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Abstract

A general notion of bisimulation is defined for linear input-state-output systems, using analo-
gies with the theory of concurrent processes. A characterization of bisimulation and an
algorithm for computing the maximal bisimulation relation is derived using geometric con-
trol theory. Bisimulation is shown to be a notion which unifies the concepts of state space
equivalence and state space reduction, and which allows to study equivalence of systems with
non-minimal state space dimension. The notion of bisimulation is especially powerful for
’non-deterministic’ dynamical systems, and leads in this case to a notion of equivalence which
is finer than equality of external behavior. For abstractions of systems it is shown how the
results specialize to previously obtained results by other authors. Extensions of the main
results to the nonlinear case are provided.

Keywords State space equivalence, bisimulation, controlled invariance, non-minimal
systems, maximal bisimulation relation, non-deterministic systems, abstraction, nonlinear
systems.

1 Introduction

A common theme in theoretical computer science (in particular, the theory of distributed
processes and computer-aided verification) and in systems and control theory is to charac-
terize systems which are ‘externally equivalent’. The intuitive idea is that we only want to
distinguish between two systems if the distinction can be detected by an external system
interacting with these systems. This is a fundamental notion in design, enabling us to take a
’divide and rule’ strategy, and in analysis, allowing us to switch between externally equivalent
representations of the same system and to reduce sub-systems to externally equivalent but
simpler sub-systems.

More specifically, a main issue in the theory of distributed processes and computer-aided
verification is to develop a mathematical framework that can handle the state explosion in
complex systems. A crucial notion in this endeavor is the concept of bisimulation which
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expresses when a sub-process can be considered to be externally equivalent to another (hope-
fully simpler) process. On the other hand, classical notions in systems and control theory
are state space equivalence of dynamical systems, and reduction of a dynamical system to an
equivalent system with minimal state space dimension. These notions have been instrumental
in e.g. linking input-output models to state space models, and in studying the properties of
interconnected systems.

Developments in both areas have been rather independent (‘concurrently but without
communication’), one of the reasons being that the mathematical formalisms for describing
both types of systems (discrete processes on the one hand, and continuous dynamical systems
on the other hand) are rather different. However, with the rise of interest in hybrid systems,
which are systems with interacting discrete and continuous dynamics, and with the renewed
interest in complexity in systems theory, this situation seems not very productive, as has been
argued before by several authors.

The aim of this paper is to make another step in this reapproachment between the theory
of concurrent processes and mathematical systems theory by defining and studying in detail
a notion of bisimulation for continuous dynamical systems, and to relate it to the common
system-theoretic notions of state space equivalence and state space reduction.

Such an extension of the notion of bisimulation to continuous dynamical systems has been
explored before in a series of innovative papers by Pappas and co-authors [13, 14, 2, 18, 19,
20, 9, 29], and the present paper is very much inspired by this work. The main difference is
that in [18, 19, 20, 29] the focus is on characterizing bisimulation of a dynamical system by a
‘projected’ dynamical system with lower state space dimension (‘an abstraction’; see Section
5), while in the present paper we deal with a general notion of bisimulation between two
continuous dynamical systems and we elaborate on the relations with the system-theoretic
notions of state space equivalence and state space reduction. (We note that a general definition
of bisimulation relations for dynamical systems has been given before in [9].)

In the main part of this paper we study continuous dynamical systems of the form

ẋ = Ax + Bu + Gd, x ∈ R
n, u ∈ R

m, d ∈ R
s

y = Cx, y ∈ R
p

(1)

where x are as usual the state variables, u are the input variables, y are the output variables,
while d are additional input variables, which can be thought of as disturbances. The basic
problem we address is when two systems of the form (1) can be considered to be externally
equivalent, in the sense that for all time instants t0 the solution trajectories for t ≥ t0 of one
system are mimicked by the other in such a way that the input and output trajectories u(t)
and y(t) of both systems are the same for t ≥ t0, without imposing any relation between the
values of their disturbance variables d.

In case the disturbance variables d are absent this problem comes down to the usual
system-theoretic notion of state space equivalence, under the additional assumption that the
systems have minimal state space dimension, see e.g. [5, 6]. At the same time, the problem
bears much similarity with the notion of bisimulation as introduced by Milner and Park
[15, 21] in the study of concurrent processes; especially in the presence of disturbance inputs
d. Finally, the notion is closely linked to the notion of controlled invariance, as introduced
in linear systems theory by Wonham & Morse [31] and Basile & Marro [4]. The last two
connections were already explored by Pappas and co-authors [19, 18, 20, 29] in the more
restricted context when a system is bisimilar to an ”abstraction” of itself. (Note furthermore
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that in [18, 19, 29, 20] the input term Bu plays the same role as the disturbance term Gd in
our setting, and thus bisimulation only involves equality of the outputs y = Cx.) We shall
make explicit how our results generalize the results of [19, 18, 20, 29, 9] in Section 5.

The reason why the above notion of equivalence is similar to the notion of bisimulation as
used in computer science can be briefly explained as follows. The notion of bisimulation has
been introduced in order to handle external equivalence of (interactive) concurrent processes.
The concept is especially powerful for concurrent processes which are non-deterministic in the
sense that branching in the (discrete) state may occur while the traces (‘words’) generated
by the transition system are the same. (Thus ‘non-deterministic’ is not meant in a stochastic
sense but in the sense that the current state together with the label of the transition does not
uniquely determine the next state.) In fact, the existence of a bisimulation relation between
two deterministic processes is equivalent to equality of their external behaviors (the set of
‘traces’, or the ‘language’ generated by the process), and in this case bisimulation provides
an efficient way to check equality of external behavior. For non-deterministic processes,
however, bisimulation provides a finer equivalence than equality of external behavior, and,
for example, also captures the deadlock behavior of concurrent processes. A similar picture
appears to arise for bisimulation of continuous dynamical systems (1). First, a type of ‘non-
determinism’ is present in systems (1) if we consider u and y as the external variables of the
system (analogously to the labels of the discrete transitions of a process), while d denotes a
generator for non-determinism in the evolution of the state x. If d is absent then (1) reduces to
an ordinary “deterministic” system. The interpretation of d as an internal generator for non-
determinism may be stressed (but for simplicity of notation we will not do so) by suppressing
the appearance of the variable d by rewriting (1) equivalently as the differential inclusion

ẋ − Ax − Bu ∈ im G
y = Cx

(2)

One of the results established in this paper is that for deterministic systems (1) (d absent)
bisimulation is equivalent to equality of external behavior, while generalizing the usual notion
of state space equivalence by allowing for systems with non-minimal state space dimension.
For non-deterministic systems, however, bisimulation will be a stronger (finer) type of equiv-
alence than equality of external behavior.

The structure of the paper is as follows. In Section 2 a (linear-)algebraic characterization
of bisimulation is given, based on geometric control theory. The maximal bisimulation relation
is computed in Section 3. Then Section 4 deals with reduction of dynamical systems using the
notion of a bisimulation relation between the system and itself. Simulation and abstraction is
treated in Section 5, making explicit the relation with previously obtained results in [19]. In
Section 6 the theory is specialized to deterministic systems recovering classical results on state
space equivalence and reduction. Although most of the paper is devoted to linear systems
(1) we briefly describe in Section 7 how the theory developed for linear dynamical systems
can be generalized to a nonlinear context by using tools from nonlinear geometric control
theory; especially the notions of a controlled invariant submanifold and a controlled invariant
distribution or foliation. Finally, Section 8 contains the conclusions and questions for further
research.
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2 Bisimilar linear dynamical systems

Consider two dynamical systems of the form (1):

Σi :
ẋi = Aixi + Biui + Gidi, xi ∈ Xi, ui ∈ U , di ∈ Di

yi = Cixi, yi ∈ Y i = 1, 2
(3)

with Xi,Di,U ,Y finite-dimensional linear spaces (over R). Before defining bisimulation we
need to specify the solution trajectories of the systems (the ‘semantics’). That is, we have
to specify the function classes of admissible input functions u : [0,∞) → U and admissible
disturbance functions d : [0,∞) → D, together with compatible function classes of state and
output solutions x : [0,∞) → X and y : [0,∞) → Y. For compactness of notation we will
usually denote these time-functions respectively by u(·), d(·), x(·) and y(·). The exact class
from which the functions are chosen is for purposes of this paper not really important, as long
as the state trajectories x(·) are at least absolutely continuous. For example, we can take all
functions to be C∞, or piecewise C∞ with the additional requirement that x(·) is continuous.

