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Summary

Stochastic process calculi represent widely accepted formalisms within Com-
puter Science for modelling nondeterministic stochastic systems in a composi-
tional way. Similar to process calculi in general, they are suited for modelling
systems in a hierarchical manner, by explicitly specifying subsystems as well
as their interdependences and communication channels. Stochastic process cal-
culi incorporate both the quantified uncertainty on probabilities or durations of
events and nondeterministic choices between several possible continuations of
the system behaviour.

Modelling of a system is often performed with the purpose to verify the sys-
tem. In this dissertation it is argued that the verification techniques that have
their origin in the analysis of programming code with the purpose to deduce
the properties of the code’s execution, i.e. Static Analysis techniques, are trans-
ferable to stochastic process calculi. The description of a system in the syntax
of a particular stochastic process calculus can be analysed in a compositional
way, without expanding the state space by explicitly resolving all the interde-
pendencies between the subsystems which may lead to the state space explosion
problem.

In support of this claim we have developed analysis methods that belong to
a particular type of Static Analysis – Data Flow / Pathway Analysis. These
methods have previously been applied to a number of non-stochastic process
calculi. In this thesis we are lifting them to the stochastic calculus of Interactive
Markov Chains (IMC). We have devised the Pathway Analysis of IMC that
is not only correct in the sense of over-approximating all possible behaviour
scenarios, as is usual for Static Analysis methods, but is also precise. This gives
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us the possibility to explicitly decide on the trade-off between precision and
complexity while post-processing the analysis results.

Another novelty of our methods consists in the kind of properties that we can
verify using the results of the Pathway Analysis. We can check both qual-
itative and quantitative properties of IMC systems. In particular, we have
developed algorithms for constructing bisimulation relations, computing (over-
approximations of) sets of reachable states and computing the expected time
reachability, the last for a linear fragment of IMC. In all the cases we have the
complexities of algorithms which are low polynomial in the size of the syntactic
description of a system. The presented methods have a clear application in the
areas of embedded systems, (randomised) protocols run between a fixed number
of parties etc.



Resumé

I datalogien bruges stokastiske procesalgebraer til at modellere nondeterminis-
tiske stokastiske systemer p̊a en kompositionel m̊ade. Som det normalt gælder
for procesalgebraer, gør de det bekvemt at modellere den hierakiske struk-
tur af systemer ved blot at identificere deres delsystemer og deres indbyrdes
afhængigheder og kommunikationskanaler. I de stokastiske procesalgebraer h̊and-
teres derudover kvantitativ information om de usikkerheder og ventetider der
indg̊ar i systemet, hvilket giver en særlig udfordring i forbindelse med de ikke-
deterministiske handlinger, som omgivelserne m̊atte p̊atrykke.

Det væsentligste form̊al ved at modellere IT systemer er normalt at kunne
verificere deres opførsel. Hovedtesen for denne afhandling er, at de verifika-
tionsteknikker der kendes fra programmeringssprog, fx programanalyse, kan
overføres til analysen af stokastiske procesalgebraer. Det giver mulighed for at
analysere systemerne med udgangspunkt i den kompositionelle m̊ade i hvilken
de er beskrevet, hvilket kan mindske risikoen for at skulle udfolde hele tilstand-
srummet til at kunne blive eksponentielt stort og dermed vanskeligt h̊andterbart.

Som støtte for denne tese udvikler afhandlingen en række analysemetoder fra
en bestemt type programanalyse, kendt som data flow analyse. De er tidligere
blevet brugt p̊a ikke-stokastiske procesalgebraer men først i denne afhandling
p̊a stokastiske procesalgebraer - konkret en meget udtryksfuld procesalgebra
der tillader at udtrykke interaktive Markov kæder. I afhandlingen udvikles en
avanceret data flow analyse, som giver en b̊ade præcis og korrekt beskrivelse
af alle mulige opførsler af systemet. Det giver mulighed for kun at foretage
tilnærmede analyser n̊ar det giver en tids- eller pladsmæssig gevinst.

En anden nyskabelse i de præsenterede resultater er den m̊ade som kvalitative
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og kvantiative egenskaber ved interaktive Markov kæder kan beskrives p̊a. Der
udvikles s̊aledes algoritmer til at konstruere bisimulationsrelationer mellem IT
systemer, algoritmer til at beregne de tilstande der kan n̊as, og for et lineært frag-
ment af interaktive Markov kæder ogs̊a tidsforbruget langs en given udførelse.
I alle tilfælde opn̊as algorithmer af lav polynomiel kompleksitet. Afhandlingens
resultater har brede anvendelsesmuligheder indenfor indlejrede systemer og de
randomiserede kommunikationsprotokoller der indg̊ar i service-orienterede IT
systemer.
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Chapter 1

Introduction

The study of concurrent systems has been a dynamically developing field of
research in Computer Science in the last decades. Such systems can be recur-
sively constructed out of several subsystems that progress in parallel, can exhibit
nondeterministic behaviour and interact at some time points during their execu-
tion, or globally influence each other’s execution in some way. Many real-world
systems can be modelled as concurrent systems – embedded, distributed, net-
worked, etc. – therefore their understanding and verification is of increasing
importance.

Widely accepted formalisms for describing concurrent systems are process cal-
culi, also called process algebras. Starting from the pioneering process calculi
CCS [Mil80] and CSP [Hoa85], we have now a broad class of process calculi,
some of which are more general and some are more adapted to specific applica-
tion areas. We can name among others π-calculus [MPW92] (added communi-
cation between processes through channels) and its enhancement for modelling
cryptographic protocols Spi-calculus [AG97], Ambients [CG98] (added move-
ment of processes), and its version for biological systems BioAmbients [RPS+04],
a higher-order process calculus KLAIM [dNFP98] (a language for distributed
systems), etc. Process calculi provide operators that make it possible to specify
systems in a compositional way, by building more complex systems out of simple
ones, and to explicitly declare nondeterministic choices. A syntactic description
of a system in a particular process calculus is always finite, while it can also
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describe an infinite system behaviour.

The behaviour of each subcomponent of a concurrent system can be represented
by a labelled transition system, which is called its semantic model. Labelled
transition systems consist of states and transitions between the states. The
number of states and transitions can be finite or infinite. Each transition is an-
notated by a label that describes the meaning of the transition and influences the
way in which a labelled transition system can interact with other labelled tran-
sition systems external to it – the latter are often called external environments.
A finite expression in a syntax of a particular process calculus corresponds to a
labelled transition system where all the interdependencies between subcompo-
nents have been resolved and the behaviours of separate subsystems have been
“merged together” in one integrated representation. In this way all possible
behaviour of a model becomes explicitly declared. The rules according to which
this transformation is performed, i.e. from a compositional system description
in a particular process calculi into a labelled transition system, are often defined
in the spirit of Structural Operational Semantics [Plo81].

Historically the first process calculi could only describe functional aspects of
systems behaviour: they did not incorporate the notions of time and quantified
uncertainty (for example, of probabilities). A number of stochastic process
calculi have been defined later on that add quantitative information to the
qualitative in the description of systems – among others, we can name TIPP
[GHR92], PEPA [Hil96], EMPA [BG98], stochastic π-calculus [Pri95], stochastic
CCS [KS08], and IMC [BH00]. With these calculi it is possible to model the
same systems as with purely functional process calculi with added information
on their performance and also new systems where quantitative information is
decisive – for example, biochemical or randomised. A usual way to represent the
time information is by using Continuous-Time Markov Chains as formal models
of delays between qualitative progress steps in the system execution.

Modelling of a system is usually accompanied by the verification of its properties
– for example, safety or liveness properties, – or by comparison with a reference
implementation. For stochastic process calculi a new class of properties – per-
formance properties – can be verified as well. Moreover, it becomes possible to
express quantitatively the difference between two systems. The usual method of
doing system verification is to use Structural Operational Semantics rules of the
corresponding process calculus to build a labelled transition system out of the
system’s syntactic description. Consequently model-checking algorithms can be
run on the constructed labelled transition system [CES86].

One potential problem with this approach is the state space explosion: a small
description of a process in a corresponding process calculus’s syntax can give
rise to a large or even infinite labelled transition system, whose verification is
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undecidable in the general case. Even if the state space of a particular system
is finite, and therefore its verification is decidable, the existing model-checking
algorithms are usually of high time and space complexity. For this reason there
is a need for simplified, more efficient verification methods. The Static Analy-
sis methods can provide us with the necessary methodology. They have been
originally applied to the analysis of programs, but later on have shown to be
useful in other areas as well, for example, in the analysis of biological systems
or cryptographic protocols. In all cases they have been able to provide efficient
algorithms, often at the price of precision.

Main Thesis. We can now formulate the main thesis of this dissertation:

Static Analysis techniques can be used for verification in a syntax-
directed and compositional way of systems modelled by stochastic pro-
cess calculi.

Our main thesis is thus the statement that it is possible to “lift” the Static
Analysis methods from a discrete / functional / qualitative world to a stochastic
/ non-functional / quantitative world, i.e. to apply them to stochastic process
calculi. We will obtain a “concise description” (the result of the Static Analysis)
of the semantics of a concurrent stochastic system, and can verify a number of
properties with a chosen level of precision by post-processing it. Static Analysis
can in particular be useful in order to compare the behaviour of such systems,
to assess possible system behaviour at some point in the future, and to estimate
the expected time interval until reaching that point.

1.1 Background

Static Analysis has initially been developed in the field of imperative program-
ming languages. Its purpose was to check for errors in a program without
actually executing it, purely by analysing the code (see [NNH99] for a detailed
description of different Static Analysis techniques). Some of the Static Anal-
ysis techniques (Control Flow Analysis, Data Flow Analysis, etc.) have been
later adapted to a variety of process calculi with a similar purpose – to deduce
some properties of system’s behaviour directly from the syntax, without actu-
ally building a complete labelled transition system induced by the semantics.
In this thesis we have been inspired by the adaptation of Data Flow Analysis
to CCS [NN07] and to Pathway Analysis for BioAmbients [NNPR04], [Pil07].
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After the application of Data Flow Analysis methods to a syntactic description
of a system, a deterministic finite automaton can be constructed based on the
analysis results which safely over-approximates the execution scenarios of the
labelled transition system induced by the semantic rules of a particular process
calculus. By safely we mean that all existing execution scenarios of the labelled
transition system are taken into account. By over-approximation we mean that
some impossible scenarios can also be embedded into the deterministic finite
automaton. This kind of approximation is also called may-approximation as
the deterministic finite automaton represents the behaviour that may occur.

Also must-approximations are feasible with Data Flow Analysis methods where
the deterministic finite automata represent only the existing execution scenar-
ios of semantic models but not necessary all of them [NNN08]. While over-
approximations are useful for deciding safety properties, under-approximations
are useful for deciding liveness properties; besides, their comparison can help
us to estimate the “error gap” of the analysis. In both cases it is a challenge
to build the smallest possible automaton that is still good enough for checking
interesting properties, i.e. for which the “error gap” is the smallest possible.
Unlike with model-checking methods, infinite labelled transition systems can
be analysed by Data Flow Analysis methods, and for finite systems we usually
have lower time and space complexity while using Data Flow Analysis methods
compared to model-checking methods.

In this PhD project we are mainly concentrating on the application of Data
Flow Analysis or a broader class of Static Analysis methods to concurrent non-
deterministic stochastic systems. The systems are modelled on a high level of
abstraction as processes which synchronise and communicate with each other,
and are described using stochastic process calculi. We have chosen one such
calculus – the calculus of Interactive Markov Chains [BH00] (IMC) – for our
analysis. The IMC is an orthogonal union of labelled transition systems and
Continuous-Time Markov Chains. This calculus is useful for our purposes, as
we can model purely stochastic systems, purely concurrent nondeterministic sys-
tems, and a combination of both in this calculus. Also syntactically the calculus
of IMC is beneficial for us, as actions and delays are treated in a very similar
way. Therefore the “lifting” of Data Flow Analysis methods from dealing only
with actions to dealing with delays as well is quite straightforward. As IMC
allows the presence of nondeterministic choices in a complete model, the power
of Static Analysis methods can be exploited in this aspect.

As already mentioned, an alternative way to verify concurrent nondeterminis-
tic stochastic systems is to model check them. Model checking of stochastic
systems, especially with inherent nondeterminism, is a problem with a high
computational complexity: it can be solved by using numerical algorithms that
may show themselves unstable on some instances. Therefore uniformisation
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[HKMKS00] or discretisation [NZ10] techniques are often applied to such sys-
tems prior to model checking them, and the result is computed up to some
precision level.

We give a schematic view of the relation between (stochastic) model-checking
and Static Analysis methods applied to (stochastic) process calculi in Figure 1.1.
A syntactic expression in a particular process calculus can be either analysed
by Static Analysis methods (in our case by the Pathway Analysis) or a labelled
transition system induced by the semantics of the process calculus can be built,
eventually followed by merging states through abstraction of some of the state
properties – see, for example, [KKLW07], [KKN09], [Smi10].

The verification of properties can take place by either post-processing the Path-
way Analysis results in the first case or by model-checking methods carried out
on the (abstract) labelled transition system. As it is described in Figure 1.1,
post-processing the Pathway Analysis results can be understood as a model-
checking method. In case the Pathway Analysis is not only correct but also
precise, we could, for example, build the deterministic finite automaton based
on the results of the Pathway Analysis which would be equal or bisimilar to the
labelled transitions system induced by the semantic derivation rules and apply
model-checking methods to it. If the Pathway Analysis is not precise then we get
an over- or under-approximation which we can model check using, for example,
three-valued logic – see, for example, [NN07] or [NNN08].

In general, verification based on Static Analysis may lead to insufficient precision
but we might improve on it by some additional post-processing. Model-checking
methods are based on exhaustive exploration of the state space, therefore they
lead in principle to precise results, but the precision might be not sufficient
due to a preceding abstraction, so several rounds of model refinement might be
necessary in order to reach a sufficient precision level. Pathway Analysis results
can also be post-processed in several rounds for reaching the necessary precision
– for this to be possible we need that the Pathway Analysis is precise, i.e. that
no information is lost while doing the analysis. As it is indicated in Figure 1.1,
the relations between Model Checking and Static Analysis methods are quite
complex.

1.2 Contributions

We will shortly describe the main contributions of our work and put them into
relation to the previous work.
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Figure 1.1 – Schematic illustration of the relations between Pathway Analysis
and Model Checking of (stochastic) process calculi.

Pathway Analysis of a stochastic process calculus

We have adapted Pathway Analysis for the application to Interactive Markov
Chains (IMC) systems [BH00]. A significant difference of IMC from other
process calculi to which Data Flow / Pathway Analysis has been applied before
(CCS, Bioambients etc.) is that IMC incorporates time information into the
modelling of systems, while the other calculi are purely functional. Moreover,
IMC makes use of a different synchronisation model: any number of actions can
synchronise in IMC, not just two as in CCS or Bioambients. This is a a so-
called CSP [Hoa85] or multi-way synchronisation. Which actions can/have to
synchronise depends on the global structure of an expression in IMC calculus.
We have defined an additional operator on the syntax of IMC in order to analyse
the global “synchronisation structure” of an expression.

The second difference of our version of Pathway Analysis to the previous work
is that our analysis is not only correct (it over-approximates the behaviour
scenarios) but also precise (it also underestimates the behaviour scenarios), i.e. it
predicts exactly the behaviour scenarios that are possible in the analysed system.
We could achieve this result in particular due to the fact that IMC – unlike other
process calculi to which Data Flow / Pathway Analysis has been applied before
– has only finite semantic models [Her02]. The number of processes running
in parallel and the way they are interacting in an IMC system do not change
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throughout their lifetime though some of the processes may become inactive.

The obvious advantage of making a precise analysis is that we can decide which
level of precision is acceptable while doing the verification of a system using the
analysis results. The results of the analysis in this case succinctly describe all
the possible behaviour of an initial IMC process and any process into which it
can evolve with the time.

Syntax-directed construction of bisimulation and reachabil-
ity relations

Conducting Pathway Analysis on the syntax of IMC systems has allowed us
to devise algorithms for computing in a compositional way relations on the
states of labelled transition systems that are induced by the semantics. This
has allowed us to construct relations in time and space complexities which are
low polynomial in the size of the syntactic description of an IMC system and
not in the number of states in the labelled transition system, which can be
exponentially larger than the size of the syntax.

Identifying bisimilar states can be very beneficial: bisimilar states behave “in
the same way” and therefore can be merged, which leads to smaller systems
and helps to alleviate the problem of state space explosion [Par81], [Mil89].
We have devised conditions based on the results of the previously conducted
Pathway Analysis under which states are guaranteed to be bisimilar. This is
to the best of our knowledge the first case of applying Pathway Analysis to
calculating bisimulation relations.

We have defined two bisimulation relations, of which the first is contained in
the second one. Even though the devised bisimulation relations are in general
not the coarsest ones for IMC systems, they can lead to a considerable state
space reduction and are the coarsest bisimulation relations on a subclass of IMC
systems. Our methods can be extended in order to compute coarser bisimulation
relations than currently.

We have also devised several algorithms for computing (in general an over-
approximation of) reachable states using the results of the previously conducted
Pathway Analysis. We have considered the reachability problem in different
aspects – which states are possible in principle, which states are reachable from
a particular state, which states can be reached repeatedly – and have devised
suitable algorithms for these problems which are time polynomial in the length of
the syntax of an IMC system. We show how the estimations can be recomputed
after new information becomes available (i.e. after one semantic step taken by
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a system) with a lower complexity than if computed from scratch; in this way
the precision of the estimation can be improved.

Timed reachability on linear fragment

We have devised an algorithm for computing the minimum expected time needed
to reach a state on a linear fragment of IMC. The algorithm requires the
application of an additional operator to the syntactic description of an IMC
system and the post-processing of the results which can be implemented in time
and space that is polynomial in the size of the process. The minimum time
is computed under the class of simple schedulers. This is an important step in
the direction of the verification of time properties of stochastic nondeterministic
systems in a syntax-directed way.

The contributions presented above support our thesis, i.e. we can make a pre-
liminary conclusion that Static Analysis can in fact be used in the verification of
systems that can be modelled in stochastic process calculi and that give rise to fi-
nite labelled transition systems – in particular, to IMC systems. We can perform
the correct and precise Pathway Analysis of such systems, and using the anal-
ysis results construct bisimulation relations, compute (an over-approximations
of) reachable states, and for linear systems also tackle the minimum expected
time reachability problem.

1.3 Dissertation outline

In Chapter 2 we discuss necessary preliminaries for the following chapters. In
particular, we discuss the syntax and the semantics of the IMC calculus in
Section 2.1. We also present Static Analysis methods in general and its subclass
Data Flow / Pathway Analysis methods in Section 2.2. We give a short overview
of model-checking methods applied for verification of stochastic systems with or
without nondeterminism in Section 2.3.

Our main contributions are presented in Chapters 3, 4, and 5. In Chapter 3
we first present the syntactic/semantic specifics of the version of IMC which
we have named guarded IMC (IMCG) (Sections 3.2-3.3). We present then the
Pathway Analysis of IMCG in Section 3.4 and prove that it is correct and precise
in Section 3.5.
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In Chapter 4 we first transfer the usual notion of a strong bisimulation relation
on IMC systems to the Pathway Analysis setting in Section 4.2. After that we
introduce two bisimulation relations on IMCG systems that can be computed
using the Pathway Analysis results and prove their relation to each other in
Sections 4.3 and 4.4.

In Chapter 5 we use the results of the Pathway Analysis to tackle a number
of reachability problems. In Section 5.1 we discuss how we can exclude some
states as impossible based on the Pathway Analysis results. In Section 5.2 we
discuss how the usual model-checking methods can be applied in the Pathway
Analysis setting to verify the existence of states with predetermined properties.
In Section 5.3 we give the algorithms for assessing which states are reachable
from some initial state and how to update the assessment after one semantic
step. In Section 5.4 we discuss the timed reachability for a linear fragment of
IMC.

We summarise, make conclusions, give possible directions for future work, and
evaluate their implementability in Chapter 6.
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Chapter 2

Setting the scene

The technical developments of the thesis consist in the application of Data Flow
/ Pathway Analysis methods [NN07] to a version of the process calculus of
Interactive Markov Chains (IMCs) [BH00]. The novelty of the approach is that
the calculus of IMC is considerably different from the ones that Pathway/Data
Flow Analysis and Static Analysis in general have been applied until now – these
are, for example, CCS [Mil80], BioAmbients [RPS+04], π-calculus [MPW92],
that do not have the notions of time and probability distributions that determine
the probabilities of taking some of the transitions (as it is the case in IMC) and
admit infinite semantic models (semantic models in IMC are finite).

Also properties checked with the help of Pathway Analysis results are different
– in previous work, for example, in [NN07] and [Pil07], the main purpose was
building a deterministic finite automaton that in a sense over-approximates the
possibly infinite semantic model by simulating it, with the granularity function
regulating the size of the automaton and therefore the degree of precision in
the over-approximation. We had our sight on a wider range of problems. First,
we can build with the results of the Pathway Analysis a deterministic finite au-
tomaton that bisimulates the system that has been analysed. Moreover, we solve
the problems of reachability and time reachability in an efficient way without
building a semantic model, just based on the results of the Pathway Analysis.
On the other hand, we have gained a few insights concerning the limitations of
applying Pathway Analysis (and Static Analysis in general) to process calculi.
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The Pathway Analysis that we have developed strongly depends on the proper-
ties of IMC. Therefore in Section 2.1 in this chapter we will first of all shortly
present the stochastic process calculus of IMC, its syntax and semantics, and
also the main differences of IMC from other widely used stochastic process cal-
culi. We will then present the principles of Pathway/Data Flow Analysis for
programs and for process calculi in Section 2.2. Our own Pathway Analysis is
the extension thereof. We have namely the same operators on IMC syntax as
the original Data Flow Analysis for CCS, but we have extended it with several
new operators.

In the last part of the chapter, i.e. in Section 2.3, we will give an overview
of the current state of verifying IMC systems and, closely connected to them,
Continuous-Time Markov Decision Processes (CTMDPs). We will present both
properties (i.e. logics) that are currently being checked and methods that are
often used in doing this. It is namely the case that direct model checking of large
IMC systems is often not possible due to the presence of both non-determinism
and stochastic features; therefore abstraction or/and approximation techniques
need to be used. Our own methods can be seen as an alternative to currently
used abstraction methods, hence it will be advantageous for the reader to get
an overview of the state-of-the-art.

2.1 IMC calculus

2.1.1 Main features of IMC

Interactive Markov Chains, shortly IMC, is a stochastic process calculus that
combines features of non-stochastic process calculi and of Continuous-Time
Markov Chains (CTMCs). It was introduced by Brinksma and Hermanns in
the 90s [BH00] and was extended in [Her02]. IMC features most wide-spread
compositional operators of process calculi, in particular the choice operator (+)
between two possible system transitions, CSP-style [Hoa85] or also often called
TCSP-style [SDBR84] parallel composition, and in particular synchronisation of
actions, when two or more actions can be executed only “together”, otherwise
they cannot be executed at all, prefixing, action internalisation (hide), and re-
cursion operators. See Table 2.1 below for the formal definition of the IMC
syntax. We will come back to these operators in some more detail in the next
chapter in Section 3.2 while presenting a version of IMC that we will work on
– we have called it IMCG or “guarded” IMC.

There are two types of prefixes in IMC – “action” and “delay” prefixes. An



2.1 IMC calculus 13

Figure 2.1 – Probability density functions (figure on the left) and cumulative
distribution functions (figure on the right) for exponential distribution with three
different rate parameters. Source: www.wikipedia.org.

intuitive understanding would be that “actions” denote moments in time (with
0 duration) when some events happen. The name of the action points to the
nature of the event – for example, some action a might mean that a request
from a client application has just arrived at the server or that a user has pushed
a button on the coffee machine, depending on the previously agreed notation.
“Delay” prefixes on the other hand denote non-zero time durations when no
events happen – this can be, for example, time duration between the user’s
pushing of the button on a coffee machine and the moment the coffee is ready.

All delays in IMC are exponential, i.e. their duration is drawn from a special
class of probability distributions, namely, exponential distributions. In order to
define a particular exponential distribution from a class of exponential distribu-
tions it is enough to specify only one parameter – its rate, which is a positive
real number. The density of exponential distribution with a rate λ is given by
the function λe−λt for t ≥ 0 and the cumulative distribution function is then∫ t

0
λe−λtdt = 1−e−λt [Tri02]. Intuitively the value of the cumulative distribution

function at t ≥ 0 determines the probability that an exponentially distributed
delay with the rate λ will be over before the time point t. See the graphics in
Figure 2.1 for exponential density and exponential distribution functions with
rate parameters from {0.5, 1, 1.5}.

The expected duration of exponentially distributed delays with the rate λ is 1
λ

and the standard deviation is 1
λ as well. If two or more exponentially distributed

delays are possible, then the system will “execute” (i.e. move along with) a delay
transition whose respective delay expires first. This situation is called a race
condition. The sojourn time (i.e. the time until the first delay expires) is then
distributed with the rate

∑
i=1..n λi if λ1..λn are rates of all possible (also called
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“enabled”) delay transitions – this fact can be easily derived from the properties
of exponential distributions.

Exponentially distributed delays are often used in stochastic process calculi,
as they are easy to describe (only one parameter is needed, i.e. the rate) and
memoryless, i.e. do not take system execution history into account. Furthermore
many delays in real systems (for example, time until an error occurs or a request
for a service arrives at the server) can be best described by an exponential
distribution. At the same time each so-called phase-type distribution [O’C99]
can be represented by a finite CTMC with exponentially distributed delays,
more exactly by a distribution of time until reaching an absorbing state in the
CTMC. Phase-type distributions are interesting as they allow to approximate
any other kind of probability distribution with an arbitrarily high precision by
using more and more states in a CTMC [Tri02]. We might mention here that in
many real systems the delay rates change in fact over the time – for example,
the rate of server requests might be different in the day- and night-time etc.
This discussion is however outside the scope of this thesis.

2.1.2 Syntax and Semantics of IMC

Syntax of IMC

We will shortly present the syntax and semantics of IMC systems [BH00]. Let
Act denote a set of names of external actions, τ be a distinguished name for
an internal action such that τ 6∈ Act, Var be a set of names of variables (often
called “process variables”) different from action names. Then each IMC system
can be described by an E-type expression with a syntax inductively defined in
Table 2.1.

The rules (1)-(6) in Table 2.1 define the so-called linear fragment of IMC. The
rules (2)-(3) define a prefix operator, the rule (4) defines a choice operator and
the rule (6) defines a halted process. The rule (5) is often called a recursive
definition of a variable. See the definition of a weakly guarded and closed ex-
pressions below.

Definition 2.1. A variable X occurs bound in an expression E if it occurs
contained in a subexpression X := E′ of E for some E′. A variable X occurs
free in an expression E if there is no E′ such that X := E′ is a subexpression
of E. A variable can occur both free and bound in the same expression. An
expression is called closed if there is no variable that is occurring free in it.
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P ::= X | (1)
a.P | (2)
(λ).P | (3)
P + P | (4)
X := P | (5)
0 (6)

E ::= P ′ | (7)
hide A in P ′ | (8)
P ′ qAq P ′ | (9)

Table 2.1 – Syntax of IMC: IMC expressions are E-type expressions, with a ∈
Act ∪ {τ}, λ ∈ R+, X ∈ Var, A ⊆ Act, P ′ is a closed and weakly guarded
P-type expression.

A variable X is called weakly guarded in an expression E if its every occurrence
in E is contained in a guarded expression, i.e. expression of the form a.E′ or
(λ).E′ for some E′. An expression is called weakly guarded if all variables that
are occurring in it are occurring weakly guarded.

Intuitively, in a weakly guarded expression there is always at least one action
or delay in the definition of each variable. The expression X := X is thus ruled
out as X is not uniquely defined: in fact, any expression composed according
to the rules (1)-(6) would be a solution for X . On the other hand, X := a.X
is weakly guarded and also uniquely defines the variable X . We talk about
“weakly” guarded expression because it is allowed that X is guarded by the
internal action τ . A “strong” guardedness is sometimes required in [Her02],
namely, when the axioms for the weak bisimulation are presented for the linear
fragment of IMC.

Note that the parallel composition or synchronisation (rule (9)) and the inter-
nalisation (rule (8)) operators are only applied to closed expressions. As we
will see from the definition of the IMC semantics, this ensures the finiteness of
the semantic model for every IMC expression. Parallel composition puts two
IMC process to run “in parallel”, synchronising on a set of actions (for only one
action in the set we may leave out the set notation, just writing an action name)
and internalisation makes internalised actions behave as if they were internal
actions, see the semantics of IMC in Table 2.2 below. We will have a more
permissive syntax for our variation of IMC concerning application of parallel
composition and internalisation operators (see Table 3.1 in Section 3.2), but we
will be a bit more restrictive with the guardedness condition.
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As we will see from the definition of the IMC semantics, X := a.X is at the
same time a definition of the variable X and a definition of a process which
continuously repeats the action a. These two meanings can be made more clear
if we take as an example the IMC expression X := a.X + Y := b.Y . This IMC
expression defines the variables X and Y and it defines at the same time a
process which either continuously repeats the action a or continuously repeats
the action b.

We have presented the syntax of IMC according to [Her02]. In [BH00] the au-
thors have used a different syntax, where the two aspects mentioned above –
definitions of variables and definitions of behaviour – are separated. The exam-
ple from above X := a.X + Y := b.Y will be written in the syntax from [BH00]
as a set of definitions [X = a.X, Y = b.Y ] and the IMC expression determining
the behaviour X + Y . Both variants of syntax are semantically equivalent. We
have chosen (and subsequently extended) the syntax from [Her02] for technical
reasons.

Semantics of IMC

The interleaving semantics of IMC is defined in Table 2.2 using Structured
Operational Semantics (SOS) in the style of Gordon Plotkin [Plo81]. There
are two kinds of transitions – “interactive” or “action” transitions denoted by
solid arrows and “exponential” (“Markovian”, “delay”) transitions denoted by
dashed arrows. It can be proved by induction of a transition derivation that

from E
α−−→ E′ for α ∈ Act ∪ {τ} or E

λ
� E′ for λ ∈ R+ follows that E′ as

an IMC expression as well. We will sometimes skip decorating a transition by
a corresponding action name or delay rate and denote the fact that there exists
a transition from E to E′ simply by E −−→ E′.

We will say that an IMC expression En can be reached from another IMC
expression E1 in case there exists a sequence of transitions Ei −−→ Ei+1 for

1 ≤ i < n, n > 1. We can denote the fact of the existence of such sequence of
transitions as E1

∗−−→ En. We can also say that En is reachable from E1, is a

derivative expression or a derivation of E1. We will also call in the following an
IMC expression E and its derivative expressions states, as it is usual for state
transition systems. In fact the semantics of IMC is defined in terms of labelled
transition systems (LTSs) [Plo81] of a special kind.

The semantics of an IMC expression is defined as a set of all interactive transi-
tions and a multiset of all Markovian transitions derivable for it and its deriva-
tive expressions from the SOS rules in Table 2.2. This means that we need
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to take into account all derivable Markovian transitions, but only one of each
kind of derivable interactive transitions. For example, X := a.X + a.X has ex-
actly the same semantic model as X := a.X but the semantics of the expression
X := (λ).X + (λ).X is not the same as of the expression X := (λ).X. We will
explain the difference between interactive and Markovian transitions in the next
section.

Another unusual feature of IMC semantics is the condition F
τ9 which means

that there is no IMC expression F ′ such that the transition F
τ−−→ F ′ is derivable

from the rules in Table 2.2. This condition is needed in order to ensure the
maximal progress assumption (see explanation below). It is always decidable

whether F
τ9 for an arbitrary IMC expression F due to the guardedness of

variable occurrences by either action or delay and the requirement that every
variable is defined – see the requirement of the weak guardedness and closeness
in rules (7)-(9) in Table 2.1. This refers of course also to transitions decorated

by any other action name or delay, i.e. it is always decidable whether F
α9 for

all α ∈ Act or α ∈ R+. The state E′ such that E
α−−→ E′ for α ∈ Act ∪ {τ} or

E
λ
� E′ for α ∈ R+ is uniquely defined for fixed E and α or E and λ.

Note that a structural congruence is not defined for IMC expressions, but is
rather “incorporated” into the SOS rules of IMC. Thus, the rules (3) and (4) for
action-transitions and the rules (11) and (12) for delay-transitions in Table 2.2
express that for two summands their order of appearance does not matter, which
is a typical equivalence in the structural congruence [Mil99]. The same refers to
the order of parallel processes (rules (4) and (5), (13) and (14)). For recursion
unfolding (rules (9) and (16)) the structural congruence rules usually state that
the behaviour of a process with and without recursion unfolding is the same,
and this is also the case for the rules (9) and (16). However, due to the specifics
of IMC syntax we need to do recursion unfolding before executing some prefix
from the process definition. From the semantic rules (9) and (16) we can see
that variable definitions are replicated after their unfolding.

It has been proved in [Her02] that IMC expressions have finite semantic mod-
els. The intuitive reason for this is that the parallel operator is always applied
“on top” of variable definitions. As a consequence no new processes can be
“spawned”: for example, the process X := a.X q∅q b.X is not allowed. An IMC
process can therefore only repeat the same behaviour patterns and its semantics
is finite. The restriction on application of the internalisation operator is also
necessary in order to ensure finiteness of semantic models: for example, the
process X := hide ∅ in a.X has the infinite semantic model due to the repetition
of the hiding construct after each transition.
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a.E
a−−→ E (1) (λ).E

λ
� E (10)

E
a−−→ E′

E+F
a−−→ E′

(2)
E

λ
� E′ F

τ9

E+F
λ
� E′

(11)

F
a−−→ F ′

E+F
a−−→ F ′

(3)
F

λ
� F ′ E

τ9

E+F
λ
� F ′

(12)

E
a−−→ E′ a 6∈ A

E qAq F
a−−→ E′ qAq F

(4)
E

λ
� E′ F

τ9

E qAq F
λ
� E′ qAq F

(13)

F
a−−→ F ′ a 6∈ A

E qAq F
a−−→ E qAq F ′

(5)
F

λ
� F ′ E

τ9

E qAq F
λ
� E qAq F ′

(14)

E
a−−→ E′ F

a−−→ F ′ a ∈ A

E qAq F
a−−→ E′ qAq F ′

(6)

E
a−−→ E′ a 6∈ A

hide A in E
a−−→ hide A in E′

(7)
E

λ
� E′

hide A in E
λ
� hide A in E′

(15)

E
a−−→ E′ a ∈ A

hide A in E
τ−−→ hide A in E′

(8)

E{X := E/X } a−−→ E′

X := E
a−−→ E′

(9)
E{X := E/X } λ

� E′

X := E
λ
� E′

(16)

Table 2.2 – Structural Operational Semantics of IMC: a ∈ Act ∪ {τ}, λ ∈ R+,
X ∈ Var, A ⊆ Act.

An example of an IMC system together with it’s semantic model is shown in
Figure 2.2 (with a simplified syntax for better readability). We have two systems
S and C (for example, a server and a client) which are synchronising. They
execute together the action a and then need some time to process information
internally before the next interaction becomes possible. There are two different
behaviours for a client – if λ1 > λ2, then we will have one faster information
processing and one slower processing for a client. Remember that a higher rate
for an exponential delay means a lower expected delay’s duration. The server
cannot influence which kind of internal processing the client will have.
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Figure 2.2 – Syntax and semantics of IMC process C := a.(λ1).C + a.(λ2).C q
a q S := a.(λ3).S.

Interactive and Markovian transitions

Let us shortly discuss the main differences between so-called “action”- and
“delay”-transitions in IMC. The exact number of action-transitions with the
same action name from one state in an IMC system to another state does
not have any importance for the semantics. This is totally different for delay-
transitions: all delay transitions are important for determining the complete
semantics of IMC. The reason is that we can compute the probability of taking
a transition to another state in a correct way only if we know all delay transitions
possible for the initial state.

Take as an example the IMC expression (λ1).a.0 + (λ1).a.0 + (λ2).b.0. The
probability to take a transition into the state a.0 is then equal to (λ1 +λ1)/(λ1 +
λ1 + λ2) and the probability to take a transition into the state b.0 is equal to
λ2/(λ1+λ1+λ2). The reason is that the time until the state (λ1).a.0+(λ1).a.0+
(λ2).b.0 decides to “move on” is given by the minimum of all transition delays,
which is as we have seen above exponentially distributed itself with the rate
equal to the sum of rates of all outgoing transitions: λ1 + λ1 + λ2. In a similar
manner the minimum of two λ1-transitions is exponentially distributed with the
rate λ1 + λ1. The probability that one exponential delay completes before the
other one can be determined as the ratio of the rate of the first exponential
delay and the cumulative rate, therefore we get (λ1 + λ1)/(λ1 + λ1 + λ2) as the
probability to move to the state a.0.

From the discussion above we can conclude that in case there are several delay-
transitions between two states, they can be substituted by one transition with
the rate equal to the sum of rates. In the example above, the process (λ1 ∗
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2).a.0 + (λ2).b.0 is equivalent to the process (λ1).a.0 + (λ1).a.0 + (λ2).b.0.

Probabilistic choices in IMC are thus characteristic for choosing among several
delay transitions. In most other cases (between two interactive transitions,
between an interactive transition and a Markovian transition) the choice in
IMC is done nondeterministically, but there is one important exception – the
principle of maximal progress. The maximal progress is the only case in IMC
in which actions and delays influence each other.

The maximal progress assumption requires that if an internal action and a delay
transition are enabled at the same time then the internal transition is chosen for
execution. An intuitive justification is that internal actions are always executed
“on their own”, i.e. never synchronise, and are immediate; so there is no reason
for a system to delay something that can be done immediately. On the other
hand, a Markovian transition never executes after exactly 0 time units, it always
takes some time before it “fires”, therefore the internal transition always “wins”.
An external action can be on the other hand blocked by the environment, so its
immediate execution cannot be guaranteed.

We have already mentioned that IMC has an interleaving semantics. This means
that non-synchronising actions of two parallel processes can be executed in any

order. For example, we may have both a.0 q∅q b.0
a−−→ 0 q∅q b.0

b−−→ 0 q∅q 0

and a.0 q∅q b.0
b−−→ a.0 q∅q 0

a−−→ 0 q∅q 0. From the SOS rules in Table 2.2

follows that the same holds for delays instead of actions.

In fact, interleaving semantics for delays is in concordance with the properties of
exponential distribution, in particular, the memoryless property. Take as an ex-
ample the process (λ1).a.0 qaq (λ2).a.0. According to the interleaving semantics,

the only possible executions for this process are (λ1).a.0 qaq (λ2).a.0
λ1 � a.0 q

aq (λ2).a.0
λ2 � a.0 qaq a.0

a−−→ 0 qaq 0 and (λ1).a.0 qaq (λ2).a.0
λ2 � (λ1).a.0 q

aq a.0
λ1 � a.0 qaq a.0

a−−→ 0 qaq 0. This would mean, that the fact that

the delay-transition with the rate λ1 has completed its execution does not in-
fluence the duration of the second delay transition – it is still exponentially
distributed with the rate λ2. The situation is similar if the transition with the
rate λ2 has completed first – then the process (λ1).a.0 can just proceed with the
λ1-transition. Such simplicity in interleaving of delay transition is due to the
memoryless property of exponential distribution: the already passed time does
not influence the expected transition duration and the form of time distribution
until the event occurs.
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2.1.3 Nondeterminism and probabilistic choices in IMC

Design choices in IMC

We will discuss in this section the differences between IMC and other stochastic
process calculi that have a similar expressive power. This will also give us some
insights into the SOS rules of IMC systems that have been defined in Table 2.2.
An overview of design choices made for widely used stochastic process calculi
can be found in [BH00] and [KS08].

One of the design decisions in constructing IMC was a choice of synchronisation
model. There are two main synchronisation models that have been used until
now: so-called CCS synchronisation [Mil80] and CSP synchronisation [Hoa85].
In the first case only two explicitly denoted actions can synchronise with each
other (for example, a and ā), while in the second case any number of actions
can synchronise – this is clearly the case for IMC. The second case allows for
more flexibility in building bigger systems from smaller ones, but it also harder
to analyse, as we will see below in the definition of Pathway Analysis for IMC.

Some difficulties in understanding IMC semantics may arise from the fact that
there is no explicit distinguishing between external and internal choice in IMC.
An external choice is the one that is made by an external environment. This
is modelled in IMC as a possibility of blocking some actions that have to be
synchronised. An internal choice is made by a scheduler independently of the
environment. Internal choices can be modelled in IMC as choices between
actions with the same action name. The rest of the situations (i.e. choices
between several external actions with different names none of which is blocked by
the environment) may be interpreted as external or internal choices, dependent
on possible environments that we might not know yet.

Probably the most important design choice in IMC concerns the nature of in-
teractions between actions and delays. At the time of the creation of IMC there
had already been proposed a number of stochastic calculi. The most well-known
example is probably Performance Evaluation Process Algebra (PEPA) [Hil96].
In PEPA each action has a rate. There are “active” actions, whose duration
is exponentially distributed with their rate, and “passive” actions whose rate
is infinite. Active actions can be executed on their own with their own rate.
Passive actions on the other hand cannot be executed in isolation, but only in
synchronisation with active actions; the joint execution has the execution rate
of the active action. If there is more then one passive action which is executed
simultaneously with an active action, the joint execution rate is still defined by
the active action in the same way.
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A question arises what happens if two or more active actions are executed simul-
taneously – and that can happen according to the semantics of PEPA. In this
case the joint rate of two or more active actions is assigned to be the minimum
of all their rates [Hil96]. The intuitive explanation that the authors of PEPA
have proposed is that simultaneous execution of two actions is not the same
as two totally independent executions, where we just wait for both of them to
complete. In the last case we would have a random variable which is not expo-
nentially distributed anymore, because the class of exponential distributions is
not closed under maximum. We would rather get a random variable that is gov-
erned by a phase-type distribution [O’C99]. In PEPA it is assumed instead that
two processes develop together, and they do it with the tempo of the slowest
process. This is similar to a situation where two runners are “chained” together,
so they can only run with the speed of the slowest runner.

Other possibilities have been proposed in other stochastic process calculi, for
example, multiplications of two rates (sometimes called “mass action law”) in
MTIPP [HR94] and in the variant of PEPA for modelling biomolecular systems
[CGH05]. This solution can be easily understood if one of two actions partici-
pating in a transition is considered as “passive” and its rate as a “scaling factor”
for the rate of the active action. Multiplying two rates if both actions are “ac-
tive” can be understood in the context of biochemical reactions as multiplying
current concentrations of reactants with each other. In PEPA the result of the
multiplication is additionally multiplied with a rate denoting the “speed” of the
reaction [CGH05].

It is also possible just to assign combined rates to all sets of synchronising actions
with rates (for example, saving them in a separate data structure), but this is
also not the best solution, as it may violate the principle of compositionality –
the main advantage of describing systems by process calculi instead of directly
by labelled transition systems. We can conclude this short overview of the
formulas for combining rates with a remark that it is assumed in general that
there is no “best” combining function but the function used for combining rates
should depend on the application area.

In IMC it is assumed instead that two synchronising actions are not executed
jointly “the whole way”, but rather “check” with each other. Synchronisation
itself does not take any time and can be regarded as a moment in time when
several subsystems have reached each a certain state which allows them all to
continue their executions after the check that all processes are “ready”. The
synchronisation is therefore only possible for actions which take no time to
execute, but not for delays which are completely independent from actions. This
design choice solves in some sense a problem of combining synchronisation rates
(there is no need to combine), but it also means that we have an interleaving
semantics and nondeterminism as a natural feature of IMC semantics (there is
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no nondeterminism in PEPA).

Nondeterminism is not only a “curse” for a system (it does lead in general to a
state space explosion and to a much higher complexity of model checking), but
it also creates a possibility of generalisation. In one model we are “synthesising”
many models. Nondeterminism allows to account for, for example, implemen-
tation freedom (each concrete implementation can choose to implement only a
subset of nondeterministic choice alternatives), scheduling freedom (a concrete
scheduler can decide which alternative is chosen in any moment of time) and an
external environment (some alternatives might be blocked by an environment)
[Her02]. We can therefore reason about many systems by reasoning about one
IMC system, while systems without nondeterminism basically represent only
one system, though necessarily abstracted from some details.

Another design choice that has been made in IMC is only considering IMC sys-
tems with finite semantic models. This is an easily explainable design decision
as it is obviously much easier to work with semantic models which are known
to be finite. The same design choice has been made in PEPA. In [BH00] and
[Her02] the ways to achieve the finiteness of semantic models are slightly differ-
ent. In [BH00] it is required that the parallelisation operator is applied only to
closed IMC expressions, while in [Her02] it is only allowed to be applied on the
highest syntactic level (see Table 2.1) – this automatically means that it can
be applied only to closed expressions but also that no choice operator can be
applied “on top” of the parallelisation operator. The first variant of restricting
the parallelisation operator is clearly more permissive than the second one. We
have decided in favour of the first variant of restriction in the syntax of IMCG

in Section 3.2 in order to limit ourselves to finite semantic models as well.

Examples of process calculi with infinite semantic models are the well-known cal-
culi CCS [Mil80] and CSP [Hoa85], the new developments include the BioAm-
bients calculus [RPS+04]. In all mentioned examples there are no restrictions
on “spawning” new processes in parallel to already existing ones, so there can
be any number of (similar) processes running in parallel. This leads to in gen-
eral an infinite state space of the labelled transition systems that are semantic
models of, for example, CCS processes. In many cases, however, some of the
states can be merged without information loss, and there can even exist a finite
labelled transition system with the same behaviour as an “original” infinite la-
belled transition system (so-called bisimulation equivalent to it). In this work
we will only analyse finite systems, but our analysis methods can be potentially
extended to some of the systems with infinite semantic models, especially if
there exist bisimulation equivalent to them finite systems.

Recently new developments have been taken place in the area of stochastic pro-
cess calculi with a purpose of creating higher-level formalisms in which widely-
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used stochastic process calculi can be understood as particular cases. This way
of representation can help to compare process calculi with each other, to under-
stand their similarities and differences, and to create new process calculi with
predictable properties. For example, in [KS08] a so-called SGSOS framework
has been developed for defining Markovian stochastic transition systems called
Rated Transition Systems. This work is based on the developments from [TP97].
It was shown that the operational semantics of, for example, PEPA [Hil96] and
stochastic π-calculus [Pri95] can be formulated as Rated Transition Systems. A
number of further stochastic process calculi can be also defined in the SGSOS
framework. An important result is that stochastic bisimilarity is guaranteed to
be a congruence for Rated Transition Systems, i.e. we get a method of defining
process calculi with guaranteed congruence properties.

In [NLLM09b] so-called Rate Transition Systems have been introduced as basic
models for stochastic processes. In Rate Transition Systems there are rates as-
sociated with all state, all executable actions, and sets of possible next states.
Stochastic extensions of both CCS and CSP can be formulated as Rate Tran-
sition Systems that preserve the associativity of the parallel composition. Rate
Transition Systems have been subsequently generalised to Function Transition
Systems.

IMC and CTMDP

Many stochastic process calculi (for example, PEPA) have CTMCs as their
semantic models. As we have already mentioned, the situation is more com-
plicated for IMC. As it is often pointed out in the literature, the semantics
of IMC is similar to the semantics of Continuous-Time Markov Decision Pro-
cesses (CTMDPs), but there are also some differences. CTMDPs have only one
kind of transition. Each transition has an associated action name and a set of
transition rates to other states. The idea is that firstly a scheduler chooses an
action name among all enabled transitions and then a transition to that state
takes place whose associated delay completes first.

See an example of a CTMDP in Figure 2.3. Note that we do not use any state
names – they are not necessary, as a state is fully characterised by its transitions
as in IMC. Basically CTMDPs can be understood as IMCs where interactive
(i.e. with only interactive transitions) and Markovian states (i.e. with only delay
transitions) strictly alternate, initial states are interactive, and absorbing states
have only Markovian incoming transitions.

In [Joh07] the question of transforming IMC systems into CTMDPs has been
thoroughly considered. Such conversion can be useful as CTMDP is a better
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Figure 2.3 – Example of CTMDP used in [BHKH05].

studied performance model than IMC. The premise is that an IMC system is
free from interactive cycles, i.e. it is not possible for a system to have an infinite
path consisting of only interactive transitions. Such behaviour is considered
unrealistic [Joh07] and therefore it can and should be avoided.

The transformation is done in several stages: an IMC system is converted firstly
into an Alternating IMC (IMC with no hybrid states, i.e. states that both have
at least one Markovian and at least one interactive transition). The latter is
then converted into a Markov Alternating IMC (alternation of interactive and
Markovian transitions is achieved by inserting τ -transitions), which is in turn
converted into an Interactive Alternating IMC by “compressing” sequences of
interactive transitions into single transitions. The result of the conversion is
a CTMDP, which has a corresponding state for any state in the original IMC
system except for those interactive and non-initial states in the original IMC
system that do not have any Markovian predecessor state.

