal entry of Λ3. Extracting entries indexed by Ωi ∪ Ωj

in column j on both sides of (4.20), one has

řij = π̌ij λ̌j ř
j
i (4.46)

and assuming that i 6= j, (4.46) implies that řji and řij are linearly dependent, which contradicts

the condition in Theorem 5. As a result, for (4.46) to hold true for some nonzero λj , it is

necessary that i = j, which is equivalent to having π̌jj = 1 and λ̌j = 1. Recognizing that this

holds for any j, one arrives at

Π̌ = I, Λ̌3 = I. (4.47)



Chapter 5

Nonlinear network topology
identification

5.1 Introduction

Several contemporary studies in the neurosciences have converged on the well-accepted view

that information processing capabilities of the brain are facilitated by the existence of a complex

underlying network; see e.g., [107] for a comprehensive review. The general hope is that un-

derstanding the behavior of the brain through the lens of network science will reveal important

insights, with an enduring impact on applications in both clinical and cognitive neuroscience.

However, brain networks are not directly observable, and must be inferred from processes

observed or measured at nodes. To this end, functional magnetic resonance imaging (fMRI)

has emerged as a powerful tool, capable of revealing varying blood oxygenation patterns modu-

lated by brain activity [143]. Other related brain imaging modalities include positron emission

tomography (PET), electroencephalography (EEG), and electrocorticography (ECoG), to name

just a few. Most state-of-the-art tools for inference of brain connectivity leverage variants of

causal and correlational analysis methods, applied to time-series obtained from the imaging

modalities [144–148].

Contemporary brain connectivity analyses fall under two broad categories, namely, func-

tional connectivity which pertains to discovery of non-directional pairwise correlations between

regions of interest (ROIs), and effective connectivity which instead focuses on inference of

111
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directional (a.k.a., causal) dependencies between them [149]. Granger causality [150], vec-

tor autoregressive models (VARMs) [146], structural equation models (SEMs) [151], and dy-

namic causal modeling (DCM) [152] constitute widely used approaches for effective connec-

tivity studies. VARMs postulate that connected ROIs exert time-lagged dependencies among

one another, while SEMs assume instantaneous causal interactions among them. Interestingly,

these points of view are unified through the so-termed structural vector autoregressive model

(SVARM) [153], which postulates that the spatio-temporal behavior observed in brain imaging

data results from both instantaneous and time-lagged interactions between ROIs. It has been

shown that SVARMs lead to markedly more flexibility and explanatory power than VARMs and

SEMs treated separately, at the expense of increased model complexity [153].

The fundamental appeal of the aforementioned effective connectivity approaches stems

from their inherent simplicity, since they adopt linear models. However, this is an oversim-

plification that is highly motivated by the need for tractability, even though consideration of

nonlinear models for causal dependence may lead to more accurate approaches for inference

of brain connectivity. In fact, recognizing the limitations associated with linear models, several

variants of nonlinear SEMs have been put forth in a number of recent works; see e.g., [154–159].

For example, [157] and [160] advocate SEMs in which nonlinear dependencies only ap-

pear among the so-termed exogenous variables. Furthermore, [156] puts forth a hierarchi-

cal Bayesian nonlinear modeling approach in which unknown random parameters capture the

strength and directions of causal links among variables. Several other studies adopt polyno-

mial SEMs, which offer an immediate extension to classical linear SEMs; see e.g., [154, 155,

158, 159]. In all these contemporary approaches, it is assumed that the network connectivity

structure is known a priori, and developed algorithms only estimate the unknown edge weights.

However, this is a rather major limitation since such prior information may not be available in

practice, especially when dealing with potentially massive networks, e.g., the brain.

Similarly, several variants of nonlinear VARMs have been shown useful in unveiling links

that often remain undiscovered by traditional linear models; see e.g., [161–164]. More recently,

[164] proposed a kernel-based VARM, with nonlinear dependencies among nodes encoded by

unknown functions belonging to a reproducing kernel Hilbert space.

Building upon these prior works, the present chapter puts forth a novel additive nonlin-

ear VARM to capture dependencies between observed ROI-based time-series, without explicit

knowledge of the edge structure. Similar to [25, 28], kernels are advocated as an encompassing
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framework for nonlinear learning tasks. Note that SVARMs admit an interesting interpretation

as SEMs, with instantaneous terms viewed as endogenous variables, and time-lagged terms as

exogenous variables. Since numerical measurement of external brain stimuli is often imprac-

tical, or extremely challenging in conventional experiments, adoption of such a fully-fledged

SEM (with both endo- and exogenous inputs) is often impossible with traditional imaging

modalities.

A key feature of the novel approach is the premise that edges in the unknown network

are sparse, that is, each ROI is linked to only a small subset of all potential ROIs that would

constitute a maximally-connected power graph. This sparse edge connectivity has recently

motivated the development of efficient regularized estimators, promoting the inference of sparse

network adjacency matrices; see e.g., [112, 127, 164–167] and references therein. Based on

these prior works, this chapter develops a sparse-regularized kernel-based nonlinear SVARM

to estimate the effective brain connectivity from per-ROI time series. Compared with [164],

the novel approach incorporates instantaneous variables, turns out to be more computationally

efficient, and facilitates a data-driven approach for kernel selection.

The rest of this chapter is organized as follows. Section 5.2 introduces the conventional

SVARM, while Section 5.3 puts forth its novel nonlinear variant. Section 5.4 advocates a

sparsity-promoting regularized least-squares estimator for topology inference from the non-

linear SVARM, while Section 5.5 deals with an approach to learn the kernel that ‘best’ matches

the data. Results of extensive numerical tests based on EEG data from an Epilepsy study are

presented in Section 5.6, and pertinent comparisons with linear variants demonstrate the effi-

cacy of the novel approach. Finally, Section 5.7 concludes the chapter, and highlights several

potential future research directions opened up by this work.

5.2 Preliminaries on Linear SVARMs

Consider a directed network whose topology is unknown, comprising N nodes, each associated

with an observable time series {yit}Tt=1 measured over T time-slots, for i = 1, . . . , N . Note

that yit denotes the t-th sample of the time series measured at node i. In the context of the brain,

each node could represent a ROI, while the per-ROI time series are obtainable from standard

imaging modalities, e.g., EEG or fMRI time courses. The network topology or edge structure

will be captured by the weighted graph adjacency matrix A ∈ RN×N , whose (i, j)-th entry aij
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Figure 5.1: (left) A simple illustration of a 5-node brain network; and (right) a set of five
neuronal time series (e.g., ECoG voltage) each associated with a node. Per interval t, SVARMs
postulate that causal dependencies between the 5 nodal time series may be due to both the
instantaneous effects (blue links), and/or time-lagged effects (red links). Estimating the values
of the unknown coefficients amounts to learning the causal (link) structure of the network.

is nonzero only if a directed (causal) effect exists from region i to region j.

In order to unveil the hidden causal network topology, traditional linear SVARMs postulate

that each yjt can be represented as a linear combination of instantaneous measurements at other

nodes {yit}i 6=j , and their time-lagged versions {{yi(t−`)}Ni=1}L`=1 [153]. Specifically, yjt admits

the following linear instantaneous plus time-lagged model

yjt =
∑
i 6=j

a0
ijyit +

N∑
i=1

L∑
`=1

a`ijyj(t−`) + ejt (5.1)

with a`ij capturing the causal influence of region i upon region j over a lag of ` time points, while

a0
ij encodes the corresponding instantaneous causal relationship between them. The coefficients

encode the causal structure of the network, that is, a causal link exists between nodes i and j

only if a0
ij 6= 0, or if there exists a`ij 6= 0 for ` = 1, . . . , L. If a0

ij = 0 ∀i, j, then (5.1) reduces to

classical Granger causality [150]. Similarly, setting a`ij = 0 ∀i, j, ` 6= 0 reduces (5.1) to a linear

SEM with no exogenous inputs [133]. Defining yt := [y1t, . . . , yNt]
>, et := [e1t, . . . , eNt]

>,

and the time-lagged adjacency matrix A` ∈ RN×N with the (i, j)-th entry
[
A`
]
ij

:= a`ij , one
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can write (5.1) in vector form as

yt = A0yt +

L∑
`=1

A`yt−` + et (5.2)

where A0 has zero diagonal entries a0
ii = 0 for i = 1, . . . , N .

Given the multivariate time series {yt}Tt=1, the goal is to estimate matrices {A`}L`=0, and

consequently unveil the hidden network topology. Admittedly, overfitting is a potential risk

since L is assumed prescribed. Nevertheless, this can be mitigated via standard order selec-

tion methods that control model complexity, e.g., the Bayesian information criterion [168], or

Akaike’s information criterion [169].

Knowing which entries of A0 are nonzero, several approaches have been put forth to esti-

mate their values. Examples are based upon ordinary least-squares [153], and hypothesis tests

developed to detect presence or absence of pairwise causal links under prescribed false-alarm

rates [150]. Albeit conceptually simple and computationally tractable, the linear SVARM is in-

capable of capturing nonlinear dependencies inherent to complex networks such as the human

brain. To this end, the present chapter generalizes the linear SVARM in (5.1) to a nonlinear

kernel-based SVARM.

It is also worth noting that most real world networks (including the brain) exhibit edge

sparsity, the tendency for each node to link with only a few other nodes compared to the maximal

O(N) set of potential connections per node. This means that per j, only a few coefficients {a`ij}
are nonzero. In fact, several recent approaches exploiting edge sparsity have been advocated,

leading to more efficient topology estimation; see e.g., [112, 127, 164].

5.3 From linear to nonlinear SVARMs

To enhance flexibility and accuracy, this section generalizes (5.1) so that nonlinear causal de-

pendencies can be captured. The most general nonlinear model with both the instantaneous and

time-lagged structure can be written in multivariate form as yt = f̄(y−jt, {yt−`}L`=1) + et, or,

entry-wise as

yjt = f̄j(y−jt, {yt−`}L`=1) + ejt, j = 1, . . . , N (5.3)
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where y−jt := [y1t, . . . , y(j−1)t, y(j+1)t, . . . , yNt]
> collects all but the j-th nodal observation

at time t, yt−` := [y1(t−`), . . . , yN(t−`)]
>, and f̄j(.) denotes a nonlinear function of its multi-

variate argument. With limited (NT ) data available, f̄j in (5.3) entails (L+ 1)N − 1 variables.

This fact motivates simpler model functions to cope with the emerging ‘curse of dimensional-

ity’ in estimating {f̄j}Nj=1. A simplified form of (5.3) has been studied in [164] with L = 1, and

without instantaneous influences y−jt, which have been shown of importance in applications

such as brain connectivity [151] and gene regulatory networks [113]. Such a model is simpli-

fied compared with (5.3) because the number of variables of f̄j reduces to N . Nevertheless,

estimating such an N -variate functional model still suffers from the curse of dimensionality,

especially when the size of typical networks scales up.