Definition 2.1. A bisimulation relation between two linear systems Σ1 and Σ2 is a linear
subspace

R ⊂ X1 ×X2

with the following property. Take any (x10, x20) ∈ R and any joint input function u1(·) =
u2(·). Then for every disturbance function d1(·) there should exist a disturbance function
d2(·) such that the resulting state solution trajectories x1(·), with x1(0) = x10, and x2(·),
with x2(0) = x20, satisfy

(i) (x1(t), x2(t)) ∈ R, for all t ≥ 0 (4)

(ii) C1x1(t) = C2x2(t), for all t ≥ 0 (5)

(or more precisely, for all t ≥ 0 for which the trajectories are defined), and conversely, for
every disturbance function d2(·) there should exist a disturbance function d1(·) such that
again the resulting state trajectories x1(·) and x2(·) satisfy (4) and (5).

Hence for every pair (x10, x20) ∈ R all possible trajectories x1(·) with x1(0) = x10 can be
‘simulated’ by a trajectory x2(·) with x2(·) = x20 and conversely all possible trajectories x2(·)
with x2(0) = x20 can be ‘simulated’ by a trajectory x1(·) with x1(·) = x10, in the sense of
giving the same input-output data for all future times while (x1(t), x2(t)) ∈ R for all t ≥ 0.

Remark 2.2. For linear systems it is natural to restrict to bisimulation relations R which
are linear subspaces. This can be done without much loss of generality. Indeed, the maximal
bisimulation relation as produced by Algorithm 3.3 is a linear subspace. Furthermore, if a
general subset R satisfies the conditions of Definition 2.1 then so does its linear closure.

Remark 2.3. A similar definition (in the nonlinear case, cf. Section 7, and for the case that
ui is absent) was given in [9].

Remark 2.4. Note that the existence of a bisimulation relation between systems defines an
equivalence relation between systems. Clearly Rid := {(x1, x1) | x1 ∈ X1} is a bisimulation
relation between Σ1 given by (3) and itself. Furthermore, the existence of a bisimulation
relation between Σ1 and Σ2 is symmetric. Finally, if R12 ⊂ X1 ×X2 is a bisimulation relation
between Σ1 and Σ2, and R23 ⊂ X2 × X3 between Σ2 and Σ3 then R13 := {(x1, x3) | ∃x2 ∈
X2 s.t. (x1, x2) ∈ R12, (x2, x3) ∈ R23} is a bisimulation relation between Σ1 and Σ3.
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Definition 2.5. Two systems Σ1 and Σ2 as in (3) are bisimilar, denoted Σ1 ∼ Σ2, if there
exists a bisimulation relation R ⊂ X1 ×X2 with the property that

π1(R) = X1, π2(R) = X2 (6)

where πi : X1 ×X2 → Xi, i = 1, 2, denote the canonical projections.

Remark 2.6. Actually Definition 2.5 constitutes a slight departure from the definition of
bisimulation relation as usually given for discrete processes [15, 21], by imposing the extra
requirement (6). The reason is that in computer science discrete processes are usually defined
with respect to a fixed initial state (or, a subset of initial conditions). In our setting we
consider the behavior of the systems Σi for arbitrary initial states. Hence for every initial
condition x10 of Σ1 there should exist an initial condition x20 of Σ2 with (x10, x20) ∈ R and
vice versa; thus implying (6). The generalization to subsets of initial conditions Xi0 ⊂ Xi

obviously can be done by relaxing (6) to πi(R) = Xi0, i = 1, 2.

Remark 2.7. Clearly (cf. Remark 2.4), the relation ∼ is an equivalence relation.

Remark 2.8. For G1 = G2 = 0 the above notion of bisimilarity is close to the usual notion
of state space equivalence of two input-state-output systems (cf. [5, 6])

Σi :
ẋi = Aixi + Biui, xi ∈ Xi, ui ∈ U , yi ∈ Y

yi = Cixi i = 1, 2
(7)

Indeed, in this case one usually starts with a linear equivalence mapping

S : X1 → X2 (8)

which is assumed to be invertible (implying that dim X1 = dim X2) with the property that

Sx1(t) = x2(t), for all t ≥ 0 (9)

C1x1(t) = C2x2(t), for all t ≥ 0 (10)

for all state trajectories x1(·) and x2(·) resulting from initial conditions x10 and x20 related
by Sx10 = x20 and all input-functions u1(·) = u2(·). Defining the linear subspace

R = {(x1, x2) ∈ X1 ×X2 | x2 = Sx1} (11)

(i.e., the graph of the mapping S) it is easily seen that R is a bisimulation relation which
satisfies π1(R) = X1 trivially and π2(R) = X2 because of invertibility of S.

Clearly, by allowing R to be a relation instead of the graph of a mapping, the notion of
bisimilarity even in the case G1 = G2 = 0 is more general than state space equivalence. In
particular, we may allow X1 and X2 to be of different dimension. Furthermore, by doing so
we incorporate in the notion of bisimilarity the notion of reduction of an input-state-output
system to a lower-dimensional input-state-output system, and especially the reduction to a
minimal input-state-output system, as we will see later on in Section 6.

Using ideas from the theory of controlled invariance (or (A,B)-invariance), see e.g. [31,
4], it is relatively straightforward to derive an algebraic characterization of the notion of a
bisimulation relation. We do this in two steps.
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Proposition 2.9. A subspace R ⊂ X1 × X2 is a bisimulation relation between Σ1 and Σ2 if
and only if for all (x1, x2) ∈ R and all u ∈ U the following properties hold:

(i) For all d1 ∈ D1 there should exist a d2 ∈ D2 such that

(A1x1 + B1u + G1d1, A2x2 + B2u + G2d2) ∈ R, (12)

and conversely for every d2 ∈ D2 there should exist a d1 ∈ D1 such that (12) holds.

(ii)
C1x1 = C2x2 (13)

Proof. (Sketch) Consider (4). Then by differentiating x1(t) and x2(t) with respect to t and
evaluating at any t we obtain (12), with x1 = x1(t), x2 = x2(t), u = u1(t) = u2(t), d1 =
d1(t), d2 = d2(t). Conversely, if (12) holds then (ẋ1(t), ẋ2(t)) ∈ R for all t ≥ 0 for which the
derivative exists, thus implying (4). Equivalence of (5) and (13) is obvious.

Theorem 2.10. A subspace R ⊂ X1 × X2 is a bisimulation relation between Σ1 and Σ2 if
and only if

(a) R + im

[

G1

0

]

= R + im

[

0
G2

]

=: Re

(b)

[

A1 0
0 A2

]

R ⊂ Re

(c) im

[

B1

B2

]

⊂ Re

(d) R ⊂ ker

[

C1
... − C2

]

(14)

Proof. Clearly (13) is equivalent with (14d). Let R satisfy property (i) of Proposition 2.9.
Take u = 0. Then for all (x1, x2) ∈ R, and for all d1 there exists a d2 such that

(A1x1 + G1d1, A2x2 + G2d2) ∈ R (15)

This is a version of the so-called Modified Disturbance Decoupling Problem (with d1 being
the ‘disturbance’, which is assumed to be available for feedforward control action, and d2

being the ‘control’, [31]). It follows from the solution of this problem (see [31]) that (15) is
equivalent to

[

A1 0
0 A2

]

R ⊂ R + im

[

0
G2

]

im

[

G1

0

]

⊂ R + im

[

0
G2

]

(16)

Analogously, property (i) of Proposition 2.9 implies that for all (x1, x2) ∈ R, and all d2 there
exists d1 such that (15) holds, implying similarly

[

A1 0
0 A2

]

R ⊂ R + im

[

G1

0

]

im

[

0
G2

]

⊂ R + im

[

G1

0

]

(17)
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The second lines of (16) and (17) are readily seen to be equivalent to (14a). Consequently,
the first lines of (16) and (17) are equivalent with (14b).