The transformation preserves the timed probabilistic behaviour [Joh07], but it
is non-compositional. Transformation results for “smaller” IMCs cannot be
reused for “bigger” IMCs [Joh07], because the maximal progress assumption
is also applied to external actions and not only to the internal action during
the transformation. This is justified by the assumption that we are transform-
ing only “ready” or “closed” systems where the environment has already been
integrated [Joh07].
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2.2 Pathway Analysis

The main contribution of the thesis is applying Static Analysis methods to sys-
tems representable in a version of IMC. Static Analysis methods have been
first developed for analysing programs without executing them (e.g. [NNH99]):
hence the name – static (program code) in contrast to dynamic (program exe-
cution) analysis. It has been established that many interesting properties could
be extracted from a program text alone.

In many cases precise analysis results are unobtainable or too expensive to
compute in the sense of complexity, but acceptable “over-approximations” or
“under-approximations” (also called “safe” results) can be computed instead.
That means that results that we can compute from a program text “contain”
in some sense the correct results, but in general also include incorrect results
(over-approximation) or “contain” an in general strict subset of correct results
(under-approximation). We may get therefore sometimes “false positives” but
no “false negatives”, or the other way round – mistakes in only one direction
make Static Analysis results useful. Static Analysis methods have shown them-
selves so advantageous in the area of program analysis that they have been
transferred to other areas as well – in particular to the analysis of systems
described by process calculi.

In the following we will shortly describe one Static Analysis method – Data Flow
Analysis [NNH99]. Consequently we will give an account of its application to
process calculi, in particular, to CCS [Mil80] and BioAmbients [RPS+04]. A ver-
sion of Data Flow Analysis applied to BioAmbients has been named “Pathway
Analysis” by association with “pathways”, which are development sequences in
biology [NNPR04]. Our own method is an adaptation of a Data Flow/Pathway
Analysis to IMC systems, even though we subsequently post-process our anal-
ysis results in order to answer more complex questions than has been done
before.

2.2.1 Data Flow Analysis as a program analysis method

Data Flow Analysis is a form of Static Analysis which is a well-known method
of program analysis, being one of the so-called Formal Methods for analysing
programs [BIM03]. The idea is to deduce some information about program ex-
ecutions based on the program text alone without actually executing it. The
advantage is that each program text is finite while its execution can run for-
ever. Therefore we can always check the program code for mistakes but we
cannot always check the program at run-time. Moreover, all interesting, i.e. non-
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Figure 2.4 – Static Analysis and variable’s values.

trivial, program properties are undecidable [HMU06], therefore methods similar
to Static Analysis are needed if we would like to obtain at least “safe” if not
precise answers. Static Analysis works on reachable configurations (i.e. states
of memory and registers) which are finite even for infinite program executions
and in general either over- or under-approximates them.

Traditionally program analysis has been used for optimising compilers. One
of the purposes was to determine whether two syntactically different programs
always return the same outputs on the same inputs [NNH99]. To this end Static
Analysis methods have been used, for example, in order to determine variables’
values or relations between values of several variables: for example, whether
x < y always holds for two variables x and y. See a typical relation between
Static Analysis results and actual values of some variable (that can be different
for different program inputs) in Figure 2.4 – in this case Static Analysis over-
approximates a variable’s possible values.

In the last decade Static Analysis has become a popular method for verification
of security properties of programs [CM04]. Namely, Static Analysis methods are
constructed in such a way that if they return “yes” then the program is secure
and if they return “no” then the program might be insecure. Static Analysis thus
under-approximates the security properties of the program. See the schematic
presentation of this situation in Figure 2.5. If a Static Analysis method returns
“no” then the programmer should debug the program with another methods
or rewrite potentially unsafe parts of the program and apply Static Analysis
methods again.

A broader understanding of Static Analysis methods has led to their acceptance
in other domains than conventional program analysis – in particular, in the
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Figure 2.5 – Static Analysis and program security properties.

analysis of process calculi which we are doing in this thesis. In this section we
will shortly present the Data Flow Analysis method. For other program analysis
methods, e.g. Control Flow Analysis, see, for example, [NNH99].

Data Flow Analysis tracks how the data (mostly variables) changes from one
program point to another one. The initial stage in Data Flow Analysis is as-
signing to each program block (usually each program command) a unique label.
The purpose of performing Data Flow Analysis is to associate with each label
an information describing executional status (e.g. the state of the memory and
registers) of the program when the program counter has moved past the cor-
responding program block. This means that the information should correctly
describe the state of the memory and the registers also in case the program block
will be executed many times, infinitely often or never in a concrete program run.

Clearly it is not always possible to obtain exact information characterising a
program block: for example, the block in question might be executed many times
and the variables used in it might have different values during each execution.
Some Static Analysis methods unfold a loop 1-2 times in order to achieve higher
precision, but they do not unfold the loop until the looping condition changes
for performance reasons. Another source of imprecision is that values of some
variables might not be known in advance, for example, are obtained from the
user input. Moreover, there can be some complex conditions in a program for
execution of some program blocks which cannot be checked with Static Analysis
methods, therefore it cannot be determined whether a particular program block
will be executed or not.

As a consequence, a variable’s possible values returned by Static Analysis are
usually represented by elements of a complete lattice, with the lattice’s ele-
ments representing more and more imprecise information. If two different bits
of information (e.g. two different values of the same variable during two different
program executions) need to be merged then their least upper (or greatest lower,
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depending on the analysis purpose) bound has to be taken. It is usual to work
with Moore families which represent the chosen steps of losing the precisions
while merging several informations. See a formal definition of these concepts
below. For a more detailed explanation see [NNH99].

Definition 2.2. A partial order (S,≤) is a set S with a reflexive, transitive and
antisymmetric binary relation ≤ defined on it.

For a subset Y ⊆ S its least upper bound
⊔
Y is the smallest upper bound of Y ,

i.e. the smallest element which is equal or bigger than any s ∈ Y . Similarly the
greatest lower bound

d
Y of Y is the greatest element which is equal or smaller

than any s ∈ Y .

A complete lattice is a non-empty partial order where each set of elements has
the least upper and the greatest lower bound.

A Moore family is a subset S′ of a complete lattice which is closed under the
greatest lower bounds: for all S′′ ⊆ S′ holds

d
S′′ ∈ S′.

Let us have a look at the following example. If the information we are tracking
is the value of the variable x, then we might have the following elements in the
complete lattice, with their ordering determined by interval inclusion relation:
[0, 0], [1, 1], [−1,−1], [0, 1], [−1, 0], [−1, 1], [0,+∞), (−∞, 0], (−∞,+∞). If we
only know that, for example, 3 ≤ x ≤ 5 then we need to write x ∈ [0,+∞). Due
to the complexity of computation we might even not be able to know anything
about the value of x; then we will need to write x ∈ (−∞,+∞).

For the starting/finishing program points the values are usually assigned and for
the rest of program points they are computed with the help of so-called transfer
functions. Transfer functions indicate how the values in the successive/preceding
program blocks depend on the values in the current block.

Let us take as an example the following program fragment:

[x := some function(); ]
`1

[x := x + 1; ]
`2

We have the following transfer function `1(x)→ `2(x):

`1(x) = [0, 0]→ `2(x) = [1, 1]

`1(x) = [1, 1]→ `2(x) = [0,+∞]
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`1(x) = [−∞, 0]→ `2(x) = [−∞,+∞] etc.

For monotone transfer functions, a complete lattice of values that are assigned
to program blocks and a program with all program blocks being reachable there
exists the best solution, i.e. the best assignment of values from the lattice to the
labels denoting program blocks [NNH99]. It is a least fixed point of the transfer
functions. The least fixed point can be computed as a Kleene fixed point if
the transfer functions are continuous – it is equal to the least upper bound of
the transfer functions’ applications to the least element of the complete lattice
[NNH99].

2.2.2 Data Flow/Pathway Analysis of process calculi

Monotone Framework and its application to process calculi

Data Flow analysis has been applied to process calculi, in particular to CCS cal-
culus (see [Hoa85]), for the first time in [NN07]. Until then Data Flow Analysis
has mainly been applied to imperative languages and the usual Static Anal-
ysis methods for analysing process calculi had been type systems [NN99] and
Control Flow Analysis [BDNN98], [NRNPdR07]. There is an obvious difference
between imperative programming languages and process calculi, namely, there
is no clear distinction between data and commands in the latter. Some adjust-
ments therefore were needed in order to transfer Data Flow Analysis techniques
to process calculi.

The idea is to generalise Data Flow Analysis of programs to the Monotone
Framework, which can often be simplified to a bit vector framework [NN07].
In this framework the information can be described in a binary way, i.e. some
elements are present or absent in the current state, and all transfer functions
remove or add some elements to the information about the current state, in-
dependently of other present or absent elements. It is easy to see that such
transfer functions are monotone, and if the state information is described by a
complete lattice, then the least fix-point solution exists [NN07].

All transfer functions at the program point ` can thus be expressed as

transfer`(E`) = (E\kill`) ∪ gen`,

with E denoting analysis information at the program point `, kill` denoting the
“kill” function that removes/invalidates some elements and gen` denoting the
“generate” function which adds/generates some elements. There is however an
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important difference to the analysis of imperative languages: in the latter we
usually know which are the possible next program points. If, for example, the
only next program point is `′ then we would have an equation

E`′ = transfer`(E`).

We do not have a notion of the “next program points” in process calculi, where
data and control structures are not separated. Therefore we have to identify
both the next program point(s) and the analysis information that characterises
them from the current information, i.e. E and ` from the previous formula
become the same, as well as transfer`(E`) and `′. This is only possible if analysis
results for ` contain enough information to compute all possible next program
points, also called next states. This is the case for the Data Flow Analysis of
CCS: the analysis information contains (an over-approximation of) actions that
can be “executed” in the next step and this is enough to predict all the possible
next states. The number of the next states is given thus implicitly by a number
of different transfer functions for the analysis information E.

In the Data Flow Analysis of CCS the generate and kill functions are computed
that are the same for all states [NN07]. In short, the applicability of Data Flow
Analysis to process calculi is due to the fact that we can “predict” all possible
transfer functions from the current analysis information of a state and from
the common generate and kill functions. In this way an (abstract) control flow
graph of a system described by a particular process calculus expression can be
obtained just from the initial configuration and the generate and kill functions
computed on it. Generate and kill functions can be computed “once and for
all” states are characteristic for all process calculi that Data Flow Analysis has
been applied to until now. The method might be extendable also to generate
and kill functions that change after some of the transitions in a certain way, but
this has not been tried yet.

Data Flow Analysis of CCS

In this section we will shortly present the original idea of applying Data Flow
Analysis to CCS process calculus (see [NN07] or [NN09] for the detailed de-
scription). We will use as a running example the CCS process

let C = (a`1 .C + τ `2 .C)|ā`3 .C in C.

This process first “forks” into two parallel processes, the first of which can
execute either the action a or τ and then restarts with the same behaviour,
and the second process executes the action ā and then restarts with the same
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behaviour. The actions a and ā can only be executed together according to the
semantics of CCS. See the syntax and semantics of CCS in [Mil80].

Note that in contrast to the original CCS all action names in our example got
labels assigned to them. The labels make the task of defining the Data Flow
Analysis on CCS expressions easier. Usually we start with a uniquely labelled
expression in the syntax of a process calculus, i.e. all labels are different, but
after several semantic steps it is not necessarily the case anymore that all the
derived expressions are uniquely labelled. Our example CCS expression above
is uniquely labelled, but its derivative expression

let C = (a`1 .C + τ `2 .C)|ā`3 .C in C|ā`3 .C|ā`3 .C

is not uniquely labelled anymore. However it is still consistently labelled, which
means that each label has only one action name that it refers to.

The analysis information that describes a particular CCS expression is given
by its exposed actions, usually denoted by their labels. Those are action/labels
that are prefixes of CCS expressions that can be involved in the derivation of
the transitions according to the SOS rules for CCS [Mil80]. For the running
example expression

let C = (a`1 .C + τ `2 .C)|ā`3 .C in C

the exposed labels are `1, `2 and `3, while for its derivative expression

let C = (a`1 .C + τ `2 .C)|ā`3 .C in C|ā`3 .C|ā`3 .C

we have three exposed `3-labels. We can conclude that the number of exposed
labels of the same kind can grow in derivative expressions. Therefore the number
of exposed labels of the same kind is potentially unbounded.

The kill operator and the generate operator are applied to CCS expressions and
return functions on labelled actions. They determine which actions/labels are
killed, i.e. cease to be exposed, and which actions/labels are generated, i.e. be-
come exposed, after the parameter of the function returned accordingly by the
kill or the generate operator has been executed. For our example CCS expres-
sion

let C = (a`1 .C + τ `2 .C)|ā`3 .C in C

the execution of the label `1 will kill both the label `1 and its choice alternative
`2 and generate the labels `1, `2 and `3. The execution of the label `2 has the
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same effect. The execution of the label `3 kills the latter and generates the
labels `1, `2 and `3.

The analysis results of the syntax of the CCS expression running example, i.e. its
exposed labels and the results of the generate and kill operators, can be used by
the Worklist Algorithm from [NN07] in order to construct a deterministic finite
automaton that can simulate the semantics of the analysed CCS expression.
This is possible due to the following considerations: first, any exposed label is
executable (enabled according to the terminology from [NN07]) if it either refers
to the τ -action or otherwise if there is another label which is also enabled that
refers to the complementary action name (for example, a and ā are complemen-
tary). An issue with one of the labels being hidden and therefore not available
for synchronisation does not arise, as CCS processes with action names with
simultaneous global and local scopes are not allowed for the analysis [NN09].
Another requirement is that two complementary labels come from two parallel
processes – such labels are called compatible. In order to determine whether
two labels are compatible, an additional operator comp has been defined to
keep track of pairs of compatible labels [NN09]. We will continue this line of
thought in our own Pathway Analysis by introducing the chains operator in
Section 3.4.4.

As it has been proved in [NN09], the generate and kill operators computed on
some CCS expression correctly over- and underestimate accordingly generated
and killed labels on all the derivatives of the CCS expression. Altogether, we get
a safe estimate (i.e. an over-approximation) of exposed labels and can therefore
simulate the semantics of the analysed CCS expression. In order to merge
some of the states created by the Worklist Algorithm, the widening operator
(for merging the analysis information on exposed labels) and the granularity
function (for merging states of the created deterministic finite automaton) have
been introduced in [NN07]. Merging some of the states is beneficial for obtaining
deterministic finite automata with smaller state spaces and is unavoidable for
CCS expressions with infinite semantic models.

See the automaton created by the Worklist Algorithm for our example CCS
process in Figure 2.6. Every transition is decorated by the labels that are “exe-
cuted” during the transition, i.e. participate in the derivation of the transition.
From the figure it is clear that we have used the granularity function that merges
all label’s multiplicities larger than 1, i.e. we can have only 0, 1 or an infinite
number of label occurrences. The widening operator can be defined accordingly:
if one of the operands has the multiplicity of some label ` bigger than 1, then
the result of the application of the widening operator will map ` to ∞. The
number of states in the automaton is less than the maximal possible, which
is 33 = 9. If we would group together all multiplicities larger than 0, i.e. al-
low only 0 and infinite number of occurrences, the automaton would consist
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Figure 2.6 – Finite deterministic automaton simulating the semantics of the
CCS process let C = (a`1 .C + τ `2 .C)|ā`3 .C in C.

of only two states – the initial state (characterised by the label multiplicities
`1 7→ ∞, `2 7→ 0, `3 7→ ∞) and the states with an infinite number of occurrences
for all three labels.

Note that in our running example the exposed, generated and killed labels are
computed correctly, i.e. they are not over-approximations of the actual exposed,
generated and killed labels. This can be achieved in general if the analysed
CCS expression is uniquely labelled. In case of a non-unique labelling if there
are two different possibilities for the generate operator, then the least upper
bound should be taken; if there are two different possibilities for the kill op-
erator then their greatest lower bound should be taken. This ensures that the
analysis results will be still correct, but possibly less precise than with the unique
labelling. A non-unique labelling can be used in order to reduce the state space
of the automaton constructed by the Worklist Algorithm already on the analysis
stage and also to be able to choose explicitly which actions/labels to equalise
in the analysis. For CCS processes with infinite semantic models the impreci-
sion in the constructed automaton is unavoidable – the states to be merged are
determined in this case by the granularity function.
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Analysis extensions: Pathway Analysis and Modal Transition Systems

The original Data Flow Analysis of CCS has been applied to a number of other
process calculi and has been extended in doing so in several ways. The Pathway
Analysis of the BioAmbients calculus [RPS+04] extends the original Data Flow
Analysis in order to be able to deal with the features of the BioAmbients calculus
that are not present in CCS (see [NNPR04], [Pil07]). In BioAmbients commu-
nication over channels is possible which leads to name bindings; moreover, there
is a notion of ambients that can merge, enter other ambients, etc. In the Path-
way Analysis of BioAmbients an over-approximation of name bindings and of
the spatial structure of ambients (which represent biological compartments) is
“borrowed” from the results of the Control Flow Analysis [NRNPdR07] which
has to be performed first.

Moreover, in [Pil07] the idea to determine a subclass of well-formed calculi
expressions with the help of derivation rules has been introduced. The Pathway
Analysis is guaranteed to be correct for well-formed expressions, while it is not
necessarily the case for the non-well-formed ones. The advantage of derivation
rules is their relative simplicity, so a calculus expression can be easily proved
on well-formedness by induction on its syntax. We have used the same idea
in order to limit the IMCG expression to the ones on which our own Pathway
Analysis is both correct and precise (see Table 3.8 for well-formedness rules for
IMCG).

In [NNN07] Data Flow Analysis has been applied to the broadcast calculus
bKlaim. The result of the analysis was the construction of so-called abstract
transition systems that are finite abstractions for broadcast networks describable
in bKlaim. The constructed transition systems are called “abstract” because
some of the states in the concrete semantics of bKlaim processes are merged
in the abstract transition systems according to the granularity function. The
processes in bKlaim might have infinite semantic models therefore the use of
the granularity function different from the identity, i.e. a granularity functions
that assigns to one state several different informations on exposed labels, may
be unavoidable.

Formulas in Action Computation Tree Logic (ACTL) [NV90] can be conse-
quently interpreted over abstract transition systems, with the 3-valued results
of the interpretations -“true”, “false” and “unknown”. Combining the interpre-
tations on states to the interpretation of the whole formula occurs according
to the rules of Kleene’s strongest regular 3-valued logic [Kle52]. The “true”
and “false” interpretations of a formula mean that the formula also evaluates
to accordingly “true” or “false” on the corresponding concrete semantic model.
The “unknown” result does not allow to make any conclusion concerning the
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concrete semantic model.

The final result of Data Flow/Pathway Analysis of CCS, BioAmbients and
bKlaim systems is building a finite deterministic automaton which could simu-
late an original system. In contrast to them the result of Data Flow Analysis of
CCS processes in [NNN08] is constructing modal transition systems. These are
systems which are 3-valued both in states and in transitions: we have instead
of just presence / absence of an exposed action or transition the possibilities of
may(possibly present) / must(necessary present) / absence(necessary absent).
A modal transition system can be constructed because intervals are used during
the analysis in order to store the multiplicities of exposed actions. Note that this
kind of analysis combines the advantages of both over- and under-approximation
of labels’ multiplicities.

Abstracting a CCS system into a modal transition system allows to check not
only safety properties, as in previous works, but also liveness properties. How-
ever in order to be able to create modal transition systems both over- and
under-approximation of exposed actions needs to be performed. Instead of one
number or infinity, the intervals are used in order to keep track of labels’ multi-
plicities. The modal transition system can be then constructed in the following
way: use must-transitions when the interval does not include 0; use may transi-
tion when the interval includes 0 but is bigger than 0, do not use any transition
in case of the “0”-interval. As already mentioned, an additional operator has
been introduced that determines whether two labels referring to compatible ac-
tion names are in fact compatible; it is also determined whether two labels are
just possibly compatible or definitely compatible, which increases the precision.

It has been proved in [NNN08] that a fragment of Action Computation Tree Logic
(ACTL) [NV90] can be verified on modal transition systems constructed by the
Worklist algorithm on CCS systems: the result is expressed in the Kleene’s
three-valued logic, with 0 expressing “definitely does not hold”, 1 expressing
“definitely holds” and 1/2 expressing “possibly holds”. In the evaluation of
logical formulas the difference between “may” and “must” transitions in modal
transition systems is taken into account.

The Pathway Analysis for IMC that we will present in the next chapter differs
in several ways from the previous work. For the first, we have to deal with a
different synchronisation model. Synchronisation in CCS and BioAmbients in-
volves only two components. Moreover, information about a second component
is implicitly encoded into the action name: for example a and ā are synchronis-
ing with each other, b and b̄ etc. In IMC the number of synchronising actions
can vary, even for the same action name. Moreover, we adopt a more permissive
syntax of IMC which allows the number of synchronising actions to grow with
the time. To deal with the first situation we will introduce another Pathway
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Analysis operator, the “chains” operator. The second situation will be ruled
out by our well-formedness condition.

Another difference of our own Pathway Analysis to the Data Flow/Pathway
Analyses of process calculi which have been conducted before is that we limit
ourselves to finite systems and we aim to achieve the exact modelling on the
analysis stage. We do not use therefore an operator (i.e. a granularity function)
for merging states. Future research can consist in extending our methods to
infinite systems while using either a granularity function similar to the one
in [NN07] or another methods for merging states. For example, we could merge
first all bisimilar states together and then merge “more similar states” together
before merging “less similar” states, depending on the number of states to which
we want to reduce the automaton build by the Worklist Algorithm.

2.3 Model Checking of IMC

Model checking of IMC systems and systems similar to IMC in their expressive-
ness is currently a “hot topic” and a dynamically developing area of research.
We will give here a short overview of the recent advances in this area. The rea-
son for giving such an overview is that in this thesis we have looked into several
questions which are usually either solved by model-checking methods (reachabil-
ity, timed reachability) or can be considered as the first phase of model checking
with the purpose of minimising the system that has to be verified (constructing
bisimulation relations), so it might be interesting for the reader to compare our
methods to the state-of-the-art. In fact, even if we do not treat the whole range
of model checking problems on IMC systems with our methods, we are confi-
dent that Static Analysis techniques can be useful in answering many questions
related to model checking.

Verification of a system usually starts with deciding which properties should be
checked. The latter are often established by the choice of a particular logic.
For CTMC-systems, for example, the usual choice of a logic is the Continu-
ous Stochastic Logic or CSL [ASSB00]. The CSL is usually considered to be a
continuous-time analogue of CTL (Computational Tree Logic) [CES86] or PCTL
(Probabilistic CTL) [HJ94]. CSL contains two kinds of logical formulas: state-
formulas and path-formulas. The logic is very powerful: for example, state
formulas can specify intervals of probabilities of taking paths with properties
expressed by path formulas. Path formulas can specify time intervals for the
first transition on a path and until the states with some predefined properties
(expressed by state formulas) are reached. Also steady-state probability inter-
vals are expressible in CSL. The computation of the sets of states satisfying CSL
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state formulas is relatively easy if the path formulas with probability intervals
that are contained in the state formulas are checked beforehand. The latter is
however not an easy task in general.

CSL has been model-checked over Continuous Time Markov Chains using the
uniformisation technique in [BHHK03]. The uniformisation is performed in the
following way: a constant rate e is chosen that is bigger or equal to the highest
exit rate (the rate of leaving a state) in the system and each state with an exit
rate, for example, r is equipped with a self-loop with the rate e − r. Then
all the states will have the same exit rate. Consequently transition rates can
be substituted by the probabilities of transitions. There are efficient iterative
methods for computing transient probabilities. Finding steady-state probabili-
ties requires the reachability analysis and solving linear equation systems.

For CTMDPs and IMC systems (that can be understood as a generalisation
of CTMDPs) the situation is more complicated. There are non-deterministic
choices that have to be resolved before the verification of, for example, CSL
formulas. The problem that is often posed is to compute either the minimum
or the maximum probabilities to reach a set of goal states in some non-empty
time interval: for example, the minimum or the maximum probability to reach
a state s within the time between 1 and 2 time units since the start of the
system in the initial state. Non-deterministic choices are resolved by a so-called
scheduler (also called policy or adversary, see, for example, [BK08] or [NSK09]).

Instead of having one fixed scheduler for resolving non-deterministic choices
often the whole class of schedulers is considered. The most powerful class of
schedulers for CTMDP systems contains history- and time-dependent schedulers.
Those are schedulers that resolve non-determinism based both on the states that
have been passed “on the way” to the current state from the initial state, and on
the time that was spent on each of the transitions – the whole history including
time is assumed to be known to the scheduler. The opposite of history-dependent
schedulers are history-independent schedulers that do not know which states
have been passed “on the way”; the opposite of time-dependent schedulers are
time-abstract schedulers that do not know how much time has passed since the
system has started in the initial state.

For globally uniform CTMDPs (with the same exit rate in each state) the CSL
model checking is easier than in general case (see [BHH+09]). However IMC
systems in general do not give rise to globally uniform CTMDPs. In order
to transform non-uniform CTMDPs or IMC systems into uniform ones, some
additional transformations, similar to the uniformisation of CTMCs which has
been described above, are necessary. Uniformisation of IMC systems can be
done in a compositional way: parallel composition, action hiding and strong
bisimulations preserve the uniformity [Joh07]. For the parallel composition the
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exit rate of all states in the resulting system E qAq F is equal to the sum of
the exit rate of the states in E and the exit rate of the states in F ; in the other
two cases the exit rates do not change.

These transformations however may lead to losing some of the information on
time. For uniformised IMCs and CTMDPs that have not been uniform from
the start, the model checking of CSL formulas for time- and history-dependent
schedulers is not exact in general. This class of schedulers is strictly less powerful
on uniformised systems, which means that the best reachability time computed
on a uniformised system can actually be worse than the best reachability time
achievable on a non-uniformised system [BHKH05]. The example CTMDP in
Figure 2.3 has been taken from [BHKH05] where it was used in order to show
that the expected time to reach the absorbing state is strictly smaller in the
uniformised than in the non-uniformised system in the class of time- and history-
dependent schedulers. This issue does not arise in CTMCs: computations of
timed-bounded reachability on uniformised and non-uniformised CTMCs lead
to the same results.

Without uniformisation the computation of the minimum or maximum proba-
bilities of reaching any of the goal states over all time- and history-dependent
schedulers requires solving an integral equation system over the minimum or
maximum of functions, and this is not tractable [NZ10]. The alternative that
has been proposed in [NZ10] is to discretise the time, i.e. divide the continuous
time into small time slices and characterise the behaviour of an IMC system dur-
ing one time slice. The generated discrete system is called in [NZ10] Interactive
Probabilistic Chains (IPC): instead of rates it has now probabilities character-
ising the former Markovian transitions which are the probabilities to take the
transitions within one time slice. Consequently the interval-bounded reacha-
bility problem for a constructed IPC has to be solved. It has been proved in
[NZ10] that probabilities computed on IPCs converge to the probabilities in the
corresponding IMCs with the diminishing of time slices. IPCs have probabil-
ities instead of time, as their name suggests, therefore solving the reachability
problems for them is easier – it is solved in [NZ10] by a modification of the
value-iteration algorithm.

Besides uniformisation and discretisation, another commonly used technique in
the model checking of IMC systems is abstraction. For example, after uniformi-
sation some of the states can be merged and the probabilities of transitions
into states which are to be merged can be abstracted by intervals of proba-
bilities which contain all the abstracted probabilities [KKLW07]. Interactive
transitions into states to be merged can be in their turn abstracted by may-
and must-transitions [KKN09]. Approximations can be applied also during the
model-checking phase: for example, in [BHKH05] the approximation algorithms
for time-abstract but history-dependent schedulers are using history only up to
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a certain depth.

Another kind of abstraction which can be used for CTMDPs is abstracting them
as continuous-time stochastic two-player games (CTSTPG). Concrete states in
the original systems can be partitioned into a smaller number of abstract states.
The intervals for the minimal and maximal probabilities to reach a set of goal
states under some time constraints can be computed on the resulting abstrac-
tion, i.e. the interval in which the actual minimal probability is contained and
the interval in which the actual maximal probability is contained. The coarser
the abstraction, the larger are the intervals – if the intervals are considered to be
too large, the abstraction can be refined, i.e. a finer partition of concrete states
into abstract states can be used. It is even possible to predict which abstract
states to subdivide in order to achieve a quick precision improvement. For now
this technique has only been implemented for MDPs and their corresponding
stochastic two-player games (STPG) [KNP06].

Model checking is mostly done for properties related to state labellings, but for
process calculi it is often more natural not to connect the checked properties
to the states. The reason is that for systems describable in a particular pro-
cess calculus the properties of states are defined though all the transitions that
can be taken from them and through the other states reachable from them.
Consequently the states usually do not have any additional atomic propositions
associated with them. For such cases other kinds of temporal logics can be used,
for example, ACTL, ACTL* [NV90] or ACSL [HKMKS00] logics (A stands for
“action”). The logic of ACTL has been mentioned in Section 2.2.2 because a
fragment of it can been verified (in the 3-valued Kleene’s logic) on the modal
transition systems created by Data Flow Analysis. It is possible to do a transla-
tion from ACTL to CTL and from ACSL to CSL formulas [HKMKS00] (which
also involves a translation from action-labelled to state-labelled transition sys-
tems), but it often requires less effort to model-check ACTL or ACSL formulas
directly.

There are also more “general” modal logics that can be interpreted over all la-
belled transition system – therefore also over Structural Operational Semantics
of IMC systems. They do not have means to express probabilities or timed prop-
erties, but there exist on the other hand efficient algorithms for model checking
of properties expressible in them. The Hennessy-Milner logic [HM85] fully char-
acterises observational equivalence of two processes which are image finite –
i.e. if each process has finitely many transitions decorated by the same action
name. See Section 4.1 for a more detailed discussion of observational equiv-
alences which are also called bisimulations. The Hennessy-Milner logic with
recursion (see, for example, [Lar88]) admits recursively specified formulas and
the minimal and maximal interpretations of the formulas. The Hennessy-Milner
logic with recursion is very expressive and can be understood as a reformulation
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of the µ-calculus [Koz83] (also called modal µ-calculus). The latter is equipped
with a least fixed point operator µ and is strictly more powerful than, for exam-
ple, the Hennessy-Milner logic, the temporal logics CTL [CES86], LTL [Pnu77],
CTL* [EH86], etc.
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Chapter 3

Pathway Analysis of IMC

3.1 General description

In this chapter we will introduce the Pathway Analysis of IMC systems which
will be the basis for our developments in the rest of the thesis. We start by
deciding on the syntax of IMC to be used further on. In order to simplify the
proofs about the correctness and precision of our version of Pathway Analysis,
we integrate the requirement that all valid IMC expressions should be guarded
in order for their semantics to be well-defined directly into the syntax. Therefore
we call our version of IMC syntax the guarded IMC or IMCG.

On the other hand, we seek to increase the compositionality of the syntax of
IMCG. Therefore we have dropped the requirement that the internalisation and
parallelisation operators are applied exclusively at the highest syntactic level –
these operators had to be applied “on top” of the other syntactic constructs in
the syntax of IMC in [BH00] and [Her02], see Section 2.1. However, allowing
internalisation and parallelisation not only at the top syntactic level might lead
to infinite semantic models which are not considered to be IMC systems [Her02].
We have therefore introduced additional so-called well-formedness conditions
for excluding cases with infinite behaviour (actually, we are also ruling out
some cases with finite syntactic models, for the sake of simplicity of the well-
formedness conditions). Well-formed IMCG expressions have finite semantic
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models, and this means that they represent IMC systems [Her02]. On the other
hand, any system written in the IMC syntax from [Her02] satisfies our definition
of a well-formed IMCG expression (apart from labels).

Another important enhancement in the syntax of IMCG compared to the syntax
of IMC is that we have added labels to all the action names and delay rates
in the syntax of IMCG, similarly to the developments in [NN07] for the CCS
calculus. This is done in order to differentiate between different occurrences of
the same action name in the syntax. For example, in X := a.X + a.b.X we have
two occurrences of a with different behaviours. By assigning labels to them we
can specify which of the occurrences is meant: for X := a`1 .X + a`2 .b`3 .X we
could explicitly specify whether we mean a`1 or a`2 .

Moreover, semantic transitions become decorated by the labels of action names
or delay rates that participate in the derivation of the transition through the
prefix rule. We have adopted this feature from [NN07] as well. It is reminiscent
of the transition decoration by the information on the derivation tree in [Pri95],
as we are also recording transition derivation trees in a concise way, but we do
not record unused information. An advantage of decorating transitions with
labels is that information on labelled action names or delay rates that give
rise to the transition is explicitly recorded. This is especially advantageous for
especially well-behaved IMCG systems called “IMCG programs” (see Definition
3.4). In their semantic models different transitions (i.e. with different derivation
trees) have different labels decorating them. Therefore we can deduce the effect
of the transition from an expression, i.e. we can unambiguously determine E′ for
which E

α−−→
C

E′ holds from knowing E and C, with C recording the labels that

have been examined during the transition derivation. Moreover, multirelations
for delay transitions always consist of just one relation because all the outgoing
transitions have different labels decorating them.

In Section 3.4 we develop the Pathway Analysis for IMCG. We have called
our analysis the Pathway Analysis because it is closely related to the Pathway
Analysis of BioAmbients [NNPR04, Pil07] where it was used in order to infer
information on biological pathways. The Pathway Analysis in [NNPR04, Pil07]
enriches Data Flow Analysis with in particular the well-formedness condition.

We adopt the main Data Flow / Pathway Analysis operators from [NN07],
namely exposed, generate and kill operators. We introduce the additional chains
operator, in order to deal with the synchronisation model of IMC which is multi-
way synchronisation, and several auxiliary operators for convenience. We prove
subsequently the correctness of the Pathway Analysis, i.e. that we can construct
a finite automaton based on the Pathway Analysis results that can simulate the
behaviour of the system that has been analysed – this is similar to what has been
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proved in [NN07], [Pil07] and [NNN08] in relation to other calculi. Moreover,
we also prove that our Pathway Analysis is precise – the finite automaton that
we would build with the Worklist Algorithm from Section 3.6 is in fact bisimilar
to the one induced by the semantics of the system. This means that we can
explicitly choose a precision level while post-processing the analysis results – up
to the exact computation.

3.2 IMCG calculus

3.2.1 Syntax

When defining the syntax of the IMCG calculus we assume a countable set of
external actions, Act, and a distinguished internal action, τ , such that τ 6∈ Act.
A countable set of constants, Rate ⊆ R+, shall be used to describe Markovian
delay rates. The fact that we are using Rate ⊆ R+ instead of the whole R+

as in IMC (see Section 2.1) is not really a limitation because we will only
use a finite number of rates. In the discussion below α will often range over
Act ∪ {τ} ∪Rate. Furthermore, we shall draw upon a countable set of labels,
Lab, in order to annotate action names and delay rates that occur in processes.
Finally, a countable set of process variables, also called process identifiers, Var,
shall assist us in the definition of recursive processes.

The syntax of the calculus, which is shown in Table 3.1, comprises the follow-
ing syntactic classes: action- (1) and rate-guarded process variable (2), action-
(3) and rate-prefixed process (4), sum or choice construct (5), internalisation
or hiding construct (6), parallel composition or synchronisation construct (7),
recursive process definition (8), and terminal process (9). Internalisation and
synchronisation constructs are parameterised by sets of action names from Act:
these are namely actions that are internalised or hidden in the first case and on
which to processes running in parallel synchronise in the second case.

The reason for using guarded process variables in the rules (1)-(2) in Table 3.1
is to ensure that process variables only occur in guarded positions, which will in
particular guarantee that the semantics of IMCG processes is well-defined: we
are automatically excluding, for example, X := X. Apart from this practical
restriction, another difference from the syntax of IMC in [Her02] is that we
allow the application of the internalisation and synchronisation constructs in
the rules (6) and (7) in Table 3.1 not only at the highest syntactic level.

As we will see in Section 3.2.2, which describes the Structural Operational Se-
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P ::= a`.X | (1)
λ`.X | (2)
a`.P | (3)
λ`.P | (4)
P + P | (5)
hide A in P | (6)
P qAq P | (7)
X := P | (8)
0 (9)

Table 3.1 – Syntax of IMCG: a ∈ Act ∪ {τ}, λ ∈ Rate, ` ∈ Lab, X ∈ Var,
A ⊆ Act.

mantics rules of IMCG, labels annotating action names and delay rates do not
have a special semantic meaning, but we will make an active use of them in
the definition of our analysis and in proving its correctness. As discussed ear-
lier, synchronisation in IMCG, similarly to IMC, is defined in the CSP-style
[Hoa85], i.e. any number of actions can synchronise with each other. Process
definitions in IMCG, as in the IMC syntax from [BH00], perform two functions:
they define process variables and represent process expressions at the same time.
Therefore, for example, X := P represents X where X = P.

As usual, we consider only IMCG processes with finite syntactic definitions.
Therefore the actual number of action names, delay rates, variables and labels
used in the description of a particular IMCG process is always finite.

Similarly to IMC, an IMCG expression is called closed if all process variables in
it are bound or not free, i.e. are contained in corresponding recursive definitions
complying with the syntactic rule (8) from Table 3.1. For example, X := a`.X
is considered to be a closed expression, while a`1 .X.X := a`2 .X is not, because
the first X is not bound. In the following we will mainly consider closed IMCG

expressions apart from the proofs where we will sometimes encounter expressions
with free process variables.

We will most often assume that every occurring recursive definition in an IMCG

expression uses a different variable, because in this way we will not need to
differentiate between different definitions of the same variable. If this is not the
case for a particular IMCG expression, we can easily rename process variables
in order to achieve unique process variables’ definitions. We will also mostly
assume that IMCG expressions are uniquely labelled, i.e. any appearance of a
particular label inside the expression is unique. This property makes it possible



3.2 IMCG calculus 47

X � a`.X (1)
X � λ`.X (2)
P � a`.P (3)
P � λ`.P (4)

(P1 � (P1 + P2)) ∧ (P2 � (P1 + P2)) (5)
P � hide A in P (6)

(P1 � (P1 qAq P2)) ∧ (P2 � (P1 qAq P2)) (7)
P � X := P (8)

Table 3.2 – Subexpression relation � on IMCG expressions.

Labs(a`.X ) = {`} (1)
Labs(λ`.X ) = {`} (2)
Labs(a`.P) = {`} ∪ Labs(P) (3)
Labs(λ`.P) = {`} ∪ Labs(P) (4)

Labs(P1 + P2) = Labs(P1) ∪ Labs(P2) (5)
Labs(hide A in P) = Labs(P) (6)
Labs(P1 qAq P2) = Labs(P1) ∪ Labs(P2) (7)
Labs(X := P ) = Labs(P) (8)

Labs(0) = ∅ (9)
Labs(X) = ∅ (9)

Table 3.3 – Definition of the operator Labs : IMCG → 2Act.

to differentiate between two appearances of the same action name or the same
delay rate: for example, in X := a`1 .a`2 .b`3 .X we can differentiate between a`1

and a`2 . This is important for obtaining the maximal precision of our analysis.
If an expression is not uniquely labelled, then we can easily relabel it in a unique
way.

We will often conduct proofs by induction on the syntax of IMCG expressions.
In doing so we will prove that if some property holds for all subexpressions of
an expression in question then it also holds for the whole expression. Formally
speaking, if a property holds for all E′ � E, then it also holds for E. The
subexpression relation � is defined as the reflexive and transitive closure of the
relation from Table 3.2.

We define in Table 3.3 the operator Labs that operates on IMCG expressions
and process variables, and returns a set of labels that occur inside the input
expression. This operator will be useful in the definitions and proofs below.
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M ::= Lab→ N0

⊥M (`) = 0 for all ` ∈ Lab
M1 ≤M2 ⇔ M1(`) ≤M2(`) for all ` ∈ Lab

[M1 +M2] (`) = M1(`) +M2(`) for all ` ∈ Lab
[M1 −M2] (`) = M1(`)−M2(`) if M1(`) ≥M2(`)
[M1 −M2] (`) = 0 if M1(`) < M2(`)

dom(M) = {` ∈ Lab|M(`) > 0}

Table 3.4 – Definition of M, its least element ⊥M and the operations ≤, +, −
and dom on M. M,M1,M2 ∈ M.

3.2.2 Semantics

In this section we will present Structural Operational Semantics (SOS) of IMCG

and prove several results that will be useful in our further developments. We
have adopted the Structural Operational Semantics of IMCG from IMC in
[BH00] with one exception: transitions are additionally decorated with so-called
multisets of labels that are elements of the domain M. Decorating transitions
with multisets will help us to prove the correctness of our analysis. The domain
M and several operations on it are formally introduced in Table 3.4.

We use multisets instead of sets of labels because in general there can be several
labels of the same kind in the expression: for example, in a`.0 q∅q a`.0 there
are two ` labels that both can be executed in the next transition. We will
show in Lemma 3.15 that this cannot happen for so-called IMCG programs (see
Definition 3.4) which are particularly “well-behaved” IMCG expressions.

We define M as a set of functions assigning each label from Lab a positive natu-
ral number or zero, i.e. each label has its corresponding number of occurrences.
The least element of M is denoted ⊥M and is defined in a natural way, as a
function that assigns zero to all the labels. The sum operation on the elements
from M is defined in a straightforward way, while for the subtraction we have to
pay attention that labels cannot be assigned negative numbers in M: the small-
est number of label’s occurrences is zero. The domain of an element M from
M (returned by the function dom) is a set of labels that are assigned positive
natural numbers in M .

The rules in Table 3.5 show how syntactic terms from IMCG can be put into
correspondence to labelled transition systems in a compositional manner. Most
of the rules closely follow usual SOS rules for process calculi: for example, the
rules for prefixing (1) and (10), choice (2)-(3) and (11)-(12), synchronisation (4)-
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a`. E
a−−−−−−−→

⊥M [` 7→ 1]
E (1) (λ`). E

λ−−−−−−−→
⊥M [` 7→ 1]

E (10)

E
a−−→
C

E′

E+F
a−−→
C

E′
(2)

E
λ−−→
C

E′ F
τ9

E+F
λ−−→
C

E′
(11)

F
a−−→
C

F ′

E+F
a−−→
C

F ′
(3)

F
λ−−→
C

F ′ E
τ9

E+F
λ−−→
C

F ′
(12)

E
a−−→
C

E′ a 6∈ A

E qAq F
a−−→
C

E′ qAq F
(4)

E
λ−−→
C

E′ F
τ9

E qAq F
λ−−→
C

E′ qAq F
(13)

F
a−−→
C

F ′ a 6∈ A

E qAq F
a−−→
C

E qAq F ′
(5)

F
λ−−→
C

F ′ E
τ9

E qAq F
λ−−→
C

E qAq F ′
(14)

E
a−−→
C1

E′ F
a−−→
C2

F ′ a ∈ A

E qAq F
a−−−−−→

C1 + C2

E′ qAq F ′
(6)

E
a−−→
C

E′ a 6∈ A

hide A in E
a−−→
C

hide A in E′
(7)

E
λ−−→
C

E′

hide A in E
λ−−→
C

hide A in E′
(15)

E
a−−→
C

E′ a ∈ A

hide A in E
τ−−→
C

hide A in E′
(8)

E{X := E/X } a−−→
C

E′

X := E
a−−→
C

E′
(9)

E{X := E/X } λ−−→
C

E′

X := E
λ−−→
C

E′
(16)

Table 3.5 – Structural Operational Semantics of IMCG: a ∈ Act∪{τ}, C ∈M,
λ ∈ Rate, ` ∈ Lab, X ∈ Var, A ⊆ Act.

(6) and (13)-(14), hiding (7)-(8) and (15), and recursion unfolding (9) and (16).
If several labelled actions are involved in the derivation of a transition, then all
the labels are added to the multiset decorating the transition – see rule (6). The
term E{X := E/X } in rules (9) and (16) denotes an expression E with every
free occurrence of the variable X in it substituted by the expression X := E. In
the following we may refer to a labelled action name or delay rate, a label or a
multiset of labels as “executable” or “executed” if they occur in the rules that
are used in the derivation of respectively some executable or executed transition.
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Similarly to IMC, actions are executed by IMCG processes instantaneously,
while rates denote exponentially distributed waiting time. Delay rates cannot
synchronise and they cannot be internalised. In case several action-transitions
are possible, the choice between them occurs nondeterministically, while the
choice between several enabled Markovian transitions is probabilistic and is
subject to a probabilistic race (see Section 2.1). The Structural Operational
Semantics of IMCG is defined as a multirelation for delay transitions, similarly
to IMC. See the definition of SOS for IMC in [BH00] for more details.

Similarly to IMC, the choice between action-transitions and Markovian tran-
sitions if both are possible is made nondeterministically except for internal ac-
tions: if an IMCG process has something internal to do, it will win over waiting
for some time period. In order to describe this situation we have conditions
respectively F

τ9 and E
τ9 for Markovian transitions of the choice and syn-

chronisation constructs in the rules (11)-(14). The denotation E
τ9 means that

there is no multiset of labels C and no IMCG expression E′ such that there is
a transition E

τ−−→
C

E′.

Two IMCG expressions E and E′ are connected by a transition relation if E
α−−→
C

E′ can be derived from the rules in Table 3.5 for some α ∈ Act∪{τ}∪Rate and

C ∈M. We call a transition E
α−−→
C

E′ “enabled” or “executable” for E. We may

also say that we have obtained E′ from E after the execution of the transition
α−−→
C

. We will often call E′ a derivative expression or just a derivation of E.

Labelled Transition System (LTS) is constructed for an IMCG expression E by
registering all possible transition relations for E and its derivative expressions.

We write E
α−−→ E′ if there exists some C ∈M such that a transition E

α−−→
C

E′

is derivable for E from the rules in Table 3.5. We write E −−→
C

E′ if there exists

some α ∈ Act ∪ {τ} ∪ Rate such that a transition E
α−−→
C

E′ is derivable for

E from the rules in Table 3.5. Finally, we write E −−→ E′ if there exist some

α ∈ Act ∪ {τ} ∪ Rate and some C ∈ M such that a transition E
α−−→
C

E′ is

derivable for E from the rules in Table 3.5. We write E
∗−−→ E′ if E′ is in the

reflexive and transitive closure of the relations
α−−→
C

for all α ∈ Act∪{τ}∪Rate

and C ∈ M. If E
∗−−→ E′ then we can call E′ a derivative expression or a

derivation of E similarly to the case E −−→ E′. We will also talk about a

sequence of transitions E
α1−−→
C1

...
αn−−→
Cn

E′ or a path from E to E′ while explicitly

referring to a particular transition sequence between E and E′.
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We will prove now two useful lemmas concerning the SOS rules of IMCG.
Lemma 3.1 asserts a rather evident fact that closed IMCG expressions can
give rise only to closed IMCG expressions as a result of any number of semantic
transitions.

Lemma 3.1 (Preservation of IMCG syntax). Given a closed IMCG expression
E and E −−→ E′, then E′ is also a closed IMCG expression.

Proof. See Appendix A.

Lemma 3.2 proves a useful fact about recursion unfoldings in the rules (9) and
(16) in Table 3.5. We will show that we can perform substitutions in these rules
also after the transition instead of performing it before the transition.

Lemma 3.2 (Transition from process definition). Given a closed IMCG ex-

pression X := E, then X := E
α−−→
C

E′ if and only if there exists E′′ such that

E
α−−→
C

E′′ and E′ = E′′{X := E/X}.

Proof. See Appendix A.

The result proved in Lemma 3.2 will make it easier for us to derive facts concern-
ing an IMCG expression E′ from already known properties of another IMCG

expression F by induction on the structure of F provided F
α−−→
C

E′. In case

F = X := E
α−−→
C

E′ we could namely derive from E
α−−→
C

E′′ some properties of

E′′ and adapt them to E′′{X := E/X}.

3.3 Well-formedness

In this section we will present conditions under which an IMCG expression
will be considered “well-formed”. Our purpose is that for IMCG expressions
that comply with these conditions their properties that are relevant for the
Pathway Analysis stay invariant under any number of transitions. We have got
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fn(a`.X ) = {a} (1)
fn(λ`.X ) = ∅ (2)
fn(a`.P) = {a} ∪ fn(P) (3)
fn(λ`.P) = fn(P) (4)

fn(P1 + P2) = fn(P1) ∪ fn(P2) (5)
fn(hide A in P) = fn(P)\A (6)
fn(P1 qAq P2) = fn(P1) ∪ fn(P2) (7)

fn(X := P) = fn(P) (8)
fn(0) = ∅ (9)

Table 3.6 – Rules for the operator fn : IMCG → 2Act returning free (i.e. non-
internalised) names of IMCG expressions.

an inspiration for the well-formedness rules for IMCG calculus from [Pil07] where
well-formedness conditions have been devised for the BioAmbients calculus. Our
rules are however simpler and easier to understand.

