
Population Based Methods for Optimising Infinite
Behaviours of Timed Automata
Lewis Tolonen
The University of Western Australia

Tim French
The University of Western Australia
tim.french@uwa.edu.au

Mark Reynolds
The University of Western Australia
mark.reynolds@uwa.edu.au

Abstract
Timed automata are powerful models for the analysis of real time systems. The optimal infinite
scheduling problem for double-priced timed automata is concerned with finding infinite runs
of a system whose long term cost to reward ratio is minimal. Due to the state-space explosion
occurring when discretising a timed automaton, exact computation of the optimal infinite ratio is
infeasible. This paper describes the implementation and evaluation of ant colony optimisation for
approximating the optimal schedule for a given double-priced timed automaton. The application
of ant colony optimisation to the corner-point abstraction of the automaton proved generally
less effective than a random method. The best found optimisation method was obtained by
formulating the choice of time delays in a cycle of the automaton as a linear program and
utilizing ant colony optimisation in order to determine a sequence of profitable discrete transitions
comprising an infinite behaviour.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Timed Automata, Heuristic Search, Ant Colony Optimisation

Digital Object Identifier 10.4230/LIPIcs.TIME.2018.22

1 Introduction

Many systems exhibit behaviour that is dependent not only on the ordering of a sequence
of events, but also the precise time at which these events occur. These are known as real
time systems, and include such things as industrial plants which may carry out a set of
sub-processes each of which requires different resources for a specific duration of time, or
communication protocols where messages are sent and received with the restriction that
at any given time the communication medium can only be used by one of these actions.
The analysis of real time systems is important for ensuring the behaviour of these systems
meets the required specifications. In particular, for cases such as industrial plants, it is also
desirable that the long term behaviour of these systems is profitable, that is the cost to
reward ratio of the system behaviour is minimised. Timed automata are powerful models for
performing such analysis of these systems. A timed automaton models a real time system as
a set of states with transitions between them, alongside a set of real valued clock variables
that count up uniformly in real time. The taking of transitions is dependent on the values of
the clocks, and can reset some of the clocks when taken. The model has been extended to be
able to describe other quantitative aspects of systems behaviours, such as costs and rewards.

© Lewis Tolonen, Tim French, and Mark Reynolds;
licensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek; Article No. 22; pp. 22:1–22:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161589402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tim.french@uwa.edu.au
mailto:mark.reynolds@uwa.edu.au
https://doi.org/10.4230/LIPIcs.TIME.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Population Based Methods for Timed Automata

The optimal infinite scheduling problem for timed automata is concerned with finding the
behaviour of a system that minimises the long term ratio of the operating cost to the obtained
rewards. Solving this problem is particularly useful when modelling an industrial process, as
the profitable operation of such a system is typically a key goal in its design. However, due
to the state-space explosion that can occur when modelling all potential behaviours of a real
time system, finding the exact solution for the optimal infinite scheduling problem generally
proves infeasible. Instead, this paper focuses on developing methods for finding approximate
solutions to the problem. In particular, the use of population based metaheuristics such as
ant colony optimisation as a means of efficiently exploring the candidate behaviours of a real
time system. By expressing the timed component of the optimal infinite scheduling problem
as a linear program that can be exactly solved relatively efficiently, these techniques give an
effective method for approximating the optimal behaviour of a given system.

2 Preliminaries

In this section we will present the preliminary definitions required for this paper.

2.1 Timed Automata
Clocks, Valuations, and Constraints. Before formally defining a timed automaton it is
necessary to introduce the clock variables on which their behaviour depends. A set of clocks
X is a finite set of variables {x0, . . . , xn} taking values in the non-negative real numbers
R≥0. A clock valuation is a function v : X → R≥0 assigning to each clock its current value.
0 denotes the valuation that assigns 0 to all clocks. The reset operation on a clock valuation
v by a subset X of X , denoted v[X := 0], gives the valuation v′ where the clocks in X are
set to 0, while the other clocks remain unchanged. For a real number δ, the delay of v by
δ, denoted v + δ gives the valuation where δ has been added to the value of each clock,
i.e. (v + δ)(x) = v(x) + δ. C(X) denotes the set of clock constraints over X . These are
conjunctions of atomic constraints of the form x ./ c or x− y ./ c where x, y ∈ X , c ∈ Z and
./∈ {<,>,≤,≥}. A clock valuation v satisfies a clock constraint g if the value of each clock
under v satisfies each atomic constraint comprising g, if so we write v � g. A clock constraint
is said to be diagonal free if it is the conjunction of atomic constraints that only place upper
and lower bounds on individual clocks, and does not directly restrict the difference between
any pair of clocks.

I Definition 1 (Timed Automaton). A timed automaton A is defined to be a tuple
(Q, q0,X ,Σ, E, I), where

Q is a finite set of discrete locations.
q0 ∈ Q is the starting location.
X is a set of clocks.
Σ is a finite alphabet of actions.
E ⊂ Q × Σ × C(X) × 2X × Q is a relation defining the jumps between locations. e =
(q, α,G,X, q′) represents a jump from the location q to q′ by taking the action α. G is
the guard on e: a diagonal free clock constraint that must be satisfied by the current
clock valuation in order for the jump to be taken. X is the subset of clocks to be reset to
0 when the jump is taken.
I : Q→ C(X) assigns to each location an invariant condition that must be satisfied at all
times while in that location. Like the guards on the jumps, each location invariant must
be diagonal free.

L. Tolonen, T. French, and M. Reynolds 22:3

A state of a timed automaton A is a pair (q, v) with q ∈ Q and v a valuation over X .
The execution of A gives a transition system over the infinite space of possible states with
two types of transitions:

A delay transition from a state (q, v) has the form (q, v) δ−→ (q, v + δ). This transition
represents the automaton idling in location q for a duration of δ, provided the state
continues to satisfy the invariant condition of the location, that is v + t satisfies I(q) for
all 0 ≤ t ≤ δ.
A discrete transition with respect to a jump e = (q, α,G,X, q′) ∈ E from a state (q, v)
has the form (q, v) e−→ (q′, v′), where v′ = v[X := 0], v satisfies G and v′ satisfies I(q′).
This represents the automaton taking action α in q resulting in the jump to q′ provided
the guard on e is satisfied by v and the invariant at q′ is satisfied by v′.

A finite run of A is a finite sequence ρ = (q0,0) δ1−→ e1−→ s1
δ2−→ e2−→ . . .

δn−→ en−→ sn where each
si−1

δi−→ ei−→ si is a delay-transition (possibly of 0 duration) followed by a discrete-transition.
This definition can be extended to infinite runs of A by extending ρ to be an infinite sequence.