Finally, consider property (i) for x1 = x2 = 0 and d1 = 0. Then (12) implies

im

[

B1

B2

]

⊂ R + im

[

0
G2

]

= Re

(the same result follows by taking d2 = 0 instead of d1 = 0), and thus (14c). By linearity it
follows that conversely (14a,b,c) imply property (i).

Remark 2.11. Although we have invoked in the proof of Theorem 2.10 the solution of the
Modified Disturbance Decoupling Problem it is important to stress that the interpretation in
the current case is completely different. Indeed, for bisimulation we do not aim to construct
a feedback controller in d2 dealing with the disturbance d1, and vice versa. Instead, we only
derive algebraic conditions which ensure that the trajectories of Σ1 are replicated by Σ2 and
conversely.

Remark 2.12. Note that a subspace R ⊂ X1 ×X2 satisfies properties (14a,b) if and only if
the mapping F (from subspaces S ⊂ X1 ×X2 to subspaces F (S) ⊂ X1 ×X2) defined by

S
F
7→ {z ∈ X1 ×X2 |

[

A1 0
0 A2

]

z + im

[

G1

0

]

⊂ S + im

[

0
G2

]

,
[

A1 0
0 A2

]

z + im

[

0
G2

]

⊂ S + im

[

G1

0

]

}

satisfies R ⊂ F (R). This will be instrumental to compute the maximal bisimulation relation,
see Algorithm 3.3; in fact, the maximal bisimulation relation turns out to be a fixed-point
of this mapping. (This is well-known in the theory of bisimulation for concurrent processes
[15].)

Remark 2.13. All notions and results regarding bisimulation developed in this paper for
continuous-time linear dynamical systems (1) have a direct analogue for discrete-time linear
systems x(k + 1) = Ax(k) + Bu(k) + Gd(k), y(k) = Cx(k), k ∈ Z. In particular, bisimulation
between two discrete-time linear systems is characterized by the same conditions (14) as in
Theorem 2.10.

Bisimilarity is easily seen to imply equality of external behavior. Consider two systems
Σi, i = 1, 2, as in (3), with external behavior Bi defined as

Bi := {(ui(·), yi(·)) | ∃xi(·), di(·) such that (3) is satisfied } (18)

Proposition 2.14. Let Σi, i = 1, 2, be bisimilar. Then their external behaviors Bi are equal.

However, in the case of non-deterministic systems, that is, di is present, systems may have
the same external behavior, while not being bisimilar. This is illustrated by the following
simple example.

Example 2.15. Consider the two systems

Σ1 :
ẋ1 = x2

ẋ2 = d1

y1 = x1
(19)
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and

Σ2 :
ż = d2

y2 = z
(20)

It can be readily seen that there does not exist any bisimulation relation between Σ1 and Σ2

(consider condition (14a)). On the other hand, if we restrict to C∞ external behaviors then
obviously B1 = B2. (Note the different logical quantifiers in the definition of bisimilarity and
in equality of external behavior. For bisimilarity there should exist for every x1, x2 a z such
that for every d1 there exists a d2 with equal external trajectories and conversely, while for
equality of external behavior there should exist for every x1, x2, d1 a pair z, d2 with equal
external trajectories, and conversely.)

An interpretation of the fact that Σ1 and Σ2 are not bisimilar can be given as follows.
Suppose we ‘test’ the system Σ1 at some time instant t = t0 in the sense of observing one
of its possible external trajectories y1(t), t ≥ t0. At t = t0 the system Σ1 is in a given, but
unknown, initial state (x1(t0), x

2(t0)). Hence, all possible runs y1(t), t ≥ t0, starting from
this fixed initial state will have a fixed time-derivative ẏ1(t0) = x2(t0) at t = t0. On the other
hand, for Σ2 the possible runs y2(t), t ≥ t0, can have arbitrary time-derivative at t = t0.
Hence, Σ1 and Σ2 can be considered to be externally different.

Remark 2.16. Note that in Example 2.15 the solution concept (‘semantics’) does play some
role. If we choose the solutions different from C∞, e.g. piecewise C∞ with x(·) continuous,
then the outputs y1(·) generated by Σ1 will have a ’higher degree of smoothness’ than the
outputs y2(·) of Σ2, implying that B1 ⊂ B2 while the two behaviors are not exactly equal.

For deterministic systems (di absent) it will be shown in Section 6 that equality of external
behavior does imply bisimilarity.

3 Computing the maximal bisimulation relation

In this section we show how to compute the maximal bisimulation relation R ⊂ X1×X2 for two
linear dynamical systems Σ1 and Σ2. The way to do this is very similar to the computation of
the maximal controlled invariant subspace contained in a given subspace, which is the central
algorithm in linear geometric control theory [31]. Furthermore, structurally the algorithm is
the same as the existing algorithms to compute the maximal bisimulation relation for two
discrete processes, see e.g. [11].

First we remark that the maximal bisimulation relation exists if there exists a bisimulation
relation at all (contrary to e.g. the minimal bisimulation relation). The argument is similar
to the argument showing the existence of a maximal controlled invariant subspace, and is
based on the following simple observations.

Proposition 3.1. Let Ra ⊂ X1 ×X2 and Rb ⊂ X1 ×X2 be bisimulation relations. Then also
Ra + Rb ⊂ X1 ×X2 is a bisimulation relation.

Proof. Since Ra,Rb are bisimulation relations they satisfy properties (14). It follows that
also Ra + Rb satisfies (14), and thus is a bisimulation relation.

Proposition 3.2. Given Σ1 and Σ2 and suppose there exists a bisimulation relation between
Σ1 and Σ2. Then the maximal bisimulation relation exists.
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Proof. Suppose there exists a bisimulation relation. Let Rmax be a bisimulation relation
of maximal dimension. Take any other bisimulation relation R. Then R ⊂ Rmax, since
otherwise dim (R + Rmax) > dim Rmax while also R + Rmax is a bisimulation relation; a
contradiction with the maximality of dimension of Rmax.

The fact that the maximal bisimulation relation exists is very fortunate because in most
applications we are precisely interested in this maximal one. This is already apparent from
the definition of bisimilarity including the requirement (6), but the fact also shows up in
maximally reducing a system to a bisimilar system (Section 4).

The maximal bisimulation relation Rmax can be computed in the following way, similarly
to the algorithm to compute the maximal controlled invariant subspace [31]. For notational
convenience we define

A× :=

[

A1 0
0 A2

]

, G×
1 :=

[

G1

0

]

, G×
2 :=

[

0
G2

]

, C× :=

[

C1
... − C2

]

(21)

Algorithm 3.3. Given two dynamical systems Σ1 and Σ2. Define the following sequence
Rj , j = 0, 1, 2, · · · , of subsets of X1 ×X2

R0 = X1 ×X2

R1 =
{

z ∈ R0 | z ∈ ker C×
}

R2 =
{

z ∈ R1 | A×z + im G×
1 ⊂ R1 + imG×

2 , A×z + imG×
2 ⊂ R1 + imG×

1

}

...

Rj+1 =
{

z ∈ Rj | A×z + im G×
1 ⊂ Rj + imG×

2 , A×z + imG×
2 ⊂ Rj + imG×

1

}

(22)

Theorem 3.4. The sequence of subsets R0,R1, · · · ,Rj , · · · satisfies the following properties.

1. Rj , j ≥ 0, is a linear space or empty. Furthermore
R0 ⊃ R1 ⊃ R2 · · · ⊃ Rj ⊃ Rj+1 ⊃ · · ·

2. There exists a finite k such that Rk = Rk+1 =: R∗ and then Rj = R∗ for all j ≥ k.

3. R∗ is either empty or equals the maximal subspace of X1 × X2 satisfying properties
(14a,b,d) of Proposition 2.10.

Proof. The proof is very similar to the proof of the corresponding properties of the algorithm
for computing the maximal controlled invariant subspace [31], and hence only a sketch will
be provided.

