25 research outputs found

    Constructing cell data for diagram algebras

    Get PDF
    We show how the treatment of cellularity in families of algebras arising from diagram calculi, such as Jones' Temperley--Lieb wreaths, variants on Brauer's centralizer algebras, and the contour algebras of Cox et al (of which many algebras are special cases), may be unified using the theory of tabular algebras. This improves an earlier result of the first author (whose hypotheses covered only the Brauer algebra from among these families).Comment: Approximately 38 pages, AMSTeX. Revised in light of referee comments. To appear in the Journal of Pure and Applied Algebr

    From monoids to hyperstructures: in search of an absolute arithmetic

    Full text link
    We show that the trace formula interpretation of the explicit formulas expresses the counting function N(q) of the hypothetical curve C associated to the Riemann zeta function, as an intersection number involving the scaling action on the adele class space. Then, we discuss the algebraic structure of the adele class space both as a monoid and as a hyperring. We construct an extension R^{convex} of the hyperfield S of signs, which is the hyperfield analogue of the semifield R_+^{max} of tropical geometry, admitting a one parameter group of automorphisms fixing S. Finally, we develop function theory over Spec(S) and we show how to recover the field of real numbers from a purely algebraic construction, as the function theory over Spec(S).Comment: 43 pages, 1 figur

    Normalizer Circuits and Quantum Computation

    Full text link
    (Abridged abstract.) In this thesis we introduce new models of quantum computation to study the emergence of quantum speed-up in quantum computer algorithms. Our first contribution is a formalism of restricted quantum operations, named normalizer circuit formalism, based on algebraic extensions of the qubit Clifford gates (CNOT, Hadamard and π/4\pi/4-phase gates): a normalizer circuit consists of quantum Fourier transforms (QFTs), automorphism gates and quadratic phase gates associated to a set GG, which is either an abelian group or abelian hypergroup. Though Clifford circuits are efficiently classically simulable, we show that normalizer circuit models encompass Shor's celebrated factoring algorithm and the quantum algorithms for abelian Hidden Subgroup Problems. We develop classical-simulation techniques to characterize under which scenarios normalizer circuits provide quantum speed-ups. Finally, we devise new quantum algorithms for finding hidden hyperstructures. The results offer new insights into the source of quantum speed-ups for several algebraic problems. Our second contribution is an algebraic (group- and hypergroup-theoretic) framework for describing quantum many-body states and classically simulating quantum circuits. Our framework extends Gottesman's Pauli Stabilizer Formalism (PSF), wherein quantum states are written as joint eigenspaces of stabilizer groups of commuting Pauli operators: while the PSF is valid for qubit/qudit systems, our formalism can be applied to discrete- and continuous-variable systems, hybrid settings, and anyonic systems. These results enlarge the known families of quantum processes that can be efficiently classically simulated. This thesis also establishes a precise connection between Shor's quantum algorithm and the stabilizer formalism, revealing a common mathematical structure in several quantum speed-ups and error-correcting codes.Comment: PhD thesis, Technical University of Munich (2016). Please cite original papers if possible. Appendix E contains unpublished work on Gaussian unitaries. If you spot typos/omissions please email me at JLastNames at posteo dot net. Source: http://bit.ly/2gMdHn3. Related video talk: https://www.perimeterinstitute.ca/videos/toy-theory-quantum-speed-ups-based-stabilizer-formalism Posted on my birthda

    Subfactors and Applications

    Get PDF
    The theory of subfactors connects diverse topics in mathematics and mathematical physics such as tensor categories, vertex operator algebras, quantum groups, quantum topology, free probability, quantum field theory, conformal field theory, statistical mechanics, condensed matter physics and, of course, operator algebras. We invited an international group of researchers from these areas and many fruitful interactions took place during the workshop

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    corecore