Before presenting the well-formedness conditions we will introduce two auxiliary
operators on IMCG expressions. We will make use of them in the definition of
well-formedness. The operator fn captures the notion of so-called free names of
IMCG expressions. These are action names that appear in IMCG expressions
following the syntactic rules (1) and (3) in Table 3.1 and have not been inter-
nalised, i.e. are not contained in any set A of the hide-construct from rule (6)
in Table 3.1 applied on top of the action name appearance. Internalised action
names are deleted from the set returned by fn in rule (6) of Table 3.6. For
example, fn(hide {a} in a`1 .0) = ∅ but fn(a`1 .0) = {a}.

Free and hidden action names differ in two aspects. The first is that free ac-
tion names decorate corresponding semantic transitions in an unchanged way,
while hidden names decorate corresponding transitions with τ : for example,
a`1 .0

a−−−−−−−→
⊥M [`1 7→ 1]

0, however hide {a} in a`1 .0
τ−−−−−−−→

⊥M [`1 7→ 1]
0. The second dif-

ference is that free actions can synchronise with each other, while internalised
actions do not participate in the synchronisation anymore. For example, there is
a transition decorated by the action a for the IMCG process a`1 .0 q {a} q a`2 .0,
but not for the process (hide {a} in a`1 .0) q {a} q a`2 .0, because in the second
case the action a is internalised in the process on the left.

The inductive definition of the operator fn : IMCG → 2Act is presented in
Table 3.6. We are basically collecting all action names that we encounter while
parsing an IMCG expression and throw at the same time those of them away
for which we encounter the hide-construct.
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fpi(a`.X ) = {X } (1)
fpi(λ`.X ) = {X } (2)
fpi(a`.P) = fpi(P) (3)
fpi(λ`.P) = fpi(P) (4)

fpi(P1 + P2) = fpi(P1) ∪ fpi(P2) (5)
fpi(hide A in P) = fpi(P) (6)
fpi(P1 qAq P2) = fpi(P1) ∪ fpi(P2) (7)

fpi(X := P) = fpi(P)\{X } (8)
fpi(0) = ∅ (9)

Table 3.7 – Rules for the operator fpi : IMCG → 2Var returning free process
identifiers in IMCG expressions.

Another auxiliary operator that we will use in the well-formedness rules is the
free process identifiers operator fpi. It returns for a given IMCG expression a
set of process variables that occur in it unbound. For example, fpi(a`.X ) = {X }
but fpi(X := a`.X ) = ∅. The rules for the operator fpi : IMCG → 2Var are
presented in Table 3.7 and are self-explanatory. Bound process variables are
deleted from the set of process variables returned by fpi in rule (8) in Table 3.7.
Obviously an IMCG expression P is closed if and only if fpi(P) = ∅.

The well-formedness rules are listed in Table 3.8. We characterise an IMCG

process P as well-formed relative to a set of action names S ⊆ Act if `S P can
be derived from the rules in Table 3.8. In the following, in case we will call an
IMCG expression P well-formed without explicitly specifying the corresponding
action set, we will assume the latter to be equal to fn(P), i.e. P will be called
well-formed if `fn(P) P holds.

Generally speaking, an IMCG expression P is considered to be well-formed
relative to an action set S if the following conditions are fulfilled:

• there is no action name from S that occurs internalised in some subex-
pression of P (rule (6) in Table 3.8);

• the parallel composition can be applied only to closed subexpressions of
P (the side condition to rule (7) in Table 3.8);

• moreover, free action names of a subexpression of P to which the parallel
composition has been applied do not occur internalised in that subexpres-
sion (rule (7) in Table 3.8).
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`S a`.X (1)

`S λ`.X (2)

`S P
`S a`.P

(3)

`S P
`S λ`.P

(4)

`S P1 `S P2

`S P1 + P2

(5)

`S P
`S hide A in P

if A ∩ S = ∅ (6)

`S∪fn(P1) P1 `S∪fn(P2) P2

`S P1 qAq P2

if (fpi(P1) = ∅) ∧ (fpi(P2) = ∅) (7)

`S P
`S X := P

(8)

`S X (9)

`S 0 (10)

Table 3.8 – Well-formedness rules for IMCG expressions: S ⊆ Act.

By checking whether `fn(P) P holds for a closed IMCG expression P we are
excluding cases where the same action name appears both free and hidden in
P: this might lead to situations where initially non-internalised actions will
become internalised after a number of semantic steps, due to the recursion
unfolding. Moreover, the number of recursion unfoldings until the action name
is internalised might be non-deterministically determined which basically means
that the semantic model of such IMCG expression is infinite. For example, two
different transitions are derivable for X := a`1 .X + hide {a} in a`2 .X :

X := a`1 .X + hide {a} in a`2 .X
a−−−−−−−−−→

⊥M [`1 7→ 1]
X := a`1 .X + hide {a} in a`2 .X

and

X := a`1 .X + hide {a} in a`2 .X
τ−−−−−−−−−→

⊥M [`2 7→ 1]
hide {a} in X := a`1 .X + hide {a} in a`2 .X .

In the first case the action a`1 remains free in the right-hand side expression and
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in the second case it becomes hidden. The action a`1 might be executed both
as a and as τ in the next semantic step. In order to rule out such situations we
consider such IMCG expressions to be not well-formed because the condition of
rule (6) in Table 3.8 is not satisfied.

It appears, however, that in order to make the semantic behaviour of IMCG

expressions “predictable” it is not enough to only rule out expressions where
globally free action names might be subsequently hidden. Consider the follow-
ing IMCG transitions:

hide {a} in (X := a`1 .X + hide {a} in a`2 .X q {a} q Y := a`3 .a`4 .b`5 .Y )
τ−−−−−−−−−−−−−−→

⊥M [`1 7→ 1, `3 7→ 1]

hide {a} in (X := a`1 .X + hide {a} in a`2 .X q {a} q a`4 .b`5 .Y := a`3 .a`4 .b`5 .Y )

and

hide {a} in (X := a`1 .X + hide {a} in a`2 .X q {a} q Y := a`3 .a`4 .b`5 .Y )
τ−−−−−−−−−→

⊥M [`2 7→ 1]

hide {a} in (hide {a} in (X := a`1 .X + hide {a} in a`2 .X ) q {a} q Y := a`3 .a`4 .b`5 .Y ).

The action a is globally hidden in all the expressions above. However as a
appears “locally” both free and hidden inside a synchronising process, it will
leave us with a nondeterministic choice whether an a-transition decorated with
the multiset ⊥M [`1 7→ 1, `4 7→ 1] will be possible in the next step or not. If it
is (the first case) then the action b will be executed consequently. Otherwise
(the second case) b will never be executed. The initial IMCG expression is
considered to be not well-formed because the condition of rule (7) in Table 3.8
is not satisfied.

Finally, the reason for excluding synchronising IMCG processes with free process
identifiers (the side condition of rule (7) in Table 3.8) is the following: such
expressions can potentially “grow” by means of creating several copies of some
original IMCG subexpression after recursion unfoldings. Consider the following
example:

X := a`1 .X q {a} q Y := a`2 .Y
a−−→X := a`1 .X q {a} q Y := a`2 .Y q {a} q Y := a`2 .Y .

We are excluding such cases from being considered well-formed because the
growth can be both non-deterministic and unbounded, i.e. an unbounded num-
ber of copies of some IMCG process can be created which can mean that the
semantic model of such IMCG expression might be infinite. We do not analyse
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such expressions with our Pathway Analysis.

We consider process identifiers and terminal processes to be well-formed (rules
(9) and (10) in Table 3.8). The first may be somewhat unexpected but we have
introduced rule (9) solely for technical convenience in the proofs below. Note
that in spite of rule (9) in Table 3.8 a process variable is not considered a well-
formed IMCG expression because it is not a valid IMCG expression according
to the syntax rules in Table 3.1. We will be a bit sloppy in the definition of
Pathway Analysis operators below in Section 3.4, by saying that they take as
an input IMCG expressions, while they will also be defined on variables. The
reason is, similarly to the well-formedness rules, that it is convenient to define
the operators inductively on the syntax of IMCG by defining them also on
process variables.

Note the symmetry in the well-formedness conditions on the “global level” of
the whole IMCG expression and on the “local level” of its synchronising subpro-
cesses: we require that in both cases we do not have any free process identifiers
and do not hide free names. These two conditions are directly stated for synchro-
nising subexpressions in rule (7) from Table 3.8, while for the whole expression
we have to check them explicitly, by including the set of globally free action
names in the set S and by considering closed IMCG expressions.

We will prove in Lemma 3.3 that any well-formed and closed IMCG expres-
sion remains well-formed after any number of semantic steps. This statement
is not only useful for our further proofs but also shows the stability of the
well-formedness concept under semantic transitions which assures us in its non-
transient nature.

Lemma 3.3 (Preservation of well-formedness). Given an IMCG expression E
such that `fn(E) E holds and Labs(E1) ∩ Labs(E2) = ∅ for all E1 qAq E2 �
E, then for all E′ such that E

α−−→
C

E′ also `fn(E′) E
′ holds and Labs(E1) ∩

Labs(E2) = ∅ for all E1 qAq E2 � E′.

Proof. See Appendix A.

Derivatives of an initially uniquely labelled IMCG expression are not necessar-
ily uniquely labelled themselves. For example, the uniquely labelled expression
X := a`1 .(b`2 .X + c`3 .X) gives rise after one semantic transition to the non-

uniquely labelled b`2 .X := a`1 .(b`2 .X + c`3 .X) + c`3 .X := a`1 .(b`2 .X + c`3 .X).
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From Lemma 3.3 follows however that we can deduce some guarantees concern-
ing labelling of well-formed expressions: in particular, labels of synchronising
processes will still be disjoint after any number of semantic steps.

We will define now “well-behaved” IMCG expressions that we will call IMCG

programs. Most of our results in the rest of the chapter and in the following
chapters refer to IMCG programs and their derivative expressions.

Definition 3.4 (IMCG programs). An IMCG expression F which is well-
formed (relative to the set of action names fn(F )), uniquely labelled, closed
and contains unique process identifier definitions is called an IMCG program.

3.4 Pathway Analysis

In this section we will introduce the Pathway Analysis for IMCG. As we have
explained in Section 2.2.2, the purpose of conducting Data Flow / Pathway
Analysis in the previous work (see [NN07], [NNPR04], [Pil07], [NNN07]) was to
safely over-approximate the, possibly infinite, state space of the process defined
by a given process calculus expression by a finite automaton. Our goal in doing
the Pathway Analysis of IMCG was slightly different. The semantic models
of IMCG, as well as IMC, are always finite – contrary to CCS, BioAmbients
and bKlaim. Therefore we had as an aim to conduct the Pathway Analysis of
IMCG in such a way that we can build consequently the finite automaton which
does not only over-approximate the state space of the IMCG system but the
approximation is as small as possible.

The advantage of a precise analysis is that we have better control over the
merging of states if we decide to do so while building the finite automaton.
We can also relax the precision requirement on the analysis stage by assigning
non-unique labels to the algebraic process description. We can use the analysis
results for post-processing (see Chapters 4 and 5) – here the precision of the
analysis can be handy in proving that the computed properties indeed hold. In
particular, we can make conclusions not only about safety properties, as it is
usual for Data Flow / Pathway Analysis (“nothing bad will ever happen”), but
also about liveness properties (“something good will eventually happen”) – this
is possible because the approximation of the execution scenarios is tight.

While extending Pathway Analysis methods to IMCG we had two major tasks:
first, to adapt Pathway Analysis to the synchronisation model of IMCG that
is different from CCS; second, to be able to construct after conducting the
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analysis a labelled transition system which will be strongly bisimilar to the one
induced by the semantics of IMCG. Similarly to [Pil07], we apply the Pathway
Analysis to a subclass of IMCG on which our analysis can be guaranteed to
deliver correct results: to IMCG programs. The previous applications of Data
Flow / Pathway Analysis in [NN07], [NNPR04], [Pil07] and [NNN07] were using
in their correctness proofs the fact that monotone functions on complete lattices
always have the least fixed points. As we need to prove that our analysis is not
only correct but also precise, we had to change some definitions and proofs in a
considerable way.

We have not only achieved that the analysis is precise, but there is another
positive effect as well. We could namely renounce a granularity function which
has been necessary in the previous work (see Section 2.2.2) in order to guarantee
the termination of the Worklist Algorithm. The negative side effect of the
application of granularity functions was that, for example, model checking could
not be made “on the fly”, during construction of the finite automaton by the
Worklist Algorithm. There was a possibility that some states would later be
merged by the Worklist Algorithm (if the granularity function would map them
to the same state) and so previously calculated model-checking results would
become obsolete. This is not a problem anymore with our method, because we
have no granularity functions, therefore states cannot be merged and each state
is visited only once by the Worklist Algorithm. Accordingly we can develop in
the future some “on the fly” verifications of interesting system properties.

3.4.1 Pathway Analysis operators

We have devised a number of Pathway Analysis operators that accept IMCG

expressions as input. The theoretical results that we have proved about these op-
erators apply however only to IMCG programs. We have also devised a number
of auxiliary operators – for example, an operator that saves the correspondence
between labels on the one hand and action names and rates on the other hand.

We have defined the following Pathway Analysis operators on IMCG expres-
sions: exposed operator, chains operator, generate operator and kill operator.
Three of the operators – exposed, generate and kill – are adjustments from the
corresponding definitions in the previous work, in particular in [NN07] where
they have been introduced. In the named work these three operators have been
defined on expressions written in the CCS calculus syntax. We have addition-
ally devised the chains operator, which has not been introduced in the previous
work, in order to save the “synchronising structure” of the IMCG expression
and thus to be able to determine which actions synchronise with each other.
The introduction of the chains operator has mainly been triggered by the dif-
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ference between the synchronisation model of IMC and accordingly IMCG and
the synchronisation model of CCS. In CCS only two actions can synchronise
with each other, moreover, they are explicitly denoted as two synchronisation
sides. In IMC any number of actions can synchronise (multi-way synchronisa-
tion); whether a particular action participates in the synchronisation depends
on the overall syntactic structure of the whole IMC expression and not on the
action name itself.

We will shortly describe now the ideas behind the different operators. A more
detailed account will be given below, where we will formally define each opera-
tor. The exposed operator returns a multiset of labels of the actions or delays
which may be executed in the next semantic derivation step. For example, in
X := a`1 .X+Y := b`2 .Y both `1 and `2 are exposed. For delays we can make a
clear statement: if the label of some delay is exposed, then there exists a tran-
sition, derivable through the rules of Table 3.5, decorated by the corresponding
delay and label. For actions, things are more complicated because a correspond-
ing action may participate in some synchronisation. We can however state that
if there exists for some IMCG expression a transition decorated with an action
name and a multiset of labels, then all the labels from that multiset are returned
by the exposed operator with the expression as an input.

The generate and kill operators take as input an IMCG expression and return
a mapping from labels to multiset of labels. Generally speaking they return for
each label those labels that after the “execution” of the first label will either
become newly exposed (generate operator) or cease to be exposed (kill operator).
We characterise a label as having been executed in case it is included in the
multiset decorating the transition which has been carried out. In the example
above X := a`1 .X + Y := b`2 .Y the label `1 kills both `1 and `2 but generates
only `1.

If an IMCG expression is uniquely labelled then the generate and kill operators
return unambiguous results for each label. The generate and kill operators’
results on the syntax of IMCG programs are applicable to all their derivative
expressions (this will be proved in Section 3.5). Namely, the generate operator
on a derivative expression will return the same results for all the labels present
in the derivative expression and the kill operator will return the same result if
we take into account only exposed labels of the derivative expression.

The chains operator returns for an IMCG expression a set of multisets. We will
call any returned multiset a chain as the multiset “connects” the labels that are
to be executed simultaneously. For example, the only chain for the expression
a`1 .0 qaq a`2 .0 consists of labels `1 and `2. It is clear that labels in each chain
should correspond to the same action name or delay. Chains that have in their
domains more than one label correspond only to action names and not to delays:
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no failing synchronisation can prevent the execution of a delay. We will prove
in Section 3.5 that chains computed on an IMCG program are applicable to any
IMCG expression derivable from it.

In the following section we will give formal definitions for all the operators. After
that we will prove a number of theoretical results concerning the operators’
application to IMCG programs and what is especially important – concerning
the relations between the results returned by the operators on some IMCG

program and the labelled transition system induced by the semantics of that
program.

3.4.2 Exposed operator

We will now formally define the exposed operator E . It accepts an IMCG

expression or a process variable and returns a value from M which charac-
terises exposed labels, also sometimes called exposed prefixes. It is enough to
save only exposed labels in case their correspondence to action names or de-
lay rates can be unambiguously determined. Exposed are labels that may
be executed in a transition directly derivable for the corresponding expres-
sion. For example, the exposed operator returns on X := a`1 .X + b`2 .X the
multiset ⊥M [`1 7→ 1, `2 7→ 1] because the following transitions are derivable for

the input expression: X := a`1 .X + b`2 .X
a−−−−−−−→

⊥M [`1 7→ 1]
X := a`1 .X + b`2 .X and

X := a`1 .X + b`2 .X
b−−−−−−−→

⊥M [`2 7→ 1]
X := a`1 .X + b`2 .X.

The result of the application of the operator E is defined inductively on the
syntactic structure of its input. The rules for E are presented in Table 3.9. Most
of the rules are clear: the only exposed label of a prefixed expression is a label
of the prefix (rules (1)-(4)), exposed labels of two expressions connected by the
choice or synchronisation constructs include exposed labels of both expressions
(rules (5) and (7)) etc. We need however to explain rule (9).

The operator E is parameterised with an environment Γ ∈ 2Var×M which is a
set of mappings from process variables to multisets of labels. We make use of an
environment in case we need to determine exposed labels of a process variable
– in these cases we will just look up mappings for a particular variable in Γ.
The operator E returns ⊥M if there are no mappings for a particular process
variable in Γ and returns a sum of corresponding multisets of labels if there are
several such mappings.

In the following, as we will consider only those IMCG expressions that have
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EΓJa`.X K = ⊥M [` 7→ 1] (1)
EΓJλ`.X K = ⊥M [` 7→ 1] (2)
EΓJa`.PK = ⊥M [` 7→ 1] (3)
EΓJλ`.PK = ⊥M [` 7→ 1] (4)

EΓJP1 + P2K = EΓJP1K + EΓJP2K (5)
EΓJhide A in PK = EΓJPK (6)
EΓJP1 qAq P2K = EΓJP1K + EΓJP2K (7)
EΓJX := PK = EΓJPK (8)

EΓJX K =


⊥M if (X ,M) 6∈ Γ ∀M ∈M∑
(X ,M)∈Γ

M otherwise. (9)

EΓJ0K = ⊥M (10)

Table 3.9 – Definition of the exposed operator E : IMCG →M, Γ ∈ 2Var×M.

ΓVarJa`.X K = ∅ (1)

ΓVarJλ`.X K = ∅ (2)

ΓVarJa`.PK = ΓVarJPK (3)

ΓVarJλ`.PK = ΓVarJPK (4)
ΓVarJP1 + P2K = ΓVarJP1K ∪ ΓVarJP2K (5)

ΓVarJhide A in PK = ΓVarJPK (6)
ΓVarJP1 qAq P2K = ΓVarJP1K ∪ ΓVarJP2K (7)

ΓVarJX := PK = (X , E∅JPK) ∪ ΓVarJPK (8)
ΓVarJX K = ∅ (9)
ΓVarJ0K = ∅ (10)

Table 3.10 – Definition of the operator ΓVar : IMCG → 2Var×M returning
exposed labels of process definitions.

unique process identifiers for all process definitions, we will only encounter cases
where the environment Γ will contain a unique entry for each process variable
occurring inside an IMCG expression P for which EΓJPK will be computed. The
environment Γ will mostly be an output of another operator ΓVar on P. The
rules for the operator ΓVar are presented in Table 3.10. This operator collects
exposed labels of all process definitions occurring in its input expression. If
an input expression P is closed and contains unique process definitions, then
ΓVarJPK is a union of unique mappings from variables in P to exposed labels of
their corresponding process definitions.
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In rule (8) of Table 3.10 we make use of an empty environment while computing
exposed labels of an IMCG expression P. This can be justified with the help
of Lemma 3.5 which proves that the environment parameter is not important
for computing exposed labels of an IMCG expression (due to its guardedness),
therefore we can parametrise the exposed operator in rule (8) of Table 3.10 with
an empty environment for simplicity.

Lemma 3.5 (Exposed labels of IMCG expressions). Given an IMCG expression
E, then E∅JEK = EΓJEK holds for any environment Γ ∈ 2Var×M.

Proof. See Appendix A.

We will now prove that the result of the application of the operator ΓVar to
an IMCG expression is in a sense invariant under semantic transitions – which
is what we would expect. In doing so we will need an additional Lemma 3.6
on variables’ substitutions, which will also be useful in proving a number of
theoretical results in the rest of this chapter.

Lemma 3.6 (Exposed labels under substitution). Given an IMCG expression
E′′, then EΓJE′′K = EΓJE′′{X := E′/X}K holds for all environments Γ and all
IMCG expressions X := E′. If E′′ = X then, provided that (X, E∅JE′K) is a
unique mapping for a variable X in Γ, i.e. for all (X,M) ∈ Γ it holds that
M = E∅JE′K, then EΓJE′′K = EΓJE′′{X := E′/X}K holds as well.

Proof. See Appendix A.

We will now show in Lemma 3.7 that exposed labels of process definitions do
not change after any number of semantic transitions: a set returned by the
operator ΓVar on derivative expressions of a closed E is always a subset of
a set returned by the same operator on E. The application result can be
strictly smaller if some recursive definitions disappear as a result of transi-
tions. For example, for X := a`1 .X+Y := a`2 .Y

a−−−−−−−→
⊥M [`1 7→ 1]

X := a`1 .X, we have

ΓVarJX := a`1 .X+Y := a`2 .Y K = {(X,⊥M [`1 7→ 1]), (Y,⊥M [`2 7→ 1])} but only
ΓVarJX := a`1 .XK = {(X,⊥M [`1 7→ 1])}.
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Lemma 3.7 (Variable definitions under transitions). Given a closed IMCG

expression E and a transition E
α−−→
C

E′, then ΓVarJE′K ⊆ ΓVarJEK holds.

Proof. See Appendix A.

Note that the exposed operator defines an equivalence relation on IMCG expres-
sions: each equivalence class contains IMCG expressions with the same exposed
labels. For example, EΓJX := a`1 .XK = EΓJX := a`1 .a`2 .XK for any Γ. This
equivalence relation does not have a particular meaning in the dimension of the
whole IMCG, but, as we will see later on, it is a strong bisimilarity relation
when limited only to derivative expressions of a fixed IMCG program.

3.4.3 Generate and kill operators

In this section we will formally define the generate and kill operators. The gen-
erate operator G returns for an IMCG expression or process variable a result
from 2Lab×M. It returns a set of mappings from all the labels occurring in its
input expression to multisets of labels. Each multiset has in its domain those
labels which will become newly exposed after the corresponding label mapped
to them has been executed. For example, the set returned by the G opera-
tor on X := a`1 .a`2 .X contains (`1,⊥M [`2 7→ 1]) as X := a`1 .a`2 .X

a−−−−−−−→
⊥M [`1 7→ 1]

a`2 .X := a`1 .a`2 .X and the exposed operator will return ⊥M [`2 7→ 1] on the
derivative expression a`2 .X := a`1 .a`2 .X.

The rules for the generate operator are presented in Table 3.11. For prefixed
expressions we map labels of prefixes to exposed labels of the residual expres-
sions (rules (1)-(4)). For the rules (1)-(2) we will need to determine exposed
labels of process variables. From the rules for the exposed operator in Table
3.9 we remember that exposed labels of a process variable are determined by
corresponding mappings in an environment. We need therefore to parametrise
the operator G by an environment Γ ∈ 2Var×M, so that this environment can
be “forwarded” to the exposed operator whenever necessary.

The rest of the rules in Table 3.11 are rather straightforward: the union of
the results of the generate operator on subexpressions is taken in case we have
choice, hiding, etc. constructs on the highest syntactic level. If one label occurs
several times in an input expression, the operator G saves several mappings
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GΓJa`.X K = {(`, EΓJX K)} (1)

GΓJλ`.X K = {(`, EΓJX K)} (2)

GΓJa`.PK = {(`, EΓJPK)} ∪ GΓJPK (3)

GΓJλ`.PK = {(`, EΓJPK)} ∪ GΓJPK (4)
GΓJP1 + P2K = GΓJP1K ∪ GΓJP2K (5)

GΓJhide A in PK = GΓJPK (6)
GΓJP1 qAq P2K = GΓJP1K ∪ GΓJP2K (7)
GΓJX := PK = GΓJPK (8)

GΓJX K = ∅ (9)
GΓJ0K = ∅ (10)

Table 3.11 – Definition of the generate operator G : IMCG → 2Lab×M, Γ ∈
2Var×M.

for it in the resulting set (rules (5) and (7) in Table 3.11). This will however
never be the case for a uniquely labelled input expression. The definition of
the generate operator on process variables (rule (9)) has been introduced for
technical convenience and will be used in some of the proofs below.

The kill operator K also returns results from 2Lab×M, similar to the G op-
erator. Multisets of labels mapped to a label have in their domains in this
case those labels that will cease to be exposed after the corresponding la-
bel has been executed. The K operator will return on X := a`1 .0 + b`2 .0 the
set {(`1,⊥M [`1 7→ 1, `2 7→ 1]), (`2,⊥M [`1 7→ 1, `2 7→ 1])} as two transitions are

enabled: X := a`1 .0 + b`2 .0
a−−−−−−−→

⊥M [`1 7→ 1]
0 and, with the other choice option,

X := a`1 .0 + b`2 .0
b−−−−−−−→

⊥M [`2 7→ 1]
0. In both cases we have ⊥M [`1 7→ 1, `2 7→ 1] re-

turned by the exposed operator on the initial expression and ⊥M returned by
the exposed operator on 0.

The definition of the K operator is divided into two parts for technical conve-
nience: the kill operator Kup for the “upper” syntactic level of expressions and
the kill operator Kup for expressions with their upper syntactic level excluded.

The output of the K operator on an IMCG expression is defined in Table 3.12 as
a set union of the outputs of the operators Kup and Kup on the same expression.

The two different kill operators Kup and Kup have been introduced in order to
deal with the choice construct: as we have already seen in the example above,
for the expression X := a`1 .0 + b`2 .0 each executed label will kill all the exposed
labels of the sum. We cannot therefore define the operator K on P1 + P2 in a
purely inductive way. It would be a mistake, for example, to add E∅JP2K to all
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KJPK = KupJPK ∪ KupJPK

Table 3.12 – Definition of the kill operator K : IMCG → 2Lab×M. See the
definitions of the operators Kup and Kup in Tables 3.13 and 3.14.

KupJa`.X K = {(`,⊥M [` 7→ 1])} (1)

KupJλ`.X K = {(`,⊥M [` 7→ 1])} (2)

KupJa`.PK = {(`,⊥M [` 7→ 1])} (3)

KupJλ`.PK = {(`,⊥M [` 7→ 1])} (4)
KupJP1 + P2K =

⋃
(`,M)∈KupJP1K{(`,M + E∅JP2K)}∪⋃
(`,M)∈KupJP2K{(`,M + E∅JP1K)} (5)

KupJhide A in PK = KupJPK (6)
KupJP1 qAq P2K = KupJP1K ∪ KupJP2K (7)
KupJX := PK = KupJPK (8)

KupJX K = ∅ (9)
KupJ0K = ∅ (10)

Table 3.13 – Definition of the operator Kup : IMCG → 2Lab×M returning
“killed” labels on the upper syntactic level.

M such that (`,M) ∈ KJP1K and E∅JP1K(`) ≥ 1: we should take into account the
possibility of several occurrences of the same label ` inside the expression P1, so
that we will not be able to differentiate between their corresponding mappings
in KJP1K. By computing separately KupJP1K and KupJP1K we exclude any confu-
sion. Note that, according to Lemma 3.5, E∅JP2K = EΓJP2K for all environments
Γ. We can therefore use the empty environment in rule (5) for the operator Kup
in Table 3.13 for simplicity.

In rule (5) in Table 3.13 we reflect the fact that exposed labels of two expressions
connected by the choice construct mutually “kill” each other – this is basically
due to the semantic rules for the choice operator (2)-(3) and (11)-(12) in Table
3.5. The rest of the rules for the operator Kup in Table 3.13 are straightforward.
For any prefixed expression the label of the prefix “kills” itself (rules(1)-(4)).
We take a union of two sets returned by Kup on two expressions put in parallel
(rule (7)) because a transition of one of two parallel processes does not influence
the other one. Rule (9) has been added for simplicity in some proofs below,
similarly to the generate operator.

The rules for the operator Kup are presented in Table 3.14. We need to use
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KupJa`.X K = ∅ (1)

KupJλ`.X K = ∅ (2)

KupJa`.PK = KJPK (3)

KupJλ`.PK = KJPK (4)
KupJP1 + P2K = KupJP1K ∪ KupJP2K (5)

KupJhide A in PK = KupJPK (6)
KupJP1 qAq P2K = KupJP1K ∪ KupJP2K (7)
KupJX := PK = KupJPK (8)

KupJX K = ∅ (9)
KupJ0K = ∅ (10)

Table 3.14 – Definition of the operator Kup : IMCG → 2Lab×M returning
“killed” labels with the upper syntactic level excluded.

the operator K for the rules (1)-(4) but this is not a problem because we are
applying the operator K to a strict subexpression. The rest of the rules are
clear. We take a union of two sets returned by Kup on two summands (rule (5))
or two parallel processes (rule (7)) because, unlike for the operator Kup, results
returned by Kup on two summands do not need to be altered.

We can prove now Lemma 3.8 concerning application results of the generate and
kill operators to well-formed expressions before and after a variable substitution
has been performed. This lemma will be useful in order to prove Lemmas 3.10
and 3.11 below concerning the comparison of the output of the generate and
kill operators on an IMCG program and on its derivative expressions. The
substitution is important because it is conducted in the SOS rules (9) and (16)
in Table 3.5 during the recursion unfolding.

Lemma 3.8 (Generate and kill operators under substitution). Given well-
formed IMCG expressions E′ and X := E, Γ ∈ 2Var×M, (X, E∅JEK) a unique
mapping for X in Γ, then GΓJE′{X := E/X}K ⊆ GΓJE′K ∪ GΓJX := EK and
KJE′{X := E/X}K ⊆ KJE′K ∪ KJX := EK hold.

Proof. See Appendix A.
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ΛLabJa`.X K = {(`, a)} (1)
ΛLabJλ`.X K = {(`, λ)} (2)
ΛLabJa`.PK = {(`, a)} ∪ ΛLabJPK (3)
ΛLabJλ`.PK = {(`, λ)} ∪ ΛLabJPK (4)

ΛLabJP1 + P2K = ΛLabJP1K ∪ ΛLabJP2K (5)
ΛLabJhide A in PK = ΛLabJPK (6)
ΛLabJP1 qAq P2K = ΛLabJP1K ∪ ΛLabJP2K (7)

ΛLabJX := PK = ΛLabJPK (8)
ΛLabJX K = ∅ (9)
ΛLabJ0K = ∅ (10)

Table 3.15 – Definition of the ΛLab : IMCG → 2Lab×(Act∪{τ}∪Rate) operator.

3.4.4 Chains operator

In this section we will define the last of the major operators that we need for our
Pathway Analysis of IMCG– the chains operator T. In doing this we will need
one more auxiliary operator – the operator ΛLab which returns for an IMCG

expression a result from 2Lab×(Act∪{τ}∪Rate). This operator collects mappings
from the labels occurring in an IMCG expression to their corresponding action
names or delay rates.

The rules for the operator ΛLab are presented in Table 3.15. These rules are
fairly straightforward – we take a union of all the encountered mappings. In case
we encounter several appearances of the same label with different corresponding
action names or delay rates, we save all of them in the resulting set. This will
however never be the case for uniquely labelled IMCG expressions and their
derivatives. It is easy to see that the correspondence between labels and action
names or delay rates does not change after any number of semantic transitions.

We will need an auxiliary function Nameh (see the definition in Table 3.16)
that has a multiset of labels as its input, makes use of the environments Λ ∈
2Lab×(Act∪{τ}∪Rate) and A ⊆ Act, and returns an action name or delay rate
corresponding to labels in the domain of its input. The correspondence between
labels and action names or relay rates is looked up in the environment Λ. In
case the corresponding action names or delay rates of labels in the domain of
the multiset differ, then “undefined“ (i.e. symbol “?”) is returned. For action
names the internalisation will be taken into account – for internalised action
names the internal action name τ will be returned. The internalised action
names are considered to be those that are not contained in the environment A.
This environment will usually contain free names of some IMCG expression.
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NameΛ(M ) =

{
α if (M 6= ⊥M) ∧ (∀` ∈ dom(M)∀(`, β) ∈ Λ β = α)

? otherwise.

Nameh
Λ,A(M ) =

{
τ if NameΛ(M ) ∈ Act\A
NameΛ(M ) otherwise.

Table 3.16 – Definition of the operators NameΛ : M→ Act ∪ {τ} ∪Rate ∪ {?}
and Nameh

Λ,A : M→ Act ∪ {τ} ∪Rate ∪ {?}, Λ ∈ 2Lab×(Act∪{τ}∪Rate), A ⊆
Act, M ∈M.

We will introduce now the important concept of “chains”. A chain always refers
to an IMCG expression, i.e. it does not have a particular meaning without this
relation. As a starting point we can declare that every multiset of labels that
decorates a transition derivable from the SOS rules for a particular IMCG ex-
pression is contained in the set of chains for that expression. For example,
for X := b`3 .a`1 .X qaq Y := c`4 .a`2 .Y the set of chains will contain the chains
⊥M [`3 7→ 1] and ⊥M [`4 7→ 1], because both of these multisets decorate the tran-
sitions derivable from it. A set of chains also contains multisets of labels that
may become executable later on: the label multiset ⊥M [`1 7→ 1, `2 7→ 1] is also
contained in the set of chains of the above example, even though it will become
executable no earlier than b`3 and c`4 have been executed. In fact we will prove
below in Lemma 3.12 that for well-formed IMCG expressions the set of their
chains contains all the chains of their derivatives.

The chains operator T is defined in Table 3.17. It operates on IMCG expressions
and returns elements from 2M. We parametrise the chains operator with an en-
vironment Λ ∈ 2Lab×(Act∪{τ}∪Rate). We will usually assume that the operator
ΛLab has been run beforehand on the same IMCG expression and its output
has been saved in the environment Λ.

The rules for the operator T are easy to understand besides rule (7) for the
parallel construct. We can directly add to the resulting set of chains all the
chains from both IMCG processes running in parallel that either refer to delay
rates or to action names which are not in the synchronisation set or have been
internalised. Chains with their corresponding action names being internalised
“behave” as τ -chains (see the semantic rule (8) in Table 3.5), so the synchro-
nisation construct cannot influence their execution anymore. We are using the
function Nameh

Λ,A defined in Table 3.16, in order to determine an action name
or a delay rate corresponding to a particular chain.

Additionally chains from two parallel processes that correspond to the same
non-internalised action name from the synchronisation set are combined in all
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TΛJa`.X K = {⊥M [` 7→ 1]} (1)

TΛJλ`.X K = {⊥M [` 7→ 1]} (2)

TΛJa`.PK = {⊥M [` 7→ 1]} ∪ TΛJPK (3)

TΛJλ`.PK = {⊥M [` 7→ 1]} ∪ TΛJPK (4)
TΛJP1 + P2K = TΛJP1K ∪ TΛJP2K (5)

TΛJhide A in PK = TΛJPK (6)
TΛJP1 qAq P2K = {C|C ∈ TΛJP1K, NamehΛ,fn(P1)(C) 6∈ A}∪

{C|C ∈ TΛJP2K, NamehΛ,fn(P2)(C) 6∈ A}∪
{C1 + C2|C1 ∈ TΛJP1K, C2 ∈ TΛJP1K,
NamehΛ,fn(P1)(C1) ∩NamehΛ,fn(P2)(C2) ∩A 6= ∅} (7)

TΛJX := PK = TΛJPK (8)
TΛJX K = ∅ (9)
TΛJ0K = ∅ (10)

Table 3.17 – Definition of the chains operator T : IMCG → 2M, Λ ∈
2Lab×(Act∪{τ}∪Rate).

possible combinations and added to the resulting set of rule (7). Note that from
the construction of chains follows that each chain has a unique corresponding
action name or delay rate, i.e. Nameh

Λ,A on a chain will always return an action
name or delay rate. Also note that chains corresponding to delay rates will have
only one label in their domain (with one occurrence), because delays do not
synchronise in IMCG.

We will prove in Lemma 3.9 that substitutions in IMCG expressions do not
lead to any “new” chains. This lemma is analogue to Lemma 3.8 concerning the
generate and kill operators results after the substitutions in IMCG expressions.

Lemma 3.9 (Chains operator under substitution). Given well-formed IMCG

expressions E and E′, then TΛJE{E′/X}K ⊆ TΛJEK ∪ TΛJE′K holds for all
Λ ∈ 2Lab×(Act∪{τ}∪Rate).

Proof. See Appendix A.
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3.5 Correctness and precision

In this section we will prove several theoretical results about the Pathway Anal-
ysis of IMCG programs. These results will be enough in order to prove that
our version of Pathway Analysis is correct and precise. While performing the
Pathway Analysis we obtain therefore a form of the concise representation of the
semantics of an IMCG program, avoiding any imprecision stemming from the
analysis technique. At the same time, as we will see in Chapters 4 and 5 below,
the results of conducting the Pathway Analysis are often more convenient for
further analysis then the syntax of IMCG.

We will first show the correctness of the Pathway Analysis: we will prove that the
Pathway Analysis results on IMCG programs are in some sense also applicable
to all their derivative expressions. In particular, we will show that the results
returned by the generate and chains operators on derivative expressions are
subsets of the results returned by the same operators on the “initial” IMCG

program on which they have been computed. The situation is more complicated
for the kill operator, as we do not necessary have the subset relation. We will
however prove that the kill operator results on the initial IMCG program and
on its derivative expressions are equivalent when subtracted from the exposed
labels of the derivative expression – and this is the only way we will use them
in the future.

After this we will also prove several results concerning the precision of the
Pathway Analysis on IMCG programs. In particular, we will show how to use
the Pathway Analysis results to predict transitions and we will prove that all
enabled transitions of all IMCG expressions derivable from the initial IMCG

program are predictable in this way. The generate and chains operator results
on the initial expression are precise enough to exactly calculate the exposed
labels of the derivative expressions after any number of steps. Finally, we will
show that there cannot be more than one exposed label of the same kind for any
derivative of an IMCG program. In particular, this means that any transition
derivable for it has a unique multiset of labels decorating it. All these results
will lead us to the algorithm for building a labelled transition system which is
strongly bisimilar to the labelled transition system induced by the semantics of
the initial IMCG program.

3.5.1 Correctness

In the first Lemma 3.10 we will prove that the generate operator’s output on
any derivative expression is included in the output of the same operator on the
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initial IMCG program from which it can be derived after several transitions.
The inclusion relation may be strict, i.e. we may “lose” some behaviour as a
result of the transition. For example, we have GΓJX := a`1 .X + Y := b`2 .Y K =
{(`1,⊥M [`1 7→ 1]), (`2,⊥M [`2 7→ 1])}, but for IMCG expressions derivable from
it after one transition we have either GΓJX := a`1 .XK = {(`1,⊥M [`1 7→ 1])}
or GΓJY := b`2 .Y K = {(`2,⊥M [`2 7→ 1])} while making use of the environment
Γ = ΓVarJX := a`1 .X + Y := b`2 .Y K.

Lemma 3.10 (Generate operator under transitions). Given an IMCG program

F , Γ = ΓVarJF K, F ∗−−→ E and E −−→ E′, then GΓJE′K ⊆ GΓJEK holds.

Proof. See Appendix A.

As already mentioned, the relation of the kill operator results on the initial
IMCG expression and on its derivatives is not necessary a subset relation. We
can however prove the equality after the subtractions:

Lemma 3.11 (Kill operator under transitions). Given an IMCG program F ,

Γ = ΓVarJF K, F
∗−−→ E, (`,M1) ∈ KJEK, ⊥M [` 7→ 1] ≤ EΓJEK, (`,M2) ∈ KJF K,

then EΓJEK−M1 = EΓJEK−M2 holds.

Proof. See Appendix A.

Note that under the conditions in Lemma 3.11 it can actually happen that
KJEK contains two different multisets referring to the same label. In this
case the result of their subtraction from the exposed labels of E will still
be the same. Let us have a look at the following example: it holds that
(`1,⊥M [`1 7→ 1, `2 7→ 1, `3 7→ 1]) ∈ KJY := X := a`1 .X + c`2 .Y + b`3 .0K. On the

other hand, for the derivative IMCG expression we have two different elements
mapped to `1: KJX := a`1 .X + c`2 .Y := X := a`1 .X + c`2 .Y + b`3 .0K contains

both (`1,⊥M [`1 7→ 1, `2 7→ 1, `3 7→ 1]) and (`1,⊥M [`1 7→ 1, `2 7→ 1]).

It holds however that EΓJX := a`1 .X + c`2 .Y := X := a`1 .X + c`2 .Y + b`3 .0K is

equal to ⊥M [`1 7→ 1, `2 7→ 1], therefore two subtraction results are equal. It
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holds that ⊥M [`1 7→ 1, `2 7→ 1] − ⊥M [`1 7→ 1, `2 7→ 1] = ⊥M and it also holds
that ⊥M [`1 7→ 1, `2 7→ 1]−⊥M [`1 7→ 1, `2 7→ 1, `3 7→ 1] = ⊥M, i.e. the result of
the subtraction is the same in accordance with the statement in Lemma 3.11.

We will prove in Lemma 3.12 that there is an inclusion relation between the
results of the chains operator on any derivative expression and on the initial
expression if it is well-formed:

Lemma 3.12 (Chains inclusion). Given a well-formed IMCG expression F ,

F
∗−−→ E, Λ = ΛLabJF K, then TΛJEK ⊆ TΛJF K holds.

Proof. See Appendix A.

Note that some chains may be “lost” after a transition, i.e. the inclusion relation
in Lemma 3.12 can be strict. For example, for the transition X := a`1 .X q
aq a`2 .0

a−−−−−−−−−−−−→
⊥M [`1 7→ 1, `2 7→ 1]

X := a`1 .X qaq 0 it holds TΛJX := a`1 .X qaq a`2 .0K =

{⊥M [`1 7→ 1, `2 7→ 1]} but TΛJX := a`1 .X qaq 0K = ∅, if Λ = ΛLabJX := a`1 .X q
aq a`2 .0K. The set of chains for the derivative expression is empty even though
the process on the left (X := a`1 .X) can still perform the action a, because no
transition is derivable for the terminal process on the right.

3.5.2 Precision

In the following Lemma 3.13 we will prove that every chain of an IMCG program
is also a chain of any of its derivative expression, provided that all the labels
from the chain domain occur in the derivative expression.

Lemma 3.13 (Chains preservation). Given an IMCG program F , F
∗−−→ E,

Λ = ΛLabJF K, C ∈ TΛJF K, dom(C) ⊆ Labs(E), then C ∈ TΛJEK holds.

Proof. See Appendix A.
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From the next Lemma 3.14 follows that we can predict all the enabled transitions
(and only them) based only on exposed labels and on computed chains of an
IMCG expression if it is a derivation from some IMCG program. The action
name or delay rate decorating the transition can be determined based both on
the output of the operator ΛLab on the IMCG expression and (for action names)
on the knowledge about free names of the expression. For internalised action
names the transition is decorated with the τ -action. For delay-transitions the
maximal progress assumption has to be taken into account.

Lemma 3.14 (Transition existence). Given an IMCG program F , F
∗−−→ E,

Λ = ΛLabJEK and Γ = ΓVarJEK, then E
α−−→
C

E′ holds if and only if C ∈ TΛJEK

and C ≤ EΓJEK, and one of the following cases occurs: α = Nameh
Λ,fn(E)(C )

and α ∈ Act ∪ {τ} or α = Nameh
Λ,fn(E)(C ), α ∈ Rate and there is no chain

C ′ ∈ TΛJEK, C ′ ≤ EΓJEK with Nameh
Λ,fn(E)(C ′) = τ .

Proof. See Appendix A.

In the next Lemma 3.15 we will prove that multisets of exposed labels of IMCG

programs and all their derivatives belong in fact to a special type of multisets,
with each label mapped either to zero or one. This is not astonishing taking
into account the results on the precision of the Pathway Analysis that we have
already proved. This result will make it easier to discuss the precision of the
Pathway Analysis as we do not need to take into account the possibility of
several exposed occurrences of the same label.

Lemma 3.15 (Unique exposed labels). Given an IMCG program F , F
∗−−→ E

and Γ = ΓVarJF K, then either EΓJEK(`) = 0 or EΓJEK(`) = 1 holds for all ` ∈
Lab. Given two transitions E −−→

C1

E′ and E −−→
C2

E′′ with different derivation

trees, then C1 6= C2 holds.

Proof. See Appendix A.

The next Theorem 3.16 is important because it proves that our analysis is
exact in relation to exposed labels of an IMCG expression derivable after one
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semantic transition from another IMCG expression the exposed labels of which
are already known. We will show below in the proof of Theorem 3.17 that this
result is extendable to any number of semantic transitions due to the lemmas
proved above.

Theorem 3.16 (Pathway Analysis is precise). Given an IMCG program F ,

F
∗−−→ E and E

α−−→
C

E′, then EΓJEK −
∑
`∈dom(C){M |(`,M) ∈ KupJEK} +∑

`∈dom(C){M |(`,M) ∈ GΓJEK} = EΓJE′K.

Proof. See Appendix A.

3.6 Worklist Algorithm

In the last section of this chapter we will put all the results that have been proved
until now together. We show how to use the results of the Pathway Analysis in
order to build a labelled transition system where all the states and transitions
have their corresponding states and transitions in the labelled transition system
induced by the semantic of the IMCG program that has been analysed and the
other way around. This clearly proves that our Pathway Analysis is correct and
precise.

In the previous work on Data Flow / Pathway Analysis (see [NN07], [Pil07],
[NNN07]) the definitions of the operators on the syntax of a particular process
calculus have been followed by devising a so-called Worklist Algorithm. The
purpose of the latter was to build a labelled transition system that could simulate
the labelled transition system induced by the semantics of a process calculus
expression for which the Data Flow / Pathway Analysis has been conducted.
We will now present the schematic Worklist Algorithm that will complete our
analysis. It is quite similar to the Worklist Algorithms from the previous works
but it does not make use of a granularity function (the semantic models of
IMCG are always finite, therefore it is not necessary) and makes use of several
auxiliary operators.

The Worklist Algorithm accepts as input an IMCG program F and returns as
output a labelled transition system with states denoted by multisets of exposed
labels. It is schematically described in Table 3.18. The idea is to start with
applying the Pathway Analysis operators to F . The auxiliary operators ΓVar,
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1. Compute Γ := ΓVarJF K and Λ := ΛLabJF K.

2. Compute fn(F ).

3. Compute EΓJF K: this label multiset will characterise the first
state of the labelled transition system to be constructed. Add the
first state to the worklist: worklist := {EΓJF K}. Assign it to the
current state M of the Worklist Algorithm: M := EΓJF K.

4. Compute GΓJF K, KJF K and TΛJF K, i.e. the generate, kill and
chains operators on F .

5. For each C ∈ TΛJF K, such that Nameh
Λ,fn(F)(C ) ∈ Act ∪ {τ},

check whether C ≤ M . If yes, create a new state (if not al-
ready existent) M ′ := M −

∑
`∈dom(C){M1|(`,M1) ∈ KJF K} +∑

`∈dom(C){M2|(`,M2) ∈ GΓJF K} and add it to worklist. Create

a transition from the state M to the state M ′: the transition is
decorated by the action name α = Nameh

Λ,fn(F)(C ) and by the
label multiset C.

6. If no transitions decorated with τ have been created in p.5,
repeat p.5 for each C ∈ TΛJF K such that Nameh

Λ,fn(F)(C ) ∈ Rate.

7. Check whether worklist is empty. If yes, we are done. If no,
choose an arbitrary state out of the worklist, assign it to M and
proceed with p.5.

Table 3.18 – The Worklist Algorithm which builds a labelled transition system
given an IMCG program F .

ΛLab and fn are applied to F first (can be applied in any order). Consequently
the exposed, generate, kill and chain operators are computed (their order is in
fact not important as well). Then, starting with the multiset of exposed labels
of F , all the possible label multisets reachable from the exposed multiset of F
in the sense of Theorem 3.16 are created. Note that the maximal progress is
taken into account in rule (6): rate-transitions are created only from the states
that do not have any outgoing τ -transitions.

We will prove in Theorem 3.17 that the Worklist Algorithm constructs a labelled
transition system where there is a clear correspondence between the states added
by the Worklist Algorithm and the expressions derivable from F . We say that a
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state M corresponds to E such that F
∗−−→ E if M = EΓJEK with Γ = ΓVarJF K.