1. This is easily shown by induction.

2. Follows from Property 1 and finite-dimensionality of the subspaces involved.

3. First we show that R∗ obtained in Property 2, whenever non-empty, satisfies properties
(14a,b,d). Since R∗ = Rk = Rk+1 we have

A×R∗ + im G×
1 ⊂ R∗ + imG×

2

A×R∗ + im G×
2 ⊂ R∗ + imG×

1

(23)

9



which implies
imG×

1 ⊂ R∗ + imG×
2

imG×
2 ⊂ R∗ + imG×

1

(24)

and
A×R∗ ⊂ R∗ + imG×

2 , A×R∗ ⊂ R∗ + imG×
1 (25)

Clearly (24) is equivalent to property (14a), while (25) yields property (14b). Furthermore
R∗ ⊂ R1 = ker C×, and thus R∗ satisfies property (14d). In order to show that R∗, if
non-empty, is the maximal subspace satisfying properties (14a,b,d), let R be any subspace
satisfying (14a,b,d). Clearly R ⊂ R1, and by induction we prove R ⊂ Rj for all j, implying
that R ⊂ R∗.

If R∗ as obtained from Algorithm 3.3 is non-empty and satisfies property (14c), then it
follows that R∗ is the maximal bisimulation relation Rmax between Σ1 and Σ2, while if R∗ is
empty or does not satisfy property (14c) then there does not exist any bisimulation relation
between Σ1 and Σ2. With regard to bisimilarity (Definition 2.5), we have the following
immediate consequence.

Corollary 3.5. Σ1 and Σ2 are bisimilar if and only if R∗ satisfies Property (14c) and Equa-
tion (6).

In the previous section, cf. Proposition 2.14, we have seen that bisimilarity implies equality
of external behavior. In fact, a computationally efficient way to check equality of external
behavior of two systems Σi, i = 1, 2, may be to compute R∗ as above, and to check bisimilarity
by Corollary 3.5. (Recall, however, that non-deterministic systems may have equal behavior
while not being bisimilar, cf. Example 2.15.)

4 Reduction of systems by bisimulation

In this section we study the question how to reduce a linear dynamical system to a system
with lower state space dimension, which is bisimilar to the original system, and in particular
how to reduce the system to a bisimilar system with minimal state space dimension.

It turns out that this can be achieved by considering bisimulation relations between the
system and a copy of itself. Furthermore, the reduction to a bisimilar system with minimal
state space dimension can be performed by using the same algorithm as given in the previous
section for computing the maximal bisimulation relation. Actually, this idea is well-known in
the context of concurrent processes, see e.g. [11].

So let us consider a linear dynamical system as in (1):

Σ :
ẋ = Ax + Bu + Gd, x ∈ X , u ∈ U , d ∈ D

y = Cx, y ∈ Y
(26)

with X ,U ,Y and D finite-dimensional linear spaces. Now consider a bisimulation relation
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between Σ and itself, that is, in view of Theorem 2.10, a subspace R ⊂ X ×X satisfying

(a) R + im

[

G
0

]

= R + im

[

0
G

]

=: Re

(b)

[

A 0
0 A

]

R ⊂ Re

(c) im

[

B
B

]

⊂ Re

(d) R ⊂ ker

[

C
... − C

]

(27)

First of all we note the following obvious fact:

Proposition 4.1. The identity relation Rid = {(x, x) | x ∈ X} is a bisimulation between Σ
and itself.

Every R ⊂ X × X defines a relation on X by saying that xa, xb ∈ X are related by R
if and only if (xa, xb) ∈ R. For reduction we should restrict attention to R ⊂ X × X such
that the corresponding relation on X is an equivalence relation, i.e., R is reflexive ((x, x) ∈ R
for all x ∈ X ), symmetric ((xa, xb) ∈ R ⇐⇒ (xb, xa) ∈ R), and transitive ((xa, xb) ∈
R, (xb, xc) ∈ R ⇒ (xa, xc) ∈ R). This can be done without loss of generality. Indeed, by
Proposition 4.1 we may always add to any bisimulation relation R the identity bisimulation
relation Rid, thus enforcing reflexivity. Furthermore, let R satisfy (27), then also the inverse
relation R−1 := {(xa, xb) | (xb, xa) ∈ R} satisfies (27), implying that the symmetric closure
R + R−1 satisfies (27). Finally, for linear relations reflexivity and symmetry already implies
transivity: if (xa, xb), (xb, xc) ∈ R, then (xa − xc, 0) = (xa, xb) − (xc, xb) ∈ R, and thus
(xa, xc) = (xa − xc, 0) + (xc, xc) ∈ R. Any equivalence relation R ⊂ X × X can be uniquely
associated with a linear subspace R̄ ⊂ X defined as follows:

R̄ := {xa − xb | (xa, xb) ∈ R} (28)

Indeed, R̄ defined by (28) is a linear space if and only if R is reflexive and symmetric (and
therefore an equivalence relation). Reduction can now be performed by factoring out X by
the subspace R̄, thereby obtaining the linear space of equivalence classes of the equivalence
relation R. In terms of the subspace R̄ conditions (27) reduce as follows.

Theorem 4.2. Let R ⊂ X × X be an equivalence relation, and define R̄ ⊂ X as in (28).
Conditions (27a,b,c,d) for R are equivalent to

AR̄ ⊂ R̄ + imG

R̄ ⊂ kerC
(29)

Proof. It is readily seen that (27b,d) are equivalent to (29). Satisfaction of (27a,c) follows
from reflexivity of R.
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A subspace R̄ satisfying the first line of (29) is called a controlled invariant subspace
(with respect to A and imG), cf.[4, 31]. Thus there is a one-to-one correspondence between
bisimulation equivalence relations R and controlled invariant subspaces R̄ contained in kerC.

As a consequence of Proposition 4.1 the maximal bisimulation Rmax = R∗ between Σ and
itself exists, and contains Rid. Hence R∗ is reflexive, while by symmetry of the data it follows
that the symmetric closure of R∗ (adjoining (xb, xa) if (xa, xb) ∈ R∗) also satisfies (27a,b,d),
and hence R∗ is symmetric. Thus the maximal bisimulation relation R∗ is an equivalence
relation. The corresponding subspace R̄∗ ⊂ X is the maximal controlled invariant subspace
contained in kerC.

It is now clear how to reduce Σ to a lower-dimensional system that is bisimilar to Σ. Let
R be a bisimulation equivalence relation. Define the reduced state space

XR := X/R̄ (30)

with canonical projection ΠR : X → X/R̄. By the first line of (29) there exists a ”feedback”
map K such that

(A + GK)R̄ ⊂ R̄ (31)

and thus A + GK projects to a linear map

AR : XR → XR (32)

satisfying ARΠR = ΠR(A + GK). Furthermore, define

GR := ΠRG, BR := ΠRB, (33)

and by the second line of (29) we may define

CR : XR → Y (34)

such that CRΠR = C. Together this defines a reduced system

ΣR :
ẋR = ARxR + BRu + GRd

y = CRxR

(35)

Proposition 4.3. Let R be a bisimulation equivalence relation between Σ and itself, and
construct ΣR as above. Then ΣR is bisimilar to Σ. Furthermore, let R∗ denote the maximal
bisimulation relation between Σ and itself. Then ΣR∗ is the smallest system that is bisimilar
by reduction to Σ.

Proof. Define the following relation SR ⊂ X ×XR

(x, xR) ∈ SR ⇐⇒ xR = ΠR(x) (36)

This is readily seen to be a bisimulation relation which obviously satisfies (6).