To circumvent this challenge, we further posit that the multivariate function in (5.3) is sepa-

rable with respect to each of its (L+ 1)N − 1 variables. Such a simplification of (5.3) amounts

to adopting a generalized additive model (GAM) [47, Ch. 9]. In the present context, the GAM

adopted is f̄j(y−jt, {yt−`}L`=1) =
∑

i 6=j f̄
0
ij(yit) +

∑N
i=1

∑L
`=1 f̄

`
ij(yi(t−`)), where the nonlin-

ear functions {f̄ `ij} will be specified in the next section. Defining f̄ `ij(y) := a`ijf
`
ij(y), the node

j observation at time t is a result of both instantaneous and multi-lag effects; that is [cf. (5.1)]

yjt =
∑
i 6=j

a0
ijf

0
ij(yit) +

N∑
i=1

L∑
`=1

a`ijf
`
ij(yi(t−`)) + ejt (5.4)

where similar to (5.1), {a`ij} define the matrices {A`}L`=0. As before, a directed edge from node

j to node i exists if the corresponding a`ij 6= 0 for any ` = 0, 1, . . . , L. Instead of having to

estimate an [(L + 1)N − 1]-variate function in (5.3) or an N -variate function in [164], (5.4)

requires estimating (L+1)N−1 univariate functions. Note that conventional linear SVARMs in

(5.1) assume that the functions {f `ij} in (5.4) are linear, a limitation that the ensuing Section 5.4

will address by resorting to a reproducing kernel Hilbert space (RKHS) formulation to model

{f `ij}.
Problem statement. Given {yt ∈ RN}Tt=1, the goal now becomes to estimate the nonlinear

functions {f `ij}, as well as the adjacency matrices {A`}L`=0 in (5.4).
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5.4 Kernel-based Sparse SVARMs

Suppose that each univariate function f `ij(.) in (5.4) belongs to the RKHS

H`i := {f `ij |f `ij(y) =
∞∑
t=1

β`ijtκ
`
i(y, yi(t−`))} (5.5)

where κ`i(y, ψ) : R × R → R is a preselected basis (so-termed kernel) function that mea-

sures the similarity between y and ψ. Different choices of κ`i specify their own basis expansion

spaces, and the linear functions can be regarded as a special case associated with the linear

kernel κ`i(y, ψ) = yψ. An alternative popular kernel is the Gaussian one that is given by

κ`i(y, ψ) := exp[−(y − ψ)2/(2σ2)]. Defining the inner product as 〈κ`i(y, ψ1), κ`i(y, ψ2)〉 :=∑
τ κ

`
i(yτ , ψ1)κ`i(yτ , ψ2), a kernel is reproducing if it satisfies 〈κ`i(y, ψ1), κ`i(y, ψ2)〉 = κ`i(ψ1, ψ2),

which induces the RKHS norm ‖f `ij‖2H`i =
∑

τ

∑
τ ′ β

`
ijτβ

`
ijτ ′κ

`
i(yiτ , yiτ ′) [70].

Considering the measurements per node j, with functions f `ij ∈ Hli, for i = 1, . . . , N

and ` = 0, 1, . . . , L, the present chapter advocates the following regularized least-squares (LS)

estimates of the aforementioned functions obtained as

{f̂ `ij} = arg min
{f`ij∈H`i}

1

2

T∑
t=1

[
yjt −

∑
i 6=j

a0
ijf

0
ij(yit)

−
N∑
i=1

L∑
`=1

a`ijf
`
ij(yit)

]2

+ λ

N∑
i=1

L∑
`=0

Ω(‖a`ijf `ij‖H`) (5.6)

where Ω(.) denotes a regularizing function, which will be specified later. An important result

that will be used in the following is the representer theorem [47, p. 169], according to which

the optimal solution for each f `ij in (5.6) is given by

f̂ `ij(y) =
T∑
t=1

β`ijtκ
`
i(y, yi(t−`)). (5.7)

Although the function spaces in (5.5) include infinite basis expansions, since the given data are

finite, namely T per node, the optimal solution in (5.7) entails a finite basis expansion. Substi-

tuting (5.7) into (5.6), and letting β`ij := [β`ij1, . . . , β
`
ijT ]>, and α`ij := a`ijβ

`
ij , the functional

minimization in (5.6) boils down to optimizing over vectors {α`ij}. Specifically, (5.6) can be
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equivalently written in vector form as

{α̂`ij} = arg min
{α`

ij}

1

2

∥∥∥∥yj −∑
i 6=j

K0
iα

0
ij −

N∑
i=1

L∑
`=1

K`
iα

`
ij

∥∥∥∥2

2

+ λ
N∑
i=1

L∑
`=0

Ω

(√
(α`ij)

>K`
iα

`
ij

)
(5.8)

where yj := [yj1, . . . , yjT ]>, and the T×T matrices {K`
i} have entries [K`

i ]t,τ = κ`i(yit, yi(τ−`)).

Furthermore, collecting all the observations at different nodes in Y := [y1, . . . ,yN ] ∈ RT×N

and letting K̄` := [K`
1 . . .K

`
N ], (5.8) can be written as

{α`ij} = arg min
α0
ii=0,{α`

ij}

1

2

∥∥∥∥Y − L∑
l=1

K̄`W`
α

∥∥∥∥2

F

+ λ

N∑
i=1

L∑
`=0

Ω

(√
(α`ij)

>K`
iα

`
ij

)
(5.9)

where the NT ×N block matrix

W`
α :=


α`11 · · · α`1N

...
. . .

...

α`N1 · · · α`NN

 (5.10)

exhibits a structure ‘modulated’ by the entries of A`. For instance, if a`ij = 0, then α`ij :=

a`ijβ
`
ij is an all-zero block, irrespective of the values taken by β`ij .

Instead of the LS cost used in (5.6) and (5.9), alternative loss functions could be employed to

promote robustness using the ε-insensitive, or, the `1-error norm; see e.g., [47, Ch. 12]. Regard-

ing the regularizing function Ω(.), typical choices are Ω(z) = |z|, or, Ω(z) = z2. The former

is known to promote sparsity of edges, which is prevalent to most networks; see e.g., [107]. In

principle, leveraging such prior knowledge naturally leads to more efficient topology estimators,

since {A`} are promoted to have only a few nonzero entries. The sparse nature of A` mani-

fests itself as block sparsity in W`
α. Specifically, using Ω(z) = |z|, one obtains the following

estimator of the coefficient vectors {α`ij} for j = 1, . . . , N

{α̂`ij} = arg min
α̂0
ii=0,{α`

ij}

1

2

∥∥∥∥Y − L∑
l=1

K̄`W`
α

∥∥∥∥2

F

+ λ

L∑
`=0

N∑
j=1

N∑
i=1

√
(α`ij)

>K`
iα

`
ij . (5.11)
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Recognizing that summands in the regularization term of (5.11) can be written as
√

(α`ij)
>K`

iα
`
ij =

‖(K`
i)

1/2α`ij‖2, which is the weighted `2-norm of αi,j , the entire regularizer can henceforth be

regarded as the weighted `2,1-norm of W`
α, that is known to be useful for promoting block

sparsity. It is clear that (5.11) is a convex problem, which admits a globally optimal solution.

In fact, the problem structure of (5.11) lends itself naturally to efficient iterative proximal op-

timization methods e.g., proximal gradient descent iterations [170, Ch. 7], or, the alternating

direction method of multipliers (ADMM) [171].

For a more detailed description of algorithmic approaches adopted to unveil the hidden

topology by solving (5.11), the reader is referred to Appendix 5.8.1. All in all, Algorithm 6b

is a summary of the novel iterative solver of (5.11) derived based on ADMM iterations. Per

iteration, the complexity of ADMM is in the order ofO(T 2NL), which is linear in the network

size N . A couple of remarks are now in order.

Remark 1: Selecting Ω(z) = z2 is known to control model complexity, and thus prevent over-

fitting [47, Ch. 3]. Let D`:=Bdiag(K`
1 . . .K

`
N ), and D:=Bdiag(D0 . . .DL), where Bdiag(.)

is a block diagonal of its matrix arguments. Substituting Ω(z) = z2 into (5.9), one obtains

{α̂`ij} = arg min
α̂0
ii=0,{α`

ij}

1

2

∥∥∥∥Y − K̄Wα

∥∥∥∥2

F

+ λ trace(W>
αDWα) (5.12)

where K̄ := [K̄0 . . . K̄L], and Wα := [(W0
α)> . . . (WL

α)>]>. Problem (5.12) is convex and

can be solved in closed form as

ˆ̄αj =
(
K̄>j K̄j + 2Dj

)−1
K̄>j yj (5.13)

where ᾱj denotes the (NL−1)T ×1 vector obtained after removing entries of the j-th column

of Wα indexed by Ij := {(j − 1)T + 1, . . . , jT}; K̄j collects columns of K̄ excluding the

columns indexed by Ij ; and the block-diagonal matrix Dj is obtained after eliminating rows

and columns of D indexed by Ij . Using the matrix inversion lemma, the complexity of solving

(5.13) is in the order of O(T 3NL).

Remark 2: Relying on an operator kernel (OK), the approach in [164] offers a more general

nonlinear VARM (but not SVARM) than the one adopted here. However, [164] did not account

for instantaneous or the multiple-lagged effects. Meanwhile, estimating f̄(yt−1) in [164] does

not scale well as the size of the network (N ) increases. Also OK-VARM is approximated
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in [164] using the Jacobian, which again adds to the complexity of the algorithm, and may

degrade the generality of the proposed model. Finally, the model in [164] is limited in its ability

to incorporate the structure of the network (e.g., edge sparsity). In order to incorporate prior

information on the model structure, [164] ends up solving a nonconvex problem, which might

experience local minima, and the flexibility in choosing kernel functions will also be sacrificed.

In contrast, our approach entails a natural extension to a data-driven kernel selection, which will

be outlined in the next section.

Remark 3: Estimation of a nonlinear function generally requires a large number of samples

(T ), consequently incurring increased complexity. Clearly, the proposed method is prone to

scalability issues when dealing with even moderately-sized networks. This motivates solving

the kernel-based optimization problem “on the fly,”; see also [15,84] for recent examples. How-

ever, deriving such real-time solvers is beyond the scope of the present chapter, whose focus

is the novel nonlinear modeling framework. Only batch algorithms have been presented, but

pursuit of more efficient online algorithms constitutes an important future direction.