Moreover, no states are added by the Worklist Algorithm for which there is no
corresponding derivative of F . The transitions between pairs of states created
by the Worklist Algorithm correspond to the transitions in the semantics of F
as well. There is also a termination guarantee for the algorithm.

Theorem 3.17 (Worklist algorithm). Given an IMCG program F , then the
Worklist Algorithm terminates on F . The Worklist Algorithm creates a state
M if and only if there exists an IMCG expression E such that F

∗−−→ E and

M = EΓJEK with Γ = ΓVarJF K. Moreover, from F
∗−−→ E1, F

∗−−→ E2, M1 =

EΓJE1K and M2 = EΓJE2K follows that E1
α−−→
C

E2 if and only if the Worklist

Algorithm creates the transition M1
α−−→
C

M2.

Proof. See Appendix A.

In Chapter 4 we will introduce a notion of strong bisimilarity on IMCG systems.
With this knowledge we will be able to show that the Worklist Algorithm con-
structs a labelled transition system which is strongly bisimilar to the labelled
transition system induced by the semantics of F .



Chapter 4

Bisimulation relations and
Pathway Analysis

4.1 Bisimulations and logical equivalences

In this chapter we will discuss a special class of binary relations which can be
established on the states of labelled transition systems, namely, bisimulation
relations. These relations are equivalence relations (reflexive, symmetric and
transitive) of a special kind: states that are in a bisimulation relation with each
other (called “bisimilar” states) “behave” in a similar way. The bisimulation
equivalence is not the same as the trace equivalence and is in general finer
than the latter (see, for example, [BK08] for a comparison), as it is the possible
behaviour of states that is compared and not only the behavioural traces without
reference to the states that were passed through while producing the trace.

The understanding of what a similar behaviour means can be very different,
also the labelled transition systems can be of different types, therefore there
exist lots of types of bisimulation relations. For example, for labelled transition
systems with labelling of transitions by external action names it is usual to apply
a notion of a so-called strong bisimulation. In a strong bisimulation two states
are bisimilar when each transition from one of the states has a corresponding
transition from the other one of the states – for transitions to be corresponding
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means that both transitions have the same labelling and go to states that are
again bisimilar. This is a notion of bisimulation that has been introduced by
Park [Par81] and Milner [Mil89].

Many other types of bisimulation have been introduced later on – weak bisimula-
tion [Mil90], probabilistic bisimulation [LS89], Markovian bisimulation [HR94]
etc. There have also been defined bisimulations based on state labellings (in
contrast to transition labellings) but these two kinds of bisimulations are mu-
tually convertible if the labelling is qualitative (e.g. by action names) [BK08].
Such conversion is however not possible for transitions decorated by quantita-
tive labels (for example, by rates), as in order to calculate the probabilities of
the transitions we should know all transition rates to other states and not only
the cumulative exit rate of a state.

It is usual to look for the coarsest bisimulation relations, i.e. the coarsest re-
lations that satisfy the definition of the particular bisimulation. The coarsest
bisimulation relations are usually called bisimilarities. Bisimulations and bisim-
ilarities are often directly linked to logics: for many bisimulation/bisimilarity
relations there has been constructed a corresponding logic that in some sense
captures the “meaning” of the bisimulation relation. The logic is sound or both
sound and complete for a particular bisimulation relation.

We understand soundness in such a way that formulas in the logic either hold
or do not hold on all bisimilar states. By completeness we mean that for each
pair of non-bisimilar states there exists a formula in a particular logic with holds
on one of the states and does not hold on the other one, i.e. there is a formula
in the logic that can discriminate non-bisimilar states. For example, on finite
labelled transition systems without terminal states, both CTL and CTL* fully
characterise strong bisimilarity [BK08], i.e. they are sound and complete for
strong bisimilarity. The same result can be established for infinite transition
systems with finite branching but not for infinite transition systems in general
were there can exist non-bisimilar states which are equivalent according to all
CTL formulas [BK08].

Bisimulation relations on states can be naturally extended to relations on tran-
sition systems: for a fixed bisimulation relation on states we consider two tran-
sition systems to be in a bisimulation relation if every initial state of each of the
systems has a corresponding bisimilar initial state in the other system. On the
other hand, for those bisimulation relations that are equivalences it is possible
to build bisimulation quotients of transition systems: in a bisimulation quotient
each equivalence class is represented by only one state, which can lead to a con-
siderable state space reduction. Equivalent states are thus merged or in a sense
“compressed” together thus obtaining a smaller system for further analysis. A
bisimulation quotient is clearly smaller for coarser bisimulations. The smallest
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bisimulation quotient is computed based on the coarsest bisimulation, i.e. on
the bisimilarity.

There are standard methods for computing bisimulation relations which usually
are aiming at computing the coarsest bisimulations. The idea is to start with all
states with the same labelling considered as potentially bisimilar and refining
equivalence classes until no refinement is possible. The exact way how a parti-
tion should be chosen for the refinement in the next step can be different and
therefore leaves space for improvements [BK08].

Building bisimulation quotients is a preferred way of dealing with state space
explosion [BK08] and often yields a considerable performance gain. In case the
bisimulation relation based on which the states are merged is not the coarsest
one, then model-checking of a corresponding logic on a smaller system is still
sound [BK08] even though some states may be indistinguishable in the logic.
This is an application that we envision for our approach as we will be construct-
ing bisimulations (see Sections 4.3 and 4.4) and not bisimilarities in general.

It is very useful if a bisimulation relation is also a congruence relation for the
main composition operators of process calculi (for example, synchronisation,
choice or internalisation operators). Then bisimilarity-minimisation can be car-
ried out before the application of, for example, synchronisation, rather then after
it, and can be applied many times after the application of each compositional
operator, which leads for many systems to a considerable decrease in the com-
plexity of computing the bisimulation quotient [ASSB94]. A similar method can
be used for abstractions, where abstractions are applied many times on system
subcomponents rather than once on a whole system [KKN09].

Hermanns has proposed an algorithm for computing the strong bisimilarity on
IMC systems in [Her02]. His algorithm is based on combining the standard
algorithms for computing the strong bisimilarity on labelled transition systems
(see, for example, [KS83]) and the Markovian bisimilarity on CTMCs [Her93].
We will show how his algorithm can be transferred into our setting before going
on with our own algorithms for computing bisimulations based on the results of
the Pathway Analysis of IMCG.

There have been proposed improvements of the algorithm from [Her02] for sys-
tems that do not have cycles [CHZ08]. Those can be, for example, systems that
model dynamic fault trees [BCS07]. In acyclic labelled transition systems it is
possible to construct the bisimilarity relation by visiting each state only once,
starting with absorbing states, this is why the complexity of construction is only
O(m), where m is a number of transitions [CHZ08]. However, as we are mainly
interested in studying systems with a repetitive behaviour, we will not discuss
the algorithms for acyclic IMCs further on.
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We have discussed in Section 2.1.3 that those IMC expressions that do not have
interactive cycles in their semantics can be transformed into CTMDPs [Joh07].
Algorithms for computing bisimulation relations on CTMDPs are therefore rel-
evant also for IMC systems. In [BHH+09] an algorithm for computing bisimu-
lations on CTMDPs (which can be considered as a subclass of IMCs) has been
proposed which uses optimisation techniques based on BDDs. BDDs are used
both for assigning states to partition blocks and for computing “signatures” of
the states: signatures denote whether there is a transition decorated by the
fixed action to any of the states of the transition block. Moreover a so-called
“backward signature” is computed for each block in a current state partition in
order to know which blocks might be influenced if the current partition would
be split – this allows to devise a splitting algorithm which is more efficient in
the general case than the usual one. The worst-case complexity is however the
same as for the algorithm without BDDs.

Our own approach differs in several ways from the usual methods for computing
bisimulations. On the one hand, we are not computing the coarsest bisimulations
(i.e. bisimilarities) but rather bisimulations that are easy enough to compute –
our aim is that the complexity of computations is polynomial in the length of
the syntactic description of an IMCG system and not on the number of states in
the labelled transition system representing the semantics of the IMCG system.
We are achieving this by analysing labels (i.e. the generate and kill operator on
them and chains containing them) for being bisimilar and using the results of
this analysis for concluding (with an easy enough procedure) that two multisets
are or are not bisimilar.

In the rest of the chapter we will first present a definition of a strong bisimula-
tion on IMC systems (Section 4.2.1), its adaptation to label multisets (Section
4.2.2) and a standard algorithm for computing bisimulations adopted to the
label multiset setting (Section 4.2.4). After this we will present two equiva-
lence relations on multisets – a so-called chain-bisimulation (Section 4.3) and a
synchronisation-bisimulation (Section 4.4) – of which the first one is easier to
compute than the second one. On the other hand, chain-bisimulation is con-
tained in synchronisation-bisimulation. We prove that both relations are indeed
bisimulations and that there is an inclusion relation between them.

Note that if we can derive that two multisets are contained either in a chain- or
synchronisation-bisimulation, then they are in fact contained in a bisimulation
in the usual sense. However, if two multisets are not contained in the coarsest
either chain- or synchronisation-bisimulation, then it does not necessarily mean
that they are not contained in the coarsest bisimulation (i.e. bisimilarity) in the
usual sense – it can namely be the case that our procedure is not strong enough
to identify them as bisimilar.
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We do not currently analyse systems with rates. The reason is that states
with enabled delay transitions cannot be merged in the same way as states
with only instantaneous action transition enabled. Two different enabled action
transitions do not influence each other, while the probabilities and expected
durations of delay transitions depend on all the delay transitions enabled in a
particular state (see Section 2.1.2). We could however first compute the coarsest
chain- or synchronisation-bisimulation for a system with rates, not taking labels
corresponding to rates into account during the computation, and then do some
additional splitting based on transition rates between equivalence classes as in
the usual algorithm for computing the coarsest bisimulation relations on IMC
(see Table 4.5).

4.2 Bisimilar IMC systems

In this section we will introduce a definition of strong bisimulations on IMC
systems. After this we will explain how this definition can be “transferred” in
a straightforward way to label multisets that can be constructed based on the
Pathway Analysis results of IMCG systems and represent states reachable in
the Structural Operational Semantics of IMCG.

4.2.1 Definition and properties of strong bisimulations

The usual definition of a strong bisimulation on processes, which can also be
regarded as states of a Labelled Transition System, is that it is a binary relation
such that states matched by it can both do a transition decorated by the same
action name and move after that transitions into states which are again matched
by the strong bisimulation relation [Mil89]:

Definition 4.1. A binary relation R on a set of states/processes that can only
execute instantaneous actions is a strong bisimulation if for all (E1, E2) ∈ R
holds:

1. if E1
a−−→ E′1 for some action a then there exists E′2 ∈ IMCG such that

E2
a−−→ E′2 and (E′1, E

′
2) ∈ R;

2. if E2
a−−→ E′2 for some action a then there exists E′1 ∈ IMCG such that

E1
a−−→ E′1 and (E′1, E

′
2) ∈ R;
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Note that strong bisimulation defined in this way is an equivalence relation. It is
obviously reflexive, it is symmetric (follows from the two conditions in Definition
4.1), and it is easy to show that it is transitive.

This notion of bisimulation is however not directly applicable to IMC/IMCG

systems for several reasons. On the one hand, we need to take into account de-
lay transitions in some way because, for example, X := a`1 .X and X := a`2 .X+
λ`3 .0 obviously should not be considered bisimilar. On the other hand, if
we treat action- and delay-transitions in the same way, then we might be
too restrictive. For example, we would not be able to equate the processes
λ`11 .a

`2 .0 + λ`32 .a
`4 .0 and λ`53 .a

`6 .0 in case λ3 = λ1 + λ2, while they have in fact
the same behaviour according to the rules of exponential distribution. Therefore
for delay transitions we cannot just compare transition labels, but rather need
to compute joint or cumulative transition rates. At last, cumulative transition
rates are only important if no internal transitions are possible, i.e. there are no
enabled τ -transition. Thus, λ`11 .a

`2 .0 + λ`32 .a
`4 .0 + τ `5 .0 and λ`63 .a

`7 .0 + τ `1 .0
are bisimilar even if λ3 6= λ1 + λ2.

There is one more aspect that is not necessarily required for non-stochastic sys-
tems but is required for systems involving probability and time – we require,
namely, that any bisimulation relation is an equivalence relation for such sys-
tems. This is due to the necessity to compute rates, probabilities, time to pass,
etc. into sets of states, which are all pairwise contained in the bisimulation rela-
tion. If it is not possible to subdivide states into equivalence classes in case the
bisimulation relation is not an equivalence relation, because it is not clear how to
compute cumulative probabilities, rates, etc. into sets of bisimilar states in this
case. Therefore, for example, probabilistic bisimulations have been introduced
from the beginning as equivalence relations [LS89].

All these aspects have been taken into account by the definition of strong bisim-
ulations on IMC systems by Hermanns in [Her02]. We directly adopt his def-
inition for IMCG systems in Definition 4.4. We will usually assume that all
states in a strong bisimulation relation from Definition 4.4 are derivatives of
some IMCG program. The mentioned above cumulative transition rates are
introduced in Definition 4.3. There are however some technical differences with
the definition in [Her02] which make our definition even a bit simpler.

First, in most cases we just ignore the labelling of the transitions by chains as
these are not relevant for the comparison of the behaviour of states – a chain
that has been executed is not visible and does not influence either transition
duration or the interaction with the environment. On the other hand, chains
decorating transitions from some derivative expression of an IMCG program are
unique for each transition derivation (see Lemma 4.2) due to the uniqueness of
exposed labels. Therefore we do not need to have a multiset of delay transitions
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as it is necessary for IMC, but rather just a set of delays transition as we shall
illustrate below.

Take the following example as an illustration. There are two different, i.e. involv-
ing different chains, transitions from the IMCG process X := λ`1 .X + λ`2 .X:

X := λ`1 .X + λ`2 .X
λ−−−−−−−→

⊥M [`1 7→ 1]
X := λ`1 .X + λ`2 .X

and

X := λ`1 .X + λ`2 .X
λ−−−−−−−→

⊥M [`2 7→ 1]
X := λ`1 .X + λ`2 .X,

but there is only one transition

X := λ.X + λ.X
λ−−→ X := λ.X + λ.X

in IMC. In IMCG we can distinguish between two delay transition based on
the involved chains, while in IMC we need to have a multiset of transitions
remembering that the transition from X := λ.X + λ.X to itself can be derived
in two different ways from its syntax.

Lemma 4.2 (Transition derivation). Given an IMCG program F , F
∗−−→ E,

then there exists only one transition derivation for each transition E
α−−→
C

E′.

Proof. The proof is by induction on the path length F
∗−−→ E. For each number

of steps the proof is by structural induction on E – in this way we are also proving
the statement for all subexpressions of E.

We will define in Definition 4.3 a so-called cumulative rate: it is in fact a delay
transition rate between a state and a set of states. It is necessary for the
definition of a strong bisimulation on IMCG below.

Definition 4.3. A cumulative rate between E ∈ IMCG and a set S ∈ 2IMCG

is
denoted γ(E,S) and is equal to

∑
E

λ−−→
C

E′ st E′∈S
λ. An outgoing rate of E is a

cumulative rate between E and all IMCG expressions derivable from E in one
step. It is denoted Rate(E) and is equal to

∑
E

λ−−→
C

E′
λ.
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We are now ready to give a formal definition of a strong bisimulation relation
on IMCG processes: it is an equivalence relation such that processes in this
relation have the same enabled actions and the same cumulative rates (in case
there are no enabled internal transitions) into the equivalence classes.

Definition 4.4. An equivalence relation R ⊆ IMCG×IMCG is a strong bisim-
ulation relation if for all (E1, E2) ∈ R holds:

1. if E1
a−−→
C1

E′1 for some a ∈ Act ∪ {τ} and C1 ∈ M then there exist

E′2 ∈ IMCG and C2 ∈M such that E2
a−−→
C2

E′2 and (E′1, E
′
2) ∈ R;

2. if E1
τ9 then γ(E1, S) = γ(E2, S) for all S ∈ IMCG/R.

Note that from E1
τ9 and (E1, E2) ∈ R for some strong bisimulation relation

R follows E2
τ9, as R is defined to be an equivalence relation. Therefore either

both equivalent in the sense of strong bisimulation IMCG processes have at least
one τ -transition and their outgoing delay-transitions are not taken into account,
or none of them has an outgoing τ -transition and their cumulative rates to sets
of states constituting an equivalence class of R are equal for all equivalence
classes.

The following two definitions are standard and have their direct correspondence
in the definitions for IMC in [Her02]:

Definition 4.5. Two IMCG processes E1 and E2 are strongly bisimilar, denoted
E1 ∼ E2, if they are contained in some strong bisimulation.

Definition 4.6. The coarsest strong bisimulation relation on IMCG × IMCG

is called the strong bisimilarity.

The next two lemmas are standard results for strong bisimilarities. The proofs
are easy adaptations from the proofs in [Her02].

Lemma 4.7. The strong bisimilarity on IMCG is:

1. an equivalence relation on IMCG;
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2. a strong bisimulation on IMCG;

3. the coarsest strong bisimulation on IMCG.

Lemma 4.8. The strong bisimilarity on IMCG is substitutive with respect to
parallel composition and hiding operators, i.e. from E1 ∼ E2 and E′1 ∼ E′2
follows E1 qA q E′1 ∼ E2 qA q E′2 and hide A in E1 ∼ hide A in E2 for all
A ⊆ Act.

4.2.2 Definition of bisimulation relations on M

In this section we will adopt the definition of a strong bisimulation on IMCG

to label multisets from M: corresponding relations on M will be called simply
“bisimulations”. We will introduce a notation which will be used in the rest
of the chapter and prove the link between strong bisimulations on IMCG and
bisimulations on M.

In the discussion below we will assume that we have already conducted the
Pathway Analysis of some IMCG program F . We will group the results of the
Pathway Analysis and several additional functions that are using these results
into a tuple and assign it to the function F as in Definition 4.9. In the definitions
and proofs below we will often refer to the functions from the tuple F where
the last has been computed for some fixed IMCG program F . This will simplify
the notation a lot as we will not need to index the functions G, K, etc. from
Table 4.1 with their corresponding F , and we will not need to denote each time
in which way they have been computed.

Note that normally all labels and chains to which the operators Name, Namech

etc. from Table 4.1 will be applied will be labels or will contain only labels from
the syntactic description of F , therefore the information on their corresponding
action names or rates will be available through the operator ΛLab. Also all mul-
tisets to which the operators Namech and Nameh

ch will be applied will be chains
from T, therefore all their constituting labels will have the same corresponding
action name or rate and it will be enough to check only one of the labels for its
action name or rate.

Definition 4.9. Given an IMCG program F , then we define a tuple

F = (G ,K ,Gch ,Kch ,T,Name,Nameh ,Namech ,Nameh
ch ,MF , IMCG

F , parents)

using the definitions from Table 4.1.
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Γ = ΓVarJF K
Λ = ΛLabJF K
G = GΓJF K
K = KJF K

Gch(C) =
∑
`∈dom(C)G(`)

Kch(C) =
∑
`∈dom(C)K(`)

T = TΛJF K

Name(`) =

{
α if ∃α st ((`, α) ∈ Λ) ∧ (@β st ((`, β) ∈ Λ) ∧ (α 6= β))

? otherwise.

Nameh(`) =

{
τ if Name(`) ∈ Act\fn(F )

Name(`) otherwise.

Namech(C) =

{
α if (|C| > 0) ∧ (∀` ∈ dom(C) Name(`) = α)

? otherwise.

Nameh
ch(C) =

{
τ if Namech(C) ∈ Act\fn(F )

Namech(C) otherwise.

MF = {M ∈M|∃E ∈ IMCG st (F
∗−−→ E) ∧ (M = EΓJEK)}

IMCG
F = {E ∈ IMCG|F ∗−−→ E}

parents(`) = {`′ ∈ Labs(F )|` ∈ dom(G(`′))}

Table 4.1 – Definition of a number of operators on an IMCG program F , ` ∈ Lab,
C ∈M.

Assume therefore that an initial IMCG program F is fixed, we have performed
the Pathway Analysis of F and saved the computed operators in the function
F as in Definition 4.9. Then we can formulate a rather self-evident definition of
a bisimulation relation on M – see Definition 4.11. The multisets from M that
we are interested in are clearly only those that are equal to exposed multisets
of IMCG expressions derivable from F . However we often do not know which
expressions are derivable from F , so we accept bisimulation relations involving
also unreachable states. It is clear that we can in any case exclude elements of
M that contain labels not occurring in F .

Analogously to the definitions of a cumulative rate, strong bisimulation and
bisimilarity for IMCG processes in Section 4.2, we introduce the definitions of
a cumulative rate, bisimulation and bisimilarity relations on the elements of M.

Definition 4.10. Given an IMCG program F and F as in Definition 4.9, then
a cumulative rate between M ∈M and a set S ∈ 2M is denoted γM(M,S) and
is equal to
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∑
{C |(C∈T)∧(C≤M )∧(Namech(C )∈Rate)∧(M−Kch(C )+Gch(C )∈S)}Namech(C ).

An outgoing rate of M is a cumulative rate between M and all multisets deriv-
able from it in one step. It is denoted RateM(M ) and is equal to∑

{C |(C∈T)∧(C≤M )∧(Namech(C )∈Rate)}Namech(C ).

Definition 4.11. Given an IMCG program F and F as in Definition 4.9, then
a bisimulation relation on M is an equivalence relation R ⊆M×M such that
for all (M1,M2) ∈ R holds:

1. for all C1 ∈ T and M1 ∈ M such that C1 ≤ M1 and M ′1 = M1 −
Kch(C1) + Gch(C1) there exists C2 ∈ T and M2 ∈ M such that C2 ≤
M2, Nameh

ch(C1) = Nameh
ch(C2), M ′2 = M2 − Kch(C2) + Gch(C2) and

(M ′1,M
′
2) ∈ R;

2. if @C ∈ T such that C ≤ M1 and Nameh
ch(C ) = τ then γM(M1, S) =

γM(M2, S) for all equivalence classes S ∈M/R.

Definition 4.12. Given an IMCG program F and F as in Definition 4.9, then
two elements M1 ∈ M and M2 ∈ M are bisimilar, denoted M1 ∼ M2, if they
are contained in some bisimulation.

Definition 4.13. Given an IMCG program F and F as in Definition 4.9, then
the coarsest bisimulation relation on M×M is called bisimilarity on M.

Bisimulations and bisimilarities in Definitions 4.12 and 4.13 are defined on the
whole M as it is often the case that we do not know which multisets from M are
reachable from the exposed labels of F . Also note that there are not only many
different bisimulations but also many different bisimilarities on M – namely,
depending on F for which the Pathway Analysis has been performed.

We prove in Lemma 4.14 below that there is a direct correspondence between
strong bisimulations/the bisimilarity on IMCG on the one hand and strong
bisimulations/bisimilarities on M on the other hand. Note that we are con-
straining strong bisimulations on IMCG and bisimulations on M only to states
reachable accordingly from an IMCG program F or from its exposed labels.
This is because we can only talk about bisimulations on M in the context of
some initial IMCG program.
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Lemma 4.14 (Bisimulation on M and strong bisimulation). Given an IMCG

program F and F as in Definition 4.9, then the following statements hold:

1. if R ∈MF ×MF is a bisimulation relation on M then the induced relation
R′ ∈ IMCG

F × IMCG
F defined as R′ = {(E1, E2)|(EΓJE1K, EΓJE2K) ∈ R} is

a strong bisimulation relation on IMCG;

2. if a relation R ∈ IMCG
F×IMCG

F is a strong bisimulation relation on IMCG

then the induced relation R′ ∈MF×MF defined as R′ = {(EΓJE1K, EΓJE2K)|
(E1, E2) ∈ R} is a bisimulation relation on M;

3. if a relation R ∈MF ×MF is the bisimilarity relation on M constrained
to MF then the induced relation R′ ∈ IMCG

F × IMCG
F defined as R′ =

{(E1, E2)|(EΓJE1K, EΓJE2K) ∈ R} is the strong bisimilarity relation on
IMCG constrained to IMCG

F ;

4. if a relation R ∈ IMCG
F × IMCG

F is the strong bisimilarity relation on
IMCG constrained to IMCG

F then the induced relation R′ ∈MF ×MF de-
fined as R′ = {(EΓJE1K, EΓJE2K)|(E1, E2) ∈ R} is the bisimilarity relation
on M constrained to MF .

Proof. The proof is based on the fact that for all E1 ∈ IMCG
F all derivations

of transitions from E1 have one-to-one correspondence with the enabled chains
among the exposed labels of E1. I.e. for each E1 −−→

C1

E2, E1 −−→
C2

E′2 such

that E2 6= E′2 holds C1 6= C2. Let us prove this statement by proving an
equivalent statement: for all transitions E −−→

C
E′, E1 −−→

C
E′′ such that E is

an IMCG expression and the exposed labels of E are pairwise different, it holds
that E′ = E′′.

We prove this by induction on the transition derivation based on the SOS rules
for IMCG in Table 3.5. The base cases are rules (1) and (10) in Table 3.5 and
the statement clearly holds for them because there is only one possible enabled
chain and one derivation. For the rest of the rules the statement follows from
the induction hypothesis and from the uniqueness of exposed labels besides may
be the rules (9) and (16). It is however the case that we can apply the induc-
tion hypothesis for E{X := E/X} instead of X := E (because the transition
derivation for E{X := E/X} is smaller) as exposed labels for E{X := E/X}
are pairwise different according to Lemma 3.6, therefore the induction hypothe-
sis is applicable. As a whole we can deduce that for E{X := E/X} −−→

C
E′ and

E{X := E/X} −−→
C

E′′ holds E′ = E′′, therefore also for X := E −−→
C

E′ and

X := E −−→
C

E′′ holds E′ = E′′.
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Figure 4.1 – Graphical illustration for the proof of Lemma 4.14: a bisimilarity
on MF is the strong bisimilarity on IMCG

F because the presented situation is
impossible.

It can also be easily proved that for all transitions E1 −−→
C1

E2 and E1 −−→
C2

E2 with the same transition derivation holds C1 = C2. Now, returning to
proving the statements of the lemma, this establishes that we have a one-to-one
correspondence between the transitions in IMCG

F and the transitions in MF ,
therefore any bisimulation on IMCG

F is a bisimulation on MF and the other
way round.

The coarsest bisimulation (i.e. bisimilarity)R on MF corresponds to the coarsest
strong bisimulation (i.e. strong bisimilarity) R′ on IMCG

F because it is a bisim-
ulation according to the reasoning above, and if there would exist a coarser
bisimulation R′′ ⊃ R′ on IMCG

F , then R′′ would have to correspond to R.
Schematically the situation is presented in Figure 4.1. This situation is how-
ever impossible as for any (E,E′) ∈ R′′ for which (EΓJEK, EΓJE′K) ∈ R holds
(E,E′) ∈ R′ as well.

On the other hand, the strong bisimilarity on IMCG
F corresponds to the bisim-

ilarity on MF because the situation presented in Figure 4.2 is also impossi-
ble. For any (M1,M2) ∈ R′′ such that all (E1, E2) ∈ R if EΓJE1K = M1 and
EΓJE2K = M2 it obviously holds (M1,M2) ∈ R′.

Note that in the proof of Lemma 4.14 we do not necessarily have a one-to-one
correspondence between the elements in MF and the elements in IMCG

F : the
correspondence can be between the elements in MF and the sets of elements
from IMCG

F . For example, two IMCG expressions

Y := X := a`1 .X + b`2 .Y

and the expression derived from it after one transition
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Figure 4.2 – Graphical illustration for the proof of Lemma 4.14: the strong
bisimilarity on IMCG

F is a bisimilarity on MF because the presented situation is
impossible.

X := a`1 .X + b`2 .Y := X := a`1 .X + b`2 .Y

have the same exposed labels, but are syntactically different. They both cor-
respond however to the multiset of exposed labels ⊥M [`1 7→ 1, `2 7→ 1]. There
is still a strict one-to-one correspondence between the elements in MF and the
sets of elements in IMCG

F and therefore Lemma 4.14 holds. Basically we are
just simplifying things with mapping several IMCG expressions with essentially
the same semantics that differ syntactically only due to the different number of
process definitions in their syntax to one multiset of exposed labels.

4.2.3 Non-additivity of bisimilarity on M

Let us look more attentively on the properties of bisimulation relations on mul-
tisets. First of all we will find out that if two multisets are pairwise bisimilar to
some other two multisets then it does not necessarily mean that their sums are
also bisimilar:

M1 ∼M ′1
M2 ∼M ′2

}
6⇒M1 +M2 ∼M ′1 +M ′2

A counterexample is F = a`1 .0 qaq a`2 .0 + a`3 .0 qaq a`4 .0 qaq a`5 .0, with M1 =
⊥M [`1 7→ 1], M2 = ⊥M [`2 7→ 1], M ′1 = ⊥M [`3 7→ 1] and M ′2 = ⊥M [`4 7→ 1].
Obviously M1 ∼ M ′1 and M2 ∼ M ′2 hold because there are no enabled chains
in any of the multisets. However M1 + M2 6∼ M ′1 + M ′2 because M1 + M2 =
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⊥M [`1 7→ 1, `2 7→ 1] and there is an enabled chain in M1 +M2 while M ′1 +M ′2 =
⊥M [`3 7→ 1, `4 7→ 1] and there is no enabled chain in M ′1 +M ′2.

We can easily find a counterexample with minus instead of plus for which a
bisimulation relation on M is also not compositional. It is therefore no surprise
that the effect of the execution of bisimilar chains on bisimilar multisets does
not necessarily result in bisimilar multisets:

M1 ∼M2

Kch(C1) ∼ Kch(C2)

Gch(C1) ∼ Gch(C2)

 6⇒M1 −Kch(C1) +Gch(C1) ∼M2 −Kch(C2) +Gch(C2)

We can use the following counterexample: (c`1 .X := a`2 .X) qaq Y := b`3 .Y +
(c`4 .Z := a`5 .Z) q ∅ q W := b`6 .W , M1 = ⊥M [`1 7→ 1, `3 7→ 1, `4 7→ 1, `6 7→ 1],
M2 = M1, C1 = ⊥M [`1 7→ 1], C2 = ⊥M [`4 7→ 1]. It is easy to see that
Kch(C1) ∼ Kch(C2) and Gch(C1) ∼ Gch(C2): compare, for example, Gch(C1) =
⊥M [`2 7→ 1] and Gch(C2) = ⊥M [`5 7→ 1]. The execution of C1 will lead to the
IMCG process X := a`2 .X qaq Y := b`3 .Y while the execution of C2 will lead to
the IMCG process Z := a`5 .Z q∅q W := b`6 .W – it is clear that these two pro-
cesses are not bisimilar as the first cannot execute the action a and the second
can.

Note that the counterexamples that we have presented do not even involve rates
but are rather based on blocking some labels by the environment in one case
and not blocking the labels in the other case. Some kind of information is
needed therefore about the chains in which labels that constitute multisets in
question do not participate currently but might participate in the future. Also
the information about the chains in which labels that can be generated in the
future can participate should be preserved. We will go into more details of this
discussion while presenting below two bisimulation relations defined by us which
use the information on chains.

The discussion above has illustrated why we cannot use the following seem-
ingly efficient strategy for determining if two multisets are bisimilar (assume for
simplicity of illustration that there are no delay transitions):

1. determine whether each chain C1 in the first multiset has a corresponding
chain C2 in the second multiset with the same action name;

2. determine whether K(C1) ∼ K(C2) and G(C1) ∼ G(C2).
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It is also clear that we can execute two non-bisimilar chains, with non-bisimilar
kill and generate label multisets, on two non-bisimilar multisets and arrive at
bisimilar states: for example, in (a`1 .X := b`2 .X) qbq 0 and b`3 .0 the execution
of the labels `1 and `3 will in both cases lead to transitions to the terminal
states, which are bisimilar.

“Non-additivity” of bisimilar multisets does not allow for much improvements in
the algorithms for constructing bisimilarities in the general case: the algorithm
that we will present in Section 4.2.4 is a direct adaptation of the algorithm
from [Her02]. In Sections 4.3 and 4.4 we will however discuss how we can exploit
the knowledge about the “internal structure” in multisets, i.e. the knowledge
about labels’ participation in chains, in order to devise more efficient algorithms.

4.2.4 Algorithm for computing bisimulations on M

In this section we will shortly present an algorithm for computing the coarsest
bisimulation relation on a set of label multisets. As usual, we assume that an
IMCG program F is given, the Pathway Analysis has been conducted on it and
the results have been saved in F as in Definition 4.9.

The multisets of labels in the set states on which the bisimulation algorithm
will be executed may either be equal to exposed labels of the derivatives of
F , i.e. states = {M ∈ M|∃E ∈ IMCG st (F

∗−−→ E) ∧ (M = EΓJEK)}, or

they may be just all the multisets of labels whose domains contain only labels
from Labs(F ), i.e. states = {M ∈ M|∃`1...`n st (

∧
i=1..n(`i ∈ Labs(F ))) ∧

(M =
∑
i=1..n⊥M [`i 7→ 1])} (this is clearly an easily computable safe over-

approximation of states reachable from EΓJF K), or something in between. In
Section 5.1 in the next chapter we will discuss how some of the states can be
ruled out as unreachable without computing the whole semantics of F .

The algorithm for computing the coarsest bisimulation on states is essentially
the same as the algorithm presented in [Her02] for computing the coarsest strong
bisimulation on IMC systems. The advantage of our method is, first, that we
do not need to derive transitions from the syntax of IMCG expressions (going
through the whole syntax in the worst case) but rather only compare exposed
labels with chains. This is a general advantage of Pathway Analysis methods.
The second advantage is that we do not need to build the semantics of IMCG

if states is not computed as a set of reachable states or at least do not need to
save transitions between states – this leads to a lower space complexity. We can
use BDDs in order to represent sets of states – it is straightforward as for each
label there is a binary value, i.e. it is present or not present in a multiset.
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names(M) =
⋃
{C∈T|C≤M}{Nameh

ch(C)|Nameh
ch(C) ∈ Act ∪ {τ}}

names set(S) =
⋃
M∈S{names(M)}

rate set(S) =
⋃
M∈S{RateM(M)}

Table 4.2 – Definitions of the functions names : M → 2Act∪{τ}, names set :

2M → 2Act∪{τ}, rate set : 2M → 2R+
0 , given an IMCG program F and F as in

Definition 4.9, M ∈M, S ∈ 2M.

The algorithm is based on the idea of partition refinement. It is a combination
of the algorithms for strong bisimulation and Markovian bisimulation. It has a
time complexity of O((mI+mM)∗log(n)) where mI is the number of interactive
transitions, mM the number of Markovian transitions and n is the number of
states, as the original algorithm in [Her02]. The space complexity of the original
algorithm is O(mI + mM). The space complexity of our algorithm is O(n) as
we only save states – the existence of transitions is then checked by comparing
exposed labels with precomputed chains. However the encoding of one state in
our algorithm requires in general more space than in the original algorithm in
[Her02] because we are encoding all the exposed labels of a state in the state
name.

The algorithm consists of two main steps:

1. create an initial partition of states such that all states in one partition class
have the same outgoing rate and the same set of action names decorating
their enabled action transitions;

2. refine the partition according to the differences between the elements con-
stituting partition classes in their cumulative rates into the other partition
classes and in the presence/absence of action transitions decorated by fixed
action names into the other partition classes until no further refinement
is possible.

We define several auxiliary functions in Table 4.2. As usual, we assume that an
initial IMCG program F is fixed and the Pathway Analysis has been conducted
on it. The fist function names in Table 4.2 has a multiset M as an input and
returns all the action names that correspond to enabled chains in M . The
functions names set and rate set have as their input a set of label multisets and
return accordingly a set of action names of enabled action transitions in all the
label multisets (names set) or a set of all the outgoing rates of label multisets
(rate set).
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s0 := EΓJF K; π0 := {s0};
Part := {π0}; states := {s0}; WS := {s0};
while WS 6= ∅ do

choose s ∈WS
WS := WS\{s};
if {C ∈ chains(s)|Nameh

ch(C ) = τ} 6= ∅
then Chains :=

⋃
{C ′∈chains(s)|Nameh

ch(C ′)∈Act∪{τ}}{C ′};
else Chains := chains(s);

for all C ∈ Chains
s ′ := s −Kch(C ) + Gch(C );
if s ′ 6∈ states then

WS := WS ∪ {s ′};
flag := false;
for all π ∈ Part

if (names(s ′) = names set(π))∧
({RateM(s ′)} = rate set(π))
then π := π ∪ {s ′};
flag := true;

if (flag = false)
then π|Parts|+1 := {s ′}; Part := Part ∪ π|Parts|+1 ;

Return Part

Table 4.3 – Algorithm for computing the initial partition of states which is used
by the algorithm determining the coarsest bisimulation relation on states, given
an IMCG program F and F as in Definition 4.9. Algorithm is taken from [Her02].

Assume that the set states contain only those label multisets that are reachable
from EΓJF K. Then creating the initial partition can be done by the algorithm
in Table 4.3 which groups together states with the same outgoing rate and the
same action names decorating their outgoing transitions. The second part of
the algorithm, i.e. the refinement of partition classes, is essentially the same
algorithm as the one devised by Hermanns in [Her02]. We also sometimes use
the notation from [Her02].

At the beginning of the refinement algorithm in Table 4.5 we divide the parti-
tion classes into “stable”, i.e. with no enabled internal actions (S Part), and
“unstable”, with at least one enabled internal action (U Part). Unstable par-
tition classes are refined only according to their action-transitions, while stable
partition classes are refined both according to their action-transitions and ac-
cording to their delay-transitions. Rate-transitions are irrelevant for unstable
partition classes because according to the internal progress assumption no de-
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deriv(s, α) =
⋃
{C∈T|(C≤s)∧(Namehch(C)=α)}{s−Kch(C) +Gch(C)}

p deriv(π1, α, π2) = {
⋃
{s∈π1|deriv(s,α)∩π2 6=∅}{s}}∪

{
⋃
{s∈π1|deriv(s,α)∩π2=∅}{s}}

Refine(Part, α, π) = (
⋃
π′∈Part p deriv(π′, α, π))\∅

M Refine(Part, π) = (
⋃
π′∈Part

⋃
r∈R+

0
{{s ∈ π′|γM(s, π) = r}})\∅

Table 4.4 – Definitions of the functions deriv , p deriv , Refine, M Refine, given
an IMCG program F and F as in Definition 4.9. Definitions are taken from
[Her02].

lay transition is possible from a state that has an enabled internal transition
[Her02].

We define several auxiliary functions in Table 4.4. The function deriv returns
for a multiset and an action name all the multisets that can be reached in one
step from the input multiset by performing a transition decorated by the action
name. The function p deriv splits a partition class which is its first parameter
according to the presence or absence of transitions from it into another partition
class (third parameter) decorated by the action name specified by the second
input parameter. The function Refine uses the function p deriv in order to
split all partition classes in the current partition. The function M Refine splits
partition classes according to their cumulative transition rate into the partition
class given as the second input parameter.

Using the functions defined in Table 4.4, we can write down the partition split-
ting algorithm – see Table 4.5.

Lemma 4.15 has its direct analogue in [Her02] and can be proved in a similar
way:

Lemma 4.15 (Bisimilarity computation). Given an IMCG program F and F
as in Definition 4.9, then after the initialisation phase Part is coarser then any
bisimulation on {M |∃E st (F

∗−−→ E) ∧ (M = EΓJEK)}. After each loop run of

the splitting algorithm the partition Part is coarser than any bisimulation on
{M |∃E st (F

∗−−→ E) ∧ (M = EΓJEK)} and the algorithm returns the coarsest

bisimulation.

Proof. See [Her02].
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S Part := {π ∈ Part |@C ∈ chains(π) st Nameh
ch(C ) = τ};

U Part := Part\S Part ;
Spl := (fn(F ) ∪ {τ})× (S Part ∪U Part)
while Spl 6= ∅ do

choose (α, π) ∈ Spl
Old := S Part ∪U Part ;
S Part := Refine(S Part , α, π);
U Part := Refine(U Part , α, π);
S Part := M Refine(S Part , π);
New := (S Part ∪U Part)\Old
Spl := Spl\{(α, π)} ∪ (fn(F ) ∪ {τ})×New

Return S Part ∪U Part

Table 4.5 – Algorithm for partition refinement with the purpose of determining
the coarsest bisimulation relation on states, given an IMCG program F and F as
in Definition 4.9. Algorithm is taken from [Her02].

Altogether we have shown how the coarsest bisimulation relation can be com-
puted on label multisets which are reachable from the multiset of exposed labels
of an IMCG program F on which the Pathway Analysis has been conducted.

4.3 Chain-bisimulations

4.3.1 Constructing bisimulations with Pathway Analysis

As we have pointed out in Section 4.2.4, computing the coarsest bisimulation re-
lation on label multisets has the same time complexity as computing the coarsest
strong bisimulation on the states of the labelled transition system representing
the semantics of an IMCG program. In this section we will explore the possibil-
ities of determining some kind of equivalences firstly on labels, and then, using
the gathered information, – on label multisets. In this way we can potentially
devise algorithms for computing bisimulations with a lower complexity, ideally
in the size of syntax – much in spirit of the Pathway Analysis in general. The
downside of this approach is that we will compute in general not the coarsest
possible bisimulation but a strictly smaller relation, as we will be partially miss-
ing information about the context in which the labels are executed. There is
however a possibility that for some subclasses of IMCG we can achieve the com-
putation of the coarsest bisimulation with our methods. We leave this question
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as a topic for future work.

In the following we will define two interdependent binary relations, one on labels
and one on multisets, called accordingly a label chain-bisimulation and a multiset
chain-bisimulation. The interdependence means that the relations cannot be
defined separately but only in pair. In order to determine whether an arbitrary
binary relation, for example, on multisets satisfies our definition we will need to
know its “counterpart” on labels. The relations will depend on a fixed IMCG

program F for which the Pathway Analysis has been conducted.

Label chain-bisimulations will be relations on all labels from Labs(F ) and mul-
tiset chain-bisimulations will be relations on all multisets that contain labels
from Labs(F ) – in this way we avoid computing the whole finite automaton
representing Structural Operational Semantics of F before computing the rela-
tions. We will prove that every multiset chain-bisimulation is a bisimulation.
The idea is thus first to compute a bisimulation relation on the syntax of F
and then to merge bisimilar states “on the fly” while constructing the labelled
transition system representing the semantics of F . Our approach has therefore
several potential benefits, including low time and space complexities. As we do
not compute the coarsest bisimulation in general, we will recognise some pairs
of bisimilar states but not all of them.

For now we only consider IMCG programs without rates. Multiset chain-
bisimulations are compositional (i.e. additive), therefore dealing with conditions
for bisimilar states and proving that we have in fact constructed bisimulations
is much easier if we only have to consider actions. Dealing with rates is harder
both because we have to consider all transition rates in a state and because
we may need to take into account the maximal progress assumption, i.e. that
no delay transitions can be executed if an internal action is enabled. We leave
therefore considering rates in computing bisimulations as a topic for future work.

The coarsest label chain-bisimulation and its corresponding coarsest multiset
chain-bisimulation will be called the label chain-bisimilarity (denoted ∼chLab) and
the multiset chain-bisimilarity (denoted ∼chM). Computing the coarsest relations
is preferable as we will be able to match a bigger number of bisimilar states
with them. Labels contained in the label chain-bisimilarity will be called label
chain-bisimilar and multisets contained in the multiset chain-bisimilarity will
be called multiset chain-bisimilar.

In a sense chain-bisimulation equivalent labels do not only “behave in the same
way”, but moreover “cooperate” (i.e. participate in the same chains) with other
labels following the same pattern. Two multisets are in the relation ∼chM and
therefore bisimilar if their participating labels are either in the relation ∼chLab

with each other or do not participate in any chain, therefore they can never
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be executed and do not contribute to the behaviour of the multisets containing
them.

Even though we are always talking about computing bisimulation relations on
one particular IMCG program, it is easy to see that we can compute the relation
∼chM on several IMCG programs, by ensuring that their labelling is mutually
disjoint. In particular, if we have two different programs F1 and F2, then we
can conduct the Pathway Analysis on F = τ `1 .F1 + τ `2 .F2, if `1 6∈ Labs(F1) ∪
Labs(F2), `2 6∈ Labs(F1)∪Labs(F2) and Labs(F1)∩Labs(F2) = ∅. Both F1 and
F2 will be then derivatives of F and their generate, kill and chains functions
will be included in the corresponding functions of F .

We can then obtain an answer “yes” or “no” concerning the question whether
two particular IMCG processes are bisimilar by checking whether the multisets
of labels describing their initial configurations (in the example above these are
exposed labels of accordingly F1 and F2) are in ∼chM. However, as ∼chM is in gen-
eral not the coarsest bisimulation relation on the multisets of labels representing
derivatives of an IMCG program, the answer “no” does not necessarily mean
that two IMCG programs are not bisimilar. For example, the IMCG processes
a`1 .b`1 .0 q{a, b}q a`2 .b`2 .0 and a`3 .b`3 .0 will not be in the relation ∼chM, because
chains with different number of components cannot be identified by ∼chM. The
bisimulation relations devised by us are still useful in order to reduce the state
space of IMCG systems and thus to make the further verifications easier.

4.3.2 Label and multiset chain-bisimulations

We will define label chain-bisimulation relations on Lab × Lab and multiset
chain-bisimulation relations on M ×M. These relations always exist in pairs,
i.e. the definition is common for a pair of such relations. They are always defined
relative to the Pathway Analysis results F as in Definition 4.9 of a particular
IMCG program F without rates. In the following we will always assume F to be
fixed and its analysis to be conducted previously to computing further operators
or relations on F .

Definition 4.16. Given an IMCG program F without rates and F as in Defi-
nition 4.9, we call a binary relation R on labels and a binary relation R′ on mul-
tisets accordingly a label chain-bisimulation and a multiset chain-bisimulation
if the conditions (A1)-(A4) and (B1)-(B3) hold.

If `1R`2 then:
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(A1) both labels are active, i.e. there exist C1 ∈ T and C2 ∈ T such that
⊥M [`1 7→ 1] ≤ C1 and ⊥M [`2 7→ 1] ≤ C2;

(A2) Nameh(`1 ) = Nameh(`2 );

(A3) for all C ∈ T holds either

(a) `1 ∈ dom(C) iff `2 ∈ dom(C) or

(b) if `1 ∈ dom(C) then C − ⊥M [`1 7→ 1] + ⊥M [`2 7→ 1] ∈ T, if `2 ∈
dom(C) then C −⊥M [`2 7→ 1] +⊥M [`1 7→ 1] ∈ T;

(A4) G(`1)R′G(`2).

If M1R
′M2 then there exist sums M1 =

∑
i=1..n

M i
1+M ′1 and M2 =

∑
i=1..n

M i
2+M ′2

such that

(B1) all labels ` ∈ dom(M ′1) ∪ dom(M ′2) are not active;

(B2) for all 1 ≤ i ≤ n, `1 ∈ dom(M i
1), `2 ∈ dom(M i

2) holds: `1R`2;

(B3) for all 1 ≤ i ≤ n, 1 ≤ k ≤ 2 holds: if |M i
k| > 1 then ∀` ∈ M i

k holds
M i
k =

∑
(`′∈dom(K(`)))∧(`′∈dom(Mk))⊥M [`′ 7→ 1].

We call the coarsest relations R and R′ fulfilling the conditions (A1)-(A4)
and (B1)-(B3) in Definition 4.16 for a fixed IMCG program F label chain-
bisimilarity and multiset chain-bisimilarity accordingly. We denote `1 ∼chLab `2
(label chain-bisimilar) and M1 ∼chM M2 (multiset chain-bisimilar) if (`1, `2) is
contained in some label chain-bisimulation and (M1,M2) is contained in a cor-
responding to it multiset chain-bisimulation.

Computing the coarsest label chain-bisimulation, given an IMCG program F for
which the Pathway Analysis has been conducted, can be done by an algorithm
similar to the algorithm for computing the coarsest bisimulation on states reach-
able from EΓJF K that has been described in Section 4.2.4. The first difference
is that we have labels instead of states; the second difference is that instead of
transitions between states we have a generate-relation between labels, i.e. we
refine the partition classes of labels according to whether for each `1 and `′1
from the same partition class there exist `2 and `′2 in another partition class
such that both `1 −−→ `2 and `′1 −−→ `′2 hold.
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We can thus compute the initial partition of labels according to the conditions
(A1)-(A3) and then do a refinement of the partition classes according to the
condition (A4). Checking the splitting condition (i.e. checking the conditions
(B1)-(B3) for the multisets generated by the labels) is not that straightforward
as just checking the existence of transitions in the splitting algorithm in Table 4.5
but can be done linear in the size of generated multisets. The time complexity of
computing the coarsest label chain-bisimulation will be then O(m ∗ log(n)) and
the space complexity will be O(m), where n = |Labs(F )| and m is the number of
generate-relations, i.e. m = |{`1 ∈ Labs(F ), `2 ∈ Labs(F )|`1 −−→ `2}|. Deciding

whether two multisets are chain-bisimilar can be then done in the linear time
in the number of labels in the domains of two multisets.