The idea of reducing a linear dynamical system by factorizing the state space X by the
subspace corresponding to a bisimulation equivalence relation can be put into a more general
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context. Indeed, consider a bisimulation relation R ⊂ X1 × X2 between two systems Σi, i =
1, 2, as given in (3). Then define the following subspace of X1, respectively X2:

R̄1 := {x1 ∈ X1 | (x1, 0) ∈ R}

R̄2 := {x2 ∈ X2 | (0, x2) ∈ R}
(37)

Since R is a bisimulation relation it immediately follows from (14a,b,d) that

A1R̄1 ⊂ R̄1 + imG1, R̄1 ⊂ ker C1

A2R̄2 ⊂ R̄2 + imG2, R̄2 ⊂ ker C2

(38)

Hence, similarly as above, the systems Σi for i = 1, 2 can be reduced (via bisimulation) to
systems

ΣRi
:

ẋRi
= ARi

xRi
+ BRi

u + GRi
d

y = CRi
xRi

(39)

living on the state spaces Xi/R̄i
, i = 1, 2, with canonical projections ΠRi

: Xi → Xi/R̄i
, i =

1, 2. Furthermore, the relation R ⊂ X1×X2 reduces to a relation R̃ ⊂ X1/R̄1
×X2/R̄2

defined
by

R̃ := {(xR1
, xR2

) | (x1, x2) ∈ R for all (x1, x2) with ΠR1
x1 = xR1

,ΠR1
x2 = xR2

} (40)

Moreover, it is straightforward to check that R̃ defines a bisimulation between ΣR1
and ΣR2

.
In fact we have the following

Theorem 4.4. Let R ⊂ X1 × X2 be bisimulation relation between two systems Σi, i = 1, 2.
Then the systems Σi can be reduced by bisimulation to the systems ΣRi

, i = 1, 2, with R̃
as defined in (40) a bisimulation relation between them. This bisimulation relation R̃ is
one-to-one in the sense that (xR1

, xR2
), (x′

R1
, xR2

), (xR1
, x′

R2
) ∈ R̃ implies xR1

= x′
R1

and
xR2

= x′
R2

. Furthermore, Σi, i = 1, 2, are bisimilar with bisimulation relation R if and only if

ΣRi
, i = 1, 2 are bisimilar with bisimulation relation R̃. In this case the bisimulation relation

R̃ corresponds to an invertible map S : X1/R̄1
→ X2/R̄2

.

Theorem 4.4 expresses that every bisimulation relation can be factorized into a one-to-one
bisimulation relation between reduced systems, which are themselves bisimilar (by reduction)
to the original systems. Furthermore, if Σi, i = 1, 2, are bisimilar then their reduced systems
are linked by an invertible mapping (a state space equivalence mapping).

Corollary 4.5. Suppose the maximal bisimulation relation Rmax between Σ1 and Σ2 exists
and satisfies R̄max

1 = 0, R̄max
2 = 0 and π1(R

max) = X1, π2(R
max) = X2. Then Rmax =

{(x1, x2 = Sx1) | x1 ∈ X1} for some invertible map S : X1 → X2.

5 Simulation and abstraction

A one-sided version of the notions of bisimulation relation and bisimilarity as provided in
Definitions 2.1 and 2.5 can be stated as follows:
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Definition 5.1. Consider Σ1 and Σ2 as given in (3). A simulation relation of Σ1 by Σ2 is a
linear subspace

S ⊂ X1 ×X2

with the following property. Take any (x10, x20) ∈ S and any joint input function u1(·) = u2(·).
Then for every disturbance function d1(·) there should exist a disturbance function d2(·)
such that the resulting state solution trajectories x1(·), with x1(0) = x10, and x2(·), with
x2(0) = x20, satisfy

(i) (x1(t), x2(t)) ∈ S, for all t ≥ 0 (41)

(ii) C1x1(t) = C2x2(t), for all t ≥ 0 (42)

Furthermore, Σ1 is simulated by Σ2 if the simulation relation S satisfies π1(S) = X1 with π1

the canonical projection of X1 ×X2 to X1.

For several purposes the existence of a simulation relation instead of a bisimulation relation
is already sufficient. One may for example think of a system description capturing the required
specifications on a system to be designed: if the actual closed-loop system is simulated by
the specified system then at least one knows that there is no unwanted behavior in the actual
closed-loop system. Or, one may ‘approximate’ a given system by a lower-dimensional system
in the sense that the given system is simulated by the approximating system. (This is the
idea of abstraction as will be discussed later on.) Then checking certain properties for the
approximating system will also guarantee these properties for the given system.

By a ‘one-sided’ version of Theorem 2.10, see especially Equation (16), we obtain

Proposition 5.2. S ⊂ X1 ×X2 is a simulation relation of Σ1 by Σ2 if and only if

(a) S + im

[

G1

0

]

⊂ S + im

[

0
G2

]

(b)

[

A1 0
0 A2

]

S ⊂ S + im

[

0
G2

]

(c) im

[

B1

B2

]

⊂ S + im

[

0
G2

]

(d) S ⊂ ker

[

C1
... − C2

]

(43)

For discrete processes it may occur that there is a simulation relation of Σ1 by Σ2 and a
simulation relation of Σ2 by Σ1 while there does not exist a bisimulation relation between Σ1

and Σ2, cf. [16, 7]. In the present context, however, we have the following fact. (Recall the
definition of the inverse relation T −1 := {(xa, xb) | (xb, xa) ∈ T }.)

Proposition 5.3. Let S ⊂ X1×X2 be a simulation relation of Σ1 by Σ2 and let T ⊂ X2×X1

be a simulation relation of Σ2 by Σ1. Then R := S + T −1 is a bisimulation relation between
Σ1 and Σ2.

Proof. Let S satisfy (43) and let T satisfy (43) with index 1 throughout replaced by 2. It
follows that

T −1 + S + im

[

G1

0

]

⊂ S + T −1 + im

[

0
G2

]

⊂ S + T −1 + im

[

G1

0

]

and thus (14a) results for R = S + T −1. Similarly, R satisfies (14b,c,d).
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An interesting consequence of Proposition 5.3 is the following. First we note that if there
exists a simulation relation S of Σ1 by Σ2 then there also exists the maximal simulation
relation Smax of Σ1 by Σ2. The argument is the same as in the case of bisimulation (cf.
Section 3): if S1 and S2 are simulation relations then also S1 + S2 is one. Furthermore,
the maximal simulation relation Smax can be computed by the following simplified version
of Algorithm 3.3. Define the decreasing sequence S j, j = 0, 1, 2, · · · of linear subspaces of
X1 ×X2 as

S0 = X1 ×X2

S1 =
{

z ∈ S0 | z ∈ ker C×
}

S2 =
{

z ∈ S1 | A×z + imG×
1 ⊂ S1 + im G×

2

}

...

Sj+1 =
{

z ∈ Sj | A×z + imG×
1 ⊂ Sj + imG×

2

}

(44)

Proposition 5.4. Suppose there exists a simulation of Σ1 by Σ2, and a simulation of Σ2

by Σ1 (or equivalently, cf. Proposition 5.3, a bisimulation relation between Σ1 and Σ2). Let
Smax ⊂ X1 × X2 denote the maximal simulation relation of Σ1 by Σ2, and T max ⊂ X2 × X1

the maximal simulation relation of Σ2 by Σ1. Then Smax = (T max)−1 = Rmax, with Rmax

the maximal bisimulation relation.

Proof. By Proposition 5.3 Smax +(T max)−1 is a bisimulation relation, and thus also a simu-
lation relation of Σ1 by Σ2. By maximality of Smax it follows that Smax +(T max)−1 = Smax,
and thus (T max)−1 ⊂ Smax. The converse inclusion holds by considering T max. Hence
Smax = (T max)−1, which is by Proposition 5.3 a bisimulation relation, and thus contained in
Rmax. Since Rmax is also a simulation relation equality follows.

Hence, if there exists a bisimulation relation between Σ1 and Σ2, then Rmax can be also
computed using the simplified algorithm (44).