2.1.1 Double-Priced Timed Automata and Optimal Infinite Scheduling
The model of timed automata has been extended in various ways to model different aspects
of real time systems. A common extension is to associate a price with each location and
jump; a cost is accrued for each unit of time spent in a location, as well as for each jump
taken [3]. The accumulated cost of runs of the automaton can then be analysed, for example
the minimum cost reachability of certain states [2]. In 2008, Bouyer, Brinksma and Larsen
proposed the model of double-priced timed automata: a timed automaton extended with
two price functions: costs and rewards [4]. This model was designed for the purpose of
analysing the infinite behaviours of systems via their long term cost to reward ratio. The
minimisation of this ratio for long term behaviours is called the optimal infinite scheduling
problem. The solutions to this problem are of particular interest when considering systems
that need to perform a series of operations indefinitely, such as industrial processes where
the operator would want the long term rewards to exceed the costs. We now formally define
a double-priced timed automaton:

I Definition 2 (Double-Priced Timed Automaton). A double-priced timed automaton (DPTA)
A is a tuple (Q, q0,X ,Σ, E, I, Cost, Reward) where

(Q, q0,X ,Σ, E, I) defines a timed automaton as defined in definition 1.
Cost : (Q∪ E)→ N is a function assigning to each jump a cost and to each location a cost
rate.
Reward : (Q ∪ E)→ N is a function assigning to each jump a reward and to each location
a reward rate.

The transition system of a DPTA is identical to that of a timed automaton. However
each transition now has an associated cost and reward. A delay transition (q, v) δ−→ (q, v + δ)
has cost Cost(q) · δ and reward Reward(q) · δ, that is each time unit spent in location q

contributes an amount equal to its cost or reward rate. A discrete transition (q, v) e−→ (q′, v′)
simply has the cost and reward Cost(e) and Reward(e) respectively. Given a finite run of
a DPTA ρ = (q0,0) δ1−→ e1−→ (q1, v1) δ2−→ e2−→ . . .

δn−→ en−→ (qn, vn) we define the cost of the run
as the sum of the costs of each transition: Cost(ρ) =

∑n
i=1(Cost(ei) + Cost(qi−1 · δi). The

reward of a finite a run is defined similarly. The ratio of a run is simply the cost divided
by the reward: Ratio(γ) = Cost(γ)/Reward(γ). For infinite runs, we consider the limit of

TIME 2018

22:4 Population Based Methods for Timed Automata

the ratio as the run progresses. For an infinite run ρ = (q0,0) δ1−→ e1−→ (q1, v1) δ2−→ e2−→ . . ., let
ρn be the prefix of ρ consisting of the first n transitions. The ratio of the run is defined as
Ratio(ρ) := lim

n→∞
Ratio(ρn). To ensure that the ratios of all infinite runs of the DPTA exist,

we require that the automaton be strongly reward diverging: for every infinite run ρ, we have
lim
n→∞

Reward(ρn) = ∞, i.e an infinite number of actions leads to an infinite reward. This
effectively means that there are no cycles with zero reward.

We now define the optimal infinite scheduling problem for DPTA. Given a strongly reward
diverging DPTA A = (Q, q0,X ,Σ, E, I, Cost, Reward), let Γ be the set of all infinite runs of
A. The optimal infinite scheduling problem is to determine the lower bound on achievable
cost to reward ratios of infinite runs of the automaton: Ratio∗ = inf{Ratio(ρ) | ρ ∈ Γ}. Note
that there may not be a run of A with this ratio, but instead a family of runs such that their
ratio becomes arbitrarily close to Ratio∗. Bouyer, Brinksma and Larsen have shown that
the optimal infinite scheduling problem is computable and is PSPACE-complete [4].

While the region abstraction defined by Alur and Dill preserves reachability properties [1],
it does not preserve the ratios of infinite runs as the duration of timed transitions is abstracted
away. In their proof of the computability of the optimal infinite scheduling problem, Bouyer,
Brinksma and Larsen introduce an extension of the region abstraction that does preserve this
property called the corner point abstraction [4]. Let A = (Q, q0,X ,Σ, E, I, Cost, Reward)
be a DPTA with |X | = k. We also require that the reachable clock-space of A is bounded,
that is there exists a constant M such that for all reachable clock-valuations v, v(x) ≤M
for all clocks x in X . A corner point is an element a = (a1, . . . , ak) of Nk, which can be
thought of as a clock valuation. If (q,R) is a region of A, a corner point a is associated with
(q,R) if a lies in the closure of R. Interpreting R as a polyhedron in the clock space, then
the corner points associated with R are the vertices of the closure of that polyhedron. The
corner point abstraction of A is a double-weighted graph with vertices of the form (q,R,a)
where (q,R) is a region and a is a corner point associated with (q,R). The edges of the
graph represent either discrete or delay transitions of the automaton. The edges have two
weights - a cost and a reward corresponding to the cost and reward of the transition in the
original automaton. For each jump e = (qsrc, α,G,X, qdest) of A, for every vertex (q,R,a)
such that q = qsrc and R satisfies the guard G, then there is an edge from this vertex to the
unique vertex (q′, R′,a′) such that q′ = qdest, R′ = R[X := 0] and a′ = a[X := 0]. This edge
has weights Cost(e) and Reward(e). There are two types of edges corresponding to delay
transitions in the corner point abstraction:

Given two vertices (q,R,a) and (q,R,a+1) (i.e a+1 is an immediate time successor of a),
there is an edge between them with weights Cost(q) and Reward(q) as this corresponds
to a delay of 1 time unit in location q.
Given two vertices (q,R,a) and (q,R′,a) with the region R′ being a time successor of R,
there is an edge between the vertices with cost and reward equal to 0, as this is a delay
of zero duration.

A path through the corner point abstraction corresponds to a run of the automaton, with
corresponding accumulated cost and reward. However, the only delay transitions represented
in the corner-point abstraction are those of duration z + ε where z is a non-negative integer
and ε is some real number with |ε| << 1. Bouyer, Brinksma and Larsen [4] prove that these
transitions are sufficient, and that the corner point abstraction is sound and complete with
respect to the optimal infinite scheduling problem for double priced timed automata, i.e.
that the optimal ratio of infinite paths in the corner point abstraction is equal to Ratio∗ in
the corresponding DPTA. The optimal infinite scheduling problem can therefore be reduced
to finding the minimum cost to reward ratio cycle in the corner point abstraction. If the

L. Tolonen, T. French, and M. Reynolds 22:5

corner point abstraction has V vertices and E edges, then the best known algorithm for this
problem - Burn’s Algorithm has time complexity O(V 2E) [7]. As the number of vertices
in the corner point abstraction is proportional to the number of regions of the automaton,
which has an upper bound of |Q| · |X |! · 2|X | ·

∏
x∈X (2cx + 2) as seen above, applying this

method does not give a feasible algorithm for most automata.
A possible approach to effectively solving the optimal infinite scheduling problem is to use

a zone-based abstraction that preserves the optimal ratio of runs, rather than a region-based
one. David et al. have constructed such a method specifically for the case of timed automata
with only one clock [8]. Their method is based on strong time abstracting bisimulations
(STABs)- a zone based method of partitioning the state space of an automaton into zones
that have equivalent behaviour [16]. In the one clock case zones are simply intervals of
non-negative real numbers. David et al. [8] define an abstraction based on the end points
of these intervals and prove that it preserves the optimal infinite ratio. The procedure of
constructing this abstraction and finding the optimal ratio has complexity O(|Q|·(|Q|+|E|)6),
which is much more feasible than using the corner point abstraction. However, most real
time systems require the use of several clocks to effectively model their behaviour. This
work has not currently been extended to the case with more than one clock, and so there is
a lack of effective algorithms for solving the optimal infinite scheduling problem for timed
automata with two or more clocks. Additionally, in the worst case the size of a STAB of a
timed automaton is as large as that of the region abstraction, so even given a STAB based
method, the computation of the optimal infinite ratio will still be infeasible.