5.5 Data-driven kernel selection

Choice of the kernel function determines the associated Hilbert space, and it is therefore of sig-

nificant importance in estimating the nonlinear functions {f `ij}. Although Section 5.4 assumed

that the kernels {κ`i} are available, this is not the case in general, and this section advocates a

data-driven strategy for selecting them. Given a dictionary of reproducing kernels {κp}Pp=1,

it has been shown that any function in the convex hull K := {κ|κ =
∑P

p=1 θpκp, θp ≥
0,
∑P

p=1 θp = 1} is a reproducing kernel [90]. Therefore, the goal of the present section

is to select a kernel from K that best fits the data. For ease of exposition, consider κ`i = κ ∈ K,

for all ` = 0, 1, . . . , L and i = 1, . . . , N in (5.6), therefore H`i = H(κ). Note that the formula-

tion can be readily extended to settings when {κ`i} are different. Incorporating κ as a variable

function in (5.6) yields

{f̂ `ij} = arg min
κ∈K,{f`ij∈H(κ)}

1

2

T∑
t=1

[
yjt −

∑
i 6=j

a0
ijf

0
ij(yit)

−
N∑
i=1

L∑
`=1

a`ijf
`
ij(yit)

]2

+ λ
N∑
i=1

L∑
`=0

Ω(‖a`ijf `ij‖H(κ)) (5.14)
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Algorithm 6b ADMM for network topology identification

1: Input: Y, {{K`
i}Ni=1}L`=1, τα, λ, ρ

2: Initialize: Γ[0] = 0NT×N , Ξ[0] = 0NT×N , k = 0
3: for ` = 1, . . . , L do
4: D`=Bdiag(K`

1, . . . ,K
`
N )

5: K̄` = [K`
1 . . .K

`
N ]

6: end for
7: K̄ := [K̄0 . . . K̄L], D=Bdiag(D0 . . .DL)
8: for j = 1, . . . , N do
9: Ij := {(j − 1)T + 1, . . . , jT}

10: Īj := {(k, l)|k /∈ Ij , or l /∈ Ij}
11: Ĩj := {(k, l)|l /∈ Ij}
12: Dj = [D]Īj , K̄j =

[
K̄
]
Ĩj

13: end for
14: while not converged do
15: for j = 1, . . . , N (in parallel) do
16: qj [k] = ρD

1/2
j γj [k] + K̄>j yj −D

1/2
j ξj [k]

17: ᾱj [k + 1] =
(
K̄>j K̄j + ρDj

)−1
qj [k]

18: γ`ij [k] = Pλ/ρ
(

(K`
i)

1/2α`ij [k + 1] + ξ`ij [k]/ρ
)

,
19: for i = 1, . . . N , ` = 0, . . . L
20: end for
21: Wα[k + 1] := [(W0

α)>[k + 1], . . . , (WL
α)>[k + 1]]>

22: Γ[k + 1] := [(Γ0[k + 1])>, . . . , (ΓL[k + 1])>]>

23: Ξ[k + 1] = Ξ[k] + ρ(D1/2Wα[k + 1]− Γ[k + 1])
24: k = k + 1
25: end while
26: Edge identification:(after converging to α̂∗ij)
27: â∗ij 6= 0 if ‖α̂∗ij‖ ≥ τα, else â∗ij = 0, ∀ (i, j)

28: return {Â`}L`=0

where H(κ) denotes the Hilbert space associated with kernel function κ. With Hp denoting the

RKHS induced by κp, it has been shown in [65] and [90] that the optimal {f̂ `ij} in (5.14) is

expressible in a separable form as

f̂ `ij(y) :=
P∑
p=1

f `,pij (y) (5.15)
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where f `,pij belongs to RKHSHp, for p = 1, . . . , P . Substituting (5.15) into (5.14), one obtains

{f̂ `ij} = arg min
{f`,pij ∈Hp}

1

2

T∑
t=1

[
yjt −

∑
i 6=j

P∑
p=1

a0
ijf

0,p
ij (yit) (5.16)

−
N∑
i=1

L∑
`=1

P∑
p=1

a`ijf
`,p
ij (yit)

]2

+ λ
N∑
i=1

L∑
`=0

P∑
p=1

Ω(‖a`ijf `,pij ‖Hp).

Note that (5.16) and (5.6) have similar structure, and their only difference pertains to an ex-

tra summation over P candidate kernels. Hence, (5.16) can be solved in an efficient manner

along the lines of the iterative solver of (5.6) listed under Algorithm 6b [cf. the discussion in

Section 5.4]. Further details of the solution are omitted due to space limitations.

Remark 4: Note that {θp} does not show up in the optimization problem in (5.16), since all the

coefficients can be readily absorbed into the nonlinear functions without affecting optimality.

This is a consequence of the property that given any function belonging to a prescribed RKHS,

all its scaled versions belong to the same RKHS [c.f. (5.5)]; see also [90] for a detailed proof.

5.6 Numerical tests

This section presents results from numerical tests conducted on both synthetic and real data to

corroborate the effectiveness of the proposed approach. Simulated data were generated via a

different model in order to assess the impact of the presence of nonlinear dependencies. Tests

on real data were based on seizure experiments captured from a number of subjects.

5.6.1 Synthetic data tests

Data generation. SettingL = 1, synthetic data were generated via a random 20-node (N = 20)

Erdős-Rényi graph, with edge probability 0.4. The resulting graph was encoded as a binary

20× 20 adjacency matrix. Using this graph, simulated data were generated via both linear and

nonlinear models. For several values of T , entries of Y ∈ RN×T were randomly sampled from

the standardized normal distribution, that is, ynt ∼ N (0, 1). Furthermore, matrices {K`
m} were

generated using prescribed kernels, that is, entry (i, j) of Km was set to [K`
t]ij = k(yit, yjt),

where the kernel function k(·, ·) is known a priori. Entries of coefficient vectorsαij ∈ RT were

drawn independently from N (0, 1), while noise terms were generated i.i.d. as eij ∼ N (0, σ2
e).
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Figure 5.2: Plot of EIER vs. measurement ratio (T/N), with simulated data generated via a
polynomial kernel of order P = 2. Note that K-SVARMs consistently outperform LSVARMs.

Experiments were run for different values of T , with the edge detection threshold τ selected

in each setting to obtain the lowest edge identification error rate (EIER), defined as

EIER :=
‖A− Â‖0
N(N − 1)

× 100%. (5.17)

The operator ‖ · ‖0 denotes the number of nonzero entries of its argument. For all experiments,

error plots were generated with values of EIER averaged over 100 independent runs.

Test results. Figures 5.2 and 5.3 depict EIER values plotted against the measurement ratio

(T/N ) under varying signal-to-noise ratios (SNR), for polynomial and Gaussian kernels, re-

spectively. The synthetic graph was generated with edge probability p = 0.3. Figure 5.2 plots

the EIER when data are generated by (5.4), using a polynomial kernel of order P = 2, and

Figure 5.3 plots the error performance realized with data generated via a Gaussian kernel with

bandwidth σ2 = 1. It is clear that adoption of nonlinear SVARMs yields markedly better per-

formance than topology inference approaches based on linear SVARMs, which corroborates

the effectiveness of the proposed algorithm in identifying the network topology when the de-

pendencies among nodes are nonlinear. It is also worth observing that as SNR decreases, the

performance of the proposed algorithm deteriorates slightly, but can still yield much better per-

formance than the linear approach.
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Figure 5.3: Plot of EIER vs. (T/N) with data generated using a Gaussian kernel with σ2 = 1;
K-SVARMs uniformly lead to lower errors than linear LSVARMs over varying SNR levels,
based on empirical observations.
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Figure 5.4: Plot of EIER vs. (T/N) with simulated data generated via a polynomial kernel of
order P = 2; it can be empirically observed that K-SVARMs uniformly outperform LSVARMs
across varying edge densities.
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Figure 5.5: ROC curves generated under different modeling assumptions: a) K-SVARM based
on a Gaussian kernel with σ2 = 1; b) K-SVARM based on polynomial kernel of order P = 2;
and c) Linear SVARM.

In order to assess edge detection performance, receiver operating characteristic (ROC)

curves are plotted under different modeling assumptions in Figure 5.5. With PD denoting the

probability of detection, and PFA the probability of false alarms, each point on the ROC cor-

responds to a pair (PFA, PD) for a prescribed threshold. Figure 5.5 (a) results from tests run

on data generated by Gaussian kernels with σ2 = 1, while Figure 5.5 (b) corresponds to poly-

nomial kernels of order P = 2. Using the area under the curve (AUC) as the edge-detection

performance criterion, Figures 5.5 (a) and (b) clearly emphasize the benefits of accounting for

nonlinearities. In both plots, kernel-based approaches result in the higher AUC metrics than

approaches resorting to linear SVARMs.

Figure 5.5 (c) plots ROC curves based on linear and kernel based SVARMs, with simulated

data actually generated using a linear SVARM. The curves are parameterized by the sparsity-

control parameter λ. Not surprisingly, kernel-based SVARMs adopting polynomial kernels

underperform the linear SVARM, due to the inherent model mismatch. However, the kernel

SVARM endowed with a multi-kernel learning scheme (MK-SVARM) is shown to attain com-

parable performance to the linear SVARM when the prescribed dictionary comprises both linear

and polynomial kernels.

5.6.2 Real data tests

This section presents test results on seizure data, captured through experiments conducted in an

epilepsy study [172]. Epilepsy refers to a chronic neurological condition characterized by re-

current seizures, globally afflicting over 20 million people, and often associated with abnormal
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neuronal activity within the brain. Diagnosis of the condition sometimes involves comparing

EEG or ECoG time series obtained from a patient’s brain before and after onset of a seizure. Re-

cent studies have shown increasing interest in analysis of connectivity networks inferred from

the neuronal time series, in order to gain more insights about the unknown physiological mech-

anisms underlying epileptic seizures. In this section, connectivity networks are inferred from

the seizure data using the novel approach, and a number of comparative measures are computed

from the identified network topologies.

Seizure data description. Seizure data were obtained for a 39-year-old female subject with

a case of intractable epilepsy at the University of California, San Francisco (UCSF) Epilepsy

Center; see also [172]. An 8× 8 subdural electrode grid was implanted into the cortical surface

of the subject’s brain, and two accompanying electrode strips, each comprising six electrodes

(a.k.a., depth electrodes) were implanted deeper into the brain. Over a period of five days,

the combined electrode network recorded 76 ECoG time series, consisting of voltage levels

measured in a region within close proximity of each electrode.

ECoG epochs containing eight seizures were extracted from the record and analyzed by a

specialist. The time series at each electrode were first passed through a bandpass filter, with

cut-off frequencies of 1 and 50 Hz, and the so-termed ictal onset of each seizure was identified

as follows. A board-certified neurophysiologist identified the initial manifestation of rhythmic

high-frequency, low-voltage focal activity, which characterizes the onset of a seizure. Samples

of data before and after this seizure onset were then extracted from the ECoG time series.

The per-electrode time series were then divided into 1s windows, with 0.5s overlaps between

consecutive windows, and the average spectral power between 5Hz and 15Hz was computed

per window. Finally, power spectra over all electrodes were averaged, and the ictal onset was

identified by visual inspection of a dramatic increase (by at least an order of magnitude) in the

average power. Two temporal intervals of interest were picked for further analysis, namely, the

preictal and ictal intervals. The preictal interval is defined as a 10s interval preceding seizure

onset, while the ictal interval comprises the 10s immediately afterwards. Further details about

data acquisition and pre-processing are provided in [172].