Lemma 4.17 (Chain-bisimilarities). Given an IMCG program F without rates
and F as in Definition 4.9, the label and multiset chain-bisimilarities for F
are equal accordingly to the unions of all label and multiset chain-bisimulation
relations for F .

Proof. This is a standard result that bisimilarities are unions of all bisimula-
tions, see for example [BK08]. It can be proved by showing that on the one
hand the union of two or more label/multiset chain-bisimulation relations is
accordingly a label/multiset chain-bisimulation itself. This can be done by go-
ing through Definition 4.16 and showing that all the conditions are fulfilled for
unions of relations. On the other hand, the coarsest chain-bisimulations are
contained in the union of chain-bisimulations for the same F .

Intuitively, we allow two equivalent multisets to contain each any number of
“inactive” labels: as the latter do not participate in any chain, they can never
be executed and therefore do not contribute to the behaviour of the state of
the transition system which is described by the multiset. The rest of the labels
need to be equivalent, i.e. according to the condition (A2) have the same corre-
sponding action name (τ if hidden), which means that all transitions in which
they participate will be decorated with the same action name. Moreover, their
execution generates equivalent multisets. It is possible to have a correspondence
between sets of labels instead of separate labels but in this case the whole set
should be killed by the execution of each constituent label (condition (B3)).
When the execution of one of the labels kills the whole set then the multisets
will stay equivalent after the execution of equivalent labels.

Additionally the condition (A3) has been introduced: only those labels are con-
sidered equivalent that either participate or not participate together in each
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chain from T or are completely interchangeable, i.e. every chain with one of
the labels exchanged for the other one is again in T. This is enough to achieve
a bisimulation relation on multisets, as we can differentiate now between la-
bels that have some “chain relation” between each other and the chains that
don’t. Without (A3), for example, the following multisets would be matched
by the chain-bisimilarity: E1 = a`1 .0 qaq a`2 .0 and E2 = a`3 .0 q∅q a`4 .0 (both
expressions may be derivatives of some IMCG programs). Without (A3) we
would establish E1 ∼chM E2 because `1 ∼chLab `3 and `2 ∼chLab `4. In the reality,

however, a`1 .0 qaq a`2 .0
a−−→
C

0 qaq 0 but a`1 .0 q∅q a`2 .0
a−−→
C′

0 q∅q a`2 .0 for

appropriate chains C and C ′, and two resulting multisets are not equivalent
anymore. Obviously in order to improve this situation we need to take into
account the information about the chains in which equivalent labels participate.

Note that in case `1 ∼chLab `2 these two labels can either be present in two
parallel processes (condition (A3a)) or they can be connected by the choice
operator (condition (A3b)): the confusion is not possible because these two
situations exclude each other and also because both conditions (A3a) and (A3b)
are transitive. This means that if `1 ∼chLab `2 and some third label `3 always
participates or not participates in any chain together with `1, then it does
the same with `2. If `3 is completely interchangeable with `1, then it is also
completely interchangeable with `2. The situation that, for example, `1 ∼chLab

`2 due to the condition (A3a) and `3 ∼chLab `1 due to the condition (A3b) is
impossible: if `3 is interchangeable with `1 then there exists a chain where `2 is
present but `1 is absent (if `1 6= `3). We will use these facts in the proof of the
transitivity of ∼chM below.

Note that the relation on multisets ∼chM is not the coarsest bisimulation on
M. For example, different chains can have the same behaviour: in the process
b`5 .a`1 .0 qaq a`2 .0 + b`6 .a`3 .0 qaq a`4 .0 there are two chains, ⊥M [`1 7→ 1, `2 7→ 1]
and ⊥M [`3 7→ 1, `4 7→ 1], with the same behaviour, but they will not be iden-
tified by our relation ∼chM because (A3) is not true for any of the pairs (`1, `3),
(`1, `4), (`2, `3), (`2, `4). Another source of non-optimality of the relation ∼chM
is that the conditions (A3a) and (A3b) in Definition 4.16 can in some sense
“interfere” with each other: in the process b`4 .a`1 .0 q{a}q(b`5 .a`2 .0 + b`6 .a`3 .0)
two states corresponding to the multisets ⊥M [`1 7→ 1, `5 7→ 1, `6 7→ 1] on the
one hand and ⊥M [`4 7→ 1, `2 7→ 1] or ⊥M [`4 7→ 1, `3 7→ 1] on the other hand
are obviously bisimilar: both can execute the action b and then the action a.
They cannot however be identified as such by the relation ∼chM because neither
`1 ∼chLab `2 nor `1 ∼chLab `3 holds (`2 ∼chLab `3 holds).

The two described sources of non-optimality will be addressed in the definition
of the equivalence relation ∼synM in Section 4.4 which will be proved to be an
extension of the relation ∼chM. Unfortunately these are not the only sources of
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non-optimality: chains with equivalent behaviour may have different number of
constituent labels, some labels may never be executed even if they participate
in some chains because they are blocked by the environment or are generated
only by actions blocked by the environment etc. The identification of such cases
requires a more complex analysis. The equivalence relation ∼chM has nevertheless
its advantages the main of which is the simplicity of its computation: it is
computed using only the results of the chain, generate and kill operators. The
computation, for example, of the relation ∼synM will require some additional

operators on the analysed IMCG program F .

4.3.3 Chain-bisimulations and “ordinary” bisimulations

Before considering the question of how chain-bisimulations are related to “ordi-
nary” bisimulations let us discuss some of the properties of chain-bisimulations.
Chain-bisimulations (including chain-bisimilarities) are not necessary preserved
under subtraction: given an IMCG program F and F as in Definition 4.9,
then from M1 ∼chM M ′1 and M2 ∼chM M ′2 does not necessarily follow M1 −
M ′1 ∼chM M2 − M ′2, even if all involved multisets represent exposed labels of
IMCG expressions derivable from F . Take as an example the IMCG program
Y := X := a`1 .X + a`2 .Y . Then for dom(M1) = {`1}, dom(M2) = {`2} and

dom(M3) = {`1, `2} all three multisets are chain-bisimilar. However M3 −M1

is obviously neither chain-bisimilar nor bisimilar in the sense of Definition 4.11
to M3 −M3. Chain-bisimulations are not additive in general case as well due
to the condition (B3) in Definition 4.16 which might be violated.

On the other hand, multiset chain-bisimilarities have some useful properties, in
particular, they are equivalence relations on multisets of labels. This is useful
because (in case they are also “ordinary” bisimulations – which we will prove
in Lemma 4.20) we could group equivalent states together and construct in
this way a smaller labelled transition system for the semantics of an IMCG

program without rates for which the Pathway Analysis has been conducted and
the multiset chain-bisimilarity has been computed.

Lemma 4.18 (Chain-bisimilarities are equivalences). Given an IMCG program
F and F as in Definition 4.9, then the relation ∼chLab on active labels and the
relation ∼chM on multisets of labels are equivalence relations. This means that,
assuming Lab′ ⊆ Lab is a set of labels such that ∀` ∈ Lab′ ∃C ∈ T such that ` ∈
dom(C), then for all labels {`1, `2, `3} ⊆ Lab′, for all mutisets {M1,M2,M3} ⊆
M holds:

1. `1 ∼chLab `1 and M1 ∼chM M1
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2. `1 ∼chLab `2 ⇒ `2 ∼chLab `1 and M1 ∼chM M2 ⇒M2 ∼chM M1

3. (`1 ∼chLab `2) ∧ (`2 ∼chLab `3) ⇒ `1 ∼chLab `3 and (M1 ∼chM M2) ∧ (M2 ∼chM
M3)⇒M1 ∼chM M3

Proof. The definitions of the relations ∼chLab and ∼chM in Definition 4.16 imply
that these are the coarsest relations for which the conditions (A1)-(A4) and the
conditions (B1)-(B3) hold. Therefore in order to prove the statements 1-3 from
the formulation of the lemma it is enough to show that the identity relations
on active labels and on multisets of labels satisfy accordingly the conditions
(A1)-(A4) and (B1)-(B3); that for any two relations satisfying accordingly the
conditions (A1)-(A4) and (B1)-(B3) holds that their inverse relations also sat-
isfy accordingly the conditions (A1)-(A4) and (B1)-(B3) (then they both are
contained in the coarsest relations according to Lemma 4.17); that two pair
of relations satisfying accordingly the conditions (A1)-(A4) and (B1)-(B3) can
be combined together and still satisfy accordingly the conditions (A1)-(A4) and
(B1)-(B3) (then two pairs of relations as well as their combinations are contained
in the coarsest relations according to Lemma 4.17).

A pair of the identity relations on accordingly active labels (i.e. on Lab′) and
multisets satisfy all the conditions (A1)-(A3): note that both (A3a) and (A3b)
are satisfied in case `1 = `2. In the conditions for multisets we can ascertain
that M i

1 = M i
2 for 1 ≤ i ≤ n – then the consitions (A4) and (B1)-(B3) are

satisfied as well.

Assume that a pair of relations R and R′ satisfy the conditions (A1)-(A4) and
(B1)-(B3). Then also a pair of relations R−1 = {(`1, `2)|(`2, `1) ∈ R} and
R′−1 = {(M1,M2)|(M2,M1) ∈ R′} satisfy these conditions as all of the condi-
tions (A1)-(A4) and (B1)-(B3) are in fact already symmetric by definition.

Assume that two pairs of relations R1 and R′1 on the one hand and R2 and R′2
on the other hand satisfy the conditions (A1)-(A4) and (B1)-(B3). Then we will
show that also a pair of relations R1 ◦R2 = {(`1, `3)|(∃(`1, `2) ∈ R)∧(∃(`2, `3) ∈
R)} and R′1 ◦ R′2 = {(M1,M3)|(∃(M1,M2) ∈ R′1) ∧ (∃(M2,M3) ∈ R′2)} satisfy
these conditions.

Most of the conditions clearly hold besides the condition (A3). We have already
mentioned in the discussion above that in case `1 ∼chLab `2 ∼chLab `3 and both for
the first and for the second relation holds the condition (A3a) then the condition
(A3a) holds for `1 and `3. The same is true if it is the condition (A3b) instead
of the condition (A3a) that holds for both `1 ∼chLab `2 and `2 ∼chLab `3. Two
remaining configurations, i.e. (A3a) holds for `1 ∼chLab `2 and (A3b) holds for
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Figure 4.3 – Graphical illustration of the proof of Lemma 4.19: labels in two
chain-bisimilar multisets can be “rearranged” in such a way that the same labels
are always grouped together.

`2 ∼chLab `3 and the other way round, are impossible in case all three labels
are different. In case some of the labels are the same, for example, `1 = `2,
then both (A3a) and (A3b) hold for this pair and we are back to the previously
considered case.

We show an important result that, given an IMCG program F and F as in
Definition 4.9, then for two multisets which are in a chain-bisimulation relation
which is also an equivalence holds: one of them is a chain from T if and only
if the other one is also a chain from T. It is a necessary step in proving that
any chain-bisimulation that is an equivalence is an “ordinary” bisimulation –
this would obviously not be the case if out of two chain-bisimilar multisets one
would be a chain and the other not.

Lemma 4.19 (Chains and chain-bisimulations). Given an IMCG program F
without rates, F as in Definition 4.9 and a pair of equivalence relations (R,R′)
that are accordingly a label and a multiset chain-bisimulations, M1 ∈M, M2 ∈
M, such that M1R

′M2, then ∃C1 ∈ T such that C1 ≤M1 iff ∃C2 ∈ T such that
C2 ≤M2 and C1R

′C2.

Proof. Note that due to the fact that R′ is an equivalence it is enough to prove
the statement only one way: the other way will follow because from M1R

′M2

follows M2R
′M1 for any M1 ∈M, M2 ∈M.

For any C1 ≤ M1 such that C1 ∈ T and C1 =
∑
i=1..n⊥M [`i 7→ 1] there exists

M ≤M2 such that M =
∑
i=1..n⊥M [`′i 7→ 1] and for all 1 ≤ i ≤ n holds `iR`

′
i.

If for all `′i holds that `′i is interchangeable with `i (condition (A3b) in Definition
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4.16) then M ∈ T clearly holds. Otherwise we can “rearrange” the relations of
labels in M to the labels in C1 in such a way that the condition (A3b) will
always be true.

Assume that there exists some ⊥M [`′ 7→ 1] ≤ M such that `R`′ for some
⊥M [` 7→ 1] ≤ C1 and the condition A3(a) in Definition 4.16 holds. This means
that it also holds `′ ∈ C1 (remember that the condition A3(a) requires that
` and `′ participate in all chains “together”). Additionally there will exist
⊥M [`′′ 7→ 1] ≤ M such that `′R`′′. We can do a “rearrangement” of labels
such that `′R`′ and `R`′′ (remember that the relation R is symmetric and tran-
sitive). See the schematic picture of the rearrangement of labels in Figure 4.6.
We can continue the rearrangement until all the labels in C1 are interchangeable
with their corresponding labels in M .

We are now ready to prove the main result of this section – namely, that chain-
bisimulations that are equivalences on the states from M are also “ordinary”
bisimulations in the sense of Definition 4.11, i.e. that our definitions of chain-
bisimulations are correct with respect to the semantics of an IMCG program to
be analysed.

Theorem 4.20 (Chain-bisimulations are bisimulations). Given an IMCG pro-
gram F without rates, F as in Definition 4.9 and a pair of equivalence relations
(R,R′) that are accordingly a label and a multiset chain-bisimulation, then R′ is
a bisimulation relation on M. In particular, from M1 ∼chM M2 follows M1 ∼M2

for any M1 ∈M and M2 ∈M.

Proof. We do not have rates in the syntactic description of F , therefore it is
enough to show that only condition 1 in Definition 4.11 of the bisimulations on
M holds. Also note that if we prove the first statement of the lemma this will also
prove that from M1 ∼chM M2 follows M1 ∼M2: the synchronisation-bisimilarity
is also a synchronisation-bisimulation, it is an equivalence according to Lemma
4.18 and it would be contained in the relation ∼ because the bisimilarity on M
is a union of all bisimulations on M.

We only need to show therefore that for all C1 ∈ T and M ′1 ∈ M such that
C1 ≤M1 and M ′1 = M1−Kch(C1)+Gch(C1) there exists C2 ∈ T with C2 ≤M2,
Nameh

ch(C1 ) = Nameh
ch(C2 ), M ′2 = M2−Kch(C2)+Gch(C2) and (M ′1,M

′
2) ∈ R′.

From Lemma 4.19 follows that there in fact exists a chain C2 ∈ T such that
C2 ≤ M2 and C1R

′C2. Accordingly Nameh
ch(C1 ) = Nameh

ch(C2 ) holds due to
the condition (A2) in Definition 4.16. Note that if both chains contain only
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one label in their domains then it is possible that they correspond to originally
different but hidden action names. If two chains contain more than one label in
their domains then this is not possible.

We can observe that (M1−Kch(C1))R′(M2−Kch(C2)). This is due to the con-
dition (B3) in Definition 4.16: the execution of one of the labels in a containing
more than one label in its domain M i

k for 1 ≤ k ≤ 2 and 1 ≤ i ≤ n kills all the la-
bels from M i

k and no other labels. We can add accordingly Gch(C1) and Gch(C2)
because in this particular case we have the additivity property. It is namely the
case that all newly generated labels can neither be killed or kill already exposed
labels – this can be shown by induction on the syntactic structure of F . Al-
together this proves (M1 − Kch(C1) + Gch(C1))R′(M2 − Kch(C2) + Gch(C2))
which is enough to show that the statement of the lemma holds.

We have thus proved that ∼chM is a bisimulation on multisets of exposed labels
of the derivative expressions of the IMCG program that has been analysed. It
is easy to see that in general ∼chM 6=∼ and we have already presented examples
of that. In the next section we will devise another bisimulation relation on
multisets ∼synM such that ∼chM⊆∼

syn
M and ∼chM 6=∼

syn
M in general. The enlargement

of the equivalence relation will be achieved by relaxing the requirements to the
equivalence on labels and by additionally taking into account the relations of
labels inside two equivalent multisets and not only between them as in the
relation ∼chM.

We conjecture that chain-bisimilarities are equal to the “ordinary” bisimilarity
on linear IMCG programs, i.e. with no parallel operator (because chains do not
play any role in the linear fragment of IMCG), and on a symmetrical composi-
tion in the sense of [Her02], i.e. on a parallel execution of several identical (but
uniquely labelled) linear IMCG processes. We also surmise that it might “recog-
nise” situations when linear components in a symmetrical composition are not
syntactically equal but still have the same semantics. These suppositions need
the further research to be conducted in order to verify them.

4.4 Synchronisation-bisimulations

In this section we will enlarge bisimulation relations constructed above in Sec-
tion 4.3. Remember that in Section 4.3.2 in case we would like to determine
whether two multisets are chain-bisimilar we only had to determine whether they
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consist of pairwise chain-bisimilar active labels. Analogously to label and multi-
set chain-bisimulations we will define below label and multiset synchronisation-
bisimulations. The coarsest label and multiset synchronisation-bisimulations
will be denoted accordingly ∼synLab and ∼synM . Similarly to chain-bisimilar la-
bels, synchronisation-bisimilar labels will have the same associated action name
(or both will be associated either with an internalised action name or with a
τ -action) and will generate synchronisation-bisimilar multisets.

On the other hand, synchronisation-bisimulations on multisets will use infor-
mation about two different relations on labels. The relations of the first type,
i.e. label synchronisation-bisimulations, are similar to label chain-bisimulations:
they relate labels with similar behaviour. In fact it holds that ∼chLab⊆∼

syn
Lab. Re-

lations of the second kind map pairs of labels to sets of external action names.
The latter contain those action names on which two IMCG subprocesses, each
containing a label from the labels’ pair, are synchronising. The reason for in-
troducing this second type of relations is in a sense that label synchronisation-
bisimulations are “too permissive”: labels equivalent according to them do not
have the same pattern of participation in the same chains with other labels. We
correct this circumstance with the use of the second relations.

It is required therefore that the relations of the second kind between “active”
(i.e. participating in at least one chain) labels inside two multisets follow the
same pattern. We will say that synchronisation-bisimilar multisets have the
same (potential) “synchronisation structure”. A synchronisation structure of
a multiset will retain the information about all the chains which contain the
labels that can be generated after any number of semantic steps by labels in a
multiset. This information will be computed by an operator Syn beforehand
on an IMCG program (using a number of auxiliary operators) and saved in the
mapping Lab × Lab → 2Act. The resulting mapping returns for all pairs of
labels an over-approximation of action names on which the labels generated by
them could be synchronised.

Differences in synchronisation structures will help us to determine, for exam-
ple, that the processes X := a`1 .b`2 .X qbq Y := a`3 .b`4 .Y and X := a`5 .b`6 .X q
∅q Y := a`7 .b`8 .Y cannot be considered synchronisation-bisimilar: there is a po-
tential synchronisation on b in the first case and there is no such synchronisation
in the second case. The processes are indeed not bisimilar in the sense of strong
bisimulation as the second process can execute a sequence of actions a, a, b, b
which the first cannot. We can even handle a “spurious” synchronisation in some
cases: both X := a`1 .X qbq Y := a`2 .Y + b`3 .Y and X := a`4 .X qbq Y := a`5 .Y
will not be considered as synchronising on b according to our operator Syn.

Additionally we will require that for any multiset which is a chain all multi-
sets that are synchronisation-bisimilar to it are chains as well. This is nec-
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essary in order to determine, for instance, that the processes X := b`1 .X and
X := b`2 .X q{a, b}q Y := a`3 .b`4 .Y are not bisimilar: the first process will exe-
cute the action b infinite number of times and the second process is stuck. Note
that we cannot determine this fact neither from the analysis of individual labels
(a`3 is not active and is therefore not taken into account) nor from the analysis
of the results returned by the operator Syn.

The final requirement concerns the possibility to identify n-to-m correspon-
dences of labels. The idea is that we can identify groups of labels that are
synchronisation-bisimilar and are excluding the execution of each other (by
“killing” each other) – this means that they are choice alternatives. A group of
n such labels will be then synchronisation-bisimilar to a group of m such labels,
which is also intuitively explainable: it does not matter how many alternatives
we have in case we can only choose one of them. It is also easy to identify
such situations – we only need to group synchronisation-bisimilar labels that
are mutually “killing” each other.

Consequently we will prove that synchronisation-bisimulation relations are bisim-
ulations on M. We will also show that synchronisation-bisimilarities contain
chain-bisimilarities (for the same IMCG program F ) and are in general strictly
coarser than them. We can as a result determine many interesting bisimulation
cases: for example, match the processesX := a`1 .X and Y := a`2 .Y + a`3 .Y (dif-
ferent number of choice alternatives with the same behaviour), X := a`1 .b`2 .X
and Y := a`3 .b`4 .a`5 .b`6 .Y (behaviour repetition), hide a in (X := a`1 .b`2 .X q
bq Y := a`3 .b`4 .Y ) and hide c in (X := c`5 .b`6 .X q bq Y := c`7 .b`8 .Y ) (different
action names before internalisation, the same synchronisation structure in two
processes).

Failing to recognise all bisimilar IMCG processes comes in particular from the
circumstances that they may have different synchronisation structures due to
the labels that are actually unreachable or that we only consider one-to-one cor-
respondences between labels and not one-to-two etc. correspondences. To illus-
trate the first circumstance consider the following example: c`1 .(X := a`2 .b`3 .X q
{a, b}q Y := b`4 .a`5 .Y ) and c`6 .0. In the first process all the labels besides `1
cannot be executed because of the different action order but the processes will
not be identified as synchronisation-bisimilar. The second fact can be illustrated
by the processes X := a`1 .X and Y := a`2 .Y qaq Z := a`3 .Z, where in the latter
case two synchronising processes are proceeding “in lock”. We cannot however
identify them due to different number of their exposed “active” labels.
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fnΦ(a`.X ) = {a} ∪ Φ(X ) (1)
fnΦ(λ`.X ) = Φ(X ) (2)
fnΦ(a`.P) = {a} ∪ fnΦ(P) (3)
fnΦ(λ`.P) = fnΦ(P) (4)

fnΦ(P1 + P2) = fnΦ(P1) ∪ fnΦ(P2) (5)
fnΦ(hide A in P) = fnΦ(P)\A (6)
fnΦ(P1 qAq P2) = fnΦ(P1) ∪ fnΦ(P2) (7)

fnΦ(X := P) = fnΦ(P) (8)
fnΦ(0) = ∅ (9)

Table 4.6 – Modified operator fn : IMCG → 2Act with an environment Φ ∈
Var→ 2Act.

4.4.1 Operator Syn

In this section we will define an operator Syn that we have already mentioned
before. The operator takes as an input a syntactic description of an IMCG

program and returns a mapping where for each pair of labels there is a set of
external actions. We will also prove that the way Syn is defined corresponds
to our expectations: i.e. if it returns on a pair of labels (`1, `2) a set of external
actions A, then for each a ∈ A holds that both labels from the pair can generate
after a number of steps two labels, e.g. `′1 and `′2, such that both `′1 and `′2
correspond to the action name a and participate in at least one chain together.

Before defining a Syn operator itself, we will need to additionally define several
instrumental operators. In particular, we will define an operator fnvar which
returns free external action names in process definitions and a modified operator
fn which takes the information gathered by the operator fnvar into account
while assessing which free action names occur in an IMCG expression. This
means that if some variable X occurs in an IMCG expression E and an action
a is free in the definition of X , then the modified operator fn will return on
E a set of free action names A with a ∈ A even if a strictly speaking does
not occur in E. For example, for Y := a`1 .X := b`2 .X + c`3 .Y the operator

fnvar will return Y 7→ {a, b, c} and therefore the modified operator fn with an
environment will return {a, b, c} as free names in X := b`2 .X + c`3 .Y if it will
use the result returned by fnvar as an environment. See the definitions of the
operators fnvar and fn in Tables 4.6 and 4.7.

We define ⊥fnvar as the least element of the mapping Var → 2Act. The map-
ping can be regarded as a complete lattice with a partial order such that smaller
elements in Var→ 2Act have smaller sets of action names to which process vari-
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fnvarΦJa`.X K = Φ (1)

fnvarΦJλ`.X K = Φ (2)

fnvarΦJa`.PK = fnvarΦJPK (3)

fnvarΦJλ`.PK = fnvarΦJPK (4)
fnvarΦJP1 + P2K = fnvarΦJP1K ∪ fnvarΦJP2K (5)

fnvarΦJhide A in PK = fnvarΦJPK (6)
fnvarΦJP1 qAq P2K = fnvarΦJP1K ∪ fnvarΦJP2K (7)

fnvarΦJX := PK = fnvarΦ[X 7→fnΦ(P)]JPK (8)
fnvarΦJ0K = Φ (9)

Table 4.7 – Free names of process definitions. The operator fnvar : IMCG →
Var→ 2Act with an environment Φ ∈ Var→ 2Act.

ables are mapped. Then clearly in ⊥fnvar each variable is mapped to the empty
set. We will usually calculate fnfnvar⊥fnvar

JF K(E) for some IMCG program F
and its subexpression E � F . Remember that from the well-formedness condi-
tion for F follows that any action names that are not hidden in F will remain
not hidden in any of its derivatives.

As a next step we define in Table 4.8 the operator psyn : Lab × Lab → 2Act

which computes for all pairs of labels the external actions on which their gen-
erated labels can be potentially synchronising. This is a rather coarse approx-
imation: “potentially” refers to the fact that we take into account only par-
allelisation constructs and which action names are free in subexpressions (see
rule (7) in Table 4.8) but not the generated labels itself. Thus psyn will re-
turn, for example, {a} for the pair (`1, `2) and the IMCG process X := b`1 .X q
aq Y := c`2 .Y + a`3 .Y . We will consequently filter out some of the external ac-
tions with the operator Syn – in particular, Syn will return the empty set on
the pair (`1, `2) in the above example.

We consider the codomain of psyn to be a complete lattice with a partial
order such that smaller elements in Lab × Lab → 2Act have smaller sets of
action names to which pairs of labels are mapped. Then clearly ⊥syn (defined
as ⊥syn((`1, `2)) = ∅ for all `1 ∈ Lab and `2 ∈ Lab) is the least element of

IMCG → Lab× Lab→ 2Act.

We are now ready to define the operator Syn in Table 4.9. If the input of Syn
is an IMCG program F then the environments R and Φ will usually be equal
to accordingly psynJF K and fnvar⊥fnvar

JF K. In Lemma 4.22 we will prove
that the operator Syn does return the result with the expected properties.
The statement of the lemma is graphically demonstrated in Figure 4.4. The
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psynJa`.X K = ⊥syn (1)

psynJλ`.X K = ⊥syn (2)

psynJa`.PK = psynJPK (3)

psynJλ`.PK = psynJPK (4)
psynJP1 + P2K = psynJP1K t psynJP2K (5)

psynJhide A in PK = psynJPK (6)
psynJP1 qAq P2K = psynJP1K t psynJP2K tR where (7)

B :=
⊔

a∈A st ∃C∈TΛJP1qAqP2K st Names(C)={a}

{a}

R :=
⊔

`1∈Labs(P1)

⊔
`2∈Labs(P2)

⊥syn [(`1, `2) 7→ B]

psynJX := PK = psynJPK (8)
psynJ0K = ⊥syn (9)

Table 4.8 – The operator for potentially synchronizing labels psyn : IMCG →
Lab× Lab→ 2Act, ⊥syn((`1, `2)) = ∅ for all `1 ∈ Lab and `2 ∈ Lab.

Figure 4.4 – Graphical illustration of the statement of Lemma 4.22.

Definition 4.21 is used in order to ease the formulation of Lemma 4.22.

Definition 4.21 (Label path). Given an IMCG program F without rates and
F as in Definition 4.9, a label transition `1 −−→ `2 denotes the fact that `2 ∈

dom(G(`1)). A label path `1
∗−−→ `n denotes the fact that there exists a sequence

of label transitions such that `i −−→ `i+1 holds for all 1 ≤ i < n.

Lemma 4.22 (Syn operator). Given an IMCG program F without rates and
F as in Definition 4.9, SF = SynpsynJF K,fnvar⊥fnvar

JF KJF K, it holds that:
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SynR,ΦJa`.X K =
l

`2∈Lab

R
[
(`, `2) 7→ fnΦ(a`.X ) ∩R((`, `2))

]
u

l

`2∈Lab

R
[
(`2, `) 7→ fnΦ(a`.X ) ∩R((`2, `))

]
(1)

SynR,ΦJλ`.X K =
l

`2∈Lab

R
[
(`, `2) 7→ fnΦ(λ`.X ) ∩R((`, `2))

]
u

l

`2∈Lab

R
[
(`2, `) 7→ fnΦ(λ`.X ) ∩R((`2, `))

]
(2)

SynR,ΦJa`.PK =
l

`2∈Lab

R
[
(`, `2) 7→ fnΦ(a`.P) ∩R((`, `2))

]
u

l

`2∈Lab

R
[
(`2, `) 7→ fnΦ(a`.P) ∩R((`2, `))

]
u

SynR,ΦJPK (3)

SynR,ΦJλ`.PK =
l

`2∈Lab

R
[
(`, `2) 7→ fnΦ(λ`.P) ∩R((`, `2))

]
u

l

`2∈Lab

R
[
(`2, `) 7→ fnΦ(λ`.P) ∩R((`2, `))

]
u

SynR,ΦJPK (4)
SynR,ΦJP1 + P2K = SynR,ΦJP1K u SynR,ΦJP2K (5)

SynR,ΦJhide A in PK = SynR,ΦJPK (6)
SynR,ΦJP1 qAq P2K = SynR,ΦJP1K u SynR,ΦJP2K (7)

SynR,ΦJX := PK = SynR,ΦJPK (8)
SynR,ΦJ0K = R (9)

Table 4.9 – Inductive definition of the operator Syn : IMCG → Lab × Lab →
2Act. The environments R ∈ Lab× Lab→ 2Act and Φ ∈ Var→ 2Act provided
as parameters.

1. for all a ∈ SF ((`1, `2))

(a) there exists a label path `1
∗−−→ `3 with Name(`3 ) = a;

(b) there exists a label path `2
∗−−→ `4 with Name(`4 ) = a;

(c) for all label paths `1
∗−−→ `3 and `2

∗−−→ `4, both `3 and `4 active,

Name(`3 ) = a and Name(`4 ) = a holds: ⊥M [`3 7→ 1] [`4 7→ 1] ≤ C
for some C ∈ T such that Names(C ) = a;

2. if conditions 1(a) and 1(b) are fulfilled for two labels `1 and `2, such that
`1 ∈ Labs(P1) and `2 ∈ Labs(P2) for some P1 qA q P2 � F and there
exists a chain C ∈ T such that ⊥M [`3 7→ 1] [`4 7→ 1] ≤ C, then also a ∈
SF ((`1, `2)) holds.
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Proof. The statement 1 holds essentially due to the well-formedness condition
for F , more precisely the condition (7) in Table 3.8. According to the latter, in
any subexpression P1 of F put in parallel with another subsexpression P2 (and
there exist such expressions with `1 ∈ Labs(P1) and `2 ∈ Labs(P2) according
to the definition of the operator psyn in Table 4.8) there cannot be an action
name which is both free and hidden. Moreover, from the same condition (7)
follows that both P1 and P2 are closed. From this we can easily deduce that all
label paths starting from labels in P1 only involve labels in P1. The same holds
for P2. The statement 1 follows then from the definition of the operators psyn
and Syn and from the fact that both `3 and `4 are active, i.e. participate in at
least one chain.

We will now prove the statement 1 more formally. We will first prove an in-
strumental statement that in case Name(`) = Name(`′) = a for some active
{`, `′} ⊆ Labs(F ) then a ∈ SF ((`, `′)) if and only if there exists C ∈ T such
that ⊥M [` 7→ 1] [`′ 7→ 1] ≤ C. We prove the statement by induction on the
structure of F . The statement is clear for the base cases – the rules (1)-(2) and
(9) in Table 3.1 – as there are no chains and SF = ⊥syn for them. Most of the
other rules follow from the induction hypothesis except rule (7) for the parallel
operator. Let us prove the instrumental statement for some P1 qAq P2 � F
assuming that it holds both for P1 and P2.

If a 6∈ A and for example {`, `′} ⊆ Labs(P1) then the statement follows from
the induction hypothesis: for such a pair (`, `′) the output of SynR,ΦJP1K is
not changed according to the rule 8 in Table 4.9 while computing SynR,ΦJP1 q
Aq P2K, taking into account that Labs(P1) ∩ Labs(P2) = ∅, and the induction
hypothesis is applicable. Otherwise assume that a ∈ A and for example {`, `′} ⊆
Labs(P1). Then from the induction hypothesis follows that a ∈ SP1

((`, `′)) iff
there exists a chain C1 ∈ TΛJP1K containing ` and `′. As both labels are active,
there also exists C ∈ TΛJP1 qAq P2K with C1 < C and therefore containing ` and
`′. Proving the other direction, from the existence of a chain C ∈ TΛJP1 qAq P2K
follows the existence of some C1 ∈ TΛJP1K containing ` and `′ and the induction
hypothesis is applicable. The case with {`, `′} ⊆ Labs(P2) is symmetric.

Assume that a ∈ A, ` ∈ Labs(P1) and `′ ∈ Labs(P2). Then if both ` and `′ are
active this means that there exist chains C1 ∈ TΛJP1K with ` ∈ dom(C1) and
C2 ∈ TΛJP2K with `′ ∈ dom(C2), therefore there exists a chain C = C1 + C2 ∈
TΛJP1 qA q P2K with both ` and `′. On the other hand, if there exists such
a chain C ∈ TΛJP1 qAq P2K containing both ` and `′ then there exist chains
C1 ∈ TΛJP1K with ` ∈ dom(C1) and C2 ∈ TΛJP2K with `′ ∈ dom(C2) and the
induction hypothesis is applicable. If a 6∈ A, ` ∈ Labs(P1) and `′ ∈ Labs(P2)
then according to rule (7) in Table 4.8 holds a 6∈ SP1qAqP2((`, `′)) and there is
also no common chains with ` and `′ according to the rules for chains calculation.
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We have herewith proved the instrumental statement. We need to additionally
show that from a ∈ SF ((`1, `2)) follow 1(a) and 1(b). This can be deduced
from the rules (1)-(4) for the operator Syn in Table 4.9: there exist some labels
corresponding to the action name a either in the definition of X (rules (1)-(2)) or
in the process P (rules (3)-(4)). Another statement that we should prove using

the rules for the operator Syn is that for all `′1 and `′2 such that `1
∗−−→ `′1

∗−−→ `3

and `2
∗−−→ `′2

∗−−→ `4 holds a ∈ SF ((`′1, `
′
2)) – but this can also be proved using

the rules (1)-(4) of the operator Syn in Table 4.9. Altogether this is enough in
order to show the correctness of the statement 1 of the lemma.

The statement 2 can be proved by the following reasoning: choose two label
paths `1

∗−−→ `3 and `2
∗−−→ `4 satisfying conditions 1(a) and 1(b). From the

well-formedness rule (7) in Table 3.8, in particular process identifier closeness of
P1 and P2, follows that also `3 ∈ Labs(P1) and `4 ∈ Labs(P2). From the rules
for the chains operator in Table 3.17 follows that a is free both in P1 and P2.
Consequently a ∈ psynJF K((`1, `2)) and this pair has not been deleted while
computing the results of Syn afterwards according to the rules (1)-(4) in Table
4.9.

Remark 4.23. Note that from the proof of Lemma 4.22 it is clear that in fact
either for all label paths `1

∗−−→ `3 and `2
∗−−→ `4 with `1 6= `2, Name(`3 ) = a and

Name(`4 ) = a there exists a chain C ∈ T such that ⊥M [`3 7→ 1] [`4 7→ 1] ≤ C
or for none of such paths. In the first case we will have a ∈ SF ((`1, `2)) and in
the second case – a 6∈ SF ((`1, `2)). We cannot have two pairs of paths with the
same “origins” such that for the first pair there is a chain (i.e. synchronisation
on the action a) and for the second there is no such synchronisation.

Also note that in order to compute SynpsynJF K,fnvar⊥fnvar
JF KJF K we need to

traverse the syntactic description of F accordingly three times: to compute
fnvar⊥fnvar

JF K, then psynJF K and then use the both results as environments
to compute SynpsynJF K,fnvar⊥fnvar

JF KJF K. In practice we could actually combine

the operators in order to limit ourselves to only one traversal. We have used
several operators in order to make the exposition and the proofs easier. Espe-
cially in the proofs we would need to additionally argue that while traversing
the syntax of F the environments are being updated with the information before
the time point when the information is actually utilised.

Altogether we have proved that the computed SynpsynJF K,fnvar⊥fnvar
JF KJF K is a

reasonable over-approximation of what we have called a synchronisation struc-
ture of F : it takes into account all cases of generated labels that can jointly
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participate in chains, but does not take into account that some labels may be
blocked by the environment and therefore will never be executed – therefore the
computed result is an over-approximation.

4.4.2 Label and multiset synchronisation-bisimulations

We will introduce relations on labels and multisets of a special kind which we
will call label and multiset synchronisation-bisimulations. We will have a fixed
IMCG program F without rates for which the Pathway Analysis has been con-
ducted and its the synchronising structure, i.e. SynpsynJF K,fnvar⊥fnvar

JF KJF K,
has been computed. Based on the results of the Pathway Analysis and the
synchronising structure we then will be able to determine if two arbitrary in-
terdependent binary relations on accordingly labels and multisets can be called
synchronisation-bisimulations.

As usual we will call the coarsest label/multiset synchronisation-bisimulations
synchronisation-bisimilarities. We will prove that each equivalence relation
which is a synchronisation-bisimulation is a bisimulation relation on M. More-
over, we will prove that synchronisation-bisimilarities on multisets are strictly
bigger than chain-bisimilarities on multisets for the same initial IMCG program.

We start by formally defining label and multiset synchronisation-bisimulations.
We have divided the conditions for better readability into the conditions refer-
ring to the “label part” and the conditions referring to the “multiset part”, even
though they are interconnected.

Definitions of label/multiset synchronisation-bisimulations

Definition 4.24. Given an IMCG program F without rates and F as in Def-
inition 4.9, SF = SynpsynJF K,fnvar⊥fnvar

JF KJF K, we call a binary relation R on

labels and a binary relation R′ on multisets accordingly label synchronisation-
bisimulation and multiset synchronisation-bisimulation if the conditions (A1)-
(A5) and (B1)-(B4) hold.

If `1R`2 then:

(A1) both labels are active, i.e. there exist C1 ∈ T and C2 ∈ T such that
⊥M [`1 7→ 1] ≤ C1 and ⊥M [`2 7→ 1] ≤ C2;
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(A2) Nameh(`1 ) = Nameh(`2 ) and additionally Name(`1 ) = Name(`2 ) if ∃C ∈
T s.t. `1 ∈ dom(C) or `2 ∈ dom(C) and |C| > 1;

(A3) {|C| | (C ∈ T) ∧ (`1 ∈ dom(C))} = {|C| | (C ∈ T) ∧ (`2 ∈ dom(C))};

(A4) for all M1R
′M2 such that `1 ∈ dom(M1) and `2 ∈ dom(M2) holds: M1 ∈

T iff M2 ∈ T;

(A5) G(`1)R′G(`2).

If M1R
′M2 then there exist sums M1 =

∑
i=1..n

M i
1+M ′1 and M2 =

∑
i=1..n

M i
2+M ′2

such that:

(B1) all labels in M ′1 and M ′2 are not active;

(B2) for all 1 ≤ i ≤ n, `1 ∈M i
1, `2 ∈M i

2 holds: `1R`2;

(B3) for all 1 ≤ i ≤ n, 1 ≤ k ≤ 2 holds: if |M i
k| > 1 then ∀` ∈ M i

k holds
M i
k =

∑
(`′∈dom(K(`)))∧(`′∈dom(Mk))⊥M [`′ 7→ 1];

(B4) for all 1 ≤ i, j ≤ n, all `1 ∈ dom(M i
1), `2 ∈ dom(M j

1 ), `3 ∈ dom(M i
2) and

`4 ∈ dom(M j
2 ) holds S((`1, `2)) = S((`3, `4)).

We call the coarsest relations R and R′ fulfilling the conditions above label
synchronisation-bisimilarity and multiset synchronisation-bisimilarity accord-
ingly. We denote `1 ∼synLab `2 (label synchronisation-bisimilar) and M1 ∼synM

M2 (multiset synchronisation-bisimilar) if (`1, `2) is contained in some label
synchronisation-bisimulation and (M1,M2) is contained in a corresponding to
it multiset synchronisation-bisimulation.

Computing the coarsest label synchronisation-bisimulation requires the compu-
tation of SF = SynpsynJF K,fnvar⊥fnvar

JF KJF K beforehand. From Tables 4.7, 4.8

and 4.9 we can see that the time complexity of the computation of fnvarΦJF K is
linear in the syntax of F for any environment while the computation of psynJF K
and SynR,ΦJF K (given the fixed environments) are quadratic in the syntax of
F , therefore as a whole the time complexity of computing SF is quadratic in
the syntax of F .

We can assess the time and space complexities of computing the coarsest label
synchronisation-bisimulation in a similar way as it has been done for computing
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the coarsest label chain-bisimulation in Section 4.3.2. The initial partition of
labels can be done based on the conditions (A1)-(A3). The further refinement
of partition classes should take into account the conditions (A4)-(A5). The
time complexity of computing the coarsest label chain-bisimulation will be then
O(m ∗ log(n)) and the space complexity will be O(m), where n = |Labs(F )|
and m is the number of generate-relations plus the number of chains in T,
i.e. m = |{`1 ∈ Labs(F ), `2 ∈ Labs(F )|`1 −−→ `2}|+ |T|. Deciding whether two

multisets are synchronisation-bisimilar can be then done in the linear time in
the number of labels in the domains of two multisets.

Lemma 4.25 (Synchronisation-bisimilarities). Given an IMCG program F with-
out rates and F as in Definition 4.9, the label and multiset synchronisation-
bisimilarities for F are equal accordingly to the unions of all label and multiset
synchronisation-bisimulation relations for F .

Proof. The proof is a usual proof of bisimilarities being the union of all bisim-
ulations, see for example [BK08]. We have to show that the unions of all la-
bel/multiset synchronisation-bisimulation relations are accordingly label/multiset
synchronisation-bisimulations itself. This can be done by going through Def-
inition 4.24 and showing that all the conditions are fulfilled also for unions
of relations. The unions are on the other hand the coarsest synchronisation-
bisimulations because there cannot exist any strictly coarser relations fulfilling
all the conditions in Definition 4.24 as they would be included in the unions.

Properties of multiset synchronisation-bisimilarity

We will show the properties of synchronisation-bisimilarities relation on multi-
sets (given a fixed IMCG program F ). These are relations that are the most
interesting for us: as the coarsest synchronisation-bisimulations they captures
the most cases of the similar behaviour of states in the labelled transition system
representing the semantics of F . We will prove the following statements:

1. the relation ∼synM is an equivalence relation on multisets;

2. any multiset synchronisation-bisimulation which is an equivalence, there-
fore also ∼synM , is a bisimulation relation on M;



118 Bisimulation relations and Pathway Analysis

Lemma 4.26 (Synchronisation-bisimilarities are equivalences). Given an IMCG

program F without rates and F as in Definition 4.9, the relations ∼synLab and ∼synM

are equivalence relations on accordingly the active labels from Lab and on M.

Proof. We need to prove that the relations ∼synLab and ∼synM on active labels and
on multisets are reflexive, symmetric and transitive.

Let the relations ILab ⊆ Lab×Lab and IM ⊆M×M be the identity relations
on the active elements of Lab and on M accordingly. Then all conditions from
Definition 4.24 are fulfilled for both ILab and IM, therefore ILab ⊆∼synLab and
IM ⊆∼synM (according to Lemma 4.25 the relations ∼synLab and ∼synM are unions
of all label/multiset synchronisation-bisimulations) and the relations ∼synLab and
∼synM are therefore reflexive.

Assume that there are some label/multiset synchronisation-bisimulations R ⊆
Lab × Lab and R′ ⊆ M ×M. We will define the relations R−1 and R′−1

in the following way: (`2, `1) ∈ R−1 iff (`1, `2) ∈ R and (M2,M1) ∈ R′−1
iff

(M1,M2) ∈ R′. Then the relations R−1 and R′−1
satisfy all the conditions in

Definition 4.24. This holds for all label/multiset synchronisation-bisimulations
– therefore ∼synLab and ∼synM are symmetric as they are the unions of all la-
bel/multiset synchronisation-bisimulations.

Similar arguments hold for transitivity: assume that there is a pair of la-
bel/multiset synchronisation-bisimulations R1 ⊆ Lab × Lab, R′1 ⊆ M ×M,
R2 ⊆ Lab×Lab, and R′2 ⊆M×M. Then the relation R1 ◦R2 contains a pair
(`1, `2) iff there exist some pairs (`1, `3) ∈ R1 and (`3, `2) ∈ R2. The relation
R′1◦R′2 contains a pair (M1,M2) iff there exist some pairs (M1,M3) ∈ R′1 and
(M3,M2) ∈ R′2. The relationsR1◦R2 andR′1◦R′2 satisfy all conditions in Def-
inition 4.24. As this holds for all label/multiset synchronisation-bisimulations
and ∼synLab and ∼synM are the unions thereof, they are transitive as well.

Another important fact that we will need in order to prove that synchronisation-
bisimulations are bisimulations on M is proved in Lemma 4.27.

Lemma 4.27 (Syn operator). Given an IMCG program F without rates and F
as in Definition 4.9, S := SynpsynJF K,fnvar⊥fnvar

JF KJF K and a pair of relations

(R,R′) that are accordingly a label and a multiset synchronisation-bisimulations,
it holds that in case
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Figure 4.5 – Graphical representation of Lemma 4.27.

1. `1R`2 and `′1R`
′
2;

2. S((`1, `
′
1)) = S((`2, `

′
2));

3. there exist label paths `1
∗−−→ `3, `′1

∗−−→ `′3, `2
∗−−→ `4 and `′2

∗−−→ `′4 such

that `3R`4 and `′3R`
′
4

then S((`3, `
′
3)) = S((`4, `

′
4)).

Proof. The statement of the lemma is schematically represented in Figure 4.5.
Synchronisation-bisimilar labels are denoted by the same colours; the statement
to prove is brought out by the red circle. Note that, for example, `1 qAq `′1 in
Figure 4.5 actually means that S((`1, `

′
1)) = A.

In the proof of Lemma 4.22 it was mentioned that from a ∈ SF ((`2, `
′
2)), `2

∗−−→

`4
∗−−→ `5 and `′2

∗−−→ `′4
∗−−→ `′5 with Name(`5 ) = Name(`′5 ) = a follows a ∈

SF ((`4, `
′
4)). It is therefore enough to show that we have exactly this situation

in the conditions of the lemma.

We can easily prove (from the definition of the operator psyn) that B ⊆ A,
therefore for each a ∈ B holds a ∈ A. Besides, if labels corresponding to a are
reachable from `3 and `′3 (we have proved this in Lemma 4.22), for example,

`3
∗−−→ `6 and `′3

∗−−→ `′6, then some labels bisimilar to them are reachable

from `4 and `′4, i.e. there exist the labels `5 and `′5 reachable from `4 and `′4
such that Nameh(`5 ) = Nameh(`6 ) and Nameh(`′5 ) = Nameh(`′6 ). The last
statement follows from the condition (A2) for bisimilar labels. It is however
also the case that `5 and `′5 do not constitute chains on their own, because
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`6 and `′6 do not constitute chains on their own (we have proved in Lemma
4.22 that they participate in a chain together). Therefore it also holds that
Name(`5 ) = Name(`6 ) = a and Name(`′5 ) = Name(`′6 ) = a. Altogether this is
exactly the case described at the beginning of the proof and therefore a ∈
SF ((`4, `

′
4)) holds.

We will prove now the main result of this section – that the synchronisation-
bisimulation is a bisimulation itself.

Lemma 4.28 (Synchronisation-bisimulation is a bisimulation). Given an

IMCG program F without rates, F as in Definition 4.9 and a pair of equivalence
relations (R,R′) that are accordingly a label and a multiset synchronisation-
bisimulations, then from M1R

′M2 follows M1 ∼ M2 for any M1 ∈ M and
M2 ∈ M. In particular, from M1 ∼synM M2 follows M1 ∼ M2 for any M1 ∈ M
and M2 ∈M.

Proof. We need to show that the relation R′ is a bisimulation on M in the
sense of Definition 4.11 if the syntax of the initial program F does not contain
rates. This will be enough to show the statement of the lemma because the
relation ∼synM is an equivalence relation according to Lemma 4.26 and it is a
bisimulation according to Lemma 4.25.