Now let us recall the definition of an abstraction as introduced in a general context in
[2, 10, 18, 20], and more specifically in [19, 29]. Consider a linear system as before, cf. (26)

Σ :
ẋ = Ax + Bu + Gd, x ∈ X , u ∈ U , d ∈ D

y = Cx, y ∈ Y
(45)

together with a surjective linear map H : X → Z, Z being another linear space, satisfying

ker H ⊂ kerC (46)

Clearly this implies that there exists a unique linear map C̄ : Z → Y such that

C = C̄H (47)

Then define the following dynamical system on Z

Σ̄ :
ż = Āz + B̄u + Ḡd, z ∈ Z, u ∈ U , d ∈ D

y = C̄z, y ∈ Y
(48)
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with
Ā := HAH+

B̄ := HB

Ḡ := [HG
...HAv1

... · · ·
...HAvk]

(49)

where H+ denotes the Moore-Penrose pseudo-inverse of H, and v1, · · · , vk span ker H.
We think of Σ̄ as an ‘abstraction’ of Σ in the sense that we factor out the part of the state

variables x ∈ X corresponding to ker H. This idea was put forward in a series of innovative
papers by Pappas and co-authors (see especially [19]) in the slightly more restricted case
where B = 0. (N.B., actually in [19] the ‘generator for non-determinism’ d is denoted by u.)

It has been shown in [19] that Σ is simulated by Σ̄, as also follows from Proposition 5.2 by
taking the simulation relation R := {(x, z) | z = Hx}. We may think of the transformation of
Σ into Σ̄ as ‘lumping’ the states x corresponding to the same vector z = Hx. The underlying
idea again comes from the theory of interactive processes, where it is often found convenient
to replace a process by a process with a smaller number of states, which however replicates
the trajectories of the original system (but in general contains more). Thus Σ̄ can be thought
of as a ‘conservative estimate’ of Σ.

A main result of [19] is that R = {(x, z) | z = Hx} is actually a bisimulation relation
between Σ and Σ̄ if and only ker H is controlled invariant with respect to A and imG. This
also follows directly from Theorem 4.2. Generalization of this result to the nonlinear case
(see also Section 7) was obtained in [29].

6 Deterministic systems

In this section we specialize the results of the previous section to systems without disturbances
d (that is, ‘deterministic systems’), and relate the results to well-known results on state space
equivalence and state space reduction of standard input-state-output systems [5, 6, 22].

Thus consider two systems

Σi :
ẋi = Aixi + Biui, xi ∈ Xi, ui ∈ U

yi = Cixi, yi ∈ Y, i = 1, 2
(50)

with Xi,U ,Y finite-dimensional linear spaces. Theorem 2.10 is readily seen to specialize to

Corollary 6.1. A subspace R ⊂ X1 ×X2 is a bisimulation relation between Σ1 and Σ2 given
in (50) if and only if

[

A1 0
0 A2

]

R ⊂ R

im

[

B1

B2

]

⊂ R ⊂ ker

[

C1
... − C2

]

(51)

For deterministic systems Σi it turns out that equality of external behaviors Bi, cf. (18),
implies bisimilarity (contrary to the case of non-deterministic systems, see Example 2.15).
This will be shown using the maximal bisimulation relation. First note that for deterministic
systems R∗ as produced by Algorithm 3.3 is non-empty (since im G×

i are zero subspaces).
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Theorem 6.2. Consider two systems Σ1 and Σ2 as given in (50) with equal external behaviors
B1 = B2. Then Σ1 and Σ2 are bisimilar with bisimulation relation Rmax = R∗ as produced
by Algorithm 3.3.

Proof. It is easily seen that R∗ as produced by Algorithm 3.3 is given as

R∗ = ker





















C1
... −C2

C1A1
... −C2A2
...

C1A
k
1

... −C2A
k
2

...





















(52)

By considering initial conditions for Σ1 and Σ2 both equal to zero it is clear that equality of
external behaviors implies

im

[

B1

B2

]

⊂ R∗,

and thus R∗ satisfies (51) and defines a bisimulation relation. What remains to be checked
is that πi(R

∗) = Xi, i = 1, 2. This follows by considering u = 0 and then noting that equality
of external behavior of Σ1 and Σ2 implies that for every x1 ∈ X1 there exists an x2 ∈ X2

such that C1e
A1tx1 = C2e

A2tx2, and conversely. Repeated differentiation of this equality with
respect to t and evaluation at t = 0 yields in view of (52) that (x1, x2) ∈ R∗.

While equality of external behaviors of two deterministic systems has been shown to be
equivalent to their bisimilarity, the existence of a bisimulation relation can be characterized
in the following way, relating to classical concepts of system equivalence [5, 6].

Theorem 6.3. There exists a bisimulation relation R between Σ1 and Σ2 given in (50) if
and only the Markov parameters of Σ1 and Σ2 are equal, that is

C1A
k
1B1 = C2A

k
2B2, k = 0, 1, 2, · · · , (53)

or equivalently if their transfer matrices Gi(s) := Ci(Is − Ai)
−1Bi, i = 1, 2, are the same.

Moreover, any bisimulation relation R between Σ1 and Σ2 satisfies

πi(R) ⊃ Reach (Σi) (54)

with Reach (Σi) = im

[

Bi

...AiBi

... · · ·
...Ak

i Bi

... · · ·

]

the reachable subspace of Σi. Hence, if Σi, i =

1, 2, are controllable, then Σ1 and Σ2 are bisimilar if and only if G1(s) = G2(s).

Proof. Condition (53) is equivalent to the property that the subspace

im

[

B1

B2

...
A1B1

A2B2

... · · ·
...

Ak
1B1

Ak
2B2

... · · ·

]

,

which is the smallest subspace of X1 ×X2 that is invariant under

[

A1 0
0 A2

]

and containing

im

[

B1

B2

]

, is contained in ker

[

C1
... − C2

]

. Thus (53) is equivalent to the existence of R ⊂

X1 × X2 satisfying (51), while (54) holds. Controllability is equivalent to Reach (Σi) = Xi,
implying by (54) that πi(R) = Xi.
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With regard to reduction by bisimulation we have the following corollaries of Proposition
4.3 and Theorem 4.4:

Corollary 6.4. Consider

Σ :
ẋ = Ax + Bu, x ∈ X , u ∈ U

y = Cx, y ∈ Y
(55)

Then R ⊂ X ×X is a bisimulation equivalence relation between Σ and itself if and only if the
subspace, cf. (28), R̄ = {xa − xb | (xa, xb) ∈ R} is an unobservable subspace of the system
(i.e., AR̄ ⊂ R̄, R̄ ⊂ kerC). The state space X of Σ can be factored out by R̄ so as to obtain
ΣR. Furthermore R̄∗ corresponding to the maximal bisimulation relation Rmax = R∗ between
Σ and itself equals the maximal unobservability subspace of (55), and can be factored out so
as to obtain an observable system ΣR∗. Conversely, if Σ is observable, then R∗ = Rid.

Corollary 6.5. Let R ⊂ X1 ×X2 be a bisimulation relation between two systems Σi, i = 1, 2
given by (50). Then the systems Σi can be reduced by bisimulation to the systems ΣRi

, i = 1, 2,
with R̃ as defined in (40) a bisimulation relation between them. This bisimulation relation R̃ is
one-to-one. Furthermore, Σi, i = 1, 2, are bisimilar with bisimulation relation R if and only if
ΣRi

, i = 1, 2, are bisimilar with bisimulation relation R̃. In this case the bisimulation relation
R̃ corresponds to an invertible map. If Σ1 and Σ2 are bisimilar and both are observable, then
the maximal bisimulation relation R∗ is the graph of an invertible map S : X1 → X2 satisfying

SA1S
−1 = A2, SB1 = B2, C1 = C2S (56)

Furthermore, by maximality of R∗ the map S satisfying (56) is unique.

Remark 6.6. From the proof of Theorem 6.2 it follows that if Σ1 and Σ2 are bisimilar then
(x1, x2) ∈ R∗ implies that C1e

A1tx1 = C2e
A2tx2 for all t ≥ 0. Hence in this case R∗ is actually

given by

R∗ = ker















C1
... −C2

C1A1
... −C2A2
...