The goal here was to assess whether modeling nonlinearities, and adopting the novel kernel-

based approach would yield significant insights pertaining to causal/effective dependencies be-

tween brain regions, that linear variants would otherwise fail to capture. Toward this goal, sev-

eral standard network analysis measures were adopted to characterize the structural properties
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Figure 5.6: Visualizations of networks inferred from ECoG data: (a) linear SVARM with L = 1
on preictal time series; (b) linear SVARM on ictal time series; (c) K-SVARM on preictal time
series, using Gaussian kernel with σ = 1; (d) the same K-SVARM on ictal time series; (e)
K-SVARM with kernel selection on preictal time series; and finally (f) K-SVARM with kernel
selection on ictal time series.

of the inferred networks.

Inferred networks. Prior to running the developed algorithm, 10s intervals were chosen from

the preprocessed ECoG data with the sampling rate set to 400Hz, and then divided into 20

successive segments, each comprising 200 data samples over a 0.5s horizon. To illustrate this,

suppose the 10s interval starts from t = 0s and ends at t = 10s, then the first segment com-

prises samples taken over the interval [0s, 0.5s], the second one would be [0.5s, 1s], and so on.

After this segmentation of the time series, directed network topologies were inferred using Al-

gorithm 6b with L = 1, based on the 0.5s segments, instead of the entire signal, to ensure that

the signal is approximately stationary per experiment run. A directed link from electrode i to j

was drawn if at least one of the estimates of a`ij turned out to be nonzero.

Upon inference of the 20 networks the data pertaining to each seizure, presence/absence
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of an edge is established via a t-test with PFA = 0.1. Inference results were not averaged

since different seizures may originate from disparate parts of the brain, leading to non-trivial

differences between connectivity patterns among electrodes.

Networks inferred from the preictal and ictal intervals were compared using linear, the

kernel-based (K-)SVARMs, and K-SVARM with data-driven kernel selection. The lag lengths

were set to L = 1 for all cases. For K-SVARM, a Gaussian kernel with σ = 1 was selected, and

with ρ = 10, Algorithm 6b with regularization parameter λ was selected via cross-validation.

For the data-driven kernel selection scheme, two candidate kernels were employed, namely, a

linear kernel, and a polynomial kernel of order 2.

Figure 5.6 depicts networks inferred from different algorithms for both preictal and ictal

intervals of the time series. The figure illustrates results obtained by the linear SVARM, and the

K-SVARM approach with and without kernel selection. Each node in the network is representa-

tive of an electrode, and it is depicted as a circle, while the node arrangement is forced to remain

consistent across the six visual representations. A cursory inspection of the visual maps reveals

significant variations in connectivity patterns between ictal and preictal intervals for both mod-

els. Specifically, networks inferred via the K-SVARMs, reveal a global decrease in the number

of links emanating from each node, while those inferred via the linear model depict increases

and decreases in links connected to different nodes. Interestingly, the K-SVARM with kernel

selection recovered most of the edges inferred by the linear and the K-SVARM using a Gaussian

kernel, which implies that both linear and nonlinear interactions may exist in brain networks.

Moreover, network topologies inferred via K-SVARM with kernel selection are more similar

to those obtained using a single kernel than a linear SVARM, implying that the simple linear

model is insufficient to capture the network topology in complex brain networks. However, one

is unlikely to gain much insight only by visual inspection of the network topologies. Moreover,

note that the To further analyze differences between inferred networks from both models, and

to assess the potential benefits gained by adopting the novel scheme, several network topology

metrics are computed and compared in the next subsection.

Comparison of network metrics. First, in- and out-degree was computed for nodes in each of

the inferred networks. Note that the in-degree of a node counts its number of incoming edges,

while the out-degree counts the number of out-going edges. The total degree per node sums the

in- and out-degrees, and is indicative of how well-connected a given node is. Figure 5.7 depicts

nodes in the network and their total degrees encoded by the radii of circles associated with the
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Node degrees of networks inferred from ECoG data encoded by circle radii: (a)
linear SVARM on preictal data; (b) linear SVARM on ictal data; (c) K-SVARM on preictal time
series; (d) K-SVARM on ictal data; (e) MKL-SVARM on preictal time series; (f) MKL-SVARM
on ictal time series.

nodes. As expected from the previous subsection, Figures 5.7 (a) and (b) demonstrate that the

linear SVARM yields both increases and deceases in the inferred node degree. On the other

hand, the nonlinear SVARM leads to a more spatially consistent observation with most nodes

exhibiting a smaller degree after the onset of a seizure (see Figures 5.7 (c) and (d)), which may

imply that causal dependencies thin out between regions of the brain once a seizure starts, the

same trend is also revealed by the K-SVARM with kernel selection (see Figures 5.7 (e) and (f)).

In order to assess the reachability of brain regions before and after seizure onset, compar-

isons of the so-termed average shortest path lengths were done. Average shortest path of a node

computes the average length of shortest paths between the given node and all other nodes; see

e.g., [9] for more details. The per-node average shortest path length for each inferred network is

depicted in Figure 5.8, with node radii similarly encoding the computed values. Little variation
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Same as in Figure 5.7 for comparison based on average shortest path length of
inferred graphs.

between preictal and ictal average shortest path length is seen for the linear model (Figures 5.8

(a) and (b)), while variations are more marked for the K-SVARM, see Figures 5.8 (c-f). It can

be seen that modeling nonlinearities reveals subtle changes in reachability of nodes between

preictal and ictal phases.

In addition to the local metrics, a number of global measures were computed over entire

inferred networks, and pertinent comparisons were drawn between the two phases; see Table 5.1

for a summary of the average global measures of the inferred networks from 8 different seizures.

Several global metrics were considered, e.g., network density, global clustering coefficient,

network diameter, and average number of neighbors.These metrics are obtained by averaging

the metrics of networks inferred from 8 seizures.

Network density refers to the number of actual edges divided by the number of potential

edges, while the global clustering coefficient is the fraction of connected triplets that form

triangles, adjusted by a factor of three to compensate for double counting. On the other hand,
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Linear SVARM K-SVARM MKL-SVARM
Preictal Ictal Preictal Ictal Preictal Ictal

Network density 0.103 0.095 0.136 0.089 0.148 0.101
Glob. clustering coeff. 0.246 0.220 0.372 0.356 0.391 0.343
No. of connect. comp. 8 7 2 5 2 6

Network diameter 5 5 7 9 4 7
Avg. no. of neighbors 7.73 6.89 10.23 6.71 11.11 7.55

Table 5.1: Comparison of global metrics associated with networks inferred from ECoG seizure
data using the linear, K-SVARM, and K-SVARM with kernel selection scheme. Major differ-
ences between the computed metrics indicate that one may gain insights from network topolo-
gies inferred via models that capture nonlinear dependencies.

network diameter is the length of the longest geodesic, excluding infinity. Table 5.1 shows that

networks inferred via the K-SVARMs and MKL-SVARMs exhibit lower network cohesion after

seizure onset, as captured by network density, global clustering coefficient, and average number

of neighbors, while the network diameter increases. These changes provide empirical evidence

that the brain network becomes less connected, and diffusion of information is inhibited after

the onset of an epileptic seizure.

5.7 Summary

This chapter put forth a novel nonlinear SVARM framework that leverages kernels to infer

effective connectivity networks in the brain. Postulating a generalized additive model with

unknown functions to capture the hidden network structure, a novel regularized LS estimator

that promotes sparse solutions was advocated. In order to solve the ensuing convex optimization

problem, an efficient algorithm that resorts to ADMM iterations was developed, and a data-

driven approach was introduced to select the appropriate kernel. Extensive numerical tests were

conducted on ECoG seizure data from a study on epilepsy.

In order to assess the utility of the novel approach, several local and global metrics were

adopted and computed on networks inferred before and after the onset of a seizure. By ob-

serving changes in network behavior that are revealed by standard metrics before and after

seizure onset, it is possible identify key structural differences that may be critical to explain
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the mysteries of epileptic seizures. With this in mind, the chapter focused on identifying struc-

tural differences in the brain network that could not be captured by the simpler linear model.

Interestingly, empirical results support adoption of a nonlinear modeling perspective when ana-

lyzing differences in effective brain connectivity for epilepsy patients. Specifically, adopting the

novel kernel-based approach revealed more significant differences between the preictal and ictal

phases of ECoG time series. For instance, it turned out that some regions exhibited fewer de-

pendencies, reduced reachability, and weakened information-routing capabilities after the onset

of a seizure. Since the kernel-based model includes the linear SVARM as an instance, the con-

ducted experiments suggest that one may gain more insights by adopting the nonlinear model,

a conclusion that may yield informative benefits to studies of epilepsy that leverage network

science.

This work paves the way for a number of exciting research directions in analysis of brain

networks. Although it has been assumed that inferred networks are static, overwhelming ev-

idence suggests that topologies of brain networks are dynamic, and may change over rather

short time horizons. Future studies will extend this work to facilitate tracking of dynamic brain

networks. Furthermore, the novel approach will be empirically tested on a wider range of neu-

rological illnesses and disorders, and pertinent comparisons will be done to assess the merits of

adopting the advocated nonlinear modeling approach.

5.8 Appendix

5.8.1 Topology Inference via ADMM

Given matrices Y and K̄ := [K̄0 . . . K̄L], this section capitalizes on convexity, and the nature

of the additive terms in (5.11) to develop an efficient topology inference algorithm. Proximal

optimization approaches have recently been shown useful for convex optimization when the cost

function comprises the sum of smooth and nonsmooth terms; see e.g., [173]. Prominent among

these approaches is the alternating direction method of multipliers (ADMM), upon which the

novel algorithm is based; see e.g., [171] for an early application of ADMM to distributed esti-

mation.