2.2 Population Based Metaheuristics
For many optimisation problems, especially those of high complexity, an exact solution is not
required. Instead an approximate solution is often sufficient. In this case, we can make use
of heuristic algorithms to rapidly explore the state-space of the problem to find a solution
that is good enough, but not provably optimal. As demonstrated in the previous section,
the complexity of the optimal infinite scheduling problem for double-priced timed automata
is typically too high to admit an exhaustive search of the state-space, and so the use of
heuristics is a suitable method for compromising precision for computational efficiency in
this domain.

2.2.1 Ant Colony Optimisation
Ant colony optimisation is a population based metaheuristic first developed by Marco Dorigo
in 1996 as a method of determining approximate solutions to the travelling salesman problem
[9]. The method is inspired by the way ants utilize pheromone in order to communicate the
best path between their nest and a food source. Ant colony optimisation is typically used for
combinatorial optimisation problems consisting of a finite set of discrete decisions, such as
finding traversals of graphs, but it has been extended to problems in continuous domains
[12]. While these problems are typically NP, Ant Colony optimisation has been applied to
some PSPACE problems such as the Canadian Traveller Problem [13].

Ant colony optimisation operates by simulating a population of agents representing
artificial ants. To illustrate we will suppose we have a combinatorial optimisation problem
given as finding a traversal of a graph G = {V,E} with V being the set of vertices and E
the set of edges. We have some objective function over the traversals of the graph that we
are trying to optimize. As each possible solution is a traversal, the discrete decisions are
the choice of which edge to take at each point. The artificial ants communicate and make

TIME 2018

22:6 Population Based Methods for Timed Automata

Algorithm 1: High Level Ant Colony Optimisation.
repeat

place ants;
repeat

foreach ant do
if path not complete then

follow state transition rule to choose next edge;
take edge and apply local pheromone update;

end
end

until all paths complete;
apply global pheromone update;

until terminated;
return best path;

decisions based on a pheromone function: Pheromone : E→ R≥0, a function assigning to each
edge a non-negative real number which represents the concentration of pheromone on that
edge. A high pheromone concentration means that traversals including that edge evaluated
well under the objective function. At a decision point a traversal is more likely to take an
edge with a higher concentration of pheromone.

The overall algorithm operates over a series of iterations. Within each iteration each
ant in the population builds a solution by first being placed at a starting vertex, and then
taking edges one by one according to a state transition rule. After taking an edge, the
ant updates that edge’s pheromone concentration according to a local pheromone updating
rule. The ant continues to take edges until a complete solution is formed. Once all ants
have complete solutions, the pheromone along all edges is updated. This is called the global
pheromone update. After a number of iterations the process completes, and the overall best
found traversal is returned as the solution to the optimisation problem.

State Transition Rule. The state transition rule is how ants determine what edge to add to
their solution. If an ant is at a vertex v, with outgoing edges Out(v), the simplest used state
transition rule is to choose a particular edge with probability corresponding to its relative
pheromone concentration. For an edge e in Out(v) the probability of taking this edge, P (e)
is given by:

P (e) = Pheromone(e)∑
e′∈Out(v)

Pheromone(e′)

This means that an ant is more likely to take an edge known to give results, but the
probabilistic factor means that alternate solutions will still be explored. It is also common
to apply a heuristic factor, i.e. an approximation of that edge’s quality, to the probability of
taking an edge. The effect of the pheromone relative to the effect of the heuristic can then
be adjusted using real-valued weighting parameters [9].

Pheromone Updates. In combination with the state transition rule, pheromone updates
act as a mechanism for encouraging ants in future iterations to explore in the neighbourhood
of previously found good solutions. The global pheromone update occurs after each ant has

L. Tolonen, T. French, and M. Reynolds 22:7

built its solution. First, some amount of the pheromone along all edges evaporates, that is it
is reduced by a linear factor λ ∈ [0, 1] called the evaporation rate. For each edge e in E this
is characterized by the update:

Pheromone(e)← (1− λ) · Pheromone(e)

This is a mechanism in place to make ants weight more recent information more heavily than
older information. Then, each ant applies to each of the edges involved in its solution an
amount of pheromone proportional to that solution’s quality under the objective function. If
f is the objective function, and Pk is the solution found by the kth ant, the update for an
edge e is:

Pheromone(e)← Pheromone(e) +
∑

k∈Ants

{
f(Pk) e ∈ Pk
0 e /∈ Pk

In his revised version of the ant colony optimisation [10], Dorigo found that using an
elitist global update gave better performance in general. This is a modification where only
the best n ants of an iteration are allowed to place pheromone along their path. In the same
revision, Dorigo introduced the local pheromone update, where upon adding an edge to its
partial solution an ant will slightly reduce the taken edge’s pheromone concentration. This
discourages ants within the same iteration from taking the same set of edges, ensuring that a
diverse set of solutions is tested in each iteration. Later work by Stüzle and Hoos found that
performance is also improved if pheromone concentration is capped between a minimum and
maximum level [15].

3 Approximate Optimisation

In the following section we detail the application of population based metaheuristic meth-
ods to the optimal infinite scheduling problem for a double priced time automata A =
(Q, qstart,X ,Σ, E, I, Cost, Reward). There are several assumptions we will make regarding
A:
1. A is strongly reward diverging - This is to ensure that every infinite run of A has a

defined cost to reward ratio.
2. The invariants I of A in each location bound the values of every clock. This ensures that

the reachable clock space is bounded and hence the corner point abstraction [4] can be
used.

3. A is deadlock free. That is for all reachable states s = (q, v) of A there exists some
positive delay δ such that the state (q, v + δ) satisfies the location invariant at q and the
guard condition of at least one jump from q. Intuitively this means that at all states, by
letting time pass the automaton is guaranteed to be able to take a discrete transition.

When considering the corner point abstraction, conditions 2 and 3 together ensure that
starting from a particular vertex of the corner point an infinite execution will eventually
cycle and repeat a corner point without reaching any ’dead ends‘. This fact is useful for
generating cyclic executions of the automaton on the fly, without the need for backtracking.

Our approach will consist of applying metaheuristic techniques in order to find cycles
in the corner point abstraction that have a ratio that is as small as possible. The goal is
to explore the state-space as efficiently as possible to give a good solution, although the
solutions that are found will not be provably optimal.

TIME 2018

22:8 Population Based Methods for Timed Automata

In order to generate these cycles, we use a simple representation for the vertices of corner
point abstraction, which we will refer to as a CP-state. For an automaton with k clocks, a
CP-state s = (q, z,d) is a location q, alongside a pair of integer-valued vectors z and d with
z = (z1, . . . , zk) and d = (d1, . . . , dk). The ith component of each vector is related to the
ith clock of the automaton. The vector z gives the corner-point with which the CP-state is
associated, while d defines the relative ordering of the fractional components of each clock.
If ε is a very small positive real number, the CP-state (z,d) corresponds to the vertex of
the corner point abstraction associated with the corner point a = z, and with the region to
which the point z + ε · d belongs.

