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Introduction by the Organizers

Subfactor theory was initiated by Jones in the 1980’s as a Galois type theory for
operator algebras. His work led to the stunning discovery of Jones’ surprising
invariant for knots and links, the Jones polynomial. Since then, we have seen nu-
merous unexpected and deep connections of subfactor theory to low-dimensional
topology, quantum groups, quantum field theory and statistical mechanics. It was
our aim to bring researchers and students in these different areas in mathematics
and physics to Oberwolfach and create new interactions. For several of the junior
participants it was the first time that they attended an Oberwolfach workshop.
The event was highly successful in stimulating new interactions among all atten-
dees. At least one participant said that of the many workshops he has attended
at Oberwolfach, this was the most outstanding.
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What follows is a more detailed description of the key topics central to the work-
shop.

(1) Subfactors and tensor categories
The language of tensor categories has proven to be highly effective in dealing with
algebraic and combinatorial aspects of subfactor theory. In fact, the definitions
of fusion and module categories were abstracted from the subfactor literature.
Connections to conformal field theory, vertex operator algebras, quantum groups
and quantum topology have also been well-studied in this context. Some talks
at the workshop were about algebraic structures of tensor categories, and others
were related to their operator algebraic realizations. Many new examples of tensor
categories and formulations of structure originating in subfactor theory have been
investigated. Arano, Giorgetti, Grossman, Henriques, Liu, Morrison, Neshveyev,
Penneys, Plavnik, Ren, Snyder, and Tomatsu gave talks on these topics.

(2) Conformal field theory and vertex operator algebras
Algebraic quantum field theory is an operator algebraic approach to quantum field
theory. Its version for a chiral half of 2-dimensional conformal field theory has been
particularly successful. Another mathematical formulation of chiral conformal
field theory is given by the theory of vertex operator algebras and the relations
between the two approaches have caught much attention in the last ten years or so.
Bischoff, Carpi, Huang, McRae, Osborne, Tanimoto, Tener and Wang discussed
various aspects of conformal field theory.

(3) Other types of quantum field theories
More general quantum field theory and topological quantum field theory have been
pursued by several investigators over the last few years. Runkel, Schweigert and
Teschner presented their research results in this direction.

(4) Quantum groups
Quantum groups have been powerful tools to study new “symmetries” in a large
body of mathematics. The Drinfel′d-Jimbo formulation is highly influential, and
there is an operator algebraic formulation due to Woronowicz. Lechner, Valvekens,
Wenzl and Makoto Yamashita talked about topics related to quantum groups.

(5) Other topics
We had a few talks on a related, but wider range of topics. Brothier gave a talk on
Thompson’s groups. They arise as symmetry groups in Jones’ attempt to construct
a continuum limit CFT from discrete structures. Hartglass discussed connections
to free probability. There is an interesting Fock space construction that leads to
natural free Araki-Woods factors. Ruth presented her work on discrete groups
and von Neumann algebras, especially rigidity properties of ergodic, measure-
preserving actions of certain classes of groups that includes certain lattices in Lie
groups. Ogata talked on her studies on quantum spin chains. Reutter presented
his results on biunitary connections and quantum information theory. Mayuko
Yamashita gave a lecture on geometric quantization.
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Abstracts

Haagerup CFT: A microscopic approach

Tobias J. Osborne

(joint work with Jacob Bridgeman, Alexander Hahn, Ash Milsted,
and Ramona Wolf)

A fascinating open problem is to determine if, corresponding to every subfactor,
there is a counterpart conformal field theory (CFT). There is already some promis-
ing evidence for this conjecture, with considerable focus falling on the Haagerup-
type subfactors, for which there are currently no known counterpart CFTs. Since
subfactors give rise to unitary fusion categories with algebra object, one can imag-
ine attempting to construct counterpart CFTs via physical models built directly
arising from these categories. In this talk, I report on progress generalising the
construction given in the paper [1] where this technique was successfully applied to
a simple example, namely Fibonacci anyons. I will employ this approach to build
microscopic models of CFTs from fusion category data via such anyon chains.
Such a model may be formulated for the H3 fusion category (corresponding to the
Haagerup subfactor). Furthermore, I explain how it can be used to search for a
critical model constructed from fusion categories that correspond to the Haagerup
subfactor, and report on several numerical investigations we have done in this di-
rection. I will report on the methods used to study such models and our (so far
negative) progress in extracting a nontrivial CFT from the Haagerup chain.