For ease of exposition, let the equality constraints (α`jj = 0) temporarily remain implicit.
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Introducing the change of variables γ`ij := (K`
i)

1/2α`ij , problem (5.11) can be recast as

arg min
{α`

ij}
(1/2)‖Y −

L∑
`=0

K̄`W`
α‖2F +

L∑
`=0

g(Γ`)

s.t. γ`ij − (K`
i)

1/2α`ij = 0 ∀i, j, ` (5.18)

where Γ` := [γ`1 . . .γ
`
N ], γ`j := [(γ`1j)

> . . . (γ`Nj)
>]>, and g(Γ`) := λ

∑N
i=1

∑N
j=1 ‖γ`ij‖2

is the nonsmooth regularizer. Let D`:=Bdiag(K`
1 . . .K

`
N ), and D:=Bdiag(D0 . . .D`), where

Bdiag(.) is a block diagonal of its matrix arguments. One can then write the augmented La-

grangian of (5.18) as

Lρ(Wα,Γ,Ξ) = (1/2)‖Y − K̄Wα‖2F + g(Γ)

+ 〈Ξ,D1/2Wα − Γ〉+ (ρ/2)‖Γ−D1/2Wα‖2F (5.19)

where Wα := [(W0
α)> . . . (WL

α)>]>, and Γ := [(Γ0)> . . . (ΓL)>]>. Note that Ξ is a matrix

of dual variables that collects Lagrange multipliers corresponding to the equality constraints

in (5.18), 〈P,Q〉 denotes the inner product between P and Q, while ρ > 0 a prescribed penalty

parameter. ADMM boils down to a sequence of alternating minimization iterations to minimize

Lρ(Wα,Γ,Ξ) over the primal variables Wα, and Γ, followed by a gradient ascent step over

the dual variables Ξ; see also [171,174]. Per iteration k+1, this entails the following provably-

convergent steps, see e.g. [171]

Wα[k + 1] = arg min
Wα

Lρ(Wα,Γ[k],Ξ[k]) (5.20a)

Γ[k + 1] = arg min
Γ

Lρ(Wα[k + 1],Γ,Ξ[k]) (5.20b)

Ξ[k + 1] = Ξ[k] + ρ(D1/2Wα[k + 1]− Γ[k + 1]). (5.20c)

Focusing on Wα[k + 1], note that (5.20a) decouples across columns of Wα, and admits

closed-form, parallelizable solutions. Incorporating the structural constraint α0
jj = 0, one

obtains the following decoupled subproblem per column j

ᾱj [k + 1] = arg min
ᾱj

(1/2)ᾱ>j

(
K̄>j K̄j + ρDj

)
ᾱj − ᾱ>j qj [k] (5.21)
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where qj [k] is constructed by removal of entries indexed by Ij from ρD1/2γj [k] + K̄>yj −
D1/2ξj [k], with ξj [k] denoting the j-th column of Ξ[k]. Assuming

(
K̄>j K̄j + ρDj

)
is invert-

ible, the per-column subproblem (5.21) admits the following closed-form solution per j

ᾱj [k + 1] =
(
K̄>j K̄j + ρDj

)−1
qj [k]. (5.22)

On the other hand, (5.20b) can be solved per component vector γ`ij , and a closed-form solution

can be obtained via the so-termed block shrinkage operator for each i and j, namely,

γ`ij [k] = Pλ/ρ
(

(K`
i)

1/2α`ij [k + 1] + ξ`ij [k]/ρ
)

(5.23)

where Pλ(z) := (z/‖z‖2) max(‖z‖2 − λ, 0). Upon convergence, {a`ij} can be determined by

thresholding α̂`ij , and declaring an edge present from i to j, if there exists any α̂`ij 6= 0, for

` = 1, . . . , L.



Chapter 6

Online Graph-Adaptive Learning with
Scalability and Privacy

6.1 Introduction

In real-world networks, there are often unavailable nodal function values, due to, e.g., privacy

issues. Hence, a topic of great practical importance is to interpolate missing nodal values (class,

ranking or function), based on the function values at a subset of observed nodes. Interpolation

of nodal function values often relies on the assumption of “smoothness” over the graphs, which

implies that neighboring nodes will have similar nodal function values. For example, in social

networks, people tend to rate e.g., movies similar to their friends, and in financial networks,

companies that trade with each other usually belong to the same category. From this point

of view, function estimation over graphs based on partial observations has been investigated

extensively, [9, 175–179]. Function estimation has been also pursued in the context of semi-

supervised learning, e.g., for transductive regression or classification, see e.g., [180–183]. The

same task has been studied recently as signal reconstruction over graphs, see e.g., [184–188],

where signal values on unobserved nodes can be estimated by properly introducing a graph-

aware prior. Kernel-based methods for learning over graphs offer a unifying framework that

includes linear and nonlinear function estimators [186, 189, 190]. The nonlinear methods out-

perform the linear ones but suffer from the curse of dimensionality [70], rendering them less

attractive for large-scale networks.

To alleviate this limitation, a scalable kernel-based approach will be introduced in the

135
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present chapter, which leverages the random feature approximation to ensure scalability while

also allowing real-time evaluation of the functions over large-scale dynamic networks. In addi-

tion, the novel approach incorporates a data-driven scheme for adaptive kernel selection.

Adaptive learning over graphs has been also investigated for tracking and learning over

possibly dynamic networks, e.g., [190, 191]. Least mean-squares and recursive least-squares

adaptive schemes have been developed in [191], without explicitly accounting for evolving

network topologies. In contrast, [190] proposed a kernel-based reconstruction scheme to track

time-varying signals over time-evolving topologies, but assumed that the kernel function is

selected a priori. All these prior works assume that the network size is fixed.

In certain applications however, new nodes may join the network over time. For exam-

ple, hundreds of new users are joining Facebook or Netflix every day, and new companies

are founded in financial networks regularly. Real-time and scalable estimation of the desired

functions on these newly-joining nodes is of great importance. While simple schemes such

as averaging over one- or multi-hop neighborhoods are scalable to network size by predicting

the value on each newly-coming node as a weighted combination of its multi-hop neighbor-

hoods [192], they do not capture global information over the network. In addition, existing

rigorous approaches are in general less efficient in accounting for newly-joining nodes, and

need to solve the problem over all nodes, every time new nodes join the network, which incurs

complexity O(N3), where N denotes the network size [186, 189]. As a result, these methods

are not amenable to real-time evaluation over newly-joining nodes. To this end, the present

chapter develops a scalable online graph-adaptive algorithm that can efficiently estimate nodal

functions on newly-joining nodes ‘on the fly.’

Besides scalability and adaptivity, nodes may have firm privacy requirements, and may

therefore not be willing to reveal who their neighbors are. However, most graph-based learn-

ing methods require knowing the entire connectivity pattern, and thus cannot meet the privacy

requirements. The novel random feature based approach on the other hand, only requires an

encrypted version of each node’s connectivity pattern, which makes it appealing for networks

with stringent privacy constraints.

In short, we put forth a novel online multikernel learning (MKL) framework for effectively

learning and tracking nonlinear functions over graphs. Our contributions are as follows.

c1) A scalable MKL approach is developed to efficiently estimate the nodal function values

both on the observed and un-observed nodes of a graph;
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c2) The resultant algorithm is capable of estimating the function value of newly incoming nodes

with high accuracy without solving the batch problem over all nodes, making it highly scalable

as the network size grows, and suitable for nodal function estimation in dynamic networks;

c3) Unlike most existing methods that rely on nodal feature vectors in order to learn the function,

the proposed scheme simply capitalizes on the connectivity pattern of each node, while at the

same time, nodal feature vectors can be easily incorporated if available; and,

c4) The proposed algorithm does not require nodes to share connectivity patterns. Instead, a

privacy-preserving scheme is developed for estimating the nodal function values based on an

encrypted version of the nodal connectivity patterns, hence respecting node privacy.

The rest of this chapter is organized as follows. Preliminaries are in Section 6.2, while Sec-

tion 6.3 presents an online kernel-based algorithm that allows sequential processing of nodal

samples. Section 6.4 develops an online MKL scheme for sequential data-driven kernel selec-

tion, which allows graph-adaptive selection of kernel functions to best fit the learning task of

interest. Section 6.5 provides performance analysis of the proposed algorithm. Finally, results

of corroborating numerical tests on both synthetic and real data are presented in Section 6.6,

while concluding remarks along with a discussion of ongoing and future directions are given in

Section 6.7.

6.2 Kernel-based learning over graphs

Consider a graph G(V, E) ofN nodes, whose topology is captured by a known adjacency matrix

A ∈ RN×N . Let ann′ ∈ R denote the (n, n′) entry of A, which is nonzero only if an edge is

present from node n′ to n. A real-valued function (or signal) on a graph is a mapping f : V →
R, where V is the set of vertices. The value f(v) = xv represents an attribute of v ∈ V , e.g.,

in the context of brain networks, xvn could represent the sample of an electroencephalogram

(EEG), or functional magnetic resonance imaging (fMRI) measurement at region n. In a social

network, xvn could denote the age, political alignment, or annual income of the nth person.

Suppose that a collection of noisy samples {ym = xvnm + em}Mm=1 is available, where em
models noise, and M ≤ N represents the number of measurements. Given {ym}Mm=1, and with

the graph topology known, the goal is to estimate f(v), and thus reconstruct the graph signal at
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unobserved vertices. Letting y := [y1, . . . , yM ]>, the observation vector obeys

y = Ψx + e (6.1)

where x := [xv1 , . . . , xvN ]>, e := [e1, . . . , eM ]>, and Ψ ∈ {0, 1}M×N is a sampling matrix

with binary entries [Ψ]m,nm = 1 for m = 1, . . . ,M , and 0, elsewhere.

Given Ψ, y, and A, the goal is to estimate x over the entire network. To tackle the under-

determined system (6.1), consider function f belonging to a reproducing kernel Hilbert space

(RKHS) defined as [186, 189]

H := {f : f(v) =

N∑
n=1

αnκ(v, vn), αn ∈ R} (6.2)

where κ : V × V → R is a pre-selected kernel function. Hereafter, we will let nm = m

for notational convenience, and without loss of generality (wlog). Given y, the RKHS-based

estimate is formed as

f̂ = arg min
f∈H

1

M

M∑
m=1

C(f(vm), ym) + µΩ
(
‖f‖2H

)
(6.3)

where the cost C(·, ·) can be selected depending on the learning task, e.g., the least-squares (LS)

for regression, or the logistic loss for classification; ‖f‖2H :=
∑

n

∑
n′ αnαn′κ(vn, vn′) is the

RKHS norm; Ω(·) is an increasing function; and, µ > 0 is a regularization parameter that copes

with overfitting. According to the definition of graph RKHS in (6.2), the function estimate can

be written as f̂(v) =
∑N

n=1 αnκ(v, vn) := ᾱ>k̄(v), where ᾱ := [α1, . . . , αN ]>∈ RN collects

the basis coefficients, and k̄(v) := [κ(v, v1), . . . , κ(v, vN )]>. Substituting into the RKHS norm,

we find ‖f‖2H :=
∑

n

∑
n′ αnαn′κ(vn, vn′) = ᾱ>K̄ᾱ, where the N ×N kernel matrix K̄ has

entries [K̄]n,n′ := κ(vn, vn′); thus, the functional problem (6.3) boils down to

min
ᾱ∈RN

1

M

M∑
m=1

C(ᾱ>k̄(vm), ym) + µΩ
(
ᾱ>K̄ᾱ

)
. (6.4)

According to the representer theorem, the optimal solution of (6.3) admits the finite-dimensional
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form given by [186, 189]

f̂(v) =
M∑
m=1

αmκ(v, vm) := α>k(v). (6.5)

where α := [α1, . . . , αM ]>∈ RM , and k(v) := [κ(v, v1), . . . , κ(v, vM )]>. This means that the

coefficients corresponding to the unobserved nodes are all zeros. This implies that the function

over the graph can be estimated by optimizing over the M × 1 vector α [cf. (6.3)]

min
α∈RM

1

M

M∑
m=1

C(α>k(vm), ym) + µΩ
(
α>Kα

)
(6.6)

where K := Ψ>K̄Ψ. For general kernel-based learning tasks, K̄ is formed using the nonlinear

functions of pairwise correlations κ(vn, vn′) = φ>nφn′ , where φn denotes the feature vector

of node n, which can collect, for example, the buying history of users on Amazon, or the

trading history of companies in financial networks. However, such information may not be

available in practice, due to, e.g., privacy concerns. This has motivated the graph-kernel based

approaches in [186] and [189], to reconstruct the graph signal when only the network structure

is available, and the kernel matrix is selected as a nonlinear function of the graph Laplacian

matrix. Specifically, these works mostly consider undirected networks, A = A>.