3.1 Ant Colony Optimisation

As the corner point abstraction is a graph, we could theoretically apply ant colony optimisation
directly in order to find a good cycle. However for this approach, as part of the pheromone
function representation, we would need to store a value for each individual edge in the
corner point abstraction. The upper bound on the number of vertices is of the order
|Q| · |X |! · 2|X | ·

∏
x∈X (2cx + 2) [1], with the number of edges being even larger, so memory-

wise this is not feasible. Instead we will approach the problem as a multi-step problem
with two components. The first component is the problem of determining what sequence of
discrete transitions of the automaton will compose the cycle. The second component is the
problem of determining what delays to take between the discrete transitions.

3.1.1 Simple Ant Colony Optimisation with Random Delays

The simplest approach under this interpretation is to have the pheromone function assign val-
ues to the jumps of the automaton. Given a DPTA A = (Q, qstart,X ,Σ, E, I, Cost, Reward),
we have a pheromone function pheromone : E → R≥0. Initially, before performing any
exploration we set pheromone(e) = 1 for all e in E. In each iteration of the algorithm,
each ant will be placed at a random CP-state of A. The ant will then build a solution by
sequentially taking a delay transition (randomly) and then a discrete transition (based on
pheromone), until it reaches a CP-state it has already visited. By our assumptions listed at
the start of the chapter, this is guaranteed to occur and as such we will have a cycle from
the repeated CP-state to itself. As we are only interested in the cycle itself, the path leading
up to the cycle can be discarded.

To choose a delay from a particular CP-state, the ant considers the set of delays that
lead to a subsequent CP-state where at least one discrete-transition is enabled, as the next
step requires choosing a discrete transition from that state. Due to the assumption of the
automaton being deadlock-free this set of delays is guaranteed to be non-empty. A delay
from this set is chosen with uniform probability.

For this algorithm the state-transition rule will determine which jump of the automaton
an ant will take from a given CP-state s. The probability of taking a jump e depends on
both the pheromone concentration as well as the cost/reward ratio contributed by e, with a
smaller ratio leading to a higher probability. Let Out(s) be the set of jumps that can be
taken from s, the probability of taking a jump e in Out(s), P (e) is given by:

P (e) =
pheromone(e)α · (Reward(e)

Cost(e))β∑
e′∈Out(s)

pheromone(e′)α · (Reward(e′)
Cost(e′))β

L. Tolonen, T. French, and M. Reynolds 22:9

α and β are real valued parameters that allow for weighting the effect of the pheromone and
the jump’s ratio when determining the probability.

As per the standard implementation of ant colony optimisation, we have local and global
pheromone updates. As the local update, when an ant takes a jump e, the pheromone
concentration of e is scaled towards the initial value 1 by a linear decay factor µ:

Pheromone(e)← (1− µ) · Pheromone(e) + µ · 1

The global update first has the pheromone along all edges reduced according to the evaporation
factor λ:

Pheromone(e)← (1− λ) · Pheromone(e)

Then we perform an elitist update based on the paths found. Let ρi be the ith best cycle
found in this iteration, and n be the elitism factor, i.e. the number of top ants we are
considering. We update by:

Pheromone(e)← Pheromone(e) +
n∑
i=1

{
(Ratio(ρi))−1 e ∈ ρi
0 e /∈ ρi

where (Ratio(ρ))−1 is the reciprocal of the ratio of ρ, so a lower cost to reward yields a
higher pheromone concentration. We also cap all pheromone values to be below a bound
Pheromonemax. If we ever evaluate a reward/cost fraction where the cost is 0, we interpret
this value as Pheromonemax to ensure all values are well defined.

Using these steps as part of a standard ant colony optimisation algorithm we get a
process that attempts to optimise the discrete transitions of runs in our DPTA. However, our
pheromone function stores no information about the delay transitions being used, so these
cannot be effectively optimised by this method. The next section introduces an approach to
optimise both the discrete and delay transitions.

3.1.2 Hybrid Ant Colony Optimsation
Research has shown that with a modification to pheromone function representation, ant
colony optimisation can be applied to optimisation in continuous domains [12]. With further
modification we can use this approach to solve hybrid discrete-optimisation problems. The
optimal infinite scheduling problem can be constructed in this way. Choosing the jumps that
form the cycle is the discrete problem, and choosing the delays is the continuous problem.
This section will extend the previous method to utilize this hybrid approach. We are still
considering paths within the corner point abstraction, but instead of choosing a delay and
then a jump we choose a joint action consisting of both these parts: (δ, e) where δ is the
positive delay, and e is the jump.

When considering what joint action to take, while the delay itself determines the cost and
reward contributed by the current location, the state that we delay to and take the jump
from has more of an impact over the automaton’s potential future behaviour. Therefore,
our new pheromone function should act as an estimator of the utility of taking a jump from
a particular state. As a jump can only be taken from its source location, we only need
to consider the valuation of the state and not its location. So for a k clock automaton,
we have Pheromone : Rk≥0 × E → R≥0. A challenge here is the effective representation of
the pheromone function, as the domain is partially continuous. We would also like the
placement pheromone to affect not only the exact state the jump was taken from, but also

TIME 2018

22:10 Population Based Methods for Timed Automata

0 2 4 6 8 0

50

0.5

1

x1

x2

Figure 1 2D Gaussian kernel Gv(x) with v = (3, 4) and σ = 1.

the neighbourhood around that state so as to inform later ants that similar states to this
might also be good candidates. As explored by Socha and Dorigo [12], a solution is to have
the pheromone function be a sum of k-dimensional Gaussian kernels. Given a center-point v
the Gaussian kernel Gv : Rk → R is of the form:

Gv(x) = exp
(
−|v− x|2

2σ2

)
where |v− x| is the Euclidean distance between v and x and σ is a constant defining the
width of the curve. As seen in Figure 1, the function gives a maximum of 1 at x = v and
approaches 0 as x moves further away.

We can then define our pheromone function as a linear combination of these curves
centered at the points pheromone has been applied. For a particular jump e, let v1, . . . ,vm
be the points at which pheromone has been applied, and τ1, . . . , τm be the corresponding
concentration that was applied at each point. Each value τi is the maximum height of the
corresponding curve, We also add the constant function 1 so that the initial pheromone
concentration at each point is 1 like in the previous method. Our pheromone function is then
given by:

Pheromone(x, e) = 1 + τ1 ·Gv1(x) + . . .+ τm ·Gvm(x)

Figure 2 shows an example of a pheromone function at a particular jump in a 1 clock
automaton, where varying concentrations of pheromone have been placed at x = 2, x = 6
and x = 12.

This method is easily represented by a list of centre points and concentrations for each
jump of the automaton. Evaluation of the function simply requires taking the value 1 and
adding the corresponding Gaussian functions at the particular point, restricting the value if
it exceeds our Pheromonemax value. As the computation time for this is linear in the number
of curves present, we restrict the number of curves allowed to a number n, keeping only the
most recent n curves for each jump.