C1A
n−1
1

... −C2A
n−1
2















(57)

where n = max(n1, n2), ni = dimXi. From here it is directly seen that R̄∗
i is the maximal

unobservable space of Σi.
If Σ1 and Σ2 are bisimilar and at least one of the systems, say Σ2, is observable, then R∗

is the graph of the mapping W−1
2 W1 : X1 → X2 with

W1 =











C1

C1A1
...

C1A
n−1
1











,W2 =











C2

C2A2
...

C2A
n−1
2











,

where n = n2 and W−1
2 denotes the set-theoretic inverse. (See [22] for a related result in the

case of scalar output systems which both are observable.)
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Finally, by combining Theorem 6.3 with Corollary 6.5 we recover the classical state-space
equivalence theorem for controllable and observable deterministic systems, see e.g. [5].

Corollary 6.7. Let the systems Σi, i = 1, 2, given by (50) be observable and controllable.
Then Σi, i = 1, 2, are bisimilar if and only G1(s) = G2(s), while the bisimulation relation is
given as {(x1, Sx2) | x1 ∈ X1} for a uniquely defined invertible map S : X1 → X2 (the state
space equivalence map) satisfying (56).

7 Bisimulation of nonlinear systems

In this section we briefly indicate the extension of the theory of bisimulation as established
for linear dynamical systems (3) to nonlinear systems

Σi :

ẋi = ai(xi) + bi(xi)ui + gi(xi)di, xi ∈ X , ui ∈ U , di ∈ Di

yi = ci(xi), yi ∈ Y, i = 1, 2
(58)

Here, as before, Di, U and Y are finite-dimensional linear spaces, but the state space Xi is
a manifold. Furthermore, ai(xi) and the columns of the matrices bi(xi) and gi(xi) denote
vector fields on Xi. All data are assumed to be smooth (C∞). While in the linear case
we restricted attention to linear bisimulation relations in this case it is natural to consider
nonlinear bisimulation relations R in Definition 2.1 which are submanifolds of X1 × X2. (As
usual, ‘submanifold’ throughout stands for ‘imbedded smooth submanifold’, see e.g. [1, 17].)

Furthermore, like in Definition 2.5, we say that Σ1 and Σ2 as in (58) are bisimilar if there
exists a nonlinear bisimulation R ⊂ X1 ×X2 with the property that πi(R) = Xi, i = 1, 2.

Using the theory of controlled invariance for nonlinear systems, see e.g. [12, 17], it is
immediate to derive the following generalization of Proposition 2.9.

Proposition 7.1. A submanifold R ⊂ X1 ×X2 is a bisimulation relation between Σ1 and Σ2

if and only if for all (x1, x2) ∈ R and all u ∈ U the following properties hold:

(i) For all d1 ∈ D1 there should exist a d2 ∈ D2 such that

(a1(x1) + b1(x1)u + g1(x1)d1, a2(x2) + b2(x2)u + g2(x2)d2) ∈ T(x1,x2)R (59)

and conversely for every d2 ∈ D2 there should exist a d1 ∈ D1 such that (59) holds.

(ii)
c1(x1) = c2(x2) (60)

Here T(x1,x2)R ⊂ Tx1
X1 × Tx2

X2 denotes the tangent space to R at the point (x1, x2) ∈ R.

Furthermore, using the theory of nonlinear controlled invariance, in particular the theory
of controlled invariant submanifolds, see e.g. [12, 17], we derive the following extension of
Theorem 2.10.
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Theorem 7.2. A submanifold R ⊂ X1 ×X2 is a bisimulation relation between Σ1 and Σ2 if
and only if for all (x1, x2) ∈ R

(a) T(x1,x2)R + im

[

g1(x1)
0

]

= T(x1,x2)R + im

[

0
g2(x2)

]

=: Re(x1, x2)

(b)

[

a1(x1)
a2(x2)

]

∈ Re(x1, x2)

(c) im

[

b1(x1)
b2(x2)

]

⊂ Re(x1, x2)

(d) c1(x1) = c2(x2)

(61)

Remark 7.3. Note that Re(x1, x2) is a linear subspace of the tangent space Tx1
X1 × Tx2

X2,
which is defined for all (x1, x2) ∈ R.

Remark 7.4. For simplicity of presentation we have restricted ourselves to nonlinear systems
(58), instead of the more general form ẋi = f(xi, ui, di), yi = h(xi, ui). Proposition 7.1
easily generalizes by considering instead of (59) the conditions (f1(x1, u, d1), f2(x2, u, d2)) ∈
T(x1,x2)R and h1(x1, u) = h2(x2, u). An appropriate generalization of Theorem 7.2 can be
obtained along the lines of [17] (Chapter 13).

For computing the maximal nonlinear bisimulation relation one may use the following
version of the algorithm to compute the maximal controlled invariant submanifold, cf. [17].

Algorithm 7.5. Given two nonlinear dynamical systems Σ1 and Σ2 as in (58). Define the
following sequence Rj , j = 0, 1, 2, · · · , of subsets of X1 × X2, and assume that they are all
submanifolds (possibly empty)

R0 = X1 ×X2

R1 = {(x1, x2) ∈ R0 | c1(x1) = c2(x2)}

R2 = {(x1, x2) ∈ R1 |

[

a1(x1)
a2(x2)

]

+ im

[

g1(x1)
0

]

⊂ T(x1,x2)R
1 + im

[

0
g2(x2)

]

,

[

a1(x1)
a2(x2)

]

+ im

[

0
g2(x2)

]

⊂ T(x1,x2)R
1 + im

[

g1(x1)
0

]

}

...

Rj+1 = {(x1, x2) ∈ Rj |

[

a1(x1)
a2(x2)

]

+ im

[

g1(x1)
0

]

⊂ T(x1,x2)R
j + im

[

0
g2(x2)

]

,

[

a1(x1)
a2(x2)

]

+ im

[

0
g2(x2)

]

⊂ T(x1,x2)R
j + im

[

g1(x1)
0

]

}

(62)

Remark 7.6. For a discussion of the condition that Rj at every step of the algorithm is a
submanifold we refer to [17] (Chapter 11). For the non-smooth case a similar type of algorithm
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has been provided in the context of viability theory; see e.g. [3] and the references quoted in
there.

Proposition 7.7. 1. R0 ⊃ R1 ⊃ R2 ⊃ · · · ⊃ Rj ⊃ Rj+1 ⊃ · · ·

2. There exists a finite k such that Rk = Rk+1 =: R∗, and then Rj = R∗ for all j ≥ k.

3. R∗ is the maximal submanifold of X1×X2 (possibly empty) satisfying properties (61a,b,d).

Corollary 7.8. Suppose that Algorithm 7.5 is well-defined, that is, the subsets Rj are all
submanifolds. Then Σ1 and Σ2 are bisimilar if and only if R∗ satisfies (61c) and πi(R

∗) =
Xi, i = 1, 2.