References

[1] F. Feiguin, S. Trebst, Z. Wang, M. Freedman, A. A. W. Ludwig, A. Kitaev, Interacting
Anyons in Topological Quantum Liquids: The Golden Chain, Phys. Rev. Lett. 98 (2007),
160409.

String nets and invariants of mapping class groups

Christoph Schweigert and Yang Yang

It is well-known that a spherical fusion category A allows to construct an extended
oriented three-dimensional topological field theory. Such a theory assigns to a circle
a modular tensor category, the Drinfeld center Z(A), to an oriented surface with
boundary a vector space, depending functorially on the objects in Z(A) assigned
to the boundary components, and to a three-manifold a linear map. In particular,
mapping cylinders lead to representations of mapping class groups of surfaces.

In the Barret-Turaev-Viro-Westbury construction, the vector spaces assigned
to surfaces are obtained as subspaces of auxilliary vector spaces. The string-net
model provides an alternative construction of these vector spaces, as a quotient of a
vector space freely generated by finite labelled graphs on the surface. The edges of
the graphs are labelled by objects of the fusion category A, the vertices by suitable
morphisms of A. The quotient is by a subspace of null graphs which are defined
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by local relations. For expositions of this construction addressing mathematicians,
we refer to [4, 3].

The string-net approach provides two advantages that are crucial for the pur-
pose of this talk: on the one hand side, specific elements in the vector spaces
assigned to surfaces can be described by labelled graphs. On the other hand, the
action of the mapping class group is completely geometric: it maps graphs to
graphs (and preserves the null graphs, since they are defined by local relations).

The string-net construction is defined for a spherical fusion category A, i.e.
a braiding on A is not required for the construction. We apply the string-net
construction to the case where A is braided and even a modular tensor category.
This category should be imagined as describing the chiral data of a two-dimensional
rational conformal field theory. The fact that A is modular is equivalent to the
statement that the Drinfeld center Z(A) is braided equivalent to Arev

⊠A. Bulk
fields, where left and right movers are combined, are objects in this category.
Their operator product leads to a Lagrangian algebra in Z(A), i.e. a commutative
symmetric Frobenius algebra with a certain maximality property.

Denote by (Ui)i∈I representatives for the isomorphism classes of simple objects
of A. The object L := ⊕i∈IU∨

i ⊗ Ui has a natural half-braiding that turns it into
an object FCardy ∈ Z(A). This object is known to have a natural structure of a
Lagrangian algebra in Z(A).

Our aim is to give a consistent system of correlators, i.e. roughly speaking, to
assign to any surface Σ with boundaries an element in the corresponding string-net
space that is invariant under the action of the mapping class group. Our main
result is that this can be achieved by the following string-net:

Theorem. [CS, YY, 2019 [5]] The following string-net describes an invariant of
the mapping class group: choose a pair of pants decomposition for Σ; label the
cutting lines and additional lines placed parallel to the boundary components by
the canonical color

∑
i∈I dim(Ui)Ui. Choose a point in the interior of each pair

of pants, on each boundary component and on each cutting line. Connect the
point in the interior of a pair of pants to the three adjacent points on boundary
components or cutting lines. Label these lines by FCardy and the points inside
a pair of pants by the appropriate structure morphism of the Frobenius algebra
FCardy, i.e. by a multiplication or a comultiplication.

We illustrate this string-net in the following example of a surface of genus one
with three boundary components. Lines labelled by the canonical color are in
purple, lines labelled by the Frobenius algebra FCardy in green:
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FCardy

FCardy

FCardy

The proof of this theorem uses a Lego-Teichmüller game (see [1, 2]). It is remark-
able that the local relations in a string-net model allow to implement all moves of
the Lego-Teichmüller game.

We finally also presented a conceptual explanation of our results: the Frobenius
algebra FCardy turns out to be isomorphic in a non-trivial way to another Frobenius
algebra. With this Frobenius algebra, the string-nets can be simplified in such a
form that they are manifestly invariant under the action of the mapping class
group. For details, we refer to [5].

