63 research outputs found

    The Achievable Dynamics via Control by Interconnection

    Full text link

    What can the canonical controller in principle tell us?

    Get PDF
    Given a plant and a desired specification our goal is to construct a controller system which, when interconnected with the plant, yields a system that behaves like the desired specification. We can always construct the canonical controller earlier introduced. For linear systems there exists a controller which when interconnected to the plant yields the desired behaviour if and only if the canonical controller is itself one such controller. In this paper we extend this result to nonlinear systems. It turns out that one has to look at the canonical controller together with its subsystems. We obtain necessary and sufficient conditions for the existence of a controller for a class of nonlinear systems. We end with examples which show that in certain cases looking at subsystems of the canonical controller also does not suffice

    Verification of Stochastic Process Calculi

    Get PDF

    Population Based Methods for Optimising Infinite Behaviours of Timed Automata

    Get PDF
    Timed automata are powerful models for the analysis of real time systems. The optimal infinite scheduling problem for double-priced timed automata is concerned with finding infinite runs of a system whose long term cost to reward ratio is minimal. Due to the state-space explosion occurring when discretising a timed automaton, exact computation of the optimal infinite ratio is infeasible. This paper describes the implementation and evaluation of ant colony optimisation for approximating the optimal schedule for a given double-priced timed automaton. The application of ant colony optimisation to the corner-point abstraction of the automaton proved generally less effective than a random method. The best found optimisation method was obtained by formulating the choice of time delays in a cycle of the automaton as a linear program and utilizing ant colony optimisation in order to determine a sequence of profitable discrete transitions comprising an infinite behaviour

    Unary negation

    Full text link

    Receding horizon temporal logic planning for dynamical systems

    Get PDF
    This paper bridges the advances in computer science and control to allow automatic synthesis of control strategies for complex dynamical systems which are guaranteed, by construction, to satisfy the desired properties even in the presence of adversary. The desired properties are expressed in the language of temporal logic. With its expressive power, a wider class of properties than safety and stability can be specified. The resulting system consists of a discrete planner that plans, in the abstracted discrete domain, a set of transitions of the system to ensure the correct behaviors and a continuous controller that continuously implements the plan. To address the computational difficulties in the synthesis of a discrete planner, we present a receding horizon based scheme for executing finite state automata that essentially reduces the synthesis problem to a set of smaller problems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The total of 60 regular papers presented in these volumes was carefully reviewed and selected from 155 submissions. The papers are organized in topical sections as follows: Part I: Program verification; SAT and SMT; Timed and Dynamical Systems; Verifying Concurrent Systems; Probabilistic Systems; Model Checking and Reachability; and Timed and Probabilistic Systems. Part II: Bisimulation; Verification and Efficiency; Logic and Proof; Tools and Case Studies; Games and Automata; and SV-COMP 2020

    Optimization of Lyapunov invariants in analysis and implementation of safety-critical software systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (leaves 168-176).This dissertation contributes to two major research areas in safety-critical software systems, namely, software analysis, and software implementation. In reference to the software analysis problem, the main contribution of the dissertation is the development of a novel framework, based on Lyapunov invariants and convex optimization, for verification of various safety and performance specifications for software systems. The enabling elements of the framework for software analysis are: (i) dynamical system interpretation and modeling of computer programs, (ii) Lyapunov invariants as behavior certificates for computer programs, and (iii) a computational procedure for finding the Lyapunov invariants. (i) The view in this dissertation is that software defines a rule for iterative modification of the operating memory at discrete instances of time. Hence, it can be modeled as a discrete-time dynamical system with the program variables as the state variables, and the operating memory as the state space. Three specific modeling languages are introduced which can represent a broad range of computer programs of interest to the control community. These are: Mixed Integer-Linear Models, Graph Models, and Linear Models with Conditional Switching. (ii) Inspired by the concept of Lyapunov functions in stability analysis of nonlinear dynamical systems, Lyapunov invariants are introduced and proposed for analysis of behavioral properties, and verification of various safety and performance specifications for computer programs. In the same spirit as standard Lyapunov functions, a Lyapunov invariant is an appropriately defined function of the state which satisfies a difference inequality along the trajectories. It is shown that variations of Lyapunov invariants satisfying certain technical conditions can be formulated for verification of several common specifications.(cont.) These include but are not limited to: absence of overflow, absence of division-by-zero, termination in finite time, and certain user-specified program assertions. (iii) A computational procedure based on convex relaxation techniques and numerical optimization is proposed for finding the Lyapunov invariants that prove the specifications. The framework is complemented by the introduction of a notion of optimality for the graph models. This notion can be used for constructing efficient graph models that improve the analysis in a systematic way. It is observed that the application of the framework to (graph models of) programs that are semantically identical but syntactically different does not produce identical results. This suggests that the success or failure of the method is contingent on the choice of the graph model. Based on this observation, the concepts of graph reduction, irreducible graphs, and minimal and maximal realizations of graph models are introduced. Several new theorems that compare the performance of the original graph model of a computer program and its reduced offsprings are presented. In reference to the software implementation problem for safety-critical systems, the main contribution of the dissertation is the introduction of an algorithm, based on optimization of quadratic Lyapunov functions and semidefinite programming, for computing optimal state space implementations for digital filters. The particular implementation that is considered is a finite word-length implementation on a fixed-point processor with quantization before or after multiplication. The objective is to minimize the effects of finite word-length constraints on performance deviation while respecting the overflow limits. The problem is first formulated as a special case of controller synthesis where the controller has a specific structure, which is known to be a hard non-convex problem in general.(cont.) It is then shown that this special case can be convexified exactly and the optimal implementation can be computed by solving a semidefinite optimization problem. It is observed that the optimal state space implementation of a digital filter on a machine with finite memory, does not necessarily define the same transfer function as that of an ideal implementation.by Mardavij Roozbehani.Ph.D
    • …
    corecore