The rest of the algorithm operates mostly the same as the previous with a few modifications.
As our pheromone function has changed, the state-transition rule is slightly modified. At
a given CP-state s the ant considers the set of all legal joint actions Actions(s) which is

L. Tolonen, T. French, and M. Reynolds 22:11

0 5 10 15

1

1.5

2

2.5

3

x

Ph
er

om
on

e(
x
,e

)
Figure 2 Example 1D pheromone function for a particular jump.

the set of actions (δ, e) such that s+ δ satisfies both the current location invariant and the
guard of e. The probability of taking an action (δ, e) depends on the pheromone value at the
state the discrete transition is taken from: Pheromone(s+ δ, e), and the reward and cost that
this action contributes. We define the reward-cost ratio of an action (δ, e) from a CP-state
s = (q, z,d) as:

Ratio(δ, e, s)−1 := Reward(q) · δ + Reward(e)
Cost(q) · δ + Cost(e)

The state -transition rule then gives the probability of taking an action (δ, e) in Actions(s):

P (δ, e) = Pheromone(s+ δ, e)α · Ratio(δ, e, s)−β∑
(δ′,e′)∈Actions(s)

Pheromone(s+ δ′, e′)α · Ratio(δ′, e′, s)−β

The parameters α and β are weightings of each component as before. Local and global
pheromone updates act as before, with the change that whenever pheromone is scaled,
instead the height parameter of each component Gaussian curve is scaled, and whenever a
value is added, a Gaussian curve with that height is added instead. To keep the number of
Gaussian curves low, we set a small real valued constant heightmin. Whenever the scaling
of a Gaussian function results in its height being less than heightmin, the curve is removed
from that pheromone function.

The remaining parts of the algorithm: iteration, elitist updating and returning of the best
solution are identical to that of the simple ant colony optimisation method. The modified
pheromone function and state transition rule gives a method for approximating the optimal
infinite ratio of the automaton, that takes into account more information than the previous
method, but has more significant time and memory requirements due to the pheromone
function representation.

3.2 Cycle Optimisation
In the previous methods the delays for a given cycle of the automaton were determined
approximately. In this section we introduce a method that, given a set of jumps forming a
cycle in the automaton, will exactly determine the delays that give the best possible cost to
reward ratio for that cycle. With this method, the optimal infinite scheduling problem only
requires the trial of different combinations of discrete transitions.

Let A = (Q, qstart,X ,Σ, E, I, Cost, Reward) be a double-priced timed automaton, and
let (ei)ni=1 = e1, e2, . . . , en be a sequence of jumps such that ei = (qi−1, αi, Gi, Xi, qi) ∈ E
with q0 = qn, that is the edges of (ei)ni=1 form a cycle in A. Given this sequence we

TIME 2018

22:12 Population Based Methods for Timed Automata

wish to find a cyclic execution of A, ρ = (q0, v0,0) δ0−→ (q0, v0,1) e1−→ (q1, v1,0) δ1−→ . . .
en−1−−−→

(qn−1, vn−1,0) δn−1−−−→ (qn−1, vn−1,1) en−→ (q0, v0,0) with Ratio(ρ) being minimal. As the jumps
involved are fixed, this problem consists of finding optimal delays δi such that ρ is a valid
execution. The valuations vi,j can then be derived from the delays. Note that unless all
delays are 0, then for a solution to exist each clock must be reset by at least one jump, as
such we will only consider sequences in which all clocks are reset at least once. To begin
with, we will also assume that all invariant and guard conditions are closed, that is they only
make use of the weak inequalities ≥ and ≤.

To solve this problem we will first derive a set of constraints that will ensure that ρ is a
valid execution. We then redefine the objective function and constraints with respect to a
new set of variables such that the constraints define a bounded polyhedron and the objective
function is a quotient of affine functions. This will give a linear-fractional program that
we can transform into a linear program to then solve. The constraints, objective function
and solution are described in the appendix (Appendix A). This method gives a computable
function CycleOpt : {en} → R that maps to each sequence of jumps in the automaton
forming a cycle, a real number that is the minimum achievable cost to reward ratio for
that particular cycle. If a sequence e1, . . . , en is infeasible, that is no valid execution of the
sequence of jumps exists, we set CycleOpt(e1, . . . , em) =∞.

The cycle optimisation can be extended to handle strict inequalities in guards, as described
in the appendix (Appendix A.1).

4 Ant Colony Optimisation with Cycle Optimisation

The cycle optimisation algorithm can be applied in conjunction with ant colony optimisation
to the optimal infinite scheduling problem. The ants are responsible for testing cycles
consisting of different jumps of the automaton, while the cycle optimisation algorithm returns
the optimal delays as well as the best achievable cost reward ratio for a cycle composed of
those jumps.

The implementation of this algorithm operates largely the same as the simple ant colony
optimisation algorithm discussed earlier. Ants traverse the CP-states of the automaton until
they reach a cycle, informed by the pheromone function over the set of jumps. The difference
occurs around the time of the global pheromone update. In the orginal algorithm each of the
best k ants would place pheromone corresponding to the cycle it built. Instead, for each of
these ants, the sequence of discrete-transition used in its solution e1, . . . , en is passed into the
cycle optimisation method. CycleOpt(e1, . . . , en) is calculated, with the result being used to
update the concentration of pheromone along each jump in the sequence. This reduces the
drawback of using random delays during exploration, while still having the benefits of the
simple pheromone function this enables. During the exploration ants are essentially finding
feasible sequences of jumps, while the CycleOpt function finds the best ratio over a subset of
these feasible cycles. This is beneficial as the CycleOpt function, the most computationally
expensive part of the iteration, only needs to be executed for a small number of the candidate
solutions. A drawback that remains in this method is that the pheromone function only
informs what set of jumps to use, while the optimal achievable ratio depends on the exact
sequence of jumps. The ratio varies on what order the jumps appear in as well as on how
many times a jump is taken.

L. Tolonen, T. French, and M. Reynolds 22:13

Table 1 Rates of finding the overall minimal ratio on each of the 175 timed automata test cases.

Method Rate
Ant Colony with CO 61.5%
Simple Ant Colony 44.6%

Random 43.5%
Hybrid Ant Colony 38.2%

Table 2 Normalized average ratios across all test cases. This is given by dividing the ratio
obtained in each trial by the best ratio found for that automaton.

Method Normalized Avg.
Ant Colony with CO 1.131

Random 1.161
Simple Ant Colony 1.202
Hybrid Ant Colony 1.297

5 Results

This section details the execution and results of several experiments designed to test the
effectiveness of each of the above algorithms for solving the optimal infinite scheduling. Of
interest are the ratios obtained, the time taken to do so, and the types of cycle structures
each algorithm is best suited finding. Each algorithm was implemented in Java 8.

As a baseline for comparison with the other algorithms, a method that simply explores the
CP-states randomly was implemented. This method generates some number of random cycles
in the corner-point abstraction, with the best found cycle being returned as the solution. At
each decision point, which delay or jump to take is determined using a uniform distribution.
The parameter tuning is described in the appendix (Appendix B).

The primary experiment for evaluation consisted of running each algorithm on 175
randomly generated double priced timed automata. Each method was performed 10 times
per automaton with the best found ratio, the average ratio and the average time taken
to terminate being recorded. The test case generation (Appendix C) and optimal ratio
calculation (Appendix D) are described in the appendix. Even on these small instances it
was not feasible to run the deterministic algorithm [4] to confirm the optimal ratio.

5.1 Results and Discussion
For each automaton, the best ratio that either the optimal ratio search or any of the five
methods returned was recorded and used as a point of comparison. How frequently each
method returned the best ratio for a given automaton was recorded. This is shown in Table 1.

The algorithms making use of cycle optimisation performed the best by this measure,
being the only methods to find the optimum in over 50% of the trials. Notably, the hybrid
ant colony algorithm found the optimum less frequently than even the random method.