Our results call for generalizations: to more general Lagrangian algebras in
Z(A) and to the description of correlators of fields other than bulk fields, i.e.
boundary or defect fields. Finally, it is tempting to raise the question in which way
the string-net construction can be generalized to spherical finite tensor categories
that are not necesesarily semisimple.
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Subfactors and unitary R-matrices

Gandalf Lechner

The Yang-Baxter equation is a cubic equation for a linear map R ∈ V ⊗V → V ⊗V
on the tensor square of a vector space V , namely

(R⊗ 1)(1⊗R)(R ⊗ 1) = (1⊗R)(R ⊗ 1)(1⊗R),(YBE)

where 1 is the identity on V . This equation and its variants come from quan-
tum physics, but also play a central role in various branches of mathematics, for
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instance in knot theory, quantum groups/Hopf algebras, and braid groups. Fur-
ther recent interest in the solutions of the YBE stems from topological quantum
computing.

Despite this widespread interest in the YBE, no satisfactory understanding of
its solutions has been reached. In this talk, a new approach to the YBE was
presented, based on operator algebras and subfactors [2]. We restrict to the case
of most interest in applications, namely the case where V is a finite-dimensional
Hilbert space and R is unitary. Such “R-matrices” exist in any dimension d =
dimV , simple examples being the identity 1 on V ⊗ V , the tensor flip F (v⊗w) =
w ⊗ v, diagonal R-matrices, and Gaussian R-matrices. The (unknown) set of all
R-matrices of dimension d is denoted R(d).
The general strategy of our approach is to start from an arbitrary R-matrix
R ∈ R(d) with base space V and derive operator-algebraic data (such as endomor-
phisms, subfactors, indices) from it that inform us about R. The main structural
elements of our approach can be summarized in the following diagram:

ϕ(N ) ⊂ N
∪ ∪

ϕ(LR) ⊂ LR ρR←− B∞
∩ ∩

λR(N ) ⊂ N

(∗)

Starting at the top of the diagram, N is the hyperfinite II1 factor realised as
an infinite tensor product N =

⊗
n≥1 EndV , weakly closed w.r.t. the normalised

trace τ =
⊗

n≥1
TrV
d , and equipped with the shift ϕ : N → N , ϕ(x) = 1⊗ x. We

identify finite tensor powers EndV ⊗n with their natural embeddings into N , so
that R ∈ N and the YBE reads ϕ(R)Rϕ(R) = Rϕ(R)R.

The second line of the diagram is about the braid group structure: As is well
known, any R ∈ R(d) defines a group homomorphism ρR from the infinite braid
group B∞ into the unitary group of N by mapping the standard generators bn,
n ∈ N, of B∞ to ϕn−1(R) ∈ N . The von Neumann algebra generated by this
representation is denoted LR.

The third line of the diagram introduces the Yang-Baxter endomorphism λR ∈
EndN . It is defined in such a way that it restricts to the shift ϕ on N . Explicitely,

λR : N → N , λR(x) := w-lim
n→∞

R · · ·ϕn(R)xϕn(R∗) · · ·R∗.(∗∗)

This definition is natural also from the point of view of the Cuntz algebra1. As
particular examples, we note that the identity R-matrix gives the identity endo-
morphism, λ1 = idN , and the flip F gives the canonical endomorphism, λF = ϕ.

Let us list a few results from [2] (joint work with Roberto Conti):

(1) LR is a factor (II1 for non-trivialR). This provides us with three subfactors
(I) λR(N ) ⊂ N , (II) ϕ(LR) ⊂ LR, and (III) LR ⊂ N derived from R.

1ViewingR ∈ R(d) as a unitary inOd yields a canonically associated endomorphism λR ofOd.
This endomorphism gives (∗∗) by extension to a type III1/d factor M ⊃ N and restriction.
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(2) Subfactors (I),(II) have always finite index≤ d2, but (III) may have infinite
index. Its relative commutant coincides with the fixed point algebra N λR .