Given the normalized Laplacian matrix L := I −D−1/2AD−1/2, with D := diag(A1),

and letting L := UΛU>, the family of graphical kernels is

K̄ := r†(L) := Ur†(Λ)U> (6.7)

where r(.) is a non-decreasing scalar function of the eigenvalues, and † denotes pseudo-inverse.

By selecting r(.), different graph properties can be accounted for, including smoothness, band-

limitedness, the random walk [189], and diffusion [175].

Although graph-kernel based methods are effective in reconstructing signals over graphs,

it can be observed from (6.7) that formulating K̄ generally requires an eigenvalue decompo-

sition of L, which incurs complexity O(N3) that can be prohibitive for large-scale networks.

Moreover, even though nodal feature vectors {φn} are not necessary to form K̄, the graph-

kernel-based scheme requires knowledge of the topology, meaning A, in order to estimate the

nodal function of each node. However, in networks with strict privacy requirements, nodes may
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not be willing to share such information with others. In Facebook, for example, most people do

not make their friend list public. In addition, solving (6.4) assumes that all sampled nodes are

available in batch, which may not be true in scenarios where nodes are sampled in a sequential

fashion.

In response to these challenges, an online scalable kernel-based method will be developed

in the ensuing section to deal with sequentially obtained data samples, over generally dynamic

networks. The resultant algorithm only requires encrypted versions of the nodal connectivity

patterns of other nodes, and hence it offers privacy.

6.3 Online kernel-based learning over graphs

Instead of resorting to a graph kernel that requires an eigenvalue decomposition of L in (6.7),

the present section advocates treating the connectivity pattern of each node as its feature vector,

which can be the nth column a
(c)
n and possibly the nth row (a

(r)
n )> of the adjacency (if A is

nonsymmetric). We will henceforth term this the connectivity pattern of vn, and denote it as

an, for brevity. Given an, we will interpolate unavailable nodal function values f̂(vn) using a

nonparametric approach, that is different and scalable relative to [189] and [186]. The kernel

matrix is now

[K̄]n,n′ = κ(vn, vn′) = κ(an,an′). (6.8)

Again, with M nodes sampled, the representer theorem asserts that the sought function estima-

tor has the form [70]

f̂(vn) = f̂(an) =

M∑
m=1

αmκ(am,an) := α>k(an) (6.9)

where k(an) := [κ(an,a1) . . . κ(an,aM )]>. It can be observed from (6.9) that f̂(vn) involves

the adjacency of the entire network, namely {am}Mm=1, which leads to potentially growing

complexity O(M3) as the number of sampled nodes increases [70].
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6.3.1 Batch RF-based learning over graphs

To bypass this growing complexity, we will resort to the so-called random feature approximation

[75] in order to reduce the original functional learning task in (6.4) to a problem with the number

of unknown parameters not growing with M . We first approximate κ in (6.5) using random

features (RFs) [13, 75] that are obtained from a shift-invariant kernel satisfying κ(an,an′) =

κ(an − an′). For κ(an − an′) absolutely integrable, its Fourier transform πκ(v) exists and

represents the power spectral density, which upon normalizing to ensure κ(0) = 1, can also be

viewed as a probability density function (pdf); hence,

κ(an − an′) =

∫
πκ(v)ejv

>(an−an′ )dv := Ev

[
ejv
>(an−an′ )

]
(6.10)

where the last equality is due to the definition of the expected value. Drawing a sufficient

number ofD independent and identically distributed samples {vi}Di=1 from πκ(v), the ensemble

mean (6.10) can be approximated by the sample average

κ̂(an,an′) = z>V(an)zV(an′) (6.11)

where V := [v1, . . . ,vD]> ∈ RD×N , and zV denotes the 2D × 1 real-valued RF vector

zV(a) = D−
1
2 (6.12)

×
[
sin(v>1 a), . . . , sin(v>Da), cos(v>1 a), . . . , cos(v>Da)

]>
.

Taking expectations in (6.11) and using (6.10), one can verify that Ev[κ̂(an,an′)] = κ(an,an′),

which means κ̂ is unbiased. Note that finding πκ(v) requires an N -dimensional Fourier trans-

form of κ, which in general requires numerical integration. Nevertheless, it has been shown that

for a number of popular kernels, πκ(v) is available in closed form [75]. Taking the Gaussian

kernel as an example, where κ(an,an′) = exp
(
‖an−an′‖22/(2σ2)

)
, it has a Fourier transform

corresponding to the pdf N (0, σ−2I).

Hence, the function that is optimal in the sense of (6.3) can be cast to a function approximant

over the 2D-dimensional RF space (cf. (6.9) and (6.11))

f̂RF(a) =

M∑
m=1

αmz>V(am)zV(a) := θ>zV(a) (6.13)
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where θ> :=
∑M

m=1 αmz>V(am). While f̂ in (6.5) is the superposition of nonlinear functions

κ, its RF approximant f̂RF in (6.13) is a linear function of zV(ai). As a result, (6.3) reduces to

min
θ∈R2D

1

M

M∑
m=1

C(θ>zV(am), ym) + µΩ
(
‖θ‖2

)
(6.14)

where ‖θ‖2 :=
∑

t

∑
τ αtατz

>
V(at)zV(aτ ) := ‖f‖2H. A batch solver of (6.14) has complexity

O(MD3) that does not grow with N . This batch RF-based approach scales linearly with the

number of measured nodes M , and the number of variables is 2D, which does not depend on

M . This allows us to pursue an online implementation as elaborated next.

6.3.2 Online RF-based learning over graphs

Here, we will further leverage RF-based learning over graphs to enable real-time learning and

reconstruction of signals evolving over possibly dynamic networks. A scalable online algorithm

will be introduced, which can adaptively handle sequentially sampled nodal features and update

the sought function estimates.

Training sequentially. In the training phase, we are given a network of N nodes, and the nodal

function is sampled in a sequential fashion. Letting vt denote the node sampled at the tth time

slot, and having available {at, yt} at vt, the online inference task can be written as [cf. (6.14)]

min
θ∈R2D

t∑
τ=1

L
(
θ>zV(aτ ), yτ

)
(6.15)

L
(
θ>zV(at), yt

)
:= C

(
θ>zV(at), yt

)
+ µΩ

(
‖θ‖2

)
.

We will solve (6.15) using online gradient descent [89]. Obtaining vt per slot t, the RF of its

connectivity pattern zV(at) is formed as in (6.12), and θt+1 is updated ‘on the fly,’ as

θt+1 = θt − ηt∇L(θ>t zV(at), yt) (6.16)

where {ηt} is the sequence of stepsizes that can tune learning rates. In this chapter, we will adopt

ηt = η for simplicity. Iteration (6.16) provides a functional update since f̂RF
t (a) = θ>t zV(a).

The per-iteration complexity of (6.16) is O(D), and O(MD) for the entire training process,

which scales better than O(MD3) that is required for a batch solver of (6.14).
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Inferring unavailable nodal values. After the training phase, the nodal function value over the

un-sampled nodes can be readily estimated by [cf. (6.13)]

f̂(vi) = θ̂
>

zV(ai), ∀i ∈ Sc (6.17)

where θ̂ is the final estimate after the training phase, i.e., θ̂ = θM+1, and Sc denotes the index

set of the nodes whose signal values have not been sampled in the training phase.

Newly-joining nodes. When new nodes join the network, batch graph-kernel based approaches

must expand K̄ in (6.7) by one row and one column, and re-solve (6.6) in order to form signal

estimates for the newly-joining nodes. Hence, each newly joining node will incur complexity

O(N3). The novel online RF method on the other hand, can simply estimate the signal on the

newly coming node via f̂(vnew) = θ̂zV(anew), where anew ∈ RN denotes the connectivity

pattern of the new node with the existing nodes in the network. This leads to a complexity of

O(ND) per new node. If in addition, ynew is available, then the function estimate can also be

efficiently updated via (6.16) and (6.13) using anew and ynew. The steps of our online RF-based

method are summarized in Algorithm 7b.

Remark 1 (Privacy). Note that the update in (6.16) does not require access to at directly. In-

stead, the only information each node needs to reveal is zV(at) for each at, which involves

{sin(a>t vj), cos(a>t vj)}Dj=1. Being noninvertible, these co-sinusoids functions involved in

generating the zV(at) can be viewed as an encryption of the nodal connectivity pattern, which

means that given zV(at), vector at cannot be uniquely deciphered. Hence, Algorithm 7b pre-

serves privacy.

Remark 2 (Directed graphs). It can be observed from (6.7) that for K̄ to be a valid kernel,

graph-kernel based methods require A, and henceforth L to be symmetric, which implies they

can only directly deal with symmetric/undirected graphs. Such a requirement is not necessary

for our RF-based method.

Remark 3 (Dynamic graphs). Real-world networks may vary over time, as edges may disap-

pear or appear. To cope with such changing topologies, the original graph-kernel method needs

to recalculate the kernel matrix, and resolve the batch problem whenever one edge changes. In

contrast, our online RF-based method can simply re-estimate the nodal values on the two ends

of the (dis)appeared edge using (6.13) with their current {an}.
Evidently, the performance of Algorithm 7b depends on κ that is so far considered known.
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Algorithm 7b Online kernel based learning over graphs
1: Input: step size η > 0, and number of RFs D.
2: Initialization: θ1 = 0.
3: Training:
4: for t = 1, 2, . . . ,M do
5: Obtain the adjacency vector at of sampled node vt .
6: Construct zp(at) via (6.12) using κ.
7: Update θt+1 via (6.16).
8: end for
9: Inference:

10: Construct random feature vector zV(aj) via (6.12)
11: Infer f̂(vj) = θ>M+1zV(vj), j ∈ Ω.
12: Accounting for newly-coming node
13: Construct random feature vector zV(anew) via (6.12)
14: Estimate f̂(vnew) = θ>M+1zV(vnew).
15: If ynew available, Update θ via (6.16).

As the “best” performing κ is generally unknown and application dependent, it is prudent to

adaptively select kernels by superimposing multiple kernels from a prescribed dictionary, as we

elaborate next.