The normalized average ratio found by each method was also recorded. This value is
given by taking the ratio found in a particular trial and dividing by the best ratio found
across all trials for the same automaton. A normalized average of 1.0 would suggest that the
method found the optimum in every trial, with higher values suggesting worst performance.
The normalised ratio gives a measure of how close to the optimum the ratios returned by
each method were. These results are shown in Table 2. Ant colony optimisation with cycle

TIME 2018

22:14 Population Based Methods for Timed Automata

Table 3 Rates of taking the optimal loop.

Method Rate
Ant Colony with CO 52.4%
Simple Ant Colony 50.4%
Hybrid Ant Colony 15.4%

Random 10.4%

Figure 3 An example loop automaton. The optimal behaviour is given by taking enabling n− 1
times and then taking payoff.

optimisation gave the best performance by this measure. Interestingly the random method
had the second best performance. However, this performance comes at a price, taking on
average 9 seconds per trial, compared with 1 second per trial for the simple ant colony
methods. The hybrid and random average 1.5 seconds per trial.

Based on the results of this experiment, ant colony optimisation with cycle optimisation
appear to be the best method for finding a profitable cyclic behaviour of a timed automaton.
Although this method has a greater time requirement than the others, the improvement to
the behaviours found is likely to make this time increase worthwhile. Overall the hybrid ant
colony optimisation algorithm was the worst at optimising the behaviour of the automaton,
performing even worse than the baseline random method. It is possible that the pheromone
representation more frequently led the algorithm astray rather than allowing it to improve
upon its solutions in each iteration.

6 Additional Experiments

In addition to the primary experiment, the methods were tested on automata with a particular
structure designed to stress the algorithms and find potential weaknesses.

6.1 Jump Repetition
This experiment tested how frequently each method found the optimal cycle when that cycle
consisted of taking a particular jump n times followed by a high reward jump. Each test
case had 2 clocks and a single location with 0 cost and reward. The jumps consisted of an
enabling jump which allows the difference between the two clock values to increase by at
most 1 each time it is taken, a payoff jump which can only be taken when the difference
between the clocks is at least n and a set of k “noise” jumps. All jumps have cost 1, with the
enabling jump having reward 1, the payoff jump having reward 1000 and the noise jumps
having rewards in the range 1 to 10. The payoff jumps reward dominates that of all others
and hence the optimal ratio is obtained by the cycle where the enabling jump is taken n
times and then the payoff jump is taken. Figure 3 shows the structure of the automata.

There were 50 test cases with n ranging from 1 to 10 and k ranging from 1 to 5. In
each test case, each method was run 10 times. The percentage of these runs that found the

L. Tolonen, T. French, and M. Reynolds 22:15

0 2 4 6 8 100

20

40

60

80

100

n - number of jumps

O
pt
im

al
re
su
lts

(%
)

Random
Simple Ants
Hybrid Ants
Ants with CO

Figure 4 Rate of taking the optimal loop, with respect to number of jumps.

Figure 5 An example sequence automaton of length 4. The optimal behaviour is given by
enabler1→ enabler2→ enabler3→ payoff.

optimal ratio were recorded. These results are shown in Table 3. Figure 4 shows how the
number of times the repeated jump was required to be taken affects how frequently each
method found the optimal behaviour.

The two best performing methods were the simple ant colony optimisation, and ant colony
optimisation with cycle optimisation. Notably these two methods use a pheromone function
associated only with individual jumps, so a high pheromone concentration on the enabling
jumps would cause these algorithms to take it more frequently.

6.2 Sequence Length

This experiment consisted of test cases with one location where the optimal cycle consisted
of taking a specific sequence of jumps of length n, again in the presence of k “noise” jumps.
All jumps had cost 1. Noise jumps had rewards between 1 and 10, the first n − 1 jumps
in the sequence had reward 100 and the final jump has reward 1000. The test case has n
clocks, with the ith jump resetting the first i clocks and requiring that the first i− 1 clocks,
but not the ith have been reset, making it so the final jump is only possible to take if the
first n− 1 jumps have been taken in the correct order with no noise jumps (which reset all
clocks) in between. The final jump’s high reward again dominates, making the set sequence
the optimal cycle for the automaton. Figure 5 shows an example with an optimal sequence
of length 4.

There were 50 test cases with n ranging from 1 to 10 and k ranging from 1 to 5. In each
test case, each method was run 10 times. The percentage of these 10 that found the optimal

TIME 2018

22:16 Population Based Methods for Timed Automata

Table 4 Rates of taking the optimal sequence.

Method Rate
Hybrid Ant Colony 100%
Ant Colony with CO 76.6%
Simple Ant Colony 73.6%

Random 27.2%

0 2 4 6 8 100

20

40

60

80

100

n - number of jumps

O
pt
im

al
re
su
lts

(%
)

Random
Simple Ants
Hybrid Ants
Ants with CO

Figure 6 Rate of taking the optimal sequence, with respect to number of jumps.

ratio were recorded. These results are shown in Table 4. Figure 6 shows how the length of
the optimal sequence affects how frequently each method found the optimal behaviour.

In this experiment the ant colony optimisation based methods greatly outperformed the
other methods. Notably the hybrid ant colony optimisation algorithm found the optimal
sequence in every single trial, despite performing very poorly in the other experiments. As
the hybrid ant colony optimisation pheromone function varies over where in the clock space
a jump is taken from. As what jumps can currently be taken depends on the resets of the
jumps taken previously, the function is able to express some heuristic information about the
impact of the order of the jumps. This result suggests that while in the general case the
hybrid ant colony is less efficient at finding a good behaviour, this pheromone representation
is well suited to the cases where a very specific sequence of actions is required.

7 Conclusion

This investigation shows that in many cases it is possible to achieve optimal or near optimal
strategies for double priced timed automata using variations of ant colony optimisation, and
linear programming for cycle optimisation. However, it also shows that it is possible to
engineer test cases with specific solutions that are difficult for some heuristic search methods
to find. Future work will work towards finding robust variations that are able to consistently
produce near optimal strategies.

References
1 R Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2 Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul Pettersson,

Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability for priced timed auto-
mata. In Proceedings of the 4th International Workshop on Hybrid Systems: Computation
and Control, HSCC ’01, pages 147–161, 2001.

L. Tolonen, T. French, and M. Reynolds 22:17

3 Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Priced timed automata: Al-
gorithms and applications. In in International Symposium Formal Methods for Components
and Objects (FMCO, pages 162–182, 2005.

4 Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite scheduling for multi-
priced timed automata. Formal Methods in System Design, 32(1):3–23, 2008.

5 A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval
Research Logistics Quarterly, 9(3-4):181–186, 1962. doi:10.1002/nav.3800090303.

6 George B Dantzig. Maximization of a linear function of variables subject to linear inequal-
ities. Activity analysi of production and allocation, 1951.

7 Ali Dasdan, Sandy S. Irani, and Rajesh K. Gupta. Efficient algorithms for optimum
cycle mean and optimum cost to time ratio problems. In Proceedings of the 36th Annual
ACM/IEEE Design Automation Conference, DAC ’99, pages 37–42, 1999.

8 Alexandre David, Daniel Ejsing-Duun, Lisa Fontani, Kim G. Larsen, Vasile Popescu, and
Jacob Haubach Smedegård. Optimal infinite runs in one-clock priced timed automata. An-
nual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science
(MEMICS), 2011.