(3) The subfactors (I), (II) can be iterated by taking powers of λR and ϕ,
respectively. One has R ∈ ϕ2(LR)′ ∩ LR ⊂ λ2R(N )′ ∩ N . Hence, for any
non-trivial R-matrix, λ2R is reducible and λR is not an automorphism [1].

(4) Both squares in (∗) are commuting squares. Denoting the τ -preserving
conditional expectationN → λR(N ) by ER, and the associated left inverse
of λR by φR := λ−1

R ◦ ER, this implies φR(x) = φF (x), x ∈ LR.
An interesting object to consider is φR(R). This is an element of ϕ(LR)′ ∩ LR,
which thanks to (4) coincides with the (normalised) left partial trace φF (R) of R.
We therefore have explicit elements of the relative commutant, and a connection
from operator-algebraic structures to concrete properties of R. One finds [2]:

(5) Let R ∈ R. Then the left and right partial traces of R coincide and are
normal elements of EndV .

(6) Define the character τR of an R-matrix as the map τR : B∞ → C, τR :=
τ ◦ρR. If two R-matrices R,S ∈ R(d) have the same character, then φR(R)
and φS(S) are unitarily equivalent.

(7) Any R-matrix with spectrum contained in a disc of radius less than 1 −
2−1/4 is trivial2.

Item (6) suggests to consider R-matrices up to the natural equivalence relation
R ∼ S given by coinciding characters and dimensions of R-matrices. Then φR(R)
is an invariant for ∼, and in the involutive case (R2 = 1), it is even a complete
invariant: R ∼ S ⇐⇒ φR(R) ∼= φS(S) [4]. In the general non-involutive case,
the partial trace is not a complete invariant.

As the last section in this overview, let us consider the problem of classifying all
R-matrices up to the equivalence ∼ and announce some results from the upcoming
article [5]. We consider here the case that the spectrum of R has cardinality 2,
and normalise it to σ(R) = {−1, q}, |q| = 1, q 6= −1. In this situation, the
representation ρR factors through the Hecke algebra H∞(q), and we moreover
have [5]:

(8) If R ∈ R(d) has no two opposite eigenvalues µ,−µ in its spectrum, then
ϕ(LR) ⊂ LR is irreducible and τR is a (positive) Markov trace.

Hence for q 6= 1, any R-matrix gives a positive Markov trace on H∞(q). We may
therefore use Wenzl’s classification of positive Markov traces on H∞(q) [6]. Recall
that his results state in particular that for a positive Markov trace to exist, one
must have q ∈ {1, e2πi/ℓ : ℓ ∈ {4, 5, . . .}}, and at fixed ℓ, there exist finitely many
possible Markov traces. In our Yang-Baxter setting, these possibilities are severely
restricted [5]:

2This result has its origin in an estimate on the Jones index [N : λR(N )] in terms of φR(R).
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(9) Let R be an R-matrix with spectrum {−1, q}, q 6= 1, and eigen projection
P for the eigenvalue −1. Then q ∈ {±i, eiπ/3}. If q = ±i, then τ(P ) = 1

2 ,

and if q = e±iπ/3, then τ(P ) = { 13 , 12 , 23}. Two such R-matrices R,S
are equivalent (in the sense of ∼) iff they have the same spectrum (q),
dimension (d), and trace (τ(P )).

The above result does not imply that all the possible combinations of eigenvalues
q and traces τ(P ) are indeed realised. We have found explicit R-matrices realising
the combinations (q = ±i, τ(P ) = 1

2 ), (q = eiπ/3, τ(P ) = 1
3 ), (q = eiπ/3, τ(P ) = 2

3 )

and conjecture that the last possibility, (q = eiπ/3, τ(P ) = 1
2 ), is not realised by

any R-matrix. This is in line with observations made by Galindo, Hong, and
Rowell [3], but so far no proof of this conjecture exists.