As there are no rates in the syntax of F , it is enough to prove the condition
1 from Definition 4.11. From the condition A4 in Definition 4.24 follows that
for any enabled chain C1 ≤ M1 there exists an enabled chain C2 ≤ M2: for
C1 ≤ M1 and C1 ∈ T follows that there exist a multiset M ≤ M2 such that
C1 ∼synLab M and M ∈ T. Both chains correspond either to τ or to the same
external action name according to the condition A2 in Definition 4.24.

Further we can use the condition B3 in Definition 4.24 in order to prove that
(M1 − KM(C1))R′(M2 − KM(C2)) as all components in blocks will be killed
by the execution of the chains. The condition A5 in Definition 4.24 proves
GM(C1)R′GM(C2) and, similarly to the discussion in the proof of Lemma 4.20,
we can determine that all newly generated labels can neither be killed or kill
already exposed labels – this can be shown by induction on the syntactic struc-
ture of F . Together with Lemma 4.27, from which follows (speaking in a sim-
plified way) that all synchronising relations between “newly generated” active
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labels and the already present ones in M1 and M2 are the same, this proves
(M1 − KM(C1) + GM(C1))R′(M2 − KM(C2) + GM(C2)) and this fulfilles the
condition 1 in Definition 4.11.

4.4.3 Synchronisation-, chain- and “ordinary” bisimula-
tions

We will prove that the relation ∼chM defined in Section 4.3.2 is contained in ∼synM

and is in general strictly smaller than the latter. This will demonstrate that we
are not “losing” any information, i.e. any pairs of bisimilar states, while moving
from the chain-bisimilarity to the synchronisation-bisimilarity.

Lemma 4.29 (Chain- and synchronisation-bisimilarities). Given an IMCG pro-
gram F without rates and F as in Definition 4.9, then from M1 ∼chM M2 follows
M1 ∼synM M2 for any M1 ∈M and M2 ∈M.

Proof. It is enough to show that the relations ∼chLab and ∼chM are accordingly a
label synchronisation-bisimulation and a multiset synchronisation-bisimulation.
This will obviously prove the statement of the lemma as any label/multiset
synchronisation-bisimulation is included in the label/multiset synchronisation-
bisimilarities.

Most of the conditions in the Definition 4.24 clearly hold. For example, A3
holds because either chain-bisimilar labels participate in the same chains or are
interchangeable, therefore the sizes of their chains are the same. The condition
A4 for label synchronisation-bisimulation follows from Lemma 4.19: from this
lemma follows that if all labels in two multisets are pairwise connected by the
relation ∼chLab and one of the multisets is a chain, then the other one is also a
chain. The condition B3 is true because we can assign all M i

ks to consist of only
one label such that for all M i

1 = {`} and M i
2 = {`′} it holds that ` ∼chLab `

′.

It is left to prove the condition B4 in the definition of multiset synchronisation-
bisimulation. We show it schematically in Figure 4.6, where qAq denotes the
fact that S((`1, `

′
1)) = A and the red circle emphasises the fact to be proved.

Due to the symmetry it is enough to prove that for any a ∈ S((`1, `
′
1)) also

holds a ∈ S((`2, `
′
2)). We can prove the statement by contradiction. Assume

that we have a situation where `1 ∼chLab `2, `′1 ∼chLab `′2, a ∈ S((`1, `
′
1)) but
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Figure 4.6 – Graphical representation of the proof for condition B4 in the defi-
nition of multiset synchronisation-bisimulation (Definition 4.24) in Lemma 4.29.

Figure 4.7 – Illustration of the proof by contradiction of Lemma 4.29.

a 6∈ S((`2, `
′
2)). Then according to Lemma 4.22 there exist label paths `1

∗−−→ `3

and `′1
∗−−→ `′3 such that ⊥M [`3 7→ 1, `′3 7→ 1] ≤ C for some C ∈ T. From the

conditions of chain-bisimilarity it will follow that there exist corresponding label
paths `2

∗−−→ `4 and `′2
∗−−→ `′4, with `3 ∼chLab `4 and `′3 ∼chLab `′4, however there

does not exist any chain C ′ ∈ T such that ⊥M [`4 7→ 1, `′4 7→ 1] ≤ C ′ (otherwise
from Lemma 4.22 would follow a ∈ S((`2, `

′
2))). Schematically the situation is

represented in Figure 4.7.

We show that this is impossible. Assume that both `3 ∼chLab `4 and `′3 ∼chLab `
′
4

are caused by `3 being interchangeable with `4 and by `′3 being interchangeable
with `′4. We can make a conclusion that a chain C ′ := C−⊥M [`3 7→ 1, `′3 7→ 1]+
⊥M [`4 7→ 1, `′4 7→ 1] exists in which both `4 and `′4 participate and this will
contradict our previous assumptions. If on the other hand `3 is interchangeable
with `4, but `′3 participates together with `′4 in all the chains then C ′ := C −
⊥M [`3 7→ 1] + ⊥M [`4 7→ 1] is a chain and ⊥M [`4 7→ 1, `′3 7→ 1, `′4 7→ 1] ≤ C ′

which is again a contradiction. The last case is symmetrical. We can deduce
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that there necessary exists a chain in which both `4 and `′4 participate and
therefore our initial assumption was wrong.

Note that ∼chM 6=∼
syn
M in general. This is first of all due to more permissive bisim-

ulation relation on labels: it can be the case that ∼chLab 6=∼
syn
Lab. For example,

in the IMCG expression (b`5 .a`1 .0 qaq c`6 .a`2 .0) q∅q (d`7 .a`3 .0 qaq e`8 .a`4 .0) it
holds a`i ∼synLab a`i for any 1 ≤ i, j ≤ 4 while it only holds a`1 ∼chLab a`2 and
a`3 ∼chLab a`4 . We have added the additional actions b`5 , c`6 , d`7 and e`8 in order
to illustrate that all a`is may be exposed independently of each other.

Also note that the relation ∼synLab in contrast to the relation ∼chLab is “not enough”
anymore to determine bisimilar multisets. For instance, in the example above we
would consider ⊥M [`1 7→ 1] [`2 7→ 1] and ⊥M [`1 7→ 1] [`3 7→ 1] bisimilar based
only on the relation ∼synLab but in fact they are not. Therefore we addition-
ally need the results of the operator Syn in order to to “narrow down” the
equivalence relation on the multisets to a bisimulation relation.

We could further extend the bisimulation relation on multisets in several ways.
We could identify labels with different external action names that have been
internalised. We do this for the synchronisation bisimulation only for labels
that constitute chains on their own. We cannot extend this identification to the
labels that do not constitute chains on their own directly because the operator
Syn should be adapted. For example, the processes X := a`1 .X qaq Y := a`2 .Y
and X := b`3 .X q bq Y := b`4 .Y could only be identified if the operator Syn
can determine that `1 and `2 synchronising on a are equivalent to `3 and `4
synchronising on b.

Another possible improvement is identifying sets of parallel labels that have
an equivalent behaviour. For example, in the IMCG process (X := a`1 .X q
aq Y := a`2 .Y ) + Z := a`3 .Z we could realise that {`1, `2} and {`3} behave in
the same way. Note that our synchronisation-bisimilarity will not relate different
numbers of parallel labels to each other. The question remains however how to
construct a bisimulation relation which will stay both sound and scalable while
checking all n-to-m label correspondences.

It is also very desirable to extend our compositional approach of constructing
bisimulation relations to IMCG programs with rates. It will not be easy because
while determining whether two states are bisimilar their joint rates of transitions
to classes of bisimilar states should be compared. This means that all rates in
a state should be known – which is not necessary for the actions.
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An interesting topic for future work is the question concerning subclasses of
IMCG for which we can construct bisimilarities with our methods, i.e. in which
cases our methods will have the highest “gain” compared to the usual methods
of identifying bisimilar states. We conjecture that synchronisation-bisimilarities
coincide with the bisimilarity on M first for the same subclasses of IMCG as
chain-bisimilarities – i.e. for the linear fragment of IMCG without rates, bisimi-
lar states in a symmetrical composition in the sense of [Her02] with linear frag-
ments not necessary syntactically equal but with the same semantics. More-
over, we can recognise the bisimilarity of two processes with several different
(but bisimilar) subprocesses in parallel and the same synchronisation structure
– for example, if none of the actions is blocked by the environment. We leave
therefore the identification of subclasses of IMCG for which the synchronisation-
bisimilarity coincides with the bisimilarity on M as a possible direction for future
work.



Chapter 5

Reachability and Pathway
Analysis

In this chapter we will discuss how the results of the Pathway Analysis of IMCG

can be used in order to answer some questions which usually fall into the model
checking domain. At the beginning of the chapter in Section 5.1 we will discuss
how the so-called valid states can be determined. The idea is to be able to
determine that some configurations of exposed labels are impossible (“not valid”,
not reachable) and therefore can be excluded from the further analysis. This
can simplify matters a lot, because instead of the naive approach of considering
2|Labs(F)| states of the labelled transition system representing the semantics of
some IMCG program F we will not consider those states with exposed label from
2|Labs(F)| that definitely cannot be reached from the initial state representing
the exposed labels of F . Note that we are identifying in our discussion IMCG

programs and their derivatives on the one hand and their exposed labels on the
other hand: we can do this in case the initial IMCG program F and its Pathway
Analysis results in F as Definition 4.9 are fixed, because the Pathway Analysis
on IMCG programs is correct and precise (see Section 3.5).

The idea is to exploit the fact that the presence of some labels in the domain of
a label multiset which represents exposed labels of a derivative of F requires the
presence of some other labels and implies the absence of some other labels. We
determine these kinds of implications by using Static Analysis, i.e. by applying
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Figure 5.1 – Illustration of the relation between “valid” and reachable states,
given an IMCG program F .

several operators defined by us to the syntactic description of F and combining
the results returned by them into the function Valid which returns a boolean
value. We get an over-approximation of valid states, i.e. in general some states
for which the function Valid returns true are in fact unreachable from EΓJF K.
It is however always the case that states for which Valid returns false cannot be
reached from EΓJF K. See Figure 5.1 for an illustration.

Further developments in this chapter include an illustration of how the well-
known model-checking algorithms can be transferred to the Pathway Analysis
setting. We consider as an example so-called Zeno states and an algorithm
for computing a set of all Zeno states in Section 5.2. An IMCG expression
E is called Zeno if there exists an infinite path starting from E such that all
transitions are decorated by τ , i.e. are internal transitions. Such behaviour is
often considered unrealistic in concrete systems (no time passes and the action
transitions also cannot be blocked by the environment as all the actions are
internal) – therefore checking a model for the absence of Zeno states represents
an important task. We transfer the definition of Zeno states and the standard
algorithm for their computation to our setting of label multisets, with some
small adjustments.

In the algorithm for computing label multisets that are Zeno, i.e. correspond
to exposed labels of Zeno IMCG expressions derivable from an IMCG program
F for which the Pathway Analysis has been conducted, we are utilising the
information on valid states returned by the described above function Valid. As
the function Valid returns an over-approximation of states reachable from an
initial IMCG program F , it could in fact be the case that some of the Zeno
states computed by us are simply unreachable – an additional check is required
in order to determine whether they are in fact reachable or not. On the other
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hand, if we do not find any Zeno states then we can be sure that the labelled
transition system representing the semantics of F does not contain any Zeno
states.

Consequently we discuss similar problems – for example, model-checking a sys-
tem for deadlock states – that are even simpler than computing Zeno states.
Finding deadlock states requires only direct inspection of enabled chains in all
valid states. If no deadlock states have been found, then we can be sure that the
system is deadlock-free, otherwise the reachability of the found deadlock states
should be additionally checked.

In the following sections we discuss the questions of reachability, both within an
unlimited time (Section 5.3) and “timed” reachability (Section 5.4). We deter-
mine which labels are (in an over-approximation of) potentially reachable labels
from an initial set of exposed labels (Section 5.3.1) and show how to update our
approximation after one semantic step without recomputing everything from
scratch (Section 5.3.2). We also touch upon the question of how to determine
which labels are not just reachable a finite number of times but can be gener-
ated or executed an infinite number of times – they are in some sense “renewable
resources” (Section 5.3.3).

Finally, we will compute the minimum expected time to reach one set of labels
from another set in Section 5.4. We can only compute the expected time for
IMCG processes because the durations of transitions are not fixed but are ex-
ponentially distributed instead. “Minimum” refers to the fact that we compute
the expected time not for one fixed scheduler but for a class of schedulers – see
Section 2.3 for a discussion on schedulers. We consider only so-called simple,
also called positional schedulers (see, for example, [Put94] or [NSK09]) which are
both history-independent and time-abstract, and therefore are especially simple
to analyse – hence the name. We also do not do the computations for all IMCG

programs but only for linear ones, with an additional syntactic restriction. We
are however confident that our method is extendable to a broader subclass of
IMCG.

Note that even though we are working with finite labelled transition systems,
and therefore computing the exact results for such systems is possible, the al-
gorithms that we have developed in this chapter are mostly computing over-
approximations of actual system properties. For example, in the reachability
algorithm in Section 5.3.1 we only determine for each separate label whether
it is reachable or not and do no take into account the “interplay” between the
labels, when some labels are blocked and some other labels have, for example, to
be executed several times in order to some other labels to become exposed. The
positive side of the loss in precision is the gain in efficiency of computation and
in memory usage. For example, we do not need to build the whole labelled tran-
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sition system of an initial IMCG program F but only to compute the Pathway
Analysis and several additional operators on F and to post-process the results.
For reachability we do the reachability analysis on labels and not on states –
remember, that there can be maximal 2|Labs(F)| states but only |Labs(F )| labels.

5.1 Characterisation of valid states

We will define two operators – excl and choice – which will help us to determine
which labels exclude the presence of each other (the operator excl) and which
labels presume the presence of each other. The operator excl simply uses the
fact that there is a natural order in labels’ appearance: for example, in the
IMCG program X := a`1 .b`2 .X the presence of the label `1 excludes the label
`2 and the other way round. The situation is more complex with the operator
choice: here we are using the fact that the presence of some labels can indicate
that two or more potential subprocesses did not start their execution yet, so
all their initial labels are exposed. Consequently we combine the results of excl
and choice in the function Valid.

5.1.1 Mutually exclusive labels

We define the operator excl :IMCG → 2Lab×Lab in Table 5.1. It returns pairs
of labels such that if one of the labels is exposed then the other one is neces-
sarily not exposed (the operator is symmetric). We will prove this fact in the
Lemma 5.1. We can subsequently rule out any M ∈M such that `1 ∈ dom(M ),
`2 ∈ dom(M ) and (`1, `2) ∈ exclJF K as not describing exposed labels of any E
derivable from an initial IMCG program F . The rules in Table 5.1 are mostly
clear except perhaps rule (5): labels in two choice branches are mutually ex-
clusive with the exception of labels on the highest syntactic level. Thus in the
IMCG program X := a`1 .b`2 .X + c`3 .d`4 .X the labels `2 and `4 are mutually
exclusive while the labels `1 and `3 are not mutually exclusive. We can use an
empty environment for computing exposed labels in rule (5) because summands
in F are guarded according to the syntax of IMCG (see Table 3.1).

Lemma 5.1 (Excl operator). Given an IMCG program F , F as in Definition

4.9, then for any F
∗−−→ E holds:

((`1, `2) ∈ exclJF K) ∧ (`1 ∈ dom(EΓJEK))⇒ (`2 6∈ dom(EΓJEK)).
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exclJa`.X K = ∅ (1)
exclJλ`.X K = ∅ (2)
exclJa`.PK =

⋃
`′∈Labs(P){(`, `′), (`′, `)} ∪ exclJPK (3)

exclJλ`.PK =
⋃
`′∈Labs(P){(`, `′), (`′, `)} ∪ exclJPK (4)

exclJP1 + P2K = (
⋃
`1∈Labs(P1)\dom(E∅JP1K)

⋃
`2∈Labs(P2)\dom(E∅JP2K)

{(`1, `2), (`2, `1)}) ∪ exclJP1K ∪ exclJP2K (5)
exclJhide A in PK = exclJPK (6)
exclJP1 qAq P2K = exclJP1K ∪ exclJP2K (7)

exclJX := PK = exclJPK (8)
exclJ0K = ∅ (9)

Table 5.1 – Definition of the operator excl : IMCG → 2Lab×Lab.

Proof. We prove the lemma by proving the more general statement that it
holds ((`1, `2) ∈ exclJF K)∧ (`1 ∈ dom(EΓJE′′K))⇒ (`2 6∈ dom(EΓJE′′K)) also for
any subexpression E′′ of E, i.e. for any E′′ � E. This will establish the lemma
as it obviously holds E � E. We make our proof by induction on the number
of steps in the derivation F

∗−−→ E.

The statement about subexpressions holds for F : we can show by induction on
the structure of F using the rules of the operator excl in the Table 5.1 that for all
E′′ � F , `1 ∈ dom(EΓ JE ′′K) and `2 ∈ dom(EΓ JE ′′K) it holds (`1, `2) 6∈ exclJF K
and this is logically equivalent to the statement that we are proving.

We have to prove now that if the statement holds for some E such that F
∗−−→ E

then it also holds for E′ such that E −−→ E′. We prove this by induction on the

transition derivation according to the rules in Table 3.5.

The statement is clear for the rules (1) and (10) in Table 3.5 because in these
cases E′ � E. The statement easily follows from the induction hypothesis for
the majority of other rules (remember that Labs(P1 ) ∩ Labs(P2 ) = ∅ holds for
P1 qAq P2 � E). For the rules (9) and (16) we need however to additionally
show that the statement of the lemma holds for P{X := P/X} if it holds for
X := P – this is necessary for the induction hypothesis to become applicable.

We can deduce the statement for all subexpressions P ′′ � P directly from the in-
duction hypothesis for X := P. For subexpressions of the type P ′′{X := P/X}
with P ′′ � P we additionally apply Lemma 3.6. This lemma states that
EΓJE′′K = EΓJE′′{X := E′/X}K holds for all IMCG expressions E′′ andX := E′.
We can deduce therefore EΓJP ′′K = EΓJP ′′{X := P/X}K and in this way deter-
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mine that the induction hypothesis for subexpressions of X := P is applicable
also for P ′′{X := P/X} with P ′′ � P.

5.1.2 Labels that appear together

In the following we will define a second operator – the operator choice. It returns
on an IMCG program a set of pairs of sets of labels. This is different from the
operator excl which we have defined above and which returns pairs of just labels
and not sets of labels. This is because we would like to determine the situation
where there is a choice not only between individual labels but between sets. For
example, for the IMCG program a`1 .0 + (b`2 .0 qA q c`3 .0) we would obtain
{({`1}, {`2, `3})} as the result of the application of choice. Intuitively, we can
choose between an execution of the label `1 on the one hand and the execution
of both the labels `2 and `3 on the other hand.

See the rules for the operator choice in Table 5.2. The most important rule is
rule (5). The idea is to “cross” the choice sets of P1 and P2 which are exposed
(saved accordingly in S1 and S2) with each other. In case P1 or P2 have some
exposed labels which are not yet returned as the choice sets of accordingly P1

or P2, then new choice sets are created and added to the set S. The choice sets
returned by choice on separately P1 and P2 are also included. The operator
choice is defined to be symmetric, therefore for a pair of choice sets L1 and L2

it is enough to add (L1, L2) to the result of choiceJF K – this would automatically
mean that (L2, L1) is in choiceJF K as well.

We will show in Lemma 5.2 how to use the results of the operator choice on
an IMCG program F in order to rule out sets of exposed labels which do not
characterise any derivation of F . Intuitively, any set of labels L1, such that
|L1| > 1 (i.e. L1 contains more than one element), and (L1, L2) ∈ choiceJF K
for some L2, represents the exposed labels of a synchronisation construct (see
rule (5) in Table 5.2). If L2 contains more than one element as well then
it represents exposed labels of another synchronisation construct, otherwise it
represents simply an exposed prefix. It is easy to notice that if at least one of
the labels in a synchronisation construct has been executed, then only labels
from that synchronisation construct can become exposed anew. This is due
to the process identifier closeness of synchronisation constructs in well-formed
IMCG expressions, see rule (7) in Table 3.8. Therefore if both labels from L1

and L2 are exposed, this means that no label from L1 has ever been executed,
from which we can derive that all the labels in L1 have to be exposed. The
same holds for L2 if it also contains more than one element, i.e. also represents
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choiceJa`.X K = ∅ (1)
choiceJλ`.X K = ∅ (2)
choiceJa`.PK = choiceJPK (3)
choiceJλ`.PK = choiceJPK (4)

choiceJP1 + P2K = choiceJP1K ∪ choiceJP2K ∪ S∪⋃
(L1,L2)∈S1

⋃
(L′1,L

′
2)∈S2

{(L1, L
′
1), (L1, L

′
2), (L2, L

′
1), (L2, L

′
2)}

{(L′1, L1), (L′2, L1), (L′1, L2), (L′2, L2)} (5)

where S1 =
⋃
{(L1,L2)∈choiceJP1K|L1∪L2⊆dom(E∅JP1K)}{(L1, L2)}

S2 =
⋃
{(L′1,L′2)∈choiceJP2K|L′1∪L′2⊆dom(E∅JP2K)}{(L′1, L′2)}

S =



⋃
(L1,L2)∈S1

{(L1, dom(E∅JP2K)),
(dom(E∅JP2K), L1)}
if (S1 6= ∅) ∧ (S2 = ∅) ∧ (E∅JP2K 6= ⊥M)⋃
(L1,L2)∈S2

{(L1, dom(E∅JP1K)),
(dom(E∅JP1K), L1)}

if (S2 6= ∅) ∧ (S1 = ∅) ∧ (E∅JP1K 6= ⊥M)

{(dom(E∅JP1K), dom(E∅JP2K)),
(dom(E∅JP2K), dom(E∅JP1K))}

if (S1 = ∅) ∧ (S2 = ∅)∧
(E∅JP1K 6= ⊥M) ∧ (E∅JP2K 6= ⊥M)

choiceJhide A in PK = choiceJPK (6)
choiceJP1 qAq P2K = choiceJP1K ∪ choiceJP2K (7)

choiceJX := PK = choiceJPK (8)
choiceJ0K = ∅ (9)

Table 5.2 – Definition of the symmetric operator choice : IMCG → 22Lab×2Lab

given an IMCG program F and F as in Definition 4.9.

exposed labels of a synchronisation construct. Otherwise L2 represents only one
exposed prefix and the statement of the lemma is trivially true for it.

Lemma 5.2 (Choice operator). Given an IMCG program F , F as in Def-

inition 4.9, F
∗−−→ E, then from (L1, L2) ∈ choiceJF K, `1 ∈ L1, `2 ∈ L2,

`1 ∈ dom(EΓ JEK) and `2 ∈ dom(EΓ JEK) follows:

1. for all ` ∈ L1 holds ` ∈ dom(EΓ JEK);
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2. for all ` ∈ L2 holds ` ∈ dom(EΓ JEK).

Proof. We can prove the statement of the lemma by induction on the syntax
of F . In order to be able to prove the statement of the lemma by induction,
we need to prove a more general statement – that the statement of the lemma
holds for any E′′ � E, i.e. that from `1 ∈ dom(EΓ JE ′′K) and `2 ∈ dom(EΓ JE ′′K)
follows that for any ` ∈ L1 or ` ∈ L2 such that (L1, L2) ∈ choiceJF K holds
` ∈ dom(EΓJE′′K).

We prove the statement by induction on the number of transitions in F
∗−−→ E.

We can prove that the statement holds for F = E by induction on F , using the
rules for the choice operator in the Table 5.2 and the fact that F is uniquely
labelled. We will prove now that if F

∗−−→ E, E −−→ E′ and the statement holds

for E then it also holds for E′. We prove this by induction on the transition
derivation using the rules in the Table 3.5.

The statement holds for the rules (1) and (10) because it holds for any E′′ � E
and we have E′ � E. Most of the other rules easily follow from the induction
hypothesis. Note that the induction hypothesis is applicable for the rules (4)-(6)
and (13)-(14) because according to the rules of the choice operator in Table 5.2
for each (L1, L2) ∈ choiceJE1 qAq E2K holds either (L1, L2) ∈ choiceJE1K or
(L1, L2) ∈ choiceJE2K.

It is therefore left to show that if the statement of the lemma holds for any
E′′ � X := E then it also holds for any E′′ � E{X := E/X}. It is obvi-
ously true if E′′ � E. Otherwise E′′ = E′′′{X := E/X} with some E′′′ � E
and the statement of the lemma follows from Lemma 3.6. According to it,
EΓJE′′′{X := E/X}K = EΓJE′′′K and we can derive the statement from the in-
duction hypothesis for E.

We can explain the above lemma on an example. Take as an example the
process X := a`1 .X + Y := b`2 .Y qAq Z := c`3 .Z that can execute the action a
and return to the initial configuration with the exposed labels `1, `2 and `3.
Clearly if both `1 and `2 are exposed then also `3 is exposed, also if both `1 and
`3 are exposed then `2 is exposed. This is also what Lemma 5.2 predicts as the
choice operator returns the symmetric closure of {({`1}, {`2, `3})}.

However we will “lose” a part of the behaviour after choosing the second choice
alternative, i.e. either action b or action c. Therefore even if both `2 and `3 are
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exposed, it does not mean that `1 is exposed – and this corresponds to what
Lemma 5.2 is predicting. We cannot “redo” the choice of the second alternative
process later on – `1 will never become exposed again.

We saw in the above example that we are mostly interested in “choice sets”
which contain more than one label and are returned by the operator choice
in one of the pairs. The operator choice returns however also pairs with both
sets containing only one element. There are two reasons for this. First, it
would be hard to keep track of choice sets if we would only return those con-
taining more than one element on subexpressions: for example, we would like
choiceJX := a`1 .X + Y := b`2 .Y + (Z := c`3 .Z qAq d`4 .0)K to be the symmetric
closure of {({`1}, {`3, `4}), ({`2}, {`3, `4})}, but in this case we would need to
record in some way that {`1} and {`2} are alternative choice sets. Second, we
could use the results of choice for deciding some additional properties in the
future, where we will need to know which labels are in a “choice relation” with
each other.

The next Lemma 5.3 is easily explainable: it states namely that there cannot
be more choice alternatives in the derivative expressions than the ones already
present in the initial IMCG expression. We can however have a strict inclusion as
we have seen in the exampleX := a`1 .X + Y := b`2 .Y qAq Z := c`3 .Z

a−−−−−−−→
⊥M [`1 7→ 1]

Y := b`2 .Y qAq Z := c`3 .Z.

Lemma 5.3 (Choice operator: results inclusion). Given an IMCG program F ,

F as in Definition 4.9, F
∗−−→ E, then choiceJEK ⊆ choiceJF K holds.

Proof. It is enough to prove that from E −−→ E′ follows choiceJE′K ⊆ choiceJEK

for any IMCG expressions E and E′. We prove this by induction on the tran-
sition derivation.

This clearly follows for the base cases – the rules (1) and (10) in the Table 3.5
– from the rules of the choice operator in the Table 5.2. The statement follows
from the induction hypothesis for the rest of the rules from the Table 3.5 besides
the rules (9) and (16). In order to use the induction hypothesis also for them
we need to show that choiceJX := EK ⊇ choiceJE{X := E/X}K.

We prove this by showing that choiceJX := EK ⊇ choiceJE′′{X := E/X}K for
any E′′ � E. We can prove the latter by induction on the structure of E′′. This
is clear for the base syntax rules – (1)-(4) and (9) in Table 3.1. For rule (5) we
can use the Lemma 3.6 from which follows that EΓJP1K = EΓJP1{X := E/X}K
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Valid(M) =



false if dom(M ) 6⊆ Labs(F )

false if ∃`1, `2 ((`1, `2) ∈ exclJF K) ∧ ({`1, `2} ⊆ dom(M ))

false if ∃`1, `2, `, L1, L2 ((L1, L2) ∈ choiceJF K) ∧ (`1 ∈ L1)

∧(`2 ∈ L2) ∧ (` ∈ L1 ∪ L2) ∧ ({`1, `2} ⊆ dom(M ))

∧(` 6∈ dom(M ))

true otherwise.

Table 5.3 – Definition of the function Valid : M→ {false, true}, given an IMCG

program F and the results of choiceJF K and exclJF K.

and EΓJP2K = EΓJP2{X := E/X}K for any IMCG expressions P1 and P2. For
the rest of the syntactic rules we can apply the induction hypothesis.

5.1.3 Determining valid states

We can use now the results of the operators excl and choice on some IMCG

program F in order to predict which derivative states are possible and which are
not. This would be useful in constructing model-checking algorithms – we could
exclude some impossible states and in this way decrease the complexity of the
algorithms. In further developments (for example, in Table 5.5) we will use the
function Valid which will return for a label multiset a boolean value signalling
whether it is a possible multiset according to the functions excl and choice or
not.

We will assess now the complexity of computing the function Valid for a fixed
IMCG program F and the complexity of applying it to any multiset M with
dom(M) ⊆ Labs(F ). The complexity of computing Valid is determined by
the complexities of computing the results of applying the operators excl and
choice to F . These complexities are expressed as functions either of the size
of the syntax of F (counting all the operators, action names and delay rates
that appear in the syntax) or of the number of labels in F , i.e. of |Labs(F )|.
For uniquely labelled IMCG expressions there is however not a big difference
between the two, as the number of labels occurring in them and the size of their
syntactic description differ only by a linear parameter.

As we can see from Table 5.1, the time complexity of the computation of exclJF K
is quadratic in the syntax of F and the space complexity is quadratic in the
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number of labels in F : we would need a matrix of the size |Labs(F )|2 for saving
the computed exclusion relation. The application to an arbitrary multiset M
with dom(M ) ⊆ Labs(F ) has also the quadratic time complexity in the number
of labels in F : for each label in dom(M ) we should check all the labels it excludes
for their presence in dom(M ).

The computation of choiceJF K can be implemented with the time complexity
linear in the size of the syntax of F and the space complexity linear in the
number of labels in F : for each biggest sum in the syntactic description of F we
could have a separate partition and for each summand inside the sum we would
have its exposed labels forming a “subpartition”. The application of the results
of choiceJF K to some multiset M with dom(M ) ⊆ Labs(F ) can be implemented
as linear in the number of labels in the syntax of F as well: we should check
whether there exist two subpartitions in one partition that both contain labels
from dom(M ) but are not fully contained in dom(M ).

5.2 Computing Zeno states

In this section we will demonstrate how the usual model-checking algorithms
for labelled transition systems can transferred to our setting of the Pathway
Analysis of IMCG systems. The idea is that we can first perform the Pathway
Analysis on an IMCG program computing the tuple F as in Definition 4.9,
compute the function Valid as in Table 5.3 and then based on the gathered
information do the model-checking of formulas from, for example, CTL [CES86]
or ACTL [NV90] logics.

Even though the algorithms that we intend to use are well-known (see, for
example, [BK08]), the benefit of our method is that we do not need to build
a labelled transition system induced by the semantics of an IMCG program
before the actual model-checking procedure. In the standard setting a labelled
transition system is constructed for an IMCG program by the application of the
Structural Operational Semantics rules (some abstraction can take place at this
stage though) before the actual model checking can take place. We can on the
other hand do the computations on the “valid” states (according to the function
Valid defined in Table 5.3) – this may lead to a lower space complexity as we
have a more compact way of representing the semantics of the system by saving
only valid states and not the transitions between them.

In case some valid states will be found that satisfy the logical formula it would
be necessary to check whether the found states are in fact reachable from the
initial state. Also in this case we could use the methods for computing an over-
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approximation of reachable labels (see Section 5.3) and in this way avoid the
building of the whole labelled transition system. There are also other potential
benefits of our method due to the fact that states have an internal structure
which is known to us – we can, for example, ignore some of the labels that are
not important for us, thus merging together a number of states that only differ
in their “unimportant” labels. This could considerably reduce the state space.

We will discuss the CTL/ACTL model checking of IMCG on the example of
computing a set of so-called Zeno states. As usual, we start with some initial
IMCG program and understand under “states” all the IMCG expressions that
can be derived from the initial program by the application of the Structural
Operational Semantics rules. States are Zeno if they are in the coarsest relation
such that they can make an internal move, i.e. a transition with the τ -action,
which will lead to a Zeno state as well (see Definition 5.4). For any Zeno
state there exists therefore an infinite path starting from it with only internal
actions. This behaviour can be easily captured by a formula in the ACTL logic.
Computing Zeno states can also be regarded as a example of computing sets
of states with properties that can be formulated co-inductively, i.e. of states
that exhibit some behaviour and can do a transition into states having the same
properties.

Definition 5.4 (Zeno states). An IMCG expression is called Zeno if it is con-
tained in the coarsest relation R on IMCG such that for each E ∈ R there exists
a semantic transition E

τ−−→ E′ to an IMCG expression E′ ∈ R.

Definition 5.4 concerns IMCG expressions but it can be easily converted into
the definition for the multisets of labels. The property of states characterised
by multisets of labels to be Zeno can be expressed as the greatest fixed point
of an order-preserving endofunction. See Table 5.4 for the definition of the
endofunction FZeno which operates on sets of label multisets and returns a set
of valid multisets such that each label multiset in it has a derivative in the input.
The derivation should be through a τ -chain. Note that we are identifying IMCG

expressions in Definition 5.4 with their exposed labels in Table 5.3. It is clear
that we need an initial IMCG program F to be fixed, its Pathway Analysis to
be conducted and all the functions from the tuple F as in Definition 4.9 to be
computed before defining the function FZeno.

In Lemma 5.5 we will prove that multisets of exposed labels of Zeno IMCG

expressions indeed constitute the greatest fixed point (GFP) of the function
FZeno defined above. In this way we will prove that we got a transition from
IMCG expressions to multisets “right” in our definition of the function FZeno.
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FZeno(S ) = {M ∈M|(Valid(M)) ∧ (∃C ∈ T (Nameh
ch(C) = τ)∧

(C ≤M) ∧ (M −Kch(C) +Gch(C) ∈ S)}

Table 5.4 – Definition of the endofunction FZeno : 2M → 2M, given an IMCG

program F and F as in Definition 4.9.

Lemma 5.5 (Zeno processes). Given an IMCG program F , F as in Definition

4.9 and F
∗−−→ E, then E is Zeno iff EΓJEK is contained in the greatest fixed

point of FZeno.

Proof. First of all, there exists the greatest fixed point of the function FZeno:
we can regard 2M as a complete lattice with ⊆ as a partial order (set inclusion
relation). In this case FZeno is an order preserving function: it is easy to see
that from S1 ⊆ S2 follows FZeno(S1) ⊆ FZeno(S2). Knaster-Tarski theorem is
therefore applicable and the function FZeno has its greatest fixed point on 2M.

We will prove now the statement of the lemma. If E is not Zeno then each se-
quence of states starting from it has the following form: E1

τ−−→ E2...En−1
τ−−→

En and En
6τ−−→, with E = E1 and n ≥ 1. Let fp be a fixed point of the function

FZeno. Then EΓ JEK 6∈ fp due to the following reasoning: assume EΓ JEK ∈ fp.
Then there exists a transition such that E −−→ E2 and EΓJE2K ∈ fp, from the lat-

ter would follow the existence of the transition E2 −−→ E3 such that EΓ JE3 K ∈ fp

and so on until EΓ JEnK ∈ fp. The last however is impossible because EΓJEnK
is not in a co-domain of FZeno: there is no chain C representing an internal
action such that C ≤ En holds.

If on the other hand the state E is Zeno then there exists a transition E
τ−−→
C1

E2

such that the IMCG expression E2 is Zeno as well. Further there exists a
transition E2

τ−−→
C2

E3 such that the IMCG expression E3 is Zeno and so on.

Therefore, with E1 = E, holds
⋃

i=1 ..∞ EΓ JEiK = FZeno(
⋃

i=1 ..∞ EΓ JEiK) (all
EΓJEiKs are “valid”, there exists an exposed chain Ci representing an internal
action such that EΓJEiK − Kch(Ci) + Gch(Ci) = EΓJEi+1K ∈

⋃
i=1..∞ EΓJEiK),

i.e.
⋃
i=1..∞ EΓJEiK is a fixed point of FZeno. Note that we have in fact a finite

union because the domain and co-domain of FZeno are finite.

We can make a conclusion that
⋃

i=1 ..∞ EΓ JEiK ⊆ GFP(FZeno) (GFP denotes
the greatest fixed point), as any other fixed point of FZeno is smaller and there-
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parentsM(M ) , {M ′ ∈M|∃C ∈ T (Valid(M ′)) ∧ (Gch(C ) ≤ M )∧
(M −Gch(C ) + C ≤ M ′ ≤ M −Gch(C ) + Kch(C ))}

S := {M ∈M|∃C ∈ T (Valid(M )) ∧ (Nameh
ch(C ) = τ) ∧ (C ≤ M )};

Snz := {M ∈ S |@C ∈ T (Nameh
ch(C ) = τ) ∧ (C ≤ M )∧

(M −Kch(C ) + Gch(C ) ∈ S )};

while Snz 6= ∅ do
S := S\Snz ;

Snz := {M ′ ∈ S |(M ′ ∈
⋃

M∈Snz

parentsM(M )) ∧ (@C ∈ T (Nameh
ch(C ) = τ)

∧ (C ≤ M ′) ∧ (M ′ −Kch(C ) + Gch(C ) ∈ S ))};

Table 5.5 – Definition of the algorithm computing S = GFP(FZeno), given an
IMCG program F and F as in Definition 4.9.

fore included in the GFP(FZeno), which also means that EΓ JEK ∈ GFP(FZeno).
We have thus proved that the greatest fixed point of FZeno contains all multisets
corresponding to Zeno states and no other multisets.

We will present now an algorithm for computing the greatest fixed point of the
function FZeno. As already mentioned, the algorithm itself is not new – it is
essentially a usual model-checking algorithm for computing a CTL formula ∃�Φ
for a CTL-state formula Φ, see, for example, [BK08]. With our algorithm in
Table 5.5 we demonstrate besides the applicability of model-checking algorithms
in our setting also the use of the function parentsM which returns for a multiset
of labels all the valid multisets that could have generated the input multiset in
one step.

We start with computing a set S containing all “valid” states that additionally
have an enabled chain corresponding to the τ -action. Consequently the multisets
in S will be examined one by one in order to find those that do not have a τ -
transition into the set S – these are saved in the set Snz (non-Zeno) and deleted
from S. If Snz is not empty then the “parents” of label multisets in Snz are
examined and those of the parents that do not have any enabled τ -chain leading
to S are saved in the new Snz which is deleted from S in its turn. This examining
of “parents” continues as long as Snz is not empty. In Lemma 5.6 we will prove
that the just described algorithm (put more formally in Table 5.5) computes
exactly GFP(FZeno) in S.
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Lemma 5.6 (Computing GFP(FZeno)). Given an IMCG program F and F as
in Definition 4.9, the above algorithm terminates computing S = GFP(FZeno).

Proof. First of all, we can easily see that for any F
∗−−→ E −−→

C
E′ and

M = EΓJE′K holds EΓ JEK ∈ parentsM(M ): this is true because it holds that
EΓ JE ′K = EΓ JEK−Kch(C ) + Gch(C ) and due to the fact that Kch(C ) ≥ C for
any C ∈ T (the latter can be easily proved by induction on the structure of
F ). Moreover, {M ∈M|∃C ∈ T (Valid(M )) ∧ (Nameh

ch(C ) = τ) ∧ (C ≤ M )}
contains GFP(FZeno), because it clearly holds that any Zeno state can do
a τ -transition.

On the other hand, any M , EΓJEK such that M 6∈ GFP(FZeno) will be deleted
from S in one of the loop runs because for any such M holds that any path
starting from E reaches a state E′ such that E′

τ9. Assume that n is the length
of the longest path such that E

∗−−→ E′, where all the transitions are internal,

and E′
τ9. We can prove that M ∈ Snz in the n loop run – we can prove this

by induction on n. The base case is n = 0, i.e. E
τ9 and M will be deleted from

S without any loop run. Otherwise we have E
τ−−→ E′′

∗−−→ E′. As E′′ has been

deleted from S in the n− 1 loop run according to the induction hypothesis, it’s
“parent” E will be checked. It does not have however any other derivative in S
after executing a τ -chain (because all the other paths are shorter and therefore
all derivatives have been deleted from S before), therefore E will be deleted
from S in the n loop run.

Algorithm terminates, because S is finite and at least one element of S is deleted
in each loop run.

Some state properties that do not depend on the properties of the following
states (in contrast to Zeno) can be checked even more easily – for example, the
existence of deadlock states or of the states that have only transitions decorated
by external actions. In the latter case the execution of the external actions
can be blocked by the environment and the states will become deadlock states,
therefore the computation of such states can be of interest. For computing
deadlocks we could construct a set of multisets which are both valid according
to the function Valid and do not have any enabled chain. If the computed set
is empty then there are no deadlock states, otherwise we would need to check
whether the computed potential deadlock states are actually reachable from
the initial state. For computing states blockable by the environment we would
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compute a set of valid multisets such that all the chains enabled in the multisets
correspond to external action names.

In general the transfer of usual model-checking methods to the Pathway Anal-
ysis setting is quite straightforward, does not require the building of a labelled
transition system representing the semantics of an IMCG program beforehand
(but possibly at least a part thereof needs to be constructed afterwards, for
conducting reachability analysis for found states). We conjecture that the con-
siderable improvements are possible if we group states together with similar
properties before conducting the model checking – the similarities of the states
can be determined by comparing their corresponding exposed labels.

5.3 Over-approximation of reachability

In the previous sections we have often referred to the reachability problem which
consists in determining whether one state is reachable from another state in
some labelled transition system. Reachability is often regarded as the problem
in model checking, as it is the basic problem in the model-checking algorithms.
In this section we will discuss reachability of labels instead of reachability of
states: we assume that we know that some labels are/could be exposed and
we would like to assess which other labels could also become exposed. We
compute an over-approximation of reachable labels: all the labels that we assess
to be reachable are in fact reachable but we might asses as reachable some
labels that can in fact never become exposed. Consequently we discuss the
question of how to recompute our assessment after one transition and also how
to determine whether labels could be generated/executed only finite number of
times or unlimited number of times.

We can further combine the computation of reachable labels with the function
Valid from Table 5.3 in order to filter out not only invalid states according to
the function Valid but also states that have at least one label exposed that is
unreachable according to our assessment.

5.3.1 Computing reachable and executable labels

The schematic presentation of our algorithm is given in Figure 5.2. The basic
idea is quite simple: we start with a set of reachable labels equal to the set of
exposed labels in some initial state (this is a parameter M of the function reach
in Table 5.6), check which chains have all their labels in the set of reachable
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Figure 5.2 – Illustration for the computation of labels’ reachability.

reachM (L1, L2) = (dom(M) ∪ L1 ∪ L′1, L2 ∪ L′2)
L′1 :=

⋃
`∈L2

dom(G(`))
L′2 :=

⋃
{C∈T|dom(C)⊆L1} dom(C)

Table 5.6 – Definition of the function reachM : 2Lab×2Lab → 2Lab×2Lab given
an IMCG program F , F as in Definition 4.9, M ∈M.

labels, add labels generated by those chains to the set of reachable labels and so
on until the saturation. The algorithm presumes the foregoing Pathway Analysis
of an initial IMCG program F . It is clear why the algorithm will terminate: the
set of occurring labels is finite for any IMCG program.

The function reachM is defined in Table 5.6. The function is parameterised on
a label multiset M that will usually represent the exposed labels of an initial
IMCG program F or its derivative. The idea is that first of all we consider all
exposed labels in M as reachable (this is what dom(M ) refers to) and moreover
those labels are considered reachable for which there exist labels which generate
them and are executable. Executable are considered those labels for which there
exists a chain such that all labels participating in the chain are reachable. Two
input parameters of reachM keep track of labels which are currently considered
to be accordingly reachable and executable and two output parameters return
the recomputed sets of reachable and executable labels.

Let us denote (REACHM ,EXEM ) , LFP(reachM ), with LFP standing for the
least fixed point. The least fixed point exists because reachM is an order-
preserving function on the complete and finite lattice 2Labs(F) × 2Labs(F) for
a fixed IMCG program F (for example, consider the order (A,B) ≤ (C,D) iff
A ≤ B and C ≤ D). We will prove the facts about REACHM and EXEM in
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the next lemma.

Lemma 5.7 (REACHM and EXEM fixed points). Given an IMCG program

F , F as in Definition 4.9, F
∗−−→ E, M = EΓJEK, then from E

∗−−→ E′ and

` ∈ dom(EΓJE′K) follows ` ∈ REACHM ; from E′
α−−→
C

E′′′ for some α ∈ Act ∪
{τ} ∪Rate and `′ ∈ dom(C ) follows `′ ∈ EXEM .

Proof. We prove this by induction on the number of derivation steps in E
∗−−→

E′. We will namely show that if E
n−−→ E′ for some n ∈ N0 then it holds that

` ∈ [
⋃
i=1..2n−1(reachiM ((∅, ∅)))]1 and `′ ∈ [

⋃
i=1..2n(reachiM ((∅, ∅)))]2. This

will prove the statement of the lemma because the following equality is true:
(REACHM ,EXEM ) =

⋃
i=0..∞ reachiM ((∅, ∅)) (it is true because (∅, ∅) is the

least element of the finite complete lattice 2Labs(F) × 2Labs(F)).

The base case is E = E′ and the statement holds because on the one hand
` ∈ [reach1

M ((∅, ∅))]1 = M follows from M = EΓJEK, on the other hand ` ∈
[reach2

M ((∅, ∅))]2 is true because according to the rules for the reachM operator
[reach2

M ((∅, ∅))]2 =
⋃
{C∈TΛJF K|dom(C)⊆M} dom(C) and these are exactly labels

from the executable chains – this follows from the proof of the correctness of
the Pathway Analysis.

Assume now that the statement of the lemma is true for some n ≥ 1, that means
for some E

∗−−→ E′′, and we need to show that it is also true for E′ such that

E′′
α−−→
C

E′ for some α ∈ Act∪{τ}∪Rate. Any exposed label ` of E′ is either also

an exposed label of E′′ and therefore already in [
⋃
i=1..2n−1(reachiM ((∅, ∅)))]1

or has been generated after the execution of the chain C. As any label in C
is by induction hypothesis in [

⋃
i=1..2n(reachiM ((∅, ∅)))]2, we can deduce that

` ∈ [
⋃
i=1..2(n+1)−1(reachiM ((∅, ∅)))]1 holds. On the other hand, if E′

C′−−→ then

as we have already shown ` ∈ [
⋃
i=1..2(n+1)−1(reachiM ((∅, ∅)))]1 holds for any

` ∈ dom(C ′), therefore ` ∈ [
⋃
i=1..2(n+1)(reachiM ((∅, ∅)))]2 follows from the rules

of the function reachM .

The algorithm for computing the least fixed point of reachM can be implemented
with the time and space complexities of O(|Labs(F )| ∗ |T|): for each label from
Labs(F ) added to the set of reachable labels we should check all the chains
in which it participates in order to add further reachable labels that the chains
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generate. The number of added labels can be maximal |Labs(F )| and the number
of chains in which a label participates is at most |T|.

5.3.2 Updating reachability

In this section we will show how we can recompute the fixed points REACHM

and EXEM , for M = EΓJEK such that F
∗−−→ E for some IMCG program F and

F as in Definition 4.9, after one semantic step E −−→ E′, i.e. how to compute

(REACHM ′ ,EXEM ′) = LFP(reachM ′) for M ′ = EΓJE′K without recomputing
them “from scratch”. We define the function unreachR,EXE ,Kset ,M for this pur-
pose. It is namely the case that the sets of reachable and executable labels can
only become smaller after one semantic step, because some choices may lead to
“less behaviour”. We will assess this “loss” without reassessing those reachable
and executable labels which have not been influenced by the transition.

Computing over-approximations of reachable/executable labels in Section 5.3.1
and updating the sets of reachable/executable labels after one semantic step
in this section have some similarities to accordingly widening and narrowing
operators in the Abstract Interpretation (see, for example, [NNH99]). Similar
to widening, our function reach computes upper approximations of the least
fixed points of transfer functions which operate on configurations of reach-
able/executable labels and return the updated configurations of accordingly
reachable/executable labels after possible semantic transitions from these con-
figurations. Similar to narrowing, we are improving the approximations in the
function unreach by utilising the information on the semantic step that has ac-
tually been taken. Like in the narrowing procedure, there is a descending chain
created by the iterative application of unreach which eventually stabilises.

The function unreachR,EXE ,Kset ,M is defined in Table 5.7. Assume that we are

given an IMCG program F , F as in Definition 4.9, F
∗−−→ E, and we have

already computed LFP(reachM ′) for M ′ = EΓJEK. Then in case E −−→
C

E′

for some C ∈ T we will be able to compute with the function unreach an
over-approximation of LFP(reachM ) for M = EΓJE′K which is in general more
precise than LFP(reachM ′) (it is clear from Lemma 5.7 that LFP(reachM ′) is
an over-approximation of LFP(reachM )).