6.4 Online Graph-adaptive MKL

In the present section, we develop an online graph-adaptive learning approach that relies on

random features, and leverages multi-kernel approximation to estimate the desired f based

on sequentially obtained nodal samples over the graph. The proposed method is henceforth

abbreviated as Gradraker.

The choice of κ is critical for the performance of single kernel based learning over graphs,

since different kernels capture different properties of the graph, and thus lead to function esti-

mates of variable accuracy [186]. To deal with this, combinations of kernels from a preselected

dictionary {κp}Pp=1 can be employed in (6.3); see also [13, 186]. Each combination belongs to

the convex hull K̄ := {κ̄ =
∑P

p=1 ᾱpκp, ᾱp ≥ 0,
∑P

p=1 ᾱp = 1}. With H̄ denoting the RKHS

induced by κ̄ ∈ K̄, one then solves (6.3) with H replaced by H̄ := H1
⊕ · · ·⊕HP , where

{Hp}Pp=1 represent the RKHSs corresponding to {κp}Pp=1 [63].

The candidate function f̄ ∈ H̄ is expressible in a separable form as f̄(a) :=
∑P

p=1 f̄p(a),
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where f̄p(a) belongs to Hp, for p ∈ P := {1, . . . , P}. To add flexibility per kernel in our

ensuing online MKL scheme, we let wlog {f̄p = wpfp}Pp=1, and seek functions of the form

f(v) = f(a) :=
P∑
p=1

w̄pfp(a) ∈ H̄ (6.18)

where f := f̄/
∑P

p=1wp, and the normalized weights {w̄p := wp/
∑P

p=1wp}Pp=1 satisfy w̄p ≥
0, and

∑P
p=1 w̄p = 1. Given the connectivity pattern at of the tth sampled node vt, an RF

vector zp(at) is generated per p from the pdf πκp(v) via (6.12), where zp(at) := zVp(at) for

notational brevity. Hence, per kernel κp and node sample t, we have [cf. (6.13)]

f̂RF
p,t (at) = θ>p,tzp(at). (6.19)

Letting Lt(f̂RF
p (at)) := L

(
θ>zVp(at), yt

)
in (6.15), and as in (6.16), θp,t is updated via

θp,t+1 = θp,t − η∇L(θ>p,tzp(at), yt) (6.20)

with η ∈ (0, 1) chosen constant to effect the adaptation. As far as w̄p,t is concerned, since it

resides on the probability simplex, a multiplicative update is well motivated as discussed also

in, e.g., [13, 89]. For the un-normalized weights, this update is available in closed form as [13]

wp,t+1 = wp,t exp
(
−ηLt

(
f̂RF
p,t (at)

))
. (6.21)

Having found {wp,t} as in (6.21), the normalized weights in (6.18) are obtained as w̄p,t :=

wp,t/
∑P

p=1wp,t. Note from (6.21) that when f̂RF
p,t has a larger loss relative to other f̂RF

p′,t with

p′ 6= p for the tth sampled node, the corresponding wp,t+1 decreases more than the other

weights. In other words, a more accurate approximant tends to play a more important role

in predicting the ensuing sampled node. In summary, our Gradraker for online graph MKL is

listed as Algorithm 8b.

Remark 4 (Comparison with batch MKL). A batch MKL based approach for signal recon-

struction over graphs was developed in [186]. It entails an iterative algorithm whose complexity

grows with N in order to jointly estimate the nodal function, and to adaptively select the kernel

function. When new nodes join the network, [186] re-calculates the graphical kernels and re-

solves the overall batch problem, which does not scale with the network size. In addition, [186]
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Algorithm 8b Gradraker algorithm
1: Input: Kernels κp, p = 1, . . . , P , step size η > 0, and number of RFs D.
2: Initialization: θp,1 = 0.
3: Training:
4: for t = 1, 2, . . . , T do
5: Obtain the adjacency vector at of node vt .
6: Construct zp(at) via (6.12) using κp for p = 1, . . . , P .
7: Predict f̂RF

t (at) =
∑P

p=1 w̄p,tf̂
RF
p,t (at)

8: Observe loss function Lt, incur Lt(f̂RF
t (at)).

9: for p = 1, . . . , P do
10: Obtain loss L(θ>p,tzp(at), yt) or Lt(f̂RF

p,t (at)).
11: Update θp,t+1 and wp,t+1 via (6.20) and (6.21).
12: end for
13: end for
14: Inference:
15: Construct RF vector {zp(aj)} using {κp}.
16: Infer f̂(vj) =

∑P
p=1 w̄p,T+1θ

>
p,T+1zp(vj).

17: Accounting for newly-coming node
18: Construct RF vector {zp(anew)} using {κp}.
19: Estimate f̂(vnew) =

∑P
p=1 w̄p,T+1θ

>
p,T+1zp(vnew).

20: If ynew available update {θp, wp} via (6.20) and (6.21).

is not privacy preserving in the sense that in order to estimate the function at any node, one

needs to have access to the connectivity pattern of the entire network.

Remark 5 (Comparison with k-NN). An intuitive yet efficient way to predict function values

of a newly joining node is to simply combine the values of its k nearest neighbors (k-NN)

[192, 193]. Efficient as it is, k-NN faces several challenges: a) At least one of the neighbors

must be labeled, which does not always hold in practice, and is not required by the Gradraker;

and b) k-NN can only account for local information, while the Gradraker takes also into account

the global information of the graph.

6.4.1 Generalizations

So far, it is assumed that each node n only has available its own connectivity feature vector an.

This allows Gradraker to be applied even when limited information is available about the nodes,

which many existing algorithms that rely on nodal features cannot directly cope with.

If additional feature vectors {φi,n}Ii=1 are actually available per node n other than its own
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an, it is often not known a priori which set of features is the most informative for estimating the

signal of interest on the graph. To this end, the novel Gradraker can be adapted by treating the

functions learned from different sets of features as an ensemble of learners, and combine them

in a similar fashion as in (6.18), that is,

f(vn) =

I∑
i=1

βifi(φi,n) (6.22)

Applications to several practical scenarios are discussed in the following.

Semi-private networks. In practice, a node may tolerate sharing its links to its neighbors,

e.g., users of Facebook may share their friends-list with friends. In this scenario, each node

not only knows its own neighbors, but also has access to who are its neighbors’ neighbors,

i.e., two-hop neighbors. Specifically, node n has access to an, as well as to the nth column of

A(2) := AA [9], and a learner f2(φ2,n) can henceforth be introduced and combined in (6.22).

Moreover, when nodes are less strict about privacy, e.g., when a node is willing to share its

multi-hop neighbors, more learners can be introduced and combined ‘on the fly’ by selecting

φi,n as the nth column of A(i) in (6.22).

Multilayer networks. Despite their popularity, ordinary networks are often inadequate to de-

scribe increasingly complex systems. For instance, modeling interactions between two individ-

uals using a single edge can be a gross simplification of reality. Generalizing their single-layer

counterparts, multilayer networks allow nodes to belong to Ng groups, called layers [194,195].

These layers could represent different attributes or characteristics of a complex system, such as

temporal snapshots of the same network, or different types of groups in social networks (family,

soccer club, or work related). Furthermore, multilayer networks are able to model systems that

typically cannot be represented by traditional graphs, such as heterogeneous information net-

works [196,197]. To this end, Gradraker can readily incorporate the information collected from

heterogenous sources, e.g., connectivity patterns {Ai}Ngi=1 from different layers, by adopting a

kernel based learner fi(ai,n) on the ith layer and combining them as in (6.22).

Nodal features available. In certain cases, nodes may have nodal features [9] in addition to

their {an}. For example, in social networks, other than the users’ connectivity patterns, we

may also have access to their shopping history on Amazon. In financial networks, in addition to

the knowledge of trade relationships with other companies, there may be additional information

available per company, e.g., the number of employees, category of products the company sales,
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or the annual profit. Gradraker can also incorporate this information by introducing additional

learners based on the nodal feature vectors, and combine them as in (6.22).

6.5 Performance analysis

To analyze the performance of the novel Gradraker algorithm, we assume that the following are

satisfied.

(as1) For all sampled nodes {vt}Tt=1, the loss function L(θ>zV(at), yt) in (6.15) is convex w.r.t.

θ.

(as2) For θ belonging to a bounded set Θ with ‖θ‖ ≤ Cθ, the loss is bounded; that is,

L(θ>zV(at), yt) ∈ [−1, 1], and has bounded gradient, meaning, ‖∇L(θ>zV(at), yt)‖ ≤ L.

(as3) The kernels {κp}Pp=1 are shift-invariant, standardized, and bounded, that is, κp(an,an′)≤
1, ∀an,an′; and w.l.o.g. they also have bounded entries, meaning ‖an‖ ≤ 1,∀n.

Convexity of the loss under (as1) is satisfied by the popular loss functions including the

square loss and the logistic loss. As far as (as2), it ensures that the losses, and their gradi-

ents are bounded, meaning they are L-Lipschitz continuous. While boundedness of the losses

commonly holds since ‖θ‖ is bounded, Lipschitz continuity is also not restrictive. Considering

kernel-based regression as an example, the gradient is (θ>zV(xt)− yt)zV(xt) +λθ. Since the

loss is bounded, e.g., ‖θ>zV(xt) − yt‖ ≤ 1, and the RF vector in (6.12) can be bounded as

‖zV(xt)‖ ≤ 1, the constant is L := 1 + λCθ using the Cauchy-Schwartz inequality. Kernels

satisfying the conditions in (as3) include Gaussian, Laplacian, and Cauchy [75]. In general,

(as1)-(as3) are standard in online convex optimization (OCO) [53, 89], and in kernel-based

learning [75, 86, 90].

In order to quantify the performance of Gradraker, we resort to the static regret metric,

which quantifies the difference between the aggregate loss of an OCO algorithm, and that of the

best fixed function approximant in hindsight, see also e.g., [53,89]. Specifically, for a sequence

{f̂t} obtained by an online algorithm A, its static regret is

Regs
A(T ) :=

T∑
t=1

Lt(f̂t(at))−
T∑
t=1

Lt(f∗(at)) (6.23)

where f̂RF
t will henceforth be replaced by f̂t for notational brevity; and, f∗(·) is defined as the
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batch solution

f∗(·) ∈ arg min
{f∗p , p∈P}

T∑
t=1

Lt(f∗p (at))

with f∗p (·) ∈ arg min
f∈Fp

T∑
t=1

Lt(f(at)) (6.24)

where Fp := Hp, with Hp representing the RKHS induced by κp. We establish the regret of

our Gradraker approach in the following lemma.