It is instructive to compare these findings with the situation at q = 1, which is
completely different. For q 6= 1, we always have irreducible ϕ(LR) ⊂ LR, and the
equivalence takes a simple form (it is given by the three parameters d, q, τ(P )).
For q = 1, on the other hand, ϕ(LR) ⊂ LR is reducible except for the special
cases R ∼ ±1,±F , and the equivalence is more involved (it is given by the unitary
equivalence class of φR(R)). The case q = 1 corresponds to R being involutive
and ρR factoring through the infinite symmetric group. In that case, a complete
and explicit classification of R-matrices up to equivalence exists: R-matrices are
parameterised by pairs of Young diagrams with d boxes in total, corresponding to
the positive and negative eigenvalues of φR(R) [4]. We also mention that in this
case, the index [LR : ϕ(LR)] is a rational typically non-integer number.

References
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From quantum teleportation to biunitary connections (and back)

David Reutter

(joint work with Jamie Vicary)

In my talk, I summarized joint work with Jamie Vicary on using techniques and
structures developed in subfactor theory and planar algebra in quantum informa-
tion theory. Most of my talk was based on our joint paper [8].
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The basic premise of this work is that various protocols and constructions in quan-
tum information theory can naturally be expressed in the setting of 2-categories
(for more details, see [10, 11]). For example, a quantum teleportation protocol in
a (dagger pivotal) 2-category is a pair of unitary 2-morphisms M and C, fulfilling

(1) M

C

= λ

where λ is some scalar factor. Reading from bottom to top, such 2-categorical
diagrams admit a direct physical interpretation in terms of basic quantum infor-
mation theoretic processes:

CORRECT

MEASURE

ENTANGLED
initial

quantum
system

broadcast
measurement

result

final
system

= RANDOM

To recover ordinary quantum information theory, we interpret these 2-categorical
diagrams in the 2-category 2Hilb of 2-Hilbert spaces. The objects of this 2-category
are finite-dimensional 2-Hilbert spaces (that is, C-linear dagger category which are
equivalent, as C-linear dagger categories, to f.d.Hilbn for some n), the 1-morphisms
are C-linear dagger functors and the 2-morphisms are natural transformations. In
2Hilb, the data of a pair of unitary 2-morphisms M and C fulfilling (1) precisely
corresponds to the linear algebraic data describing quantum teleportation proto-
cols in convential quantum information theory (as classified by Werner in [12]).
On a fixed finite-dimensional Hilbert space H , this data is given by a unitary error

basis [4]; a family of n2 unitary matrices {Ui ∈ End(H)}n2

i=1 which form an orthog-

onal basis of End(H) with the Hilbert-Schmidt inner product 1
nTr(U

†
i Uj) = δi,j .

Biunitary connections. Direct graphical manipulation shows that a unitary
2-morphism C is part of a quantum teleportation protocol (1) if and only if it
is unitary and if its ‘quarter rotation’ is unitary, up to some scalar factor. Such
‘biunitary 2-morphisms’ (or ‘biunitary connections’) were originally introduced
by Ocneanu in the 90s [7] and have become a central tool in the classification of
subfactors [2, 3]. Therefore, we can characterized teleportation protocols, or equiv-
alently unitary error bases, as biunitaries in 2Hilb of the type of C in (1). Similarly,
complex Hadamard matrices (unitary matrices all of whose entries have the same
modulus) can be characterized as biunitaries in 2Hilb of the following type:
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Expressed in the language of spin model planar algebras, this observation is due
to Jones [2].

Hadamard matrices and unitary error bases provide the mathematical founda-
tion for an extremely rich variety of quantum computational phenomena, amongst
them the study of mutually unbiased bases, quantum key distribution, quantum
teleportation, dense coding and quantum error correction [1, 4, 5, 12]. Neverthe-
less, their general structure is notoriously difficult to understand; in dimension n,
Hadamard matrices have only been classified up to n = 5 (see e.g. [9]), and the
general structure of unitary error bases is virtually unknown for n > 2.

Given the description of quantum structures in terms of biunitaries as summa-
rized above, one can immediately write down a large number of schemes for the
construction of certain quantum structures from others, many of which are not
previously known. This is based on the simple fact that the diagonal composite
of two biunitaries is again biunitary. We give some examples1 below; interpreting
these diagrams in 2Hilb results in the explicit tensorial expression written below
each diagram. Note that the biunitaries are connected diagonally in each case, as
required.