9 M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony of cooper-
ating agents. Trans. Sys. Man Cyber. Part B, 26(1):29–41, 1996.

10 Marco Dorigo and Luca Maria Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary Compu-
tation, 1(1):53–66, 1997.

11 Peter Niebert, Stavros Tripakis, and Sergio Yovine. Minimum-time reachability for timed
automata. In IEEE Mediteranean Control Conference, 2000.

12 Krzysztof Socha and Marco Dorigo. Ant colony optimization for continuous domains.
European Journal of Operational Research, 185(3):1155–1173, 2008. doi:10.1016/j.ejor.
2006.06.046.

13 P Soustek, R Matousek, J Dvorak, and J Bednar. Canadian traveller problem: A solution
using antcolony optimization. In Proceedings of 19th International Conference on Soft
Computing – MENDEL 2013, page 439–444, 2013.

14 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004. doi:
10.1145/990308.990310.

15 Thomas Stützle and Holger H. Hoos. Max–min ant system. Future Generation Computer
Systems, 16(8):889–914, 2000. doi:10.1016/S0167-739X(00)00043-1.

16 Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-abstracting
bisimulations. Form. Methods Syst. Des., 18(1):25–68, 2001.

A Cycle Optimisation

Constraints. We first derive a set of constraints over the clock valuations vi,j that limit
the choice of delays to only those that result in a valid execution:
1. vi,1 satisfies G(i+1) (mod n) as the jump e(i+1) (mod n) is taken from vi,1.
2. If x ∈ Xi then, vi,0(x) = 0 as jump ei resets clock x.
3. vi,j satisfies I(qi), as all valuations in the run must satisfy the corresponding invariant

condition. As the location invariant defines a convex region in the clock-space, all
valuations between vi,0 and vi,1 will also satisfy the invariant.

4. vi,1 is a direct time successor of vi,0. That is, for each i there is a non-negative constant
δ (corresponding to the delay taken from vi,0) such that for x in X , vi,1(x) = vi,0(x) + δ.

TIME 2018

http://dx.doi.org/10.1002/nav.3800090303
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1016/S0167-739X(00)00043-1

22:18 Population Based Methods for Timed Automata

Note that while the first three conditions can easily be expressed in terms of clock difference
constraints between the valuations, the final constraint cannot as the constant δ depends
on the delay chosen for that step of the run. To get around this issue, we need to reframe
the constraints with respect to the delays, rather than the valuations. To achieve this, we
define a vector of variables t = (t0, . . . , tn) with ti :=

∑i−1
j=0 δj . ti can be thought of the total

elapsed time between the beginning of the execution and taking jump ei. We then define
each valuation with respect to these variables. In order to do so we first define a function
lastReset : (0, . . . , n)×X → 0, . . . , n, which given an index and a clock gives the index of
the most recent jump that reset that clock:

lastReset(i, x) :=
{
max(j ≤ i |x ∈ Xj) if such a j exists
max(j > i |x ∈ Xj) otherwise

As we are considering only sequences of jumps in which all clocks are reset, lastReset(i, x)
is defined for all i = 0, . . . , n and all x ∈ X . The value of a clock at a given point of our
sequence is simply equal to the total time elapsed since that clock was last reset, so we can
use this function to define each valuation in terms of t, being careful to take into account
the cyclical nature of the sequence:

vi,0(x) :=
{
ti − tlastReset(i,x) lastReset(i, x) ≤ i
ti − tlastReset(i,x) + tn lastReset(i, x) > i

vi,1(x) :=
{
ti+1 − tlastReset(i,x) lastReset(i, x) ≤ i
ti+1 − tlastReset(i,x) + tn lastReset(i, x) > i

This definition of the valuations conveniently ensures that a run given in terms of t will satisfy
several of the above constraints. Constraint 2 is satisfied as if x ∈ Xi, then lastReset(i, x) =
i which implies vi,0(x) = ti − ti = 0. Constraint 4 is almost satisfied, as for all x in
X , vi,1(x)− vi,0(x) = ti+1 − ti, which does not depend on x, however we need to ensure that
the delay this corresponds to is non-negative. To satisfy the rest of constraint 4, as well
as constraints 1 and 3 we build a set of constraints C on t. To ensure the non-negativity
of delays we add the constraints that ti+1 − ti ≥ 0 as δi = ti+1 − ti. Each clock value of a
valuation vi,j is expressed as a linear combination of the elements of t, and each location
invariant and jump guard is the conjunction of upper or lower bounds on these clock values,
so adding these conditions expressed in terms of t to C ensures that all runs in our system
will be valid. All the conditions in C are bounds on linear combinations of elements in t, and
as the invariants bound the clock values, each ti is also bounded, hence C defines a bounded
convex polyhedron over t.

Objective Function. The function we are trying to minimize is Ratio(ρ) = Cost(ρ)/
Reward(ρ), which we wish to express in terms of t. The cost and reward functions are:

Cost(γ) =
n−1∑
i=0

Cost(qi) · δi +
n∑
i=1

Cost(ei)

Reward(γ) =
n−1∑
i=0

Reward(qi) · δi +
n∑
i=1

Reward(ei)

To get our objective function Ratio(t) we substitute δi = ti+1 − ti, giving:

Ratio(t) =
∑n−1
i=0 Cost(qi) · (ti+1 − ti) +

∑n
i=1 Cost(ei)∑n−1

i=0 Reward(qi) · (ti+1 − ti) +
∑n
i=1 Reward(ei)

L. Tolonen, T. French, and M. Reynolds 22:19

Solving the System. The set of polyhedral constraints C can be represented by the inequality
At ≤ b, where A is a matrix with a column for each clock. Each row of A corresponds to
one of the constrains in C, with the matching entry in b being the bound on that linear
combination of members of t. As the objective function Ratio(t) is a quotient of affine
functions of t, this function in conjunction with our constraint matrix A, as well as the
implicit constraint that each ti be non-negative gives a linear-fractional program. To solve
the system we can first apply the Charnes-Cooper transformation [5] to give an equivalent
linear program. If we rewrite our objective function as

Ratio(t) = c · t + α

d · t + β

Our transformed system has variables y and λ with:

y = 1
d · t + β

· t; λ = 1
d · t + β

The equivalent linear program is then given by:

minimize c · y + αλ

subject to constraints Ay ≤ αλ
d · y + βλ = 1

If y∗, λ∗ is the solution to the linear program, the solution to the linear fractional program is
t = 1

λ∗y∗. From this we can extract the optimal delays as δi = ti+1 − ti.
The linear program can be solved with a method such as the simplex algorithm [6]. In

the worst case this has time complexity O(2n), but it has been shown that on average the
simplex algorithm terminates in polynomial time [14].

A.1 Strict Inequalities in Guards
As described, the cycle optimisation algorithm only works for DPTA whose guards and
invariants contain weak inequalities (≤ and ≥). This is because linear programs require
the feasible region to be closed for the precise optimum to exist. However we are interested
in the minimum cost to reward ratio that infinite runs of the automaton can approach
arbitrarily close to, even if this limit itself is not obtained from an actual run. This situation
can arise when strict inequalities (< and >) are present in the guards on invariants of the
DPTA. To solve the system in this case we replace all strict inequalities by weak inequalities
and construct and solve the linear program as before, obtaining the solution vertex t∗. We
then reintroduce the strict inequalities and check if their exists a feasible solution within an
arbitrarily small neighbourhood around t∗. If such a solution exists, runs of the automaton
can approach the ratio obtained at t∗ by taking delays arbitrarily close to those given by
this solution that are inside the feasible region. If not, this means that the feasible region is
empty and that this sequence of jumps does not give rise to any valid cycles.