Reduction of a nonlinear system

Σ :
ẋ = a(x) + b(x)u + g(x)d, x ∈ X , u ∈ U , d ∈ D

y = c(x) y ∈ Y
(63)

to a nonlinear system with lower-dimensional state space XR can be achieved, similarly to
the linear theory exposed in Section 4, by considering a nonlinear bisimulation relation R
between Σ and itself. Such a bisimulation relation is given by a submanifold R ⊂ X × X
satisfying for all (x1, x2) ∈ R

(a) T(x1,x2)R + im

[

g(x1)
0

]

= T(x1,x2)R + im

[

0
g(x2)

]

=: Re(x1, x2)

(b)

[

a(x1)
a(x2)

]

∈ Re(x1, x2)

(c) im

[

b(x1)
b(x2)

]

⊂ Re(x1, x2)

(d) c(x1) = c(x2)

(64)

Similarly to the linear theory in Section 4 we assume that R defines an equivalence relation
on X . Then for all x ∈ X we may define the equivalence classes

Fx
R = {x′ ∈ X | (x′, x) ∈ R}

= π(R ∩ {(x′, x) | x′ ∈ X})
(65)

where π denotes the projection on the first component. Throughout we assume that the
subsets Fx

R of X are submanifolds of X for every x ∈ X . (Under generic transversality
conditions this will be the case since F x

R is defined as the intersection of submanifolds.)
Since R is assumed to be an equivalence relation it follows that F x

R, x ∈ X , defines a
foliation FR of X in the following sense:

(i) x ∈ Fx
R

(ii) y ∈ Fx
R ⇔ x ∈ Fy

R

(iii) Fx
R ∩ Fy

R 6= ∅ ⇒ Fx
R = Fy

R

(66)
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Now let us consider conditions (64) in more detail. First of all, condition (64b) implies that
there exists a vector α(x1, x2) such that

[

a′(x1)
a′(x2)

]

:=

[

a(x1)
a(x2)

]

+

[

g(x1)
0

]

α(x1, x2) ∈ T(x1,x2)R (67)

Hence the vector field

[

a′(x1)
a′(x2)

]

is tangent to R for every (x1, x2) ∈ R. This means that the

flow of this vector field when starting at (x1, x2) ∈ R will remain in R for all t > 0 for which
it is defined. This implies that the flow of this vector field when projected to the first factor
of X × X leaves the foliation FR invariant. Using the theory of invariant distributions (see
e.g. [12, 17]) this is known to be equivalent to the condition

[a′, DR] ⊂ DR (68)

where DR is the integrable distribution on X corresponding to FR, i.e.,

DR(x) := TxF
x
R, x ∈ X (69)

Similar statements hold with respect to invariance of DR with respect to the columns of b
and g. Using the theory of controlled invariant distributions [12, 17] one then arrives at the
following nonlinear analogue of Theorem 4.2.

Proposition 7.9. Let the submanifold R ⊂ X×X define an equivalence relation on X . Define
the integrable distribution DR on X by (69). Then R is a bisimulation relation between Σ
and itself if and only if DR satisfies

[a,DR] ⊂ DR + im g

[b,DR] ⊂ DR + im g

[g,DR] ⊂ DR + im g

DR ⊂ ker dc

(70)

Conditions (70) express that the distribution DR is controlled invariant (for a and the
columns of b with respect to the ‘input’ distribution im g(x)). It follows that the foliation
FR (or equivalently the distribution DR) can be factored out to obtain a reduced nonlinear
system ΣR (assuming that the quotient space is again a manifold, see for a discussion of this
e.g. [8]). We leave the details to the reader.

Example 7.10. Consider the nonlinear system (cf. [28])

Σ :
ẋ1 = x2d1

ẋ2 = d2

y = x1
(71)

This system is not reducible by bisimulation to the system

ż = d
y = z

(72)
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(although their C∞ or piecewise C∞ external behaviors are equal!). Indeed, the distribution
DR := span { ∂

∂x2 } does not satisfy (70). Reason is that Σ given by (71) has a ‘deadlock’
behavior for x2 = 0, which is not present in the system given by (72). Note that if we replace
the first equation of (71) by ẋ1 = x2 + d1 then Σ is (linearly) bisimilar to (72).

Finally we obtain the following nonlinear (partial) analogue of Theorem 6.3 for the case
that gi = 0 (the ‘deterministic’ case).

Proposition 7.11. A submanifold R ⊂ X1 × X2 is a bisimulation relation between Σ1 and
Σ2 for gi = 0 if and only if for all (x1, x2) ∈ R

(a)

[

a1(x1)
a2(x2)

]

∈ T(x1,x2)R

(b) im

[

b1(x1)
b2(x2)

]

⊂ T(x1,x2
)R

(c) c1(x1) = c2(x2)

(73)

Furthermore, R is a bisimulation relation if and only if for all (x1, x2) ∈ R

H1(x1) = H2(x2) (74)

for all corresponding functions Hi := LX1

i

LX2

i

· · ·LXk

i

ci, where Xj
i are the vector fields given

by ai or the columns of bi, in the observation space [17] of Σi, i = 1, 2. Finally, the maximal
bisimulation relation between Σ1 and Σ2 equals the set of points (x1, x2) satisfying (74).

Proof. Obviously, (73) is the specialization of (64) to the present case. By invariance of the
observation space of Σi under ai and the columns of bi it follows that satisfaction of (74)
implies (73).

8 Conclusions and outlook

In this paper we have defined and studied a notion of bisimulation for continuous dynamical
systems, motivated by the theory of bisimulation for concurrent processes and by previously
obtained results by Pappas and co-authors. Furthermore we have made explicit the relations
with well-known system-theoretic notions of state space equivalence and reduction. The no-
tion of bisimulation appears to be a notion which unifies the concepts of state space equivalence
and state space reduction, and which allows to study equivalence of systems with non-minimal
state space dimension. Classical results concerning reduction and state space equivalence for
minimal deterministic systems are readily and elegantly recovered. A crucial tool in all this
is the notion of controlled invariance as developed in linear and nonlinear geometric control
theory.

Compared with classical systems theory a new twist to the problem is given by the idea
of considering non-deterministic continuous dynamical systems. For concurrent discrete pro-
cesses the advantages of allowing non-determinism are clear [15, 11], but for continuous dy-
namical systems such arguments have not been explicitated except in the context of abstrac-
tion. Indeed, in the area of verification of hybrid systems it is natural to look for notions
of abstraction which allow to extend methods for verification of discrete processes to the
hybrid case, see [10, 2, 13, 14, 30]. This naturally leads to considering ways of abstracting
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continuous dynamical systems. Apart from abstraction we believe that there are other com-
pelling reasons to study some type of ‘non-determinism’ in continuous dynamical systems. In
particular, it would be interesting to investigate if uncertainty and robustness issues can be
fruitfully cast in this framework. Another line of research could be to replace the generator for
non-determinism d by a stochastic process (although this would presumably also alter the def-
inition of equivalence). Finally, we do not necessarily have to think about d as disturbances;
instead d may be the interconnection variables when the system is interconnected to another
system, in particular to a controller system. Current research is aimed at exploring such ideas
in the extension of the results on achievable closed-loop behavior obtained in [23, 26] to the
situation where the closed-loop system is specified up to bisimulation. Notice in this respect
that bisimulation for continuous dynamical systems satisfies the basic rule of modularity: if
Σ1 is bisimilar to Σ2 then also the interconnection of Σ1 with any controller system will be
bisimilar to the interconnection of Σ2 with the same controller system.

Apart from the interest per se in the equivalence concept for dynamical systems studied
in this paper a major aim of this work is eventually to come up with a general notion of
bisimulation for (classes of) hybrid systems, that is, open systems with interacting continuous
and discrete dynamics. As indicated above, already a substantial amount of work has been
done in this area. One way of approaching this problem (especially if one is looking for
finite or almost finite bisimulations of hybrid systems) is to abstract away from the time, see
e.g. [10, 2, 19, 9]. On the other hand, another approach would be to combine the notion of
bisimulation as explored in the current paper with the established notion of bisimulation for
concurrent processes into a notion of structural bisimulation for hybrid systems. Initial steps
in this direction have been taken in [24, 25].

Finally, a generalization to the bisimulation of continuous dynamical systems as exposed
in the present paper is to suppress the a priori distinction of the external variables into inputs
u and outputs y. This can be achieved by considering a behavioral version of (1), e.g. given
in pencil representation as

Eż = Az
w = Hz

(75)

where now w denotes the whole vector of external variables (not split into u and y). Note
that (1) may be put into the form (75) by first pre-multiplying the first line of (1) by an
annihilating matrix G⊥ (G⊥G = 0) of maximal rank, to obtain G⊥ẋ = G⊥Ax + G⊥Bu,
and then considering the extended state vector z = (x, u). Generalization of the bisimulation
theory to this class of systems is pursued in [25]. An additional and important advantage
of (75) is that it may also include algebraic constraints on the state variables, and thus is
eminently suited to model systems as resulting from interconnection of systems, or multi-
modal systems arising from varying (event-driven) state constraints [27].
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