P

H

Q

11

222

333

4422224444

666

5444455

77 88

10101111

99

V

W

Q

Uabc, de, fg= H
b, c
a, egP

c, g

e, b, f
Q
c, g, d

Uabc, def, gh:= r V
b, c

a, rf , g
Qc
b, r , d

W
rc, e, h

Q

VH

P

P

CK

D

Q

H

A

B

Uabc, de, fg= r H
b, c
a, rPc, r , dQr , b, f

Vr , e, g Uabcd, ef, gh=
1

n r , s Af , hBs, fCr , hDs, rH
d
a, sK

c
b, r

Qd, s, ePr , c, g

1In these examples, we also use ‘quantum Latin squares’ [6], another type of biunitary con-
nection whose shading pattern can for example be seen in the node P in the 4-fold composite.
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Correctness of these constructions follows immediately from diagonality of the
composition; no further details need to be checked. Our approach therefore of-
fers advantages even for those constructions that are already known, since the
traditional proofs of correctness are nontrivial.

In [8], we use the 4-fold composite from above to produce a unitary error basis
on an 8-dimensional Hilbert space and show that it cannot be produced by any
known constrution method. This is a proof of principle that the biunitary methods
we propose can give rise to genuinely new quantum structures.

References

[1] Thomas Durt, Berthold-Georg Englert, Ingemar Bengtsson, and Karol Życzkowski. On
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Strong locality beyond linear energy bounds

Yoh Tanimoto

From a Haag-Kastler net, various subfactors arise. If there is a representation of a
conformal net, one can construct the Jones-Wassermann subfactor. Alternatively,
if there is an extension or a subtheory, each local algebra gives directly a subfactor.
Therefore, while constructing new examples of Haag-Kastler net is an important
problem by itself, it is also interesting from the point of view of subfactor.
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Most examples are constructed from quantum fields, namely operator-valued dis-
tributions. A quantum field φ(x) (a Wightman field, or a field in a vertex operator
algebra satisfying a polynomial energy bound) should satisfy locality: if f, g are
test functions with spacelike separated supports, then φ(f), φ(g) should commute
(on a suitable domain). In order to construct a Haag-Kastler net, we need strong
locality: φ(f), φ(g) should strongly commute (their spectral projections com-
mute). In various examples, strong locality is the last technical barrier to obtain
a Haag-Kastler net.

The most commonly used tool to show strong locality is Driessler-Fröhlich the-
orem: if A and B commute on the domain of a H and satisfies ‖AΨ‖ ≤ C‖HΨ‖
with C > 0 and [H,A] can be estimated as a sesquilinear form by H , and similar
estimates hold for B, then A and B strongly commute. When H is the “Hamilton-
ian” satisfying [H,φ(f)] = iφ(f ′), the bound ‖φ(f)Ψ‖ ≤ C‖HΨ‖ for all Ψ suffices.
This is called a linear energy bound.

Linear energy bound does not apply to some interesting models, yet we can
prove strong commutativity by a trick using the Driessler-Fröhlich theorem. In-
deed, in this way we construct two new families of Haag-Kastler net: one is a
chiral conformal net (the W3-algebra) and the other is a two-dimensional inte-
grable QFT (the Bullough-Dodd model).

• The W3-algebra [3]. This is an extension of the Virasoro algebra as a
vertex operator algebra. It is generated by the Virasoro field L(z) and an
additional field W (z), satisfying the commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Lm,Wn] = (2m− n)Wm+n,

[Wm,Wn] =
c

3 · 5!(m
2 − 4)(m2 − 1)mδm+n,0

+ b2(m− n)Λm+n +

[
1

20
(m− n)(2m2 −mn+ 2n2 − 8))

]
Lm+n,

where Λn =
∑

k>−2 Ln−kLk +
∑
k≤−2 LkLn−k − 3

10 (n + 2)(n+ 3)Ln and

c ∈ C, c 6= − 22
5 , b

2 = 16
22+5c . The W (z) field has conformal dimension 3,

and from this it follows that it cannot satisfy the linear energy bound,
where H = L0 is the conformal Hamiltonian. When the central charge c
is larger than 2, then no coset realization is known.