The idea is to initialise the parameters R and EXE of unreach to REACHM ′ and
EXE = EXEM ′ ((REACHM ′ ,EXEM ′) = LFP(reachM ′) as in Section 5.3.1), Kset

and M to accordingly dom(Kch(C )) and EΓJE′K. The sets R and EXE are sets
of accordingly reachable and executable labels that might get smaller. The set
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unreachR,EXE,Kset,M (L1, L2, L3) = (R,EXE,Kset)
if (L1 ⊃ R) ∨ (L2 ⊃ EXE)

unreachR,EXE,Kset,M (L1, L2, L3) = (L1 −K ′, L2 −K ′′,K ′′′)
if (L1 ⊆ R) ∧ (L2 ⊆ EXE)

with K ′ := {` ∈ L3|(parents(`) ∩ L2 = ∅) ∧ (` 6∈ dom(M))}
K ′′ := {` ∈ L1|@C ∈ T (` ∈ dom(C)) ∧ (dom(C) ⊆ L1 −K ′)}
K ′′′ :=

⋃
`∈K′′ dom(G(`))

Table 5.7 – Definition of the function unreachR,EXE,Kset ,M : 2Lab×2Lab×2Lab →
2Lab× 2Lab× 2Lab given an IMCG program F , F as in Definition 4.9, R ∈ 2Lab,
EXE ∈ 2Lab, Kset ∈ 2Lab, M ∈M.

Kset includes labels which need to be examined. The labels from the domain of
the multiset M are undoubtedly reachable.

The computation of unreach proceeds in the following way: when we first start
with an input tuple from the complete lattice 2Lab×2Lab×2Lab in which either
the first element is bigger than (i.e. contains) the R parameter of the function
unreach or the second element is bigger than the EXE parameter then we just
return the first three parameters of unreach. This is in a sense an initialisation
phase where we start with R and EXE as possibly reachable/executable labels;
the possibly unreachable labels that need to be examined further are passed
through the third argument. Otherwise we are doing the following: from the
set of reachable labels (the first argument of unreach) we delete those labels
which are not exposed in E′ and none of whose “parents” (see Table 4.1 for the
definition of the function parents) are executable; from the set of executable
labels (the second argument of unreach) we delete those labels for which there
is no chain such that all the labels constituting the chain are reachable; labels
which are generated by those labels that have been determined to be “non-
executable” need to be examined further in the next step and are returned
therefore as the third element of the output of unreach.

The function unreach is monotone in the first and the second elements: they
can obviously only become smaller in the output. The function unreach is
not necessary monotone in the third element but it will eventually stabilise
because it is equal to the labels generated by reachable but non-executable
labels and the reachable labels (i.e. the first argument of unreach) will eventually
stabilise. We will prove in Lemma 5.8 that under this setting the first element
of GFP(unreachR,EXE ,Kset ,M ) will be greater or equal equal to the first element
of LFP (reachM ) and the second element of GFP(unreachR,EXE ,Kset ,M ) will be
greater or equal equal to the second element of LFP(reachM ), assuming a fixed
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IMCG program F and F as in Definition 4.9. Informally speaking, we do not
“delete too much”, i.e. we still get a safe over-approximation of reachable and
executable labels. We conjecture that it is also the case that we delete all the
labels that are not contained in the least fixed point of reachM but proving this
would be a bit more involved.

Lemma 5.8 (UNREACH fixed point). Given an IMCG program F , F as in

Definition 4.9, F
∗−−→ E −−→

C′
E′′, M ′ = EΓJEK, R = REACHM ′ , EXE = EXEM ′ ,

Kset := dom(Kch(C ′)− C ′) and M = EΓJE′′K, then in case also E′′
∗−−→ E′ and

` ∈ dom(EΓ JE ′K), it follows ` ∈ [GFP(unreachR,EXE ,Kset ,M )]1 ; from E′ −−→
C

E′′′′

with `′ ∈ dom(C ) follows `′ ∈ [GFP(unreachR,EXE ,Kset ,M )]2.

Proof. We will prove the statements by showing that on any stage of the al-
gorithm execution holds ` 6∈ K ′ and `′ 6∈ K ′′. This will be enough as from the
Lemma 5.7 follows ` ∈ REACHM and `′ ∈ EXEM .

We will prove the lemma by induction on the number of steps in the transition
sequence E′′

∗−−→ E′. If E′′ = E′ then the statement is clear: from the rules

for K ′ follows that ` 6∈ K ′ always holds. We can deduce the fact that `′ 6∈ K ′′
always holds from the fact that ` 6∈ K ′ always holds and there exists a chain
C ≤ EΓJE′′K such that no `′′ ∈ dom(C ) is in K ′ on any stage (as they are
exposed labels of E′′). Therefore no label from C will be deleted from EXE and
`′ 6∈ K ′′ always holds.

We need now to prove the induction step. Assume that E −−→ E′′, E′′
∗−−→ E′′′,

E′′′ −−→ E′, the statement has been proved for E′′′ and we need to prove it now

for E′. For any ` ∈ dom(EΓ JE ′K) follows that either ` ∈ dom(EΓ JE ′′′K) or there
exists a label `′′ ∈ dom(EΓ JE ′′′K) such that ` ∈ dom(G(`′′)). In the first case
` 6∈ K ′ follows from the induction hypothesis. In the second case `′′ 6∈ K ′′ follows
from the induction hypothesis and therefore ` 6∈ K ′ holds as well because there
exists a “parent” of ` in EXE which will not be deleted. For any executable
`′ in E′ there exists a chain C ≤ EΓJE′K such that all the labels from C are
never deleted from R according to the induction hypothesis. We can make a
conclusion that `′ 6∈ K ′′ always holds.

Similarly to the algorithm for computing the least fixed point of reachM , com-
puting the greatest fixed point of unreachR,EXE ,Kset ,M can be implemented with
the time and space complexity of O(|Labs(F )| ∗ |T|): for each label which is
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rgen(L) = {` ∈ L|∃C ∈ T (dom(C) ⊆ L) ∧ (` ∈ dom(Gch(C)))}
rexe(L) = {` ∈ L|∃C1, C2 ∈ T (dom(C1) ∪ dom(C2) ⊆ L)∧

(` ∈ dom(G(C1))) ∧ (` ∈ dom(C2))}

Table 5.8 – Definition of the endofunctions rgen : 2Lab → 2Lab and rexe :
2Lab → 2Lab, given an IMCG program F and F as in Definition 4.9.

potentially deletable from the set of reachable labels we should check in the
worst case whether none of its “parents” are executable, i.e. whether there is
no chain containing one of the “parents” which is fully reachable. All the labels
from Labs(F ) can become potentially deletable from the set of reachable labels
and each label can participate in maximum |T| chains. The complexity will be
however much lower in the average case.

5.3.3 Repeatable reachability

In some cases we would like to determine whether some labels are not “simply”
reachable, but reachable unlimited number of times, i.e. whether they represent
“renewable resources”. We also would like to compute (an over-approximation
of) the set of labels which can be executed unlimited number of times. This can
be useful for determining liveness properties. In the following we will determine
which labels can be generated/executed infinite number of times along at least
one existing infinite transition sequence and not necessary along every infinite
transition sequence.

We have defined in Table 5.8 two functions rgen and rexe whose output is a
subset of their input. They have the greatest fixed points on every finite lattice
2S with S ⊆ Lab.

We will prove in Lemma 5.9 that, given the Pathway Analysis results in F as in
Definition 4.9 of an IMCG program F , any label that can be repeatedly gener-
ated along some transition sequence is in GFP(rgen) on 2Labs(F) and any label
that can be repeatedly executed along some transition sequence is in GFP(rexe)
on 2Labs(F). The basic ideas of the proof for these facts are schematically pre-
sented in Figure 5.3 and Figure 5.4. In the first case GFP(rgen) is a union of
labels from which a sequence of chains can be formed that reproduces itself and
all the labels that are generated by these chains. Therefore ` ∈ GFP(rgen) if
it is just generated by one of the chains: `1 ∈ dom(Gch(C1 )) in Figure 5.3. In
the second case GFP(rexe) is a union of labels from the domains of the chains
itself – therefore `1 ∈ dom(C1 ) in Figure 5.4.



5.3 Over-approximation of reachability 147

Figure 5.3 – Illustration for the computation of labels’ repeatable reachability.

Figure 5.4 – Illustration for the computation of labels’ repeatable executability.

Lemma 5.9 (GFP of rgen and rexe). Given an IMCG program F and F as in
Definition 4.9, if there exists a transition sequence starting from F such that `
is generated infinitely often then ` ∈ GFP(rgen) on 2 Labs(F). Moreover, if there
exists a transition sequence starting from F such that ` is executed infinitely
often then ` ∈ GFP(rexe) on 2Labs(F).

Proof. The proof is similar to the proof of Lemma 5.5. There exist the greatest
fixed points of both rgen and rexe because 2Labs(F) is a finite complete lattice
with set inclusion as a partial order and the functions rgen and rexe are order-
reversing.

It is enough to show that for each ` ∈ Lab(F ) that is generated unlimited num-
ber of times along some transition sequence starting from F holds ` ∈ fp for
some fixed point fp ∈ 2Lab(F) such that fp = rgen(fp). From this will follow
` ∈ GFP(rgen), as fp ≤ GFP(rgen) and the partial order in this case is the set
inclusion. The same is relevant for any ` ∈ Lab(F ) that is executed unlimited
number of times along some transition sequence starting from F and the greatest
fixed point of rexe.

If ` ∈ Lab(F ) is generated infinitely often along some transition sequence start-
ing from F then there exists a loop (as the number of states derivable from F
is finite) E1 −−→

C1

E2 −−→
C2

... −−−→
Cn−1

En −−→
Cn

E1 such that ` ∈ dom(Gch(C1 )) and

F
∗−−→ E1. Assign L :=

⋃
i=1 ..n(dom(Ci) ∪ dom(Gch(Ci))). Then L is a fixed
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point of rgen because for each `′ ∈ L holds that `′ is generated by some chain
C for which dom(C ) ⊆ L holds. The last is obvious if `′ has been added to L
inside some dom(Gch(Ci)). Otherwise, if `′ has been added to L inside some
dom(Ci), we can argue that each label inside Ci is also generated by some other
chains from the set {Cj |1 ≤ j ≤ n}. This is due to the fact that Kch(Ci) ≥ Ci

holds for any chain from T, i.e. all the labels from the chain Ci will be killed
by execution of the chain and therefore will be generated consequently in order
for the chain Ci to become executable again in the next loop. Altogether this
proves that L is a fixed point of rgen and ` ∈ L.

If ` ∈ Labs(F ) can be executed infinitely often along some transition sequence
starting from F then there exists a loop E1 −−→

C1

E2 −−→
C2

... −−−→
Cn−1

En −−→
Cn

E1

such that ` ∈ dom(C1 ) and F
∗−−→ E1. Assign L :=

⋃
i=1..n dom(Ci). Then

` ∈ L clearly holds. Moreover L is a fixed point of rexe because for each `′ ∈ L
holds `′ ∈ Ci for some 1 ≤ i ≤ n, but also `′ ∈ Cj for some 1 ≤ j ≤ n: as `′ has
been “consumed” after the execution of the chain C1 is has to be generated by
some consequent chain so that it will become executable again in the next loop.
We have thus proved that L is a fixed point of rexe and ` ∈ L.

We could perform the computation of the greatest fixed points of rgen and
rexe on the domain of reachable labels of an initial IMCG program F or one
of its derivations E – we can use the least fixed point of the defined in Table
5.6 function reach, i.e. reachEΓ JFK or reachEΓ JEK, in order to determine which
labels are reachable. We will obtain in this case a correct over-approximation of
the labels that can be generated/executed infinite number of times along some
transition sequences starting either from F or from E.

Similarly to the algorithms in Sections 5.3.1 and 5.3.2, the computation of the
greatest fixed points of rgen and rexe can be implemented with the time and
space complexities of O(|Labs(F )| ∗ |T|): each label ` in Labs(F ) can be po-
tentially repeatedly reached/executed and at most all the chains from T should
be checked in order to determine whether there exists a chain all the labels
in the domain of which can be repeatedly reached/executed and which gener-
ates/contains `.

There are many other properties of labels that could be defined as the great-
est/least fixed points of functions on label sets. Our developments represent an
exploration of possibilities. We are confident that we can develop our methods
further in order to check a broader class of system properties by Static Analysis
methods.
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5.4 Expected time reachability

In the previous section we have considered the question how to compute a set
of labels that contains all the labels reachable from some initial configuration
regardless of the time it takes. In this section we will discuss how the lower
bound for the expected time to reach a set of (in principle reachable) labels
can be computed. Only expected time can be computed for IMCG systems
because their delay transitions do not have fixed durations but their durations
are instead exponentially distributed with corresponding rates. We will compute
the minimum expected time to reach one state in an IMCG system from another
state, both represented by sets of their exposed labels. We will often call a set of
exposed labels in a state from which we start the computation the initial label
set and a set of exposed labels in a state to reach – the goal label set.

As the non-determinism is inherent for IMCG systems we should first of all
decide on a scheduler or a class of schedulers that will be used for resolving
non-deterministic choices. We consider a class of particularly simple schedulers
whose decisions are dependent only on states in which a decision has to be made
but not on a history before reaching the state or the time that have passed until
the current state has been reached from the initial state. These schedulers are
called Static Markovian Deterministic schedulers [Put94], positional schedulers
[NSK09] or just simple schedulers. After all the decisions of a simple scheduler
are fixed, an IMCG system can be in fact reduced to a Continuous-Time Markov
Chain. We will be looking for a simple scheduler which makes such decisions
that the expected time to simultaneously reach all the labels from the goal set
is minimal.

We will do computations on a subclass of IMCG, introducing some serious
syntactic constraints. First of all, we consider only linear IMCG processes; the
second constraint is that we may have a choice only between external actions but
not between delays – see Table 5.9 for the derivation rules for suitable IMCG

programs. The exact reason for these constraints will be explained below in
Section 5.4.2 but we want to make a remark at this point that the introduced
constraints allow us to confine ourself to a simple algorithm on the one hand and
to guarantee that the computation is exact (in particular, because no blocking
due to the failed synchronisation can occur in linear IMCG processes) on the
other hand.

The expected time reachability has been considered for probabilistic timed au-
tomata in [KNPS06]. The standard algorithm for computing minimal and max-
imal (for goal states that are reachable with probability 1) expected reachability
time for MDPs with fixed time associated with action transitions can be found
in [Alf99] and is easily adaptable to many similar systems. It has been pointed
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out that computing expected reachability time corresponds in fact to computing
the expected cost or reward accumulated until reaching a goal state, with the
cost/reward function equal to zero for action-transitions and equal to transition
durations for delay transitions [KNPS06]. Our algorithm that will be presented
in Sections 5.4.3-5.4.4 can be adapted to computing other cost/reward functions
then expected reachability time – we see this as a possible topic for future work.

Calculating minimal expected time reachability is a subclass of an intensively
studied stochastic shortest path problem [BT91] but in our setting, with the
introduced syntactic constraints and simple schedulers, the first stage of the
algorithm (see Section 5.4.3) becomes in fact just an instance for the well-known
Floyd’s algorithm (also called Floyd-Warshall algorithm) for finding a shortest
path in a directed graph for all state pairs [Flo62]. The difference is that we
compute “shortest distances” between labels, not between states as in [Flo62].
We need consequently the second stage in the algorithm for post-processing the
results of the first stage – see Section 5.4.4.

In the first stage of the algorithm we calculate thus the minimal expected dura-
tions (that we sometimes call distances) of label paths between the labels. Cal-
culating distances between the labels has the complexity of Floyd’s algorithm
which is cubic for time and quadratic for space, in our case it is accordingly
|Labs(F )|3 and |Labs(F )|2 with F an IMCG program to be analysed. We can
sum expected durations of transitions constituting a path between two labels
because the expected value of a sum of random variables is equal to the sum of
expected values of random variables [GS97]. Random variables are in our case
durations of delay-transitions in an IMCG system and their expected values are
equal to one divided by their rates.

The post-processing can be implemented as linear in the number of labels in the
initial label set plus the number of labels in the goal label set. These are clearly
lower time/space complexities than those that would be caused by applying
Floyd’s algorithm to a labelled transition system representing the semantics of
F . In the last case the complexity will dependent on the number of states in
the labelled transition system which can be up to 2|Labs(F)|. We have currently
rather strict syntactic constraints but we are confident that our method can be
extended at least to the full linear fragment of IMCG and may be also to some
larger subclasses of IMCG.

Our algorithm can be useful, for example, in the verification related to reliability
of systems. Reliability is often understood as a system parameter measuring the
time interval in which a system will operate faultlessly with a sufficiently high
probability. It can be expressed, for example, as a mean time to failure (MTTF)
for irreparable systems or a mean time between failures (MTBF) for systems that
can be repaired [Abe00]. In this setting our algorithm computes MTTF (if the
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goal set of labels represents a failure state) in the worst case, i.e. with the most
unfavourable scheduler, for systems representable in a linear fragment of IMCG

with an additional restriction on the choice operator (see Table 5.10).

5.4.1 General description of the algorithm

We will first describe our algorithm for a simple case when the initial and the
goal set each contain only one label, i.e. we will compute the minimum expected
time to reach one label ` (speaking more precisely, to reach any multiset M
such that ` ∈ dom(M )) from another label `′ (from any multiset M ′ such that
`′ ∈ dom(M ′)). By “reaching one label from another label” we mean that it

should hold `′
∗−−→ `, i.e. there should exist a label path from `′ to `. We will

show below that such label paths have a direct relation to paths between the
multisets M ′ and M .

Take as an example the following IMCG program, for which we would like to
determine what is the minimum (over all possible simple schedulers) expected
time to reach `1 from `2: X := a`1 .b`2 .(c`3 .λ`41 .λ

`5
2 .X + d`6 .λ`73 .λ

`8
4 .X). From

the syntax of the program it is clear that there are two possible label paths:
`2 −−→ `3 −−→ `4 −−→ `5 −−→ `1 and `2 −−→ `6 −−→ `7 −−→ `8 −−→ `1. The expected

time for the first of the paths is 1
λ1

+ 1
λ2

and the expected time for the second

path is 1
λ3

+ 1
λ4

. This follows from the properties of the exponential distribution
and of the expected value operator, see Section 2.1: the expected transition
duration is 1 divided by the transition rate and the expected value of the sum
is the sum of expected values. In the example we can therefore simply compute
the minimum expected time to reach `1 from `2 as min( 1

λ1
+ 1

λ2
, 1
λ3

+ 1
λ4

).

The syntactic constraints that will be introduced in Section 5.4.2 guarantee that
there cannot occur situations where the choice is between actions with the same
name (that a scheduler cannot distinguish) or between several delay transitions
(where the choice is done probabilistically), therefore a simple scheduler has
a full freedom in the choice of a label path. In the example above the choice
between the execution of `3 and `6 is fully deterministic and depends on a
concrete scheduler that is used.

We will compute the expected time to reach one label from another one by
first computing expected time to reach labels directly, i.e. by generating them
according to the generate operator from the Pathway Analysis. In the above
example the defined by us in Section 5.4.3 operator tr will return tr(`1, `2) = 0,
tr(`2, `3) = 0, tr(`3, `4) = 0, tr(`4, `5) = 1

λ1
, tr(`5, `1) = 1

λ2
etc. It is clear that

for actions the expected time is zero and for delay rates the expected time is 1
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divided by the rate. It is also clear that in case `9 `′ we cannot reach `′ from
` directly and therefore assign tr(`, `′) =∞: in our example tr(`1, `3) =∞ etc.

As a next phase we will compute minimum expected durations of label paths
between not directly “connected” labels, i.e. between all ` and `′ such that
` 9 `′ but `

∗−−→ `′. As there exists one shortest path that can be chosen by a

scheduler (or several paths with the same expected duration), we can use a well-
known Floyd’s algorithm [Flo62] for finding a path with the shortest expected
duration based on the results of the tr operator. The computed shortest path
durations between all pairs of labels will be saved in the mapping et . In our
example X := a`1 .b`2 .(c`3 .λ`41 .λ

`5
2 .X + d`6 .λ`73 .λ

`8
4 .X) we will have et(`2, `3) =

tr(`2, `3) = 0 and et(`3, `4) = tr(`3, `4) = 0, while the distance between `2 and
`4 will be computed as min(tr(`2, `3) + tr(`3, `4), tr(`2, `4)) = min(0 ,∞) = 0 .

Until now we have talked about reaching one label from another label. We
will however in general discuss reaching a set of labels from another set of
labels. First of all note that in order to make a meaningful statement by using
the computed mapping et we need to be sure that both sets represent (the
initial state is equal and the goal set is a subsets of) exposed labels of two
IMCG expressions reachable from an initial IMCG program on which et has
been computed. Otherwise if in the example above we would try to compute
time to reach both `2 and `3 from `1 by taking, for example, a sum, minimum or
some other function of et(`1, `2) and et(`1, `3), we would not get any satisfying
answer: `2 and `3 just cannot be exposed together. We could use the function
Valid defined in Section 5.1 in order to rule out impossible combinations of
labels: it would be able to determine that `2 and `3 exclude each other.

The next aspect is that if the initial set of labels contains several labels then
only one of them can be executed and the rest will be killed. This is because
we are only considering a linear fragment of IMCG, so if two labels are exposed
at the same time then they are connected by the choice construct. We need
therefore to take the minimum over all the labels in the initial set of their
minimal expected time to reach the labels from the goal set. Concretely, in our
example X := a`1 .b`2 .(c`3 .λ`41 .λ

`5
2 .X + d`6 .λ`73 .λ

`8
4 .X) with the initial set {`3, `6}

and the goal set {`1} if 1
λ1

+ 1
λ2
< 1

λ3
+ 1

λ4
then we choose `3 otherwise we will

choose `6.

As for the goal set, all the labels in it are also connected by the choice construct,
but this time we need to take the maximum over all the labels in the set. If one
of the labels in the goal set is not reachable from all the labels in the initial set,
then the goal set is considered to be not reachable in general and our algorithm
will return infinity as the minimum expected time. But also in case all the labels
from the goal set are reachable, if we take a minimum also over the labels in
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the goal set, we might be computing the minimum expected time to reach only
a subset of the goal set. We will discuss this question in Section 5.4.4 in more
detail.

This was basically the full description of our algorithm. We will additionally
discuss the relation between the “goal set” and the exposed labels of concrete
IMCG expressions that the goal set is a subset of. With our method we do not
guarantee that we can reach an expression with only labels from the goal set
exposed in the expected time that our algorithm computes, even if our algorithm
computes a value different from infinity – because some additional labels may
be exposed as well. In the example a`1 .Y := b`2 .λ`3 .c`4 .Y + d`5 .λ`6 .e`7 .0 if we
compute the minimum expected time to reach {`2} from {`1} then we compute
in fact the minimum expected time to reach {`2, `5} from {`1}. Note that there
is in fact a configuration where {`2} is reachable from {`1} without `5 being
simultaneously exposed (after one unfolding of the process definition for Y ).
We will not however take into account such cases where we may need several
executions of the same labels in order to reach the goal configuration. We will
only take into account the first time labels in the goal set are reached.

We will prove in Section 5.4.4 that, accepting a possibility that the goal set is
just a subset of exposed labels, our computations deliver the exact result for
the chosen subclass of IMCG and the chosen class of schedulers. The extension
of our method to the full linear fragment of IMCG is relatively easy, but the
extension for the parallel operator is much harder. If there are two parallel
processes that both arrive at delay transitions then those delay transition that
completes first will continue, and this leads to the situation where we cannot
simply add the expected durations of label paths. For example, for the IMCG

program λ`11 .a
`2 .0 q∅q λ`32 .b

`4 .0 the expected time to reach {`2, `4} from {`1, `3}
is strictly smaller than the expected time to reach {`2} from {`1} plus the
expected time to reach {`4} from {`3}. It is λ2

λ1+λ2
∗ ( 1

λ1+λ2
+ 1

λ1
) + λ1

λ1+λ2
∗

( 1
λ1+λ2

+ 1
λ2

) = λ1+λ2

λ1∗λ2
− 1

λ1+λ2
in the first case and 1

λ1
+ 1

λ2
= λ1+λ2

λ1∗λ2
in the

second case, see Section 2.1 for the properties of exponential distributions.

Besides, as we allow the creation of a finite number of new subprocesses in
the full IMCG, it should be taken into account that a label can give rise to
several labels that are in parallel subprocesses which additionally complicates
the computations. We would namely need to additionally remember the “forking
points” and which labels can be generated only after passing these forking points.
Therefore we have decided to first present our ideas for the linear fragment of
IMCG where such situations do not arise. We leave the question of extendibility
of our method to other subclasses of IMCG as a topic for future research.
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`tr a`.X (1)

`tr λ`.X (2)

`tr P
`tr a`.P

(3)

`tr P
`tr λ`.P

(4)

(`tr P1) ∧ (`tr P2)

`tr P1 + P2

if (dom(EΓJP1K) ∩ dom(EΓJP2K) = ∅)∧
(dom(EΓJP1K) ∪ dom(EΓJP2K) ⊆ Act) (5)

`tr P
`tr X := P

(6)

`tr X (7)

`tr 0 (8)

Table 5.9 – Derivation rules for IMCG programs suitable for our expected time
reachability analysis. X ∈ Var, a ∈ Act ∪ {τ}, λ ∈ Rate, ` ∈ Lab.

5.4.2 Syntactic constraints

In this section we will introduce a number of syntactic constraints that we will
additionally put on IMCG programs so that our method for computing the
minimum expected reachability time becomes applicable. We will require that
for an IMCG program F the fact `tr F can be proved. The derivation rules for
`tr are given in Table 5.9. We could have integrated the well-formedness rules
in Table 3.8 and the rules in Table 5.9 into one set of rules but we are not doing
this for the sake of simplicity – i.e. for the rules in Table 5.9 to represent only
“new” restrictions on IMCG expressions.

Let us now discuss the rules for `tr in detail. First, note that there are no
parallel operator and no hide-operator rules. We have given in Section 5.4.1
an example illustrating the difficulties with the parallel operator. Concerning
the hide-operator, in case some of the actions will become internalised then a
simple scheduler could not differentiate between them and the computed by our
algorithm result will not be tight (but will be still a lower bound). Second,
there are only external actions and no delays in the choice construct (see the
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Figure 5.5 – Example of an IMCG program F for which `tr F holds. Arrows
go from labels to sets of labels that the first generate after their execution.

additional condition in rule (5) in Table 5.9). This means that there are no
probabilistic alternatives in case we have a deterministic scheduler. Expressions
similar to X := a`1 .(λ`21 .X + λ`32 .X) are therefore not allowed: a scheduler can-
not deliberately choose between `2 and `3, as the probability of executing `2 is
always λ1

λ1+λ2
and the probability of executing `3 is always λ2

λ1+λ2
irrespective

of a scheduler. Third, all choice alternatives, which are external actions as just
mentioned, are different (see the additional condition in rule (5) in Table 5.9). A
scheduler can therefore always choose any of choice alternatives and thus always
determine “which way to go”, i.e. which path to take.

See Figure 5.5 for an example of an IMCG program whose syntax satisfies the
conditions of `tr. States in the semantics of the example IMCG program are
denoted by their corresponding exposed actions/rates and labels. Note that
the “green” (Markovian) states have only one exposed rate while there can be
several exposed actions in the “blue” (interactive) states. There are no hybrid
(i.e. with both actions and rates exposed) states in the example and there cannot
be any hybrid states in the semantics of any IMCG program F for which `tr F
holds.

The reason for the introduction of syntactic constraints via `tr is that we are
aiming at constructing an algorithm with a low complexity. With the restric-
tions computations on IMCG programs become much simpler due to the ab-
sence of parallel delay transitions etc. Moreover, simple schedulers obtain the
full control over the paths taken. There is also a lower memory consumption
because we do not need to construct beforehand a labelled transition system
representing the semantics of an IMCG program F that we are analysing. In-
stead of that we only save a matrix of the size |Labs(F )|2: each pair of labels
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(`, `′) ∈ Labs(F )× Labs(F ) has the minimum expected time to reach `′ from
` assigned to it. Remember that a number of states in the labelled transition
system for F can be up to 2|Labs(F)|, so we would need to save a matrix of the
size 2|Labs(F)|∗2 if we would compute distances between states in the labelled
transition system.

In Lemma 5.14 below we will formally show that syntactic restrictions in Table
5.10 are enough to guarantee that the expected duration of one “shortest” path
is equal to the minimum expected duration over all paths between the initial and
the goal set of labels under the class of simple schedulers. It is therefore relatively
easy to compute – it is enough to find one of the “shortest” paths (there can be
more than one) with the least expected duration. We will additionally need to
ensure that there exists a simple scheduler such that all labels in the goal set
are reachable from some of the labels in the initial set with the probability 1.
If this is not the case then we return infinity. In the last case the probability
is always 0 as we do not have probabilistic choices in an IMCG program F and
its derivatives if `tr F holds – see Lemma 5.14.

5.4.3 Expected durations of label paths

In this section we will formally present an algorithm for computing the mini-
mum expected time to reach one label from another one. We will compute the
minimum expected time over all possible label paths between the labels. As
usual, at the beginning we fix an IMCG program F for which we will do all
the computations. In fact all the definitions and algorithms from this section
are applicable to an arbitrary IMCG program F but putting them together in
Section 5.4.4 gives a meaningful result only for such programs for which `tr F
holds.

We start by defining the operator tr in Table 5.10 which computes the expected
time to reach from labels in Labs(F ) their directly generated labels. Labels
corresponding to actions reach their generated labels in zero time while labels
corresponding to delay rates reach their generated labels in the expected time of
delay. We have the least upper bound operator (see Table 5.11) in the definition
of tr, but for uniquely labelled IMCG expressions we do not have situations
where there are two or more ways to generate one label from another one,
therefore for an IMCG program F we will just create a union of tr application
results on the subexpressions of F .

We then compute a kind of transitive closure of the relation tr. The idea is
to compute the “least expected time” to reach one label from another one by
possibly transiting other labels in between. We compute the mapping et ∈
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trΓJa`.X K =
⊔
`′∈dom(EΓJX K){(`, `′, 0)} (1)

trΓJλ`.X K =
⊔
`′∈dom(EΓJX K){(`, `′,

1
λ )} (2)

trΓJa`.PK =
⊔
`′∈dom(EΓJX K){(`, `′, 0)} t trΓJPK (3)

trΓJλ`.PK =
⊔
`′∈dom(EΓJX K){(`, `′,

1
λ )} t trΓJPK (4)

trΓJP1 + P2K = trΓJP1K t trΓJP2K (5)
trΓJhide A in PK = trΓJPK (6)
trΓJP1 qAq P2K = trΓJP1K t trΓJP2K (7)

trΓJX := PK = trΓJPK (8)
trΓJ0K = ∅ (9)

Table 5.10 – Operator tr : IMCG → 2Lab×Lab×R+
0 , environment Γ ∈ 2X×M,

given an IMCG program F and F as in Definition 4.9.

T1 t T2 =
⋃

(`1,`′1,t1)∈T1{
{(`1, `′1, t1)} if @t2 st (`1, `

′
1, t2) ∈ T2

{(`1, `′1, t1)} if (∃t2 st (`1, `
′
1, t2) ∈ T2) ∧ (t1 < t2)

∪⋃
(`2,`′2,t2)∈T2{
{(`2, `′2, t2)} if @t1 st (`2, `

′
2, t1) ∈ T1

{(`2, `′2, t2)} if (∃t1 st (`2, `
′
2, t1) ∈ T1) ∧ (t2 < t1)

Table 5.11 – Definition of the least upper bound operator on the domain

2Lab×Lab×R+
0 .

Labs(F ) × Labs(F ) → R+
0 ∪ {∞} starting by the initialisation of all pairs of

labels in et by infinity apart from the case that both labels are equal – we assign
namely et(`, `) = 0 for all ` ∈ Labs(F ). For pairs of labels where the first label
can generate the second one directly we assign the distance in et according to
the results of trΓJF K.

We proceed with recomputing expected times between labels, taking the mini-
mum whenever there are several alternatives. Taking the minimum is done in
a clever way, applying the Floyd’s algorithm [Flo62]: it is in succession checked
for all pairs of labels whether one of label paths through more and more labels is
“shorter” (has a smaller expected duration) then the currently computed mini-
mum expected duration of label paths from the first to the second label in the
pair. So the infinite duration in et(`1, `2) after the execution of the algorithm
is finished means that there is no path between `1 and `2. See a more formal
description of the algorithm in Table 5.12.
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for all (`1, `2) ∈ Labs(F )× Labs(F )
if (`1 = `2) then et(`1, `2) := 0;
else et(`1, `2) :=∞;

for all (`, `′, t) ∈ trΓJF K
et(`, `′) := t;

for k := 1 to |Labs(F )|
for i := 1 to |Labs(F )|

for j := 1 to |Labs(F )|
et(`i , `j ) = min(et(`i , `j ), et(`i , `k ) + et(`k , `j ));

Table 5.12 – Algorithm for computing the mapping et : IMCG → 2Lab×Lab →
R+

0 ∪ {∞}, given an IMCG program F , F as in Definition 4.9 and trΓJF K.

Note that we have made a choice that a label can reach itself in zero time. It
seems like a natural decision but we could have made another decision that we
are interested in the next appearance of the same label. For example, in the
process X := a`1 .λ`2 .X we could have chosen to have et(`1, `1) = 1

λ instead of
et(`1, `1) = 0. We have chosen the latter possibility mainly for the reasons of
simplicity.

As a next step we will prove that the mapping et computed by the algorithm in
Table 5.12 corresponds to the expected time needed to generate one label from
another label. We will define the so-called expected duration of a label path and
prove its relation to et . The computations of the expected durations of label
paths are straightforward – the expected durations of all rate-transitions on a
path are just added together. We call the function that returns the expected
duration of a label path time. It is defined in Definition 5.10.

Definition 5.10 (Label path’s expected duration). Given an IMCG program
F , F as in Definition 4.9 and a set of labels `1...`n such that `i −−→ `i+1 for

all 1 ≤ i < n, then the expected duration of the label path `1 −−→ ... −−→ `n is

returned by the function time and is computed as

time(`1 −−→ ... −−→ `n) =
∑

1≤i<n

{
1

Name(`i )
if Name(`i) ∈ Rate

0 otherwise.

We set time(`1 −−→ ... −−→ `n) = 0 if n = 1.
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We show in Lemma 5.11 that the expected durations of label paths are closely
related to the mapping et : we have namely computed in et(`1, `2) the lower
bound for the expected durations of all label paths between `1 and `2 for all
(`1, `2) ∈ Labs(F )× Labs(F ), and this bound is tight.

Lemma 5.11 (Label path’s minimum expected duration). Given an IMCG

program F , F as in Definition 4.9 and a label path `1 −−→ ... −−→ `n, then

time(`1 −−→ ... −−→ `n) ≥ et(`1 , `n) holds. Moreover if et(`1 , `n) 6=∞ then there

exists a label path `1 −−→ ... −−→ `n such that time(`1 −−→ ... −−→ `n) = et(`1 , `n)

holds. If et(`1 , `n) =∞ then there does not exist any label path from `1 to `n.

Proof. We will prove the first statement of the lemma by induction on the
number of steps in a label path `1 −−→ ... −−→ `n. For n = 1 the statement

follows from assigning et(`, `) := 0 for all ` ∈ Labs(F ) in the algorithm for
computing et in Table 5.12. It is also the case that time(`1 −−→ ... −−→ `n) = 0

for n = 1 according to Definition 5.10.

For `1 −−→ `n, i.e. n = 2, the statement follows from the definition of the

operator tr in Table 5.10, the definition of the generate operator from F as
in Definition 4.9 and the unique labelling of F . We can namely see from the
definition of the operator tr that for any label `n generated by `1 the operator tr
returns (`1, `n, t), with t equal to one divided by the rate associated with `1 or
equal to 0 if `1 is associated with an action. This is equal to time(`1 −−→ `n) and

also to et(`1 , `n) according to the rules for the computation of et . Altogether
et(`1 , `n) = time(`1 −−→ `n).

Any label path `1 −−→ ... −−→ `n with n > 2 can be subdivided into two label

paths `1 −−→ ... −−→ `′n and `′n −−→ ... −−→ `n, with lengths of both paths being

strictly smaller than the length of the label path `1 −−→ ... −−→ `n. We can

therefore apply our induction hypothesis to both smaller label paths and obtain
time(`1 −−→ ... −−→ `′n) ≤ et(`1 , `

′
n) and time(`′n −−→ ... −−→ `n) ≤ et(`′n , `n). It

is easy to see from the algorithm for computing et that et(`1, `n) ≤ et(`1, `
′
n) +

et(`′n, `n): this is clear if either et(`1, `
′
n) = ∞ or et(`′n, `n) = ∞ and fol-

lows from for-loops conditions otherwise. Altogether time(`1 −−→ ... −−→ `n) =

time(`1 −−→ ... −−→ `′n) + time(`′n −−→ ... −−→ `n) ≥ et(`1, `
′
n) + et(`′n, `n) ≥

et(`1, `n) (the first equality follows from the definition of time function in Defi-
nition 5.10).
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We have to argue now that there is in fact a label path `1 −−→ ... −−→ `n whose

expected duration is equal to et(`1 , `n) if et(`1 , `n) 6=∞. It is clear in case
`1 = `n: we have et(`1, `n) = 0 and there is a label path consisting only of `1
for which the expected duration is also zero according to Definition 5.10.

Otherwise the statement follows from the fact that each et(`1 , `n) has been
calculated as a sum et(`1 , `n) =

∑
i=1 ..n−1 et(`i , `i+1 ) such that et(`i, `i+1) =

tr(`i, `i+1) for 1 ≤ i < n. It is easy to see from the definition of the operator tr
in Table 5.10 and the definition of the generate operator from F as in Definition
4.9 that `i −−→ `i+1 holds for 1 ≤ i < n. The label path `1 −−→ ... −−→ `n has

therefore the required property: it holds time(`1 −−→ ... −−→ `n) = et(`1 , `n).

If et(`1 , `n) =∞ then there does not exist any label path `1 −−→ ... −−→ `n be-

cause otherwise we would have time(`1 −−→ ... −−→ `n) <∞ according to the

definition of the function time in Definition 5.10 and therefore et(`1 , `n) <∞
according to the already proved facts, which is a contradiction.

5.4.4 Computing minimum expected reachability time

In this section we will use the mapping et from Section 5.4.3 in order to compute
a lower bound for the expected time on paths between multisets. As already
mentioned, we will have an initial set of labels and a goal set of labels as input
parameters of our algorithm. We require that the initial set contains all the
labels exposed in one of the states reachable from the analysed IMCG program
F – otherwise we can’t make a meaningful prediction. Our algorithm returns
infinity if at least one of the labels from the goal set cannot be reached from any
of the labels in the initial set and we cannot know for sure whether this is the
case if the initial set is just a subset of the actually exposed labels. The goal set
is allowed to be smaller then the actual set of exposed labels of any derivative
of F . We will compute a lower bound for the expected time until reaching a
state with all the labels in the goal set being exposed and not necessary exactly
the labels in the goal set being exposed.

Assume therefore that an initial set of labels contains exposed labels of one
state and the goal set of labels contains a subset of exposed labels of at least
one state in the labelled transition system corresponding to the semantics of F .
Reaching the goal set of labels then implicitly means reaching one of the goal
states – these are states that have all the labels from the goal set exposed, and
there can be several such states. There can be several states having the same
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1. check whether all the labels from L2 are reachable from L1, i.e. whether
for all `2 ∈ L2 there exists `1 ∈ L1 with et(`1, `2) 6= ∞. If not, stop the
execution of the algorithm and return etsets(L1, L2) =∞;

2. return etsets(L1, L2) = min`1∈L1
max `2∈L2

et(`1, `2).

Table 5.13 – Algorithm for computing the output of the operator etsets : 2Lab×
2Lab → R+

0 ∪ {∞}, given an IMCG program F , F as in Definition 4.9 and a
mapping et : Lab× Lab→ R+

0 ∪ {∞}, L1 ∈ 2Labs(F), L2 ∈ 2Labs(F).

exposed labels from the initial label set in the labelled transition system as well,
however, all of them will be bisimilar (see Section 4.2.2).

We will shortly describe the algorithm for reaching the goal set L2 from the
initial set L1 before presenting it in a more formal way. The idea of the algorithm
is first to decide whether all the labels in L2 are reachable from L1. If this is
not the case then the defined by us function etsets returns infinity. If all the
labels from L2 are reachable from at least one label in L1 then we return the
result from the mapping et, taking the minimum over all the labels in L1 and
the maximum over all the labels in L2.

Taking the minimum over the labels in L1 should be intuitively clear: we
are looking for the minimum expected time, hence a label in L1 with the
shortest distance to labels in L2 is chosen. We will illustrate why we take
the maximum over the labels in L2 on the example of the IMCG program
Y := X := a`1 .b`2 .(c`3 .X + d`4 .λ`5 .Y ) + e`6 .Y . Assume that L1 = {`2} and

L2 = {`1, `6}. Then taking, for example, the minimum over L2 would mean
choosing the path through `3 which is however a path only to `1 exposed and
not to `6 as well. Taking on the other hand the maximum over L2 would mean
determining the expected duration of the path through `4 which leads to both
`1 and `6 exposed.

Schematically, if we want to compute the minimum expected time to reach a
set of labels L2 from another set of labels L1, we need to do the following:

In the rest of the section we will prove that the algorithm in Table 5.13 computes
what we have claimed above. We will first of all define the notion of the expected
duration of a transition sequence. This notion will help us in further reasoning.

Definition 5.12 (Expected duration of transition sequences). Given a set of

IMCG expressions E1...En such that Ei
αi−−→ Ei+1 for all 1 ≤ i < n, then the

expected duration of the transition sequence E1
α1−−→ ...

αn−1−−−→ En is returned by
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the function stime and is computed as

stime(E1
α1−−→ ...

αn−1−−−→ En) =
∑

1≤i<n

{
1
αi

if αi ∈ Rate

0 otherwise.

We set stime(E1
α1−−→ ...

αn−1−−−→ En) = 0 if n = 1.

We will show in Lemma 5.13 how the expected duration of some transition
sequence E1 −−→ ... −−→ En relates to et(L,L′) such that L is a set of exposed

labels of E1 and L′ is contained in the set of exposed labels of En. Action
names or delay rates decorating transitions between multisets are omitted in
the statement and proof of Lemma 5.13 for simplicity but we implicitly assume
that they are known for each Ei −−→ Ei+1 for 1 ≤ i < n.

Lemma 5.13 (Expected durations of paths). Given an IMCG program F such

that `tr F holds and F as in Definition 4.9, F
∗−−→ E1, a transition sequence

E1 −−→ ... −−→ En, L1 and L2 sets of labels such that L1 = dom(EΓ JE1 K) and

 L2 ⊆ dom(EΓ JEnK), then stime(E1 −−→ ... −−→ En) ≥ etsets(L1, L2) holds.

Additionally E1
∗9 E′ for all E′ ∈ {E′′|(F ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))} if

and only if etsets(L1, L2) =∞.

Moreover, the estimation is tight in case etsets(L1, L2) 6= ∞: there exists a

transition sequence E1 −−→ ... −−→ En for some En ∈ {E′′|(F
∗−−→ E′′) ∧ (L2 ⊆

dom(EΓJE′′K))} such that stime(E1 −−→ ... −−→ En) = etsets(L1, L2) holds.

Proof. It is clear that from etsets(L1, L2) = ∞ follows E1
∗9 E′ for all

E′ ∈ {E′′|(F ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))}: if etsets(L1, L2) = ∞ then

at least one of the labels in L2 is unreachable from none of the labels in L1 ac-
cording to the algorithm for etsets in Table 5.13. The other direction will follow
from the yet to be proved consideration that the estimation in etsets(L1, L2) is
tight, i.e. there exists a corresponding transition sequence from E1 to one of the
elements in {E′′|(F ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))}. Therefore it is not possi-

ble that etsets(L1, L2) <∞ but E1
∗9 E′ for all E′ ∈ {E′′|(F ∗−−→ E′′) ∧ (L2 ⊆

dom(EΓJE′′K))}.
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We will prove now that stime(E1 −−→ ... −−→ En) ≥ etsets(L1, L2) holds

for all transition sequences between E1 and En with L1 = dom(EΓJE1K) and
L2 ⊆ dom(EΓJEnK). It is easy to see that for all `n ∈ dom(En) there exists a
label `1 ∈ dom(E1) and a label path `1 −−→ ... −−→ `n such that stime(E1 −−→
... −−→ En) = time(`1 −−→ ... −−→ `n). Using the estimate from Lemma 5.11,

we obtain stime(E1 −−→ ... −−→ En) = time(`1 −−→ ... −−→ `n) ≥ et(`1, `n).

As the first equality is applicable to all `n ∈ dom(EΓJEnK), we can maximise
over all the labels in dom(EΓJEnK). We can safely minimise over all those
labels in dom(EΓJE1K) from which all the labels in dom(EΓJEnK) are reach-
able (but if some of the labels in dom(EΓJEnK) are unreachable from some
` ∈ dom(EΓJE1K) then taking the maximum over the distances from ` to all
the labels in dom(EΓJEnK) will return infinity). Altogether stime(E1 −−→ ... −−→
En) ≥ min`1∈dom(EΓJE1K)max `n∈dom(EΓJEnK)et(`1, `n) = etsets(L1, L2) – the last
equality uses the definition of etsets in Table 5.13.

It is now left to prove that the lower bound computed in etsets(L1, L2) is tight.
We know that according to Lemma 5.11 the bound computed in the mapping
et is tight, i.e. there exists a label path whose expected duration is equal to
et(`, `′) for all {`, `′} ⊆ Labs(F ). From the rules of `tr in Table 5.10 we can
see that there is no synchronisation, therefore no action blocking due to it, and
there is also no reason to apply the internal progress rule for IMCG as there are
no delays in the choice construct in F and hence in any of its derivative IMCG

expressions. Therefore for each label path `1 −−→ ... −−→ `n for which there

exists an IMCG expression E1 with F
∗−−→ E1 and `1 ∈ dom(E1) there exists a

transition sequence E1
α1−−→
C1

...
αn−1−−−→
Cn−1

En such that `n ∈ dom(En) where for each

Ei
αi−−→
Ci

Ei+1 it holds that Ci = ⊥M [`i 7→ 1], αi = Name(`i) and `i −−→ `i+1

is a corresponding transition in the label path `1 −−→ ... −−→ `n. From the

given considerations and the definition of etsets in Table 5.13 follows a proof for
|L1| = 1 and |L2| = 1.

Similarly to the discussion above about etsets being a lower bound, we can take
the minimum over all the labels in L1 and the maximum over all the labels in
L2, but this will only prove that our estimation in etsets(L1, L2) is exact for
reaching one of the labels in L2 but not for reaching all of them simultaneously.
It is therefore left to prove that all the labels from L2 are simultaneously reached
in case a label ` ∈ L2 with the maximum et(`1, `) is reached in a label path
`1 −−→ ... −−→ `, for `1 ∈ L1 arbitrary.

We will do an informal proof showing how the above statement follows from
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the syntactic rules of IMCG in Table 3.1. We start with a case |L2| = 2 which
can be consequently generalised. Remember that we assume that there exists
E′ such that F

∗−−→ E′ and L2 ⊆ dom(E ′). From the rules for `tr in Table 5.10

it easily follows that all the labels in L2 are connected by the plus operator as
in rule (5) in Table 5.10. We can therefore safely assume that L2 = {`2, `3}
and X1 := ...Xn := `2.P1 +Y1 := ...Ym := `3.P2 � F for some P1 and P2, n ≥ 0,

m ≥ 0. Assume also that for some `1 ∈ L1 it holds et(`1, `2) < et(`1, `3) < ∞.
We need to show that for any label path `1 −−→ ... −−→ `3, for any transition

sequence E −−→ ... −−→ E′ that corresponds to the label path as in the discussion

for |L1| = 1 and |L2| = 1, it holds `2 ∈ dom(E ′).

The situation described above (et(`1, `2) 6= et(`1, `3)) is only possible if `1 ∈ P1

or `1 ∈ P2. Assume without loss of generality that `1 ∈ P1. Moreover, it
has to be the case that two different variables X and Y are reachable from `1
where one of the variables “generates” `2, i.e. has `2 in its definition, and the
other variable “generates” `3. Otherwise, with only one variable, it would be
the case that et(`1, `2) = et(`1, `3). Schematically we have a subexpression of
F of the type X1 := ...Xn := `2....`1...X...Y + Y1 := ...Ym := `3.P2. We need to

decide now on the scope of two variables X and Y . It is clear that `3 is not
in the scope of one of the variables, let it be X. We have therefore something
like X1 := ...X := ...Xn := `2....`1...X...Y +Y1 := ...Ym := `3.P2. It is clear that

`3.P2 is in the scope of the variable Y . It is however not possible to have a
situation X := `2....`1...X...Y + Y := `3.P2, for example, because Y will be free
in the overall expression. It is therefore only possible to have an expression of the
type Y := ...(X1 := ...X := ...Xn := `2....`1...X...Y + Y1 := ...Ym := `3.P2) as a

subexpression of F . Altogether reaching `3 from `2 through the unfolding of the
variable Y will lead to `2 being simultaneously exposed.