Let active≤ be the set of weak constraints in C that are active at t∗, that is the
constraints ai · t ≤ bi such that ai · t∗ = bi. Let active< be the be the equivalent set of
strong constraints ai ·t < bi. If this set is non-empty, the current solution is not feasible. Each
active constraint defines a hyperplane in R|X | on which t∗ lies. To check if a neighbouring
feasible solution exists, we determine if there exists a direction v that we can move in from
t∗ that moves off of all of the hyperplanes in active< without moving onto the wrong side of
any other hyperplane. Such a direction requires that for all constraints ai · t < bi in active<,
v · ai > 0 and for all constraints ai · t < bi in active≤, v · ai ≥ 0. Such a v does not exist

TIME 2018

22:20 Population Based Methods for Timed Automata

if for some active strict constraint the other active inequalities can be combined to derive
a contradictory constraint. If a is the normal vector of a constraint in active<, the other
constraints are contradictory if there exists a positive linear combination of normal vectors
from active≤ ∪ active< that gives −a, as this implies that both a · t < b and a · t ≥ b are
active constraints.

Let n · t < b be an active strict constraint. Let ai = (ai,1, . . . , ai,k) be the ith active
constraint at t∗. We want to check if there exists a positive linear combination of these
vectors α1 · a1 + . . .+ αm · am, αi ≥ 0 equal to −n. Let A be the matrix whose ith row is ai.
We construct a linear program over (α1, . . . , αm):

minimize α1 + . . .+ αm

subject to constraints AT ·

α1
...
αm

 = n

α1, . . . , αm ≥ 0

If this program has a feasible solution then the constraint n · t < b is contradicted by the
other active constraints, meaning that this sequence of jumps does not have a valid execution.
This is checked for each constraint in active<.

A.2 Ensuring Reachability
While the execution found by the cycle optimisation algorithm satisfies all the guards and
location invariants, the states involved are not necessarily reachable from the starting state
of the automaton. To restrict the result to only reachable cycles, additional computation is
required. Through the use of zones and the discrete-successor operation, we can construct
the simulation graph - a graph whose nodes are locations paired with a zone representing
a set of reachable states of the automaton and whose edges correspond to jumps of the
automaton [11]. The simulation graph is constructed by performing a depth-first search
beginning from a zone containing the starting state and its time successors. By taking all
the nodes of the simulation graph associated with a given location we get a union of convex
zones representing all the reachable valuations within that location.

Given a sequence of jumps e1, e2, . . . , en to be optimised, let q be the location from
which the jump e1 is taken from, and let Reach(q) = {Z1, . . . , Zk} be the set of reachable
zones at q obtained from the simulation graph. To restrict to reachable cycles, the cycle
optimisation algorithm needs to be executed for each zone Zi in Reach(q). For each execution,
the constraints defining Zi are added to the linear fractional constraint in the same way as
the location invariant at q. This ensures that the states in q that the feasible cycles visit are
contained in Zi and are therefore reachable. By definition, if one of the states of the cycle is
reachable, the entire cycle is reachable. The algorithm is run for each zone in Reach(q), with
the cycle giving the best ratio returned as the result.

B Parameter Tuning

For comparison between the different methods, the total number of solutions evaluated was
kept fixed at 3000. Several experiments were carried out to determine what combination of
population size and number of iterations gave each algorithm the best average performance,
measured in terms of the normalised average ratio the method returned over 10 trials with
each set of parameters. The best performing parameters were then used for the main

L. Tolonen, T. French, and M. Reynolds 22:21

Figure 7 A Generated DPTA with C = 3, L = 5, J = 5. Guards and invariants are denoted by
inequalities on the clock variables x, y, and z. X := 0 denotes a clock reset. C and R denote costs
and rewards respectively.

experiments. The ant colony optimisation algorithms perform best with population of 30
ants over 100 iterations. For probability calculations the weighting for pheromone was α = 1
and the weighting based on jump and location ratios was β = 1.5. The evaporation rate used
is 0.05 and the decay rate in the local pheromone updates is 0.1. Elitist updates were used
with the top 10 ants contributing in the global pheromone update.

C Test Case Generation

Test cases were procedurally generated, ensuring that each automaton met the assumptions
of being strongly-reward diverging, deadlock free and bounded. The procedure for generating
an automaton takes three inputs: the number of clocks C, the number of locations L, and
the minimum number of jumps J . One test case was generated for each assignment of these
variables with 1 ≤ C ≤ 5, L ∈ {5, 10, 15, 20, 25} and J taking values between L and 45
inclusive at increments of 5. Generation of an automaton begins with a single location with
no jumps.

The automaton is built up by either adding a jump from a location to itself, or splitting a
location into two. Splitting a location q consists of adding a location q′ with a jump from q

to q′. Either all of q’s inbound jumps are changed to have their destinations be q′ or all of q’s
outbound jumps are changed to have their source be q′. These processes are repeated until
the required location and jump counts are reached. All locations have invariants restricting
all clocks to be less than or equal to 20. Costs and rewards of locations and jumps take
random integer values between 0 and 20, with the exception of jumps added as part of cycles,
which have a minimum reward of 1 to ensure reward divergence. Guards and resets are also
determined randomly.

Zone based reachability analysis is used to check that all locations are reachable and all
jumps can be taken from at least one state. Jump guards are randomly weakened until this
is satisfied. Finally, the automaton is checked for deadlocks, again using zone based analysis.

TIME 2018

22:22 Population Based Methods for Timed Automata

When a deadlock is detected an additional random jump is added that can eventually be
taken from all states within that deadlock zone. This process repeats until the automaton is
deadlock free. An example of one of the smaller automatons generated via this method is
shown in Figure 7.

D Optimal Ratio Calculation

To evaluate the effectiveness of the heuristic methods, it is desirable to know the actual
optimal ratio for each generated timed automaton. As a feasible algorithm for calculating
this ratio exactly does not currently exist, we instead find the optimal ratio up to a certain
cycle length N . To do this we perform a depth first search to generate each discrete cycle
of lengths from 1 to N and pass these into the CycleOpt function. If the branching factor
of the timed automaton (the maximum number of jumps coming out of a single state) is b,
then this procedure has worst case time complexity O(2N · bN). To balance the amount of
time required and the degree of accuracy a maximum cycle length of 8 was used to process
each of the 175 test cases.

	Introduction
	Preliminaries
	Timed Automata
	Double-Priced Timed Automata and Optimal Infinite Scheduling

	Population Based Metaheuristics
	Ant Colony Optimisation

	Approximate Optimisation
	Ant Colony Optimisation
	Simple Ant Colony Optimisation with Random Delays
	Hybrid Ant Colony Optimsation

	Cycle Optimisation

	Ant Colony Optimisation with Cycle Optimisation
	Results
	Results and Discussion

	Additional Experiments
	Jump Repetition
	Sequence Length

	Conclusion
	Cycle Optimisation
	Strict Inequalities in Guards
	Ensuring Reachability

	Parameter Tuning
	Test Case Generation
	Optimal Ratio Calculation