Lemma 11: Under (as1), (as2), and with f̂∗p defined as f̂∗p (·) ∈ arg minf∈F̂p
∑T

t=1 Lt(f(at)),

with F̂p := {f̂p|f̂p(a) = θ>zp(a), ∀θ ∈ R2D}, for any p, the sequences {f̂p,t} and {w̄p,t}
generated by Gradraker satisfy the following bound

T∑
t=1

Lt
( P∑
p=1

w̄p,tf̂p,t(at)

)
−

T∑
t=1

Lt(f̂∗p (at))

≤ lnP

η
+
‖θ∗p‖2

2η
+
ηL2T

2
+ ηT (6.25)

where θ∗p is associated with the best RF function approximant f̂∗p (a) =
(
θ∗p
)>

zp(a).

Proof: See Appendix 3.7.1

In addition to bounding the regret in the RF space, the next theorem compares the Gradraker

loss relative to that of the best functional estimator in the original RKHS.

Theorem 7 Under (as1)-(as3), and with f∗ defined as in (6.24), for a fixed ε > 0, the following

bound holds with probability at least 1− 28
(σp
ε

)2
exp

(−Dε2
4N+8

)
T∑
t=1

Lt

 P∑
p=1

w̄p,tf̂p,t(at)

− T∑
t=1

Lt (f∗(at))

≤ lnP

η
+

(1 + ε)C2

2η
+
ηL2T

2
+ ηT+εLTC (6.26)

where C is a constant, while σ2
p := Eπκp [‖v‖2] is the second-order moment of the RF vector

norm. Setting η = ε = O(1/
√
T ) in (6.26), the static regret in (6.23) leads to

Regs
Gradraker(T ) = O(

√
T ). (6.27)
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(b) Testing runtime

Figure 6.1: Inference performance versus number of nodes for synthetic dataset generated from
graph diffusion kernel

Proof: See Appendix 3.7.2

Observe that the probability of (6.26) to hold grows as D increases, and one can always

find a D to ensure a positive probability for a given ε. Theorem 7 establishes that with a proper

choice of parameters, the Gradraker achieves sub-linear regret relative to the best static function

approximant in (6.24), which means the novel Gradraker algorithm is capable of capturing the

nonlinear relationship among nodal functions accurately, as long as enough nodes are sampled

sequentially.

In addition, it is worth noting that Theorem 7 holds true regardless of the sampling order

of the nodes {v1, . . . , vT }. However, optimizing over the sampling pattern is possible, and

constitutes one of our future research directions.

6.6 Numerical tests

In this section, Gradraker is tested on both synthetic and real datasets to corroborate its effec-

tiveness. The tests will mainly focus on regression tasks for a fair comparison with existing

alternatives.
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Figure 6.2: Inference performance versus number of nodes for synthetic dataset generated from
Gaussian kernel

6.6.1 Synthetic data test

Data generation. An Erdös-Rényi graph [198] with binary adjacency matrix A0 ∈ RN×N

was generated with probability of edge presence π = 0.2, and its adjacency was symmetrized

as A = A0 + A>0 . This symmetrization is not required by Gradraker, but it is necessary for

alternative graph kernel based methods. A function over this graph was then generated with

each entry of the coefficient vector α ∈ RN drawn uniformly from [0.5, 1], and each entry of

the noise e drawn from N (0, 0.01I). In each experiment, the sampling matrix Ψ is randomly

generated so that M = 0.05N of the nodes are randomly sampled, and the remaining N −M
nodes are treated as newly-joining nodes, whose function values and connectivity patterns are

both unknown at the training phase, and whose nodal function values are estimated based on

their connectivity with existing nodes in the network during the testing phase. All algorithms

are carried out on the training set of M nodes, and the obtained model is used to estimate the

function value on the newly arriving nodes. The runtime for estimating the function value on

the newly-joining nodes, as well as the generalization NMSE := 1
|Sc|‖x̂Sc − xSc‖22/‖xSc‖22

performance is evaluated, with Sc denoting the index set of new nodes. The Gradraker adopts a

dictionary consisting of 2 Gaussian kernels with parameters σ2 = 1, 5, using D = 10 random

features, and it is compared with: a) the kNN algorithm, with k selected as the maximum

number of neighbors a node has in a specific network, and with the combining weights set to 1/k
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Figure 6.3: Inference performance versus number of sampled nodes in temperature dataset

in unweighted graphs, and ail/
∑

j∈Ni aij for the lth neighbor in weighted graphs; b) the graph

kernel (GK) based method using diffusion kernels with different bandwidths (named as GK-

DF), or band-limited kernels with different bandwidths (GK-BL); and c) kernel based learning

without RF approximation (KL) with a Gaussian kernel of σ2 = 5. Results are averaged over

100 independent runs. The regularization parameter for all algorithms is selected from the set

µ = {10−7, 10−6, . . . , 100} via cross validation.

Testing results. Figure 6.1 illustrates the performance in terms of the average runtime and

NMSE versus the number of nodes (size) of the network. In this experiment, K̄ in (6.7) is gen-

erated from the normalized graph Laplacian L, using the diffusion kernel r(λ) = exp(σ2λ/2).

A bandwidth of σ2 = 5 was used to generate the data. It is observed that GK attains the best

generalization accuracy when the ground-truth model is known, but its computational com-

plexity grows rapidly with the network size. However, GK does not perform as well when a

mismatched kernel is applied. The Gradraker method on the other hand, is very efficient, while

at the same time it can provide reasonable estimates of the signal on the newly arriving nodes,

even without knowledge about the kernels. The k-NN method is very efficient, but does not

provide as reliable performance as the Gradraker.

Figure 6.2 depicts the performance of competitive algorithms. Matrix K̄ for data generation

is formed based on (6.8) using the Gaussian kernel κ(ai − aj) = exp(‖ai − aj‖2/σ2), with

σ2 = 5. In this case, KL exactly matches the true model, and hence it achieves the best
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Figure 6.4: Inference performance versus number of sampled nodes in email dataset

performance. However, it is the most complex in terms of runtime. Meanwhile, GK-based

methods suffer from model mismatch, and are also relatively more complex than Graderaker.

The novel Gradraker is capable of estimating the nodal function on the newly joining nodes with

high accuracy at very low computational complexity. Note that in real-world scenarios, accurate

prior information about the underlying model is often unavailable, in which case Gradraker can

be a more reliable and efficient choice.

6.6.2 Real data tests

Reconstruction of the temperature data. This subsection tests the performance of Gradraker

on a real temperature dataset. The dataset comprises 24 signals corresponding to the average

temperature per month in the intervals 1961− 1980 and 1991− 2010 measured by 89 stations

in Switzerland [199]. The training set contains the first 12 signals, corresponding to the interval

1961−1980, while the test set contains the remaining 12. Each station is represented by a node,

and the graph was constructed using the algorithm in [200] based on the training signals. Given

the test signal on a randomly chosen subset of M vertices, the values at the remaining N −M
vertices are estimated as newly-coming nodes. The generalization NMSE over the N − M

nodes is averaged across the test signals.

Fig. 6.3 compares the performance of Gradraker with those of competing alternatives.

Gradraker adopts a dictionary consisting of 3 Gaussian kernels with parameters σ2 = 1, 5, 10,



154

200 300 400 500 600 700 800 900 1000

Number of measurements (M)

0

1

2

3

4

5

6
G

e
n

e
ra

liz
a

ti
o

n
 N

M
S

E

kNN

Gradraker

GK-DF (
2
=5)

GK-DF (
2
=1)

KL (
2
=5)

GK-BL(B=100)

GK-BL(B=200)

(a) Generalization NMSE

200 300 400 500 600 700 800 900 1000

Number of measurements (M)

10-3

10-2

10-1

100

101

R
u

n
ti
m

e

kNN

Gradraker

GK-DF (
2
=5)

GK-DF (
2
=1)

KL (
2
=5)

GK-BL(B=100)

GK-BL(B=200)

(b) Runtime

Figure 6.5: Inference performance versus number of sampled nodes in Cora dataset

using D = 100 random features. It is clear from Fig. 6.3 that Gradraker outperforms GK in

both generalization NMSE and runtime. On the other hand, even though KL achieves lower

generalization NMSE, it incurs a much higher complexity.

Reconstruction of the Email-Eu-core data. The Eu-core network was generated using email

data from a large European research institution [201], where each node represents a person, and

an edge (i, j) is present if person i sent person j at least one email. The e-mails only represent

communication between institution members (the core), and the dataset does not contain in-

coming messages from or outgoing messages to the rest of the world. The dataset also contains

“ground-truth” community memberships of the nodes. Each individual belongs to one of 42 de-

partments at the research institute. During the experiment, the department labels are considered

to be yn that are to be sampled and estimated. The graph consists of N = 1, 005 nodes, and

25, 571 edges. Gradraker adopts a dictionary consisting of 2 Gaussian kernels with parameters

σ2 = 1, 10, from which D = 10 random features are generated. The test results were averaged

over 100 independent runs with randomly sampled nodes.

Fig. 6.4 compares the performance of Gradraker with those of alternative algorithms when

different numbers of nodal labels are observed. It is clear that the RF-based approach outper-

forms the GK-based method in both reconstruction accuracy and runtime. While the batch KL

method without RF approximation outperforms the RF method, it incurs considerably higher

computational complexity.
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Reconstruction of the Cora data. This subsection tests the Gradraker algorithm on the Cora

citation dataset [178]. Gradraker adopts a dictionary consisting of 2 Gaussian kernels with

parameters σ2 = 1, 10, using D = 20 random features. The results were averaged over 100

independent runs. The Cora dataset consists of 2, 708 scientific publications classified into one

of seven classes. The citation network consists of 5, 429 links. The network is constructed so

that a link connects node i to node j if paper i cites paper j, and the category id the paper

belongs to is to be reconstructed. It can be observed again from Figure 6.5, that the Gradraker

markedly outperforms the GK algorithms in terms of generalization NMSE, and is much more

computationally efficient than all other algorithms except the kNN method, which however does

not perform as well.

It can be readily observed from our numerical results over synthetic and real datasets, that

the Gradraker provides reliable performance in terms of NMSE in all tests, while at the same

time, it scales much better than all kernel based alternatives. This is because the alternative

kernel-based algorithms require re-computing the kernel matrix whenever a new node joins the

network. It is worth noting that all kernel-based alternatives require exact knowledge of the

entire network topology, which is not necessary for GradRaker that only requires {zV(an)}.
These tests corroborate the potential of GradRaker for application settings, where the graphs

grow and nodes have privacy constraints.

6.7 Summary

The present chapter deals with the problem of reconstructing signals over graphs, from sam-

ples over a subset of nodes. An online MKL based algorithm is developed, which is capable

of estimating and updating the nodal functions even when samples are collected sequentially.

The novel online scheme is highly scalable and can estimate the unknown signals on newly

joining nodes. Unlike many existing approaches, it only relies on encrypted nodal connectivity

information, which is appealing for networks where nodes have strict privacy constraints.

This work opens up a number of interesting directions for future research, including: a) ex-

ploring distributed implementations that are well motivated in large-scale networks; b) graph-

adaptive learning when multiple sets of features are available; and c) developing adaptive sam-

pling strategies for Gradraker.
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