We can generalise the discussion above to |L2| = k > 2 by arguing that assuming
it has been inductively proved that there exists a variable X which “generates”
k − 1 labels from L2 then we can find another variable Y that generates both
X and the remaining variable `k ∈ L2.

In Lemma 5.14 we will show that there always exists a transition sequence
E1 −−→ ... −−→ En whose expected duration is equal to the minimum expected

time to reach En from E1 under the class of simple schedulers.

Lemma 5.14 (Transition sequences and simple schedulers). Given an IMCG

program F such that `tr F holds, F
∗−−→ E1

∗−−→ En, then there is a one-

to-one correspondence between transition sequences from E1 to En and simple
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schedulers such that the probability of taking a transition sequence E1 −−→ ... −−→
En under a particular simple scheduler is equal to 1.

Proof. It is enough to prove that for all IMCG expressions E and E′ such that
F

∗−−→ E and E −−→ E′ there exists on the one hand a simple scheduler that

can choose a transition from E to E′ with the probability 1, and on the other
hand, any simple scheduler would choose one of the transitions from E with
probability 1. It is therefore enough to show that all the transitions from E are
decorated by different action names, i.e. if E

α1−−→
C1

E′ and E
α2−−→
C2

E′′ such that

E′ 6= E′′ then α1 ∈ Act, α2 ∈ Act and α1 6= α2 hold. We can prove this by
induction on the number of steps in the derivation F

∗−−→ E while proving at

the same time that this also holds for all subexpressions E′′ � E.

If E = F then the statement holds due to the rules for `tr F in Table 5.9, in
particular, rule (5), and can be proved by structural induction on F . Otherwise
we have to prove that if the statement is true for all subexpressions of some
E such that F

∗−−→ E then it is also true for all subexpressions of E′ such

that E −−→ E′. We prove the last by induction on the transition derivation

E −−→ E′. The applicable derivation rules from Table 3.5 are the rules (1)-(3),

(10)-(12), (9) and (16). In the rules (1)-(3) and (10)-(12) the right side of the
transition is a subexpression of the left side, and the statement follows from
the induction hypothesis for all subexpressions of E. For the rules (9) and (16)
we need to prove that the statement about different action names decorating
enabled transitions holds for all subexpressions of E′′′{X := E′′′/X} with E′′′

being an IMCG expression if it holds for all subexpressions of X := E′′′. This
follows however from the induction hypothesis and from Lemma 3.6 which states
that exposed labels before and after substitutions are the same.

Theorem 5.15 below contains the last statement to prove in this section. It
will assemble all the proof parts which have been shown in the lemmas above
into the proof that our algorithm for etsets correctly computes the minimum
expected reachability time over all simple schedulers.

Theorem 5.15 (Minimum expected time reachability). Given an IMCG pro-

gram F such that `tr F holds, F as in Definition 4.9, F
∗−−→ E, L1 = dom(EΓJEK)

and L2 ⊆ Labs(F ), then the minimum expected time to reach an element in

{E′′|(E ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))} from E under the class of simple
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schedulers is equal to etsets(L1, L2). Thereby etsets(L1, L2) =∞ if and only if

{E′′|(E ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))} = ∅.

Proof. The statement of this theorem is directly derivable from the previously
proved Lemmas 5.13 and 5.14. From Lemma 5.13 follows that etsets(L1, L2) =

∞ if and only if {E′′|(E ∗−−→ E′′)∧ (L2 ⊆ dom(EΓJE′′K))} = ∅. Otherwise there

exists a transition sequence E −−→ ... −−→ E′ with E′ ∈ {E′′|(E ∗−−→ E′′) ∧
(L2 ⊆ dom(EΓJE′′K))} with the expected duration of the transition sequence
in the sense of Definition 5.12 equal to etsets(L1, L2) and minimal out of the
expected durations of all the other transition sequences from E to elements of
{E′′|(E ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))}.

It follows from Lemma 5.14 that on the one hand, for each transition sequence
from E to an element in {E′′|(E ∗−−→ E′′)∧ (L2 ⊆ dom(EΓJE′′K))} there exists a

simple scheduler inducing it (i.e. it is taken with the probability 1), and on the
other hand, each simple scheduler gives rise to exactly one transition sequence
from E to a chosen element from {E′′|(E ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))}.

Altogether, according to Lemma 5.13 we calculate in the function etsets the
tight lower bound for the expected duration of all transition sequences from
E to E′, and according to Lemma 5.14 these are exactly transition sequences
that are executed with the probability 1 under simple schedulers. Therefore
etsets computes the minimum expected time to reach any of the elements in
{E′′|(E ∗−−→ E′′) ∧ (L2 ⊆ dom(EΓJE′′K))} from E.

We will make a short conclusion for this section. We have presented an algorithm
for computing the minimum expected reachability time under simple schedulers
and have proved its correctness. As input parameters we expect two label sets
representing exposed labels of IMCG expressions, both derivable from an initial
IMCG program F for which `tr F holds. The rules for `tr allow only linear
IMCG programs and the choice only between external actions. The goal set
of labels can be a strict subset of exposed labels of the states the minimum
expected reachability time to which is computed.

Our algorithm can be potentially extended to a less restrictive syntax. We could
for example allow delay rates in the choice operator. It is not a problem with
maximal one delay in the choice operator, but in case of more than one delay we
would need to sum the results of computations on several paths multiplied with
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their probabilities and not only to determine one shortest path in the sense of
its expected duration. Introducing internalisation operator and allowing several
actions with the same name in the choice operator would lead to a situation
where our algorithm will still compute a lower bound for the minimum expected
reachability time but this bound will possibly be not tight due to internal non-
determinism.
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Chapter 6

Conclusions

In this dissertation we have investigated the applicability of Static Analysis
methods to stochastic process calculi. Our main thesis was that

Static Analysis techniques can be used for verification in a syntax-
directed and compositional way of systems modelled by stochastic pro-
cess calculi.

Stochastic process calculi are widely accepted formalisms for describing con-
current stochastic systems. The syntax of process calculi is suited to describe
systems compositionally, building larger systems out of smaller ones, with ex-
plicit indication of interactions and communication channels. Stochastic process
calculi allow to model not only functional aspects of behaviour, but also incor-
porate the notions of time and probabilities. In this dissertation we have studied
the calculus of Interactive Markov Chains (IMC) [BH00].

Model-checking methods can be applied to concurrent stochastic systems in or-
der to verify whether they have required properties, both qualitative (safety, live-
ness) and quantitative (performance) ones [HKMKS00], [BHHK03], [BHKH05],
[NZ10]. Model checking is however mostly done on expanded system models,
after explicit resolution of all interdependencies and all possible interactions be-
tween subsystems. This means that the advantages of compositional modelling
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(concise system description, compositionality) are not sufficiently exploited at
the verification stage.

In the dissertation we have been developing alternative methods, that can verify
concurrent stochastic systems in a compositional way, working on their composi-
tional syntactic specification. We have shown that system specifications can be
analysed by means of Static Analysis methods and have explored which prob-
lems can be handled in this way. In particular, we have extended the Static
Analysis of IMC in order to identify bisimilar states, reachable states and to
compute the expected timed reachability – the last for a linear fragment of IMC.
The methods deliver in general approximate results but the precision should be
enough for many practical purposes. Moreover, we have developed an algorithm
for refining computed reachability sets. Static Analysis methods can thus ex-
ploit the advantages of compositionality in the syntax and they are moreover
adaptable to the required precision level.

Syntax-driven verification of concurrent stochastic systems has similarities with
the methods of partial order reduction [GKPP95] and symmetry reduction
[CJEF96] that are also exploiting the modularity in concurrent systems in order
to reduce their state space. The difference is that in our case we can apply
different post-processing methods after conducting Static Analysis and thus can
exploit several ways of reducing the complexity of computations simultaneously.

6.1 Main results

We will shortly characterise the main results of this dissertation and the con-
clusions that can be made based on these results.

Pathway Analysis is applicable to stochastic process calculi.

In this dissertation we have transferred Static Analysis methods from functional
to stochastic process calculi, in particular, we have applied Data Flow / Path-
way Analysis methods to the calculus of IMC [BH00]. We have defined the
calculus of IMCG that on one hand has a slightly more permissive syntax then
IMC and on the other hand has “guardedness” conditions built into the syn-
tax. In order to deal only with those IMCG systems that have finite semantic
models and are easy to analyse with Static Analysis methods, additional well-
formedness conditions have been devised that should be checked inductively on
the syntax of an IMCG expression in question. The well-formedness conditions
have been defined with a similar purpose as the well-formedness conditions for
BioAmbients in [Pil07] – in order to exclude syntactic expressions that are
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hard to analyse with Static Analysis methods – but have been strongly revised.

A number of usual Data Flow operators previously applied to, for example, CCS
in [NN07] and BioAmbients [Pil07], i.e. exposed, generate and kill operators,
have been redefined so that they become applicable to IMCG. A new operator
(chains operator) has been introduced in order to analyse synchronisation con-
structs in IMCG. Action names and delay rates in the syntax of IMCG have
been treated similarly on the level of transfer functions (see Section 3.4), with
only slight differences. The differences between actions and delays in the seman-
tics of IMCG influence however the way in which Pathway Analysis results are
post-processed: in many cases delay-transitions are much harder to deal with
than action transitions while checking properties.

We do not make use of a granularity function as in the previous work (see
[NN07], [Pil07]) because semantic models of well-formed IMCG systems, as well
as semantic models of IMC systems, are always finite. Therefore it is not neces-
sary to merge states with a granularity function in the Worklist Algorithm which
constructs a labelled transition system (see Section 3.6) in order to guarantee
the termination of the Worklist Algorithm. It becomes possible to check prop-
erties “on the fly”, during the construction of the labelled transition system,
because states are not merged and not revisited by the Worklist Algorithm.

Pathway Analysis can be precise. Data Flow or its subtype Pathway Anal-
ysis have been successfully applied until now to a number of process calculi –
CCS [NN07, NN09], BioAmbients [NNPR04, Pil07], bKlaim [NNN08]. All these
calculi allow infinite syntactic models. Based on the analysis results, a finite
automaton was constructed by the Worklist Automaton that could simulate the
semantics of an analysed system. The merging of states was necessary at this fi-
nal stage of the analysis in case the system semantics was infinite. A granularity
function has been used for deciding which states should be merged. Therefore
possible imprecision (in the sense of over-approximation) of transfer functions
computed by Data Flow Analysis operators on the syntax of the analysed system
was acceptable in view of the merging of states at the final stage. The question
of whether the analysis is precise has not been explored for these calculi.

In this dissertation Pathway Analysis methods have been adopted to systems
with finite semantic models, and we have proved that transfer functions are
computed without loss of precision for uniquely labelled, closed and well-formed
IMCG expressions that we have named IMCG programs. The computed transfer
functions and several additional operators on the syntax of IMCG “capture” the
semantics of IMCG programs in a precise way.

Pathway Analysis can be used for computing bisimulation and reach-
ability relations. We have devised in Chapter 5 two bisimulation relations
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that can be computed by post-processing of the Pathway Analysis results of
IMCG programs. They can be computed in the low polynomial time and space
complexities in the size of the syntax specification of an analysed system. The
complexity gain is due to the fact that part of the decision whether two states
are bisimilar is taken on the level of labels. It is first determined which of the
labels that occur in the syntactic specification are “bisimilar”. Additionally a
kind of “synchronisation structure” of two states to be compared is computed.
Two states are contained in a defined by us bisimulation relation if their “active
labels” (decorating outgoing transitions from that states) are pairwise bisimilar
and they have the same “synchronisation structure”. We apply calculated bisim-
ulation relations to an IMCG fragment without delays as dealing with delays in
a compositional way is much harder. Also for this fragment we do not build the
coarsest bisimulations, but we conjecture that the devised by us bisimulation
relations are the coarsest bisimulations for important subclasses of IMCG.

In Section 5.3 we have devise an algorithm for computing reachable states repre-
sented by their “active labels”. Reachability on the level of labels is computed
as a transitive closure of the generate operator which is one of the operators
of Pathway Analysis. After one semantic step a set of reachable labels can be
refined. We could also determine by examining beforehand the syntax of an
analysed system that some combinations of active labels are impossible, i.e. are
unreachable, and in this way reduce the state space of the analysed system (see
Section 5.1). These relations can be computed in the low polynomial time and
space complexities in the size of the syntax specification. On the other hand,
we compute an over-approximation of reachable labels/states in the first case
and an under-approximation of unreachable states in the second case.

Pathway Analysis can be used for computing timed reachability. We
have developed in Section 5.4 an algorithm for computing the minimum expected
time to reach a fixed set of goal states from an initial state. The algorithm is
applicable to a linear fragment of IMCG under the class of simple schedulers. It
uses the results of the previously conducted Pathway Analysis on the syntactic
specification of a linear IMCG system and has the low polynomial time and
space complexities in the size of the specification. The algorithm is exploiting
the fact that the expected value of a sum of random variables is equal to the
sum of expected values of the variables [GS97]. Therefore the expected duration
of a sequence of transitions can be computed “piecewise” and then summed up.
This result shows that Static Analysis methods can be also used for computing
quantitative information.

The purpose of the methods developed in this dissertation was to check both
qualitative and quantitative properties whenever possible directly on a system
specification, i.e. first on subsystems specifications and then to combine the
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results using information on interactions between them that could be deduced
from the specification. As the work is based on Static Analysis methods, in
general safe approximations of properties (under-approximations of bisimilarity
relations, over-approximations of sets of reachable states) have been computed.
The computations could be done however in the low polynomial time and space
complexities in the size of syntactic specifications. We can therefore make a
conclusion that the main thesis of this dissertation holds.

6.2 Future work

During the work on this dissertation we have identified a number of possible
extensions of the developed techniques and a number of research directions that
can continue this line of work. We will list most of these ideas below.

Expected time reachability for full linear IMCG and for non-linear
fragments of IMCG The algorithm from Section 5.4 computes minimum
expected time reachability for a linear fragment of IMCG. It can be extended
to the full linear IMCG and to eventually maximum expected time (for states
reachable with the probability 1). We would also like to extend the algorithm
from the linear case to several processes running in parallel. This is however
much harder than dealing with the linear case due to complex race conditions
that are possible in parallel processes. Due to the hardness of the problem, we
will aim to compute upper and lower bounds rather than actual values in order
to preserve low complexities of computations. For resolving nondeterminism
we will consider first of all the class of memoryless schedulers as they are most
suitable for compositional verification and are used in many real-life systems.
This line of work can be seen in a broader perspective as developing syntax-based
quantitative Static Analysis techniques.

Computing larger bisimulation relations The algorithms from Chapter
4 can be enhanced in order to be able to identify broader classes of strongly
bisimilar IMCG expressions. We would also like to clarify the question for
which subclasses of IMCG our existing algorithms from Chapter 4 can identify
all strongly bisimilar states. Moreover, we could possibly adapt the algorithms
to computing, besides strong bisimulations, also weak bisimulations or trace
equivalences, eventually even probabilistic bisimulations.

Enhancing well-formedness conditions We would like to explore the pos-
sibilities of using syntactic conditions similar to the well-formedness conditions
in Chapter 3 in order either to exclude beforehand, without conducting the
analysis, IMCG systems with undesirable properties or detect the ones with
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especially favourable properties. We could, for example, exclude beforehand
systems where deadlocks are possible or those with Zeno cycles.

It is clear that while computing complex properties for the whole IMCG we can
only “over-approximate” the undesirable IMCGs and “under-approximate” the
desirable ones. This means that in the first case we will exclude all IMCGs that
have undesirable properties but also some that do not have such properties; in
the second case all IMCGs that we will detect will have the desirable properties
but also some of those that we would reject will also have these properties. We
could either accept the fact that the results are imprecise or strive to identify
subclasses of IMCG on which the algorithms deliver more precise results than
on IMCG in general.

Broader class of properties We can broaden the class of problems that could
be tackled by using methods similar to the ones developed in this dissertation.
As the class of problems is usually identified by a temporal logic, we could
explore which logics can be model-checked with our methods. We would use
3-valued logics as Static Analysis methods in general approximate the actual
values, returning upper and lower bounds. We can base our research on the
evaluation of formulas in the 3-valued ACTL logic over modal transition systems
constructed with the Data Flow Analysis of bKlaim in [NNN08]. The temporal
logics that we could consider are subclasses of the 3-valued PCTL logic [FLW]
and the 3-valued CSL logic [KKLW07].

Merging of states Worklist Algorithm in Section 3.6 builds a labelled tran-
sition system that can be model-checked afterwards. However due to the pre-
viously conducted Static Analysis of the syntactic specification of a system we
know the “internal structure” of states. We can therefore merge “on the fly”
either bisimilar states or states whose differences in the behaviour are not par-
ticularly important for the properties that we plan to check on the constructed
transition system. The first possibility is to abstract away from state properties
which are not relevant for answering verification questions and thus to merge
states which differ only in their “irrelevant” behaviour. The second possibility
is to assess differences between states based on the Static Analysis results and
then merge “similar” states together.

Partial construction of state space Another interesting question is how to
increase the precision of verification results if necessary. In Section 5.3.2 we have
discussed an algorithm for updating a set of reachable labels after one semantic
transition. We could develop this approach further into an algorithm for gradual
refinement of verification results. The idea is to start with an approximate
algorithm applied to the initial state of a system and then, in case the precision
of the verification results will be insufficient, to build all the states reachable
from the initial state after maximum a fixed number of transitions, run the
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verification algorithm on the newly created states and then combine the returned
verification results together. We will need to explore the questions how to assess
the precision level of the result and how to combine the verification answers
in the optimal way. The verification will thus deliver in general approximate
results (e.g. upper and lower bounds for quantitative properties), but with the
possibility to increase the precision in the next verification round.

Other process calculi We can extend the Pathway Analysis from IMCG to
other process calculi. For example, to calculi with different from IMC synchro-
nisation models such as PEPA [Hil96] and Bio-PEPA [CH09] or to calculi with
delays different from exponential such as SPADES [HS00]. Recent advances in
the field of stochastic process calculi include the creation of uniform frameworks
– in particular, Rated Transition Systems [KS08] and Rate Transition Systems
[NLLM09a] (the last have been recently generalised to Function Transition Sys-
tems). By working on a uniform framework algorithms can be developed that
are applicable to all stochastic process calculi definable in that framework – both
already studied ones and potentially derivable from that uniform framework.

Implementation We plan to build a tool based on the obtained theoretical
results. The implementation can be based on the already implemented imple-
mentations of Data Flow / Pathway Analysis for CCS [NN07], BioAmbients
[Pil07] and bKlaim [NNN07].

Infinite semantic models We can extend the Pathway Analysis of IMCG to
infinite semantic models if we adopt a more flexible approach in the definition
of transfer functions. We have assumed in this dissertation that generate, kill
and chains operators results should be applicable after any number of semantics
steps, i.e. they should not change (see Section 3.4). In the future work we
could allow their results to change in a predictable way – for example, after
certain transitions, – and correctly model a larger class of systems with process
duplication. It will be interesting to try different subclasses of infinite systems
and to compare the achievable precision on them. It is clear that we would
need a calculus with infinite semantic models on which we could try out this
“changeable” version of Pathway Analysis.

We can make a conclusion that methods developed in this dissertation are ex-
tendable to a broader class of properties, broader class of systems, and their
precision is to some extend adaptable to the nature of verification problems and
the required precision level.
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Appendix A

Proofs from Chapter 3

Lemma 3.1 (Preservation of IMCG syntax). Given a closed IMCG expression
E and E −−→ E′, then E′ is also a closed IMCG expression.

Proof. We can prove the statement by induction on the transition derivation
according to the SOS rules in Table 3.5. The rules (1) and (10) are the base
cases and the statement is clear for them because the right side of the transition
cannot be a variable due to process identifier closeness of E. The rest of the
rules follow from the induction hypothesis. For the rules (9) and (16) we have to
additionally show that E{X := E/X} is a closed IMCG expression if this holds
for X := E. Process identifier closeness for E{X := E/X} follows from the fact
that the only free process variable in E can be X , therefore no free process
identifier variables are present in E{X := E/X} after the substitution. The
second statement follows from the fact that if X := E is an IMCG expression
then also E is an IMCG expression. From the rules (1)-(4) in Table 3.1 follows
that we can use an IMCG expression instead of a variable – the result will still
be a valid IMCG expression.
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Lemma 3.2 (Transition of process definition). Given a closed IMCG expression

X := E, then X := E
α−−→
C

E′ if and only if there exists E′′ such that E
α−−→
C

E′′

and E′ = E′′{X := E/X}.

Proof. We prove this by induction on the transition derivation according to the
SOS rules in Table 3.5. Note that the existence of the transition X := E

α−−→
C

E′

is equivalent to the existence of the transition E{X := E/X} α−−→
C

E′ due to the

rules (9) and (16) in Table 3.5. We will prove that for each IMCG expression

E, for each transition E{G/X} α−−→
C

E′, where every process identifier which is

not free in E is also not free in G, there exists a transition E
α−−→
C

E′′ for some

E′′ such that E′ = E′′{G/X}, and the other way round. This will prove the
lemma’s statement as a particular case.

Let us note that in case X is not free in E then the statement is obviously true
because X is not free in E′ as well and we can set E′ = E′′. If X is free in E
then we will prove the statement of the lemma by induction on the transition
derivation of E{G/X} α−−→

C
E′.

The base cases are rules (1) and (10) from Table 3.5 and the statement is clear for
them. The rest of the rules can be easily derived from the induction hypothesis
besides the rules (9) and (16). Note that in case of the synchronisation operator
we may have one of the synchronisation sides unchanged (rules (4)-(5) and (13)-
(14)). For the unchanged synchronisation side we may simply use the expression
without substitution on the right-hand side of the transition. For example, for
the rule (4) we can derive from the induction hypothesis that E{G/X} α−−→

C
E′

iff E
α−−→
C

E′′ for some E′′ such that E′ = E′′{G/X} and therefore E{G/X} q

A q F{G/X} α−−→
C

E′ q A q F{G/X} iff E q A q F
α−−→
C

E′′ q A q F with

E′′{G/X} qAq F{G/X} = E′ qAq F{G/X}.

For the rules (9) and (16), if X is free in the initial expression then there exists

a transition Y := E{G/X} α−−→
C

E′. This is equivalent to the existence of the

transition E{G/X}{E/Y {G/X}} α−−→
C

E′. This is however the same as the

transition E{E/Y }{G/X} α−−→
C

E′, because Y is not free in G as it is not free in

Y := E. We can apply the induction hypothesis to this transition because the
transition derivation tree is smaller.

We derive from the induction hypothesis that E{E/Y }{G/X} α−−→
C

E′ iff there
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exists E′′ such that E{E/Y } α−−→
C

E′′ and E′ = E′′{G/X}. The last transition

is however according to the rules (9) and (16) in Table 3.5 equivalent to the

transition Y := E
α−−→
C

E′′ with E′ = E′′{G/X} and this is exactly what we had

to prove.

Lemma 3.3 (Preservation of well-formedness). Given an IMCG expression E
such that `fn(E) E holds and Labs(E1) ∩ Labs(E2) = ∅ for all E1 qAq E2 �
E, then for all E′ such that E

α−−→
C

E′ also `fn(E′) E
′ holds and Labs(E1) ∩

Labs(E2) = ∅ for all E1 qAq E2 � E′.

Proof. Note that we can prove for simplicity that `fn(E) E
′ holds. This will

also prove that `fn(E′) E
′ holds because, as it is easy to deduce, fn(E′) ⊆ fn(E).

We prove the lemma by the induction on the transition derivation with the
well-formedness parameter S being any considerable set of actions: we have to
assume this because if E is well-formed relative to some action set S then any
its subexpression is also well-formed relative to this set.

The base cases are rules (1) and (10) in Table 3.5: the statement about well-
formedness follows from the well-formedness rules (1)-(4) in Table 3.8 and the
statement about disjoint labeling is obvious. The rules concerning the choice
and hide operators follow by induction. The rules about the parallel operator are
a bit more complicated. For example, the statement concerning disjoint labeling
of E′ and F ′ in the rule (6) in Table 3.5 follows from the disjoint labeling of E

and F and from the obvious fact that if E
α−−→
C

E′ then Labels(E′) ⊆ Labels(E).

For the well-formedness of E′ qAq F ′ we can apply our induction hypothesis not
to the fixed at the beginning set S but to the sets S ∪ fn(E) and S ∪ fn(F ). We
know that E is well-formed relative to the first set and F is well-formed relative
to the second set. From the induction hypothesis follows that E′ will be well-
formed relative to S ∪ fn(E) and F ′ will be well-formed relative to S ∪ fn(F ).
From fn(E′) ⊆ fn(E) and fn(F ′) ⊆ fn(F ) follows that E′ is well-formed relative
to S ∪ fn(E′) and F ′ is well-formed relative to S ∪ fn(F ′). From the rule (7) in
Table 3.8 follows `S E′ qAq F ′.

For proving the lemma for the rules (9) and (16) in Table 3.5 we need to show
that the lemma’s conditions hold for E{X := E/X} if they hold both for E
and X := E. Labels of synchronising processes are disjoint in E{X := E/X}
because this is the case for both E and X := E and no substitution is conducted
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in the synchronising processes as E is well-formed and X cannot be free in a
synchronising process due to its process identifier closeness, according to the
rule (7) of well-formedness in Table 3.8. It is left to prove that E{X := E/X}
is well-formed relative to some action set S if this is the case for both E and
X := E.

In order to prove this fact by induction on the syntactic structure of E we
will show that for any IMCG expression E′′ the expression E′′{X := E/X} is
well-formed relative to some action set S if this is the case for both E′′ and
X := E (no transition is derivable for E′′ ∈ Var in case E′′ 6= X, so we can
omit this case). We prove this by induction on the structure of E′′. Base cases
are the rules (1)-(2) from Table 3.1 and the statement follows from the well-
formedness rules (3)-(4) in Table 3.8. The rules (3)-(6) and (8) follow from the
induction hypothesis and the rules for well-formedness in Table 3.8. The rule
(7) follows as E′′ is well-formed, therefore both synchronising sides are closed
and no substitutions can be made in them.

Lemma 3.5 (Exposed labels of IMCG expressions). Given an IMCG expression
E, then E∅JEK = EΓJEK holds for any environment Γ ∈ 2Var×M.

Proof. We can prove the statement by induction on the structure of E following
the rules from Table 3.1. Base cases are rules (1)-(4) and (9) from Table 3.1
and the statement easily follows for them from the rules (1)-(4) and (9) for the
exposed operator in Table 3.9. The rest of the rules follows from the induction
hypothesis and the rules for the exposed operator.

Lemma 3.6 (Exposed labels under substitution). Given an IMCG expression
E′′, then EΓJE′′K = EΓJE′′{X := E′/X}K holds for all environments Γ and all
IMCG expressions X := E′. If E′′ = X then, provided that (X, E∅JE′K) is a
unique mapping for a variable X in Γ, i.e. for all (X,M) ∈ Γ it holds that
M = E∅JE′K, then EΓJE′′K = EΓJE′′{X := E′/X}K holds as well.

Proof. We can prove the statement by induction on the structure of E′′. If
E′′ is a variable then in case a substitution has taken place we use the fact
that (X, E∅JE′K) is the only definition of X in Γ. From Lemma 3.5 follows
E∅JE′K=EΓJE′K and the statement follows from the rule (8) for the exposed
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operator in Table 3.9. The statement is obvious if no substitution has taken
place.

If E′′ 6∈ Var then E′′ is an IMCG expression and we can easily prove the lemma
by induction on its syntactic structure following the rules from Table 3.1, using
the rules for the exposed operator from Table 3.9.

Lemma 3.7 (Variable definitions under transitions). Given a closed IMCG

expression E and a transition E
α−−→
C

E′, then ΓVarJE′K ⊆ ΓVarJEK holds.

Proof. We prove this lemma by induction on the transition derivation according
to the SOS rules in Table 3.5. The base cases are the semantic rules (1) and (10)
in Table 3.5 and the statement follows for them because ΓVarJE′K = ΓVarJEK.
The rest of the rules easily follows from the induction hypothesis and the rules of
the operator ΓVar in Table 3.10 besides the rules (9) and (16). We can however
prove that ΓVarJE{X := E/X}K ⊆ ΓVarJX := EK: the reason is that for any
Y := F{X := E/X} � E{X := E/X} holds E∅JF K = E∅JF{X := E/X}K due
to Lemma 3.6.

Lemma 3.8 (Generate and kill operators under substitution). Given well-
formed IMCG expressions E′ and X := E, Γ ∈ 2Var×M, (X, E∅JEK) a unique
mapping for X in Γ, then GΓJE′{X := E/X}K ⊆ GΓJE′K ∪ GΓJX := EK and
KJE′{X := E/X}K ⊆ KJE′K ∪ KJX := EK hold.

Proof. We prove this by induction on the structure of E′. The base cases are
rules (1)-(2) from Table 3.1 and the statement is obvious in case no substitution
has been made. If the substitution has taken place the statement follows from
(X, E∅JEK) being a unique mapping for X in Γ, EΓJEK = E∅JEK (see Lemma 3.5)
for the generate operator and the rules (1)-(4) in Tables 3.11 for the generate
operator, the rules (1)-(4) in Tables 3.13 and 3.14 for the kill operator.

For the rules (3)-(4) from Table 3.1 the statement follows from the induction
hypothesis, the rules (3)-(4) in Tables 3.11, 3.13 and 3.14 and the consideration
for the generate operator that EΓJPK = EΓJP{X := E/X}K for P 6∈ Var (see
Lemma 3.6). For the rules (5)-(7) from Table 3.1 the statement follows from
the induction hypothesis and the rules (5)-(7) in Tables 3.11, 3.13 and 3.14.
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For the rule (8) from Table 3.1 in case we have a process definition for some
process variable Y 6= X then the statement of lemma follows from the induction
hypothesis and the rule (8) in Tables 3.11, 3.13 and 3.14. If Y = X then no
substitution takes place and the statement obviously holds.

Lemma 3.9 (Chain operator under substitution). Given well-formed IMCG

expressions E and E′, then TΛJE{E′/X}K ⊆ TΛJEK ∪ TΛJE′K holds for all
Λ ∈ 2Lab×(Act∪{τ}∪Rate).

Proof. We prove this by induction on the syntactic structure of E according to
the rules in Table 3.1. The rules (1)-(2) in Table 3.1 are the base cases and follow
from the rules (1)-(4) for the chains operator in Table 3.17. The rest of the rules
follow by induction besides the rule (7): we need to use the well-formedness of E
for it. The statement follows because any well-formed expression does not have
free process variables in its synchronising processes, therefore no substitutions
are made and TΛJ(E{E′/X}) qAq (F{E′/X})K = TΛJE qAq F K.

Lemma 3.10 (Generate operator under transitions). Given an IMCG program

F , Γ = ΓVarJF K, F ∗−−→ E and E −−→ E′, then GΓJE′K ⊆ GΓJEK holds.

Proof. We prove the lemma by induction on the transition derivation. The
statement follows for the base cases – the rules (1) and (10) in Table 3.5 –
from the rules (1)-(4) concerning prefixed expression for the generate opera-
tor in Table 3.11. The rest of the rules follows from the induction hypothe-
sis and from the rules for the generate operator in Table 3.11. For the rules
(9) and (16) we have to additionally use the fact shown in Lemma 3.8 that
GΓJE{X := E/X}K ⊆ GΓJEK ∪ GΓJX := EK (the unique mapping for variables
in ΓVarJF K is due to the fact that F is an IMCG program). At the same time
it is easy to see from the rules for the generate operator in Table 3.11 that
GΓJX := EK = GΓJEK ⊆ GΓJE{X := E/X}K. Therefore GΓJE{X := E/X}K =
GΓJX := EK and the induction hypothesis is applicable.
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Lemma 3.11 (Kill operator under transitions). Given an IMCG program F ,

Γ = ΓVarJF K, F ∗−−→ E, (`,M1) ∈ KJEK, ⊥M [` 7→ 1] ≤ EΓJEK, (`,M2) ∈ KJF K,
then EΓJEK−M1 = EΓJEK−M2 holds.

Proof. In order to be able to prove the lemma by induction on the structure
of E we will also need to show that the (extended) statement of the lemma also
holds for any subexpression of any IMCG expression derivable from F , i.e. for
F

∗−−→ E and E′ � E′′ � E, ⊥M [` 7→ 1] ≤ EΓJE′K, holds: if (`,M1) ∈ KJE′K,
(`,M2) ∈ KJF K and (`,M3) ∈ KJE′′K then EΓJE′K − M1 = EΓJE′K − M2 =
EΓJE′K−M3.

We prove the lemma by induction on the number of semantic steps in F
∗−−→ E.

For zero number of steps the statement holds for any subexpression of F due
to its unique labeling and from the rules for the kill operator in Tables 3.13
and 3.14, in particular the rule (5) in Table 3.13: M3 ≥ M1, but the difference
exactly “covers” the exposed labels of the other summand. Otherwise we have
to prove the induction step, namely, if the statement is true for E and E

α−−→
C

E′

then the statement is true for E′. We prove this by induction on the transition
derivation.

The base cases are rules (1) and (10) from Table 3.5 and the statement is true
because the right side of the transition is a subexpression of the left side. The
statement follows from the induction hypothesis for the rules (2)-(3) and (11)-
(12) in Table 3.5: for example, for the rule (2) the induction hypothesis is
applicable to E because E � (E + F ) and the statement holds for E′ because

the derivation tree for the transition E
α−−→
C

E′ is smaller than for the transition

(E + F )
α−−→
C

E′.

We can deduce the statement from the induction hypothesis for the rules (4)-
(6) and (13)-(14) from Table 3.5 because the labels of two synchronising pro-
cesses are disjoint according to Lemma 3.3, therefore EΓJE′K and EΓJF ′K, GΓJE′K
and GΓJF ′K are label disjoint. The statement follows from the induction hy-
pothesis for the rules (7)-(8) and (15) because EΓJhide A in EK = EΓJEK and
KJhide A in EK = KJEK according to the rules for the corresponding operators.

For the rules (9) and (16) we have to prove that the induction hypothesis is ap-
plicable to E{X := E/X} if it is applicable to X := E (and therefore applicable
to any subexpression of the last). It is clear that we only have to prove that the
induction hypothesis is applicable for any E′′{X := E/X} such that E′′ � E
and E′′ 6∈ Var. From Lemma 3.6 follows that EΓJE′′{X := E/X}K = EΓJE′′K.
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From Lemma 3.8 follows KJE′′{X := E/X}K ⊆ KJE′′K ∪ KJX := EK. We can
therefore apply the induction hypothesis for X := E to E′′{X := E/X}.

Lemma 3.12 (Chains inclusion). Given a well-formed IMCG expression F ,

F
∗−−→ E, Λ = ΛLabJF K, then TΛJEK ⊆ TΛJF K holds.

Proof. It is enough to prove that for any well-formed E from E
α−−→
C

E′ follows

TΛJE′K ⊆ TΛJEK for all Λ ∈ 2Lab×(Act∪{τ}∪Rate). We prove this by induction
on the transition derivation.

Most of the rules from Table 3.5 are either easily provable base cases or follow by
induction using the rules for the chain operator from Table 3.17. For the rules
(9) and (16) we have to additionally use Lemma 3.9 in which we have proved
that TΛJE{X := E/X}K ⊆ TΛJEK ∪ TΛJX := EK = TΛJX := EK. Moreover
from the proof of Lemma 3.3 follows that E{X := E/X} is well-formed. Our
induction hypothesis is therefore applicable to it.

Lemma 3.13 (Chains preservation). Given an IMCG program F , F
∗−−→ E,

Λ = ΛLabJF K, C ∈ TΛJF K, dom(C) ⊆ Labs(E), then C ∈ TΛJEK holds.

Proof. We prove the lemma by showing that for any well-formed E, with
ΛLabJEK ⊆ ΛLabJF K, for which the additional condition described below holds,

if E
α−−→
C

E′ and for some C ∈ TΛJEK holds dom(C) ⊆ Labs(E′) then C ∈
TΛJE′K and the mentioned condition holds for E′. This will prove the statement
of the lemma (assuming the additional condition holds for F ) because obviously

from E
α−−→
C

E′ follows Labs(E′) ⊆ Labs(E). The additional condition is that

for any E′ � E′′ � E if for some C ∈ TΛJE′′K holds dom(C) ⊆ Labs(E′) then
C ∈ TΛJE′K. This is true for the initial IMCG expression F due to its unique
labeling.

We prove the statement by induction on the derivation of the transition E
α−−→
C

E′. For the rules (1) and (10) the statement follows from the induction hy-
pothesis concerning any subexpression of E because the right-hand side of the
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transition is a subexpression of E. For the rules (2)-(3) and (11)-(12) we can
deduce the statement from the induction hypothesis.

For the rules (4)-(6) and (13)-(14) we can make use of the observation that
the labels of two synchronising processes derived from some uniquely labelled
and well-formed IMCG expression are disjoint (see Lemma 3.3). Therefore, for

example, for the rule (6) if TΛJE qAq GK α−−→
C′

TΛJE′ qAq G′K and there is some

C ∈ TΛJE qAq GK such that dom(C) ⊆ Labs(E′ qAq G′), then we can uniquely
identify C1 ∈ TΛJEK, C2 ∈ TΛJGK, such that C = C1 +C2, dom(C1) ⊆ Labs(E′)
and dom(C2) ⊆ Labs(G′). From the induction hypothesis follows C1 ∈ TΛJE′K
and C2 ∈ TΛJG′K, therefore (as Λ = ΛLabJF K and ΛLabJE′ qAq G′K ⊆ ΛLabJF K
can be easily shown) it also holds C ∈ TΛJE′ qAq G′K. The additional condition
holds on E′ qAq G′ as well: it holds on all subexpressions of E′ and G′ due
to the induction hypothesis and for the whole E′ qAq G′ due to the disjoint
labelling of E′ and G′.

For the rules (9) and (16) we have to show that the induction hypothesis is
applicable to E{X := E/X} if it is applicable to X := E. We will see below that
it will be enough to prove that for all E′′ � X := E, with X ∈ fpi(E′′), holds:
TΛJE′′K ⊆ TΛJX := EK. This fact follows basically from the consideration that
the parallel operator cannot be applied to E′′ because fpi(E′′) 6= ∅ and the
resulting expression will not be well-formed (see the rule (7) in Table 3.8). The
rest of the syntactic constructs from Table 3.1 will preserve the chains from E′′

in the resulting expression (see the rules for the chains operator in Table 3.17).
We can deduce therefore that TΛJE′′{X := E/X}K ⊆ TΛJE′′K ∪ TΛJX := EK =
TΛJX := EK if X ∈ fpi(E′′) (the set inclusion follows from Lemma 3.9).

Now we are able to prove that the induction hypothesis is applicable to the result
of substitution E{X := E/X} if it is applicable to X := E. For E′ � E′′ �
X := E the statement follows directly from the induction hypothesis for X := E.
For E′ � X := E � E′′, if E′′ = E′′′{X := E/X}, holds TΛJE′′K = TΛJX := EK
and we know from the induction hypothesis that any chain from TΛJX := EK
all the labels in the domain of which are in Labs(E′) is also in TΛJE′K. For
X := E � E′ � E′′, with E′ = E′′′{X := E/X} and E′′ = E′′′′{X := E/X},
the statement follows because the sets TΛJE′K and TΛJE′′K are equal.

Lemma 3.14 (Transition existence). Given an IMCG program F , F
∗−−→ E,

Λ = ΛLabJEK and Γ = ΓVarJEK, then E
α−−→
C

E′ holds if and only if C ∈ TΛJEK

and C ≤ EΓJEK, and one of the following cases occurs: α = Nameh
Λ,fn(E)(C )
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and α ∈ Act ∪ {τ} or α = Nameh
Λ,fn(E)(C ), α ∈ Rate and there is no chain

C ′ ∈ TΛJEK, C ′ ≤ EΓJEK with Nameh
Λ,fn(E)(C ′) = τ .

Proof. Note that according to the rules for the chains operator in Table 3.17
any chain has in its domain only labels correspondent to one and the same action
name or delay rate, therefore NamehΛ,fn(E)(C) is always equal to an action name

or a delay rate if C ∈ TΛJEK .

Another observation concerns the two cases mentioned in the statement of the
lemma: the second case expresses that if the τ -action can be executed by some
IMCG expression then no delay can be executed by the same expression – this is
clear from the SOS rules in Table 3.5. It is also easy to show that the transition
is decorated by the action correspondent to the chain if that action has not
been internalised and is decorated by τ if the corresponding action has been
internalised or has been the τ -action from the beginning. It is therefore enough
to prove that E −−→

C
E′ iff C ∈ TΛJEK and C ≤ EΓJEK.

We prove the lemma by induction on the syntactic structure of E. The statement
is clear for the rules (1)-(4) in Table 3.1 due to the rules (1)-(4) for the exposed
operator in Table 3.9, rules (1)-(4) for the chains operator in Table 3.17 and the
semantic rules (1) and (10) in Table 3.5.

For the rule (5) we will need a consideration that if for some subexpression
(G + H) � E′′ � E there exists C ∈ TΛJE′′K such that C ≤ EΓJG + HK then
either C ≤ EΓJGK or C ≤ EΓJHK. This holds for the original expression F
due to its unique labeling and the rule for the chains operator on a sum in
Table 3.17. We need to show that this property is preservable under semantic
transitions. This is clear for the base cases – semantic rules (1) and (10) in
Table 3.5. The other rules follow by induction besides the rules (9) and (16)
in Table 3.5. For them we need to show that if the relevant property holds
for X := E then it also holds for E{X := E/X}. This follows from Lemma
3.9 (TΛJE′′′{X := E/X}K = TΛJE′′′K ∪ TΛJX := EK for well-formed E′′′) and
Lemma 3.6 (EΓJH{X := E/X}K = EΓJHK and EΓJG{X := E/X}K = EΓJGK for
any (H +G) � X := E).

Now we can also deduce the statement of the lemma for the sum operator
from the induction hypothesis, using the consideration above. The rule (6) for
the hide-operator easily follows from the induction hypothesis. For the parallel
composition in the rule (7) we use Λ = ΛLabJEK and the fact proved in Lemma
3.3 that labels of two synchronising processes are disjoint. We can therefore
in case C ∈ TΛJG qA q HK and C ≤ EΓJG qA q HK uniquely determine C1
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and C2, such that C = C1 + C2, C1 ∈ TΛJGK and C1 ≤ EΓJGK, C2 ∈ TΛJHK
and C2 ≤ EΓJHK, and apply the induction hypothesis. On the other hand, if

G qAq H
α−−→
C

G′ qAq H ′ then we can uniquely determine C1 and C2, such

that C = C1 + C2, G
α−−→
C1

G′ and H
α−−→
C2

H ′, and the induction hypothesis is

applicable as well.

For the rule (8) we know from Lemma 3.2 that X := E
α−−→
C

E′ iff E
α−−→
C

E′′

for some E′′ with E′ = E′′{X := E/X}. From the induction hypothesis we

know that E
α−−→
C

E′′ iff C ∈ TΛJEK and C ≤ EΓJEK. From the rules for the

chains operator follows TΛJEK = TΛJX := EK and from the rules for the exposed
operator follows EΓJEK = EΓJX := EK. This proves the statement of the lemma
also for X := E.

Lemma 3.15 (Unique exposed labels). Given an IMCG program F , F
∗−−→ E

and Γ = ΓVarJF K, then either EΓJEK(`) = 0 or EΓJEK(`) = 1 holds for all ` ∈
Lab. Given two transitions E −−→

C1

E′ and E −−→
C2

E′′ with different derivation

trees, then C1 6= C2 holds.

Proof. We will show that if for some well-formed IMCG expression E for all
E′′ � E holds for all ` ∈ Lab either EΓJE′′K` = 0 or EΓJE′′K` = 1 then the same

holds for all E′ such that E
α−−→
C

E′. This will be enough to prove the lemma

because this obviously holds for F due to its unique labeling.

We prove this by induction on the transition derivation. Most of the rules in
Table 3.5 are obvious. For the rules (5)-(7) and (13)-(14) we have to use the fact
proved in Lemma 3.3 that the labels of two synchronising processes are disjoint.
For the rules (9) and (16) we have to prove that the statement holds for all
subexpressions of E{X := E/X} if it holds for all subexpressions of X := E. It
is clear for all E′′ ∈ Var or E′′ � X := E. Otherwise from Lemma 3.6 follows
EΓJE′′{X := E/X}K = EΓJE′′K.

The second statement of the lemma follows from the uniqueness of exposed
labels (that are the only labels decorating the transition according to Lemma
3.14) by induction on a transition derivation tree.
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Theorem 3.16 (Pathway Analysis Exactness). Given an IMCG program F ,

F
∗−−→ E and E

α−−→
C

E′, then EΓJEK −
∑
`∈dom(C){M |(`,M) ∈ KupJEK} +∑

`∈dom(C){M |(`,M) ∈ GΓJEK} = EΓJE′K.

Proof. Note that from Lemma 3.14 follows that all the labels in the domain
of the executable chain C are exposed. From the rules for the operator Kup in
Table 3.13 we can deduce that it is defined on all the exposed labels. Moreover,
it contains only one entry for all ` ∈ dom(EΓJEK) – this follows from Lemma
3.15 on the uniqueness of the exposed labels for all derivative expressions of an
IMCG program. Also GΓJEK contains only one entry for all ` ∈ dom(EΓJEK) –
this can be deduced from the unique labelling of F and from GΓJEK ⊆ GΓJF K
according to Lemma 3.10. We can also show that for all subexpressions E′′ � E
both GΓJE′′K and KupJE′′K contain unique mappings for all ` ∈ dom(EΓJE′′K).

We prove the lemma by induction on the transition derivation. The rules (1)
and (10) in Table 3.5 follow from the rules (1)-(4) for the generate and kill
operators in Tables 3.11 and 3.13 and the rule (9) in Table 3.9 (applicable if
the right side of the transition is a variable). The rules for the choice operator
(2)-(3) and (11)-(12) follow from the induction hypothesis and the rule (5) for
the Kup operator in Table 3.13: the exposed labels of the summand that does
not participate in the transition are killed according to it. The rest of the rules
directly follow from the induction hypothesis besides the rules (9) and (16).

For the last rules we can use the fact proved in Lemma 3.2 that if X := E
α−−→
C

E′

then there also exists a transition E
α−−→
C

E′′ for some E′′ such that E′ =

E′′{X := E/X}. From the induction hypothesis follows therefore that EΓJEK−∑
`∈dom(C){M |(`,M) ∈ KupJEK} +

∑
`∈dom(C){M |(`,M) ∈ GΓJEK} = EΓJE′′K

from the induction hypothesis. From GΓJX := EK = GΓJEK, KupJX := EK =
KupJEK, EΓJEK = EΓJX := EK and EΓJE′′K = EΓJE′′{X := E/X}K (see Lemma
3.6) follows the statement EΓJX := EK−

∑
`∈dom(C){M |(`,M) ∈ KupJX := EK}+∑

`∈dom(C){M |(`,M) ∈ GΓJX := EK} = EΓJE′′{X := E/X}K as well.

Theorem 3.17 (Worklist algorithm). Given an IMCG program F , then the
Worklist Algorithm terminates on F . The Workshop Algorithm creates a state
M if and only if there exists an IMCG expression E such that F

∗−−→ E and

M = EΓJEK with Γ = ΓVarJF K. Moreover, from F
∗−−→ E1, F

∗−−→ E2, M1 =

EΓJE1K and M2 = EΓJE2K follows that E1
α−−→
C

E2 if and only if the Workshop

Algorithm creates the transition M1
α−−→
C

M2.
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Proof. The Worklist algorithm terminates on F because the number of states
that are introduced are maximally 2|Labs(F )|: according to Lemma 3.15 any
label can have maximally one occurrence in the multiset of exposed labels of
any expression derivable from an IMCG program.

We can prove now the rest of the lemma’s statements using the theoretical
results proved before. We can prove that there is a state created by the Worklist
algorithm for all E such that F

∗−−→ E by induction on the number of semantic

transitions. It is clear for E = F . Otherwise ifM = EΓJEK has been added to the
set of states by the Worklist algorithm, then for E −−→ E′ also M ′ = EΓJE′K will

be added to the set of states because all the existing transitions can be predicted
based on the exposed chains of E (Lemma 3.14) and the exposed labels of E′

can be calculated exactly (Lemma 3.16). Note that we can use TΛLabJF KJF K
instead of TΛLabJEKJEK due to Lemma 3.13; we can use GΓVarJF KJF K and KJF K
instead of GΓVarJEKJEK and KupJEK, due to Lemmas 3.7, 3.10 and 3.11. On
the other hand, we can similarly prove that each state created by the Worklist
Algorithm corresponds to the exposed labels of some derivative expression of F
by induction on the number of transitions created by the Workshop Algorithm.

The last statement of the lemma also follows from Lemmas 3.14 and 3.16 and
a number of results on applicability of the chains, generate and kill operators
calculated on F to its derivative expressions.
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