We proved in [2] that for c ≥ 2 the vacuum representation is unitary,
hence the fields L(z),W (z) are good candidates for quantum fields. The
commutator [W (z),W (w)] contains a non-linear expression in L(z), and
from this we can have a local energy bound: for f ≥ 0, ‖W (fd−1)Ψ‖ ≤
C‖(L(f)+ cf1)

d−1‖. Note that, from the commutation relations, we have
[W (fd−1), L(f)] = 0. Then we can apply the Driessler-Fröhlich theorem
with H = (L(f) + L(g) + c1)d−1 for non-negative f, g. and obtain strong
locality.
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• The Bullough-Dodd model. This is a variation of the models of [4], where
the S-matrix S contains poles at ζ = πi

3 ,
2πi
3 :

S(θ) =
tanh 1

2

(
θ + 2πi

3

)

tanh 1
2

(
θ − 2πi

3

) · tanh
1
2

(
θ −

(
π
3 − ǫ

)
i
)

tanh 1
2

(
θ +

(
π
3 + ǫ

)
i
) tanh

1
2

(
θ −

(
π
3 + ǫ

)
i
)

tanh 1
2

(
θ +

(
π
3 − ǫ

)
i
)

where 0 < ǫ < π
6 . The S-symmetric Fock space is the Fock space based

on L2(R) with the symmetry Ψ(θ1, θ2) = S(θ2 − θ1)Ψ(θ2, θ1). With the
(left-)creation and annihilation operator z†, z, one may form an operator
φ(f) = z†(f) + z(f). This operator is localized in the left wedge if S is

analytic [4], but for the S above we need to correct: φ̃(f) = φ(f) + χ(f),
where χ(f) =

∑
nPn(χ1(f) ⊗ 1 ⊗ · · · ⊗ 1)Pn, Pn is the projection onto

the n-particle space and with R = Res
ζ= 2πi

3

S(ζ)

(χ1(f))Ψ(θ) = 2π
√
|R|f+(θ + πi

3 )Ψ(θ − πi
3 )

and f+ is the one-particle function corresponding to a test function f .
We find a nice self-adjoint extension of χ(f). Similarly, φ̃′(g), χ′(g)

can be constructed for reflected wedges, Strong commutativity between
φ̃(f), φ̃′(g) can be shown by applying Driessler-Fröhlich theorem to H =

φ̃(f)+ φ̃(g)+C(f, g)N , where C(f, g) > 0 and N is the number operator.
For the self-adjointness of H which follows from that of χ(f), we use a
variation of the Kato-Rellich perturbation.

We also prove the existence of operators in (large enough) double cones,
which completes the construction of Haag-Kastler net.
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Rigid C
∗-tensor categories and discrete quantum groups with

property (T)

Matthias Valvekens

(joint work with Stefaan Vaes)

Rigid C∗-tensor categories arise naturally in the study of subfactors as one of
the various ways to axiomatise the standard invariant of a finite-index subfactor.
Roughly speaking, a rigid C∗-tensor category is a monoidal C∗-category C with
simple tensor unit ε where any object α ∈ C admits a canonical conjugate α.
Moreover, the structure morphisms implementing the left and right duality for α
and ᾱ should be compatible with the dagger structure on C. We refer to [NT13,
Chapter 2] for a comprehensive introduction to the subject. Concretely, any finite-
index inclusion of II1-factorsN ⊂M gives rise to a rigid C∗-tensor category C(N ⊂
M) by taking all M -M -subbimodules of bimodules of the form L2(M)⊗N · · · ⊗N
L2(M), where − ⊗N − is Connes’ relative tensor product. By a reconstruction
theorem of Popa [Pop94], any finitely generated rigid C∗-tensor category can be
obtained from a subfactor in this way (see also [NY15, Example 5.1]).

The simplest examples of rigid C∗-tensor categories come from discrete groups.
Given any discrete group Γ, the category HilbΓ

f of finite-dimensional Γ-graded
Hilbert spaces is a C∗-category with simple objects ug corresponding to elements

of Γ. One can then define a tensor product on HilbΓf by putting ug ⊗ uh = ugh

and extending naturally. It is not difficult to see that this turns HilbΓ
f into a rigid

C∗-tensor category that precisely encodes the group operations in Γ.
Parallel to groups in the classical setting, rigid C∗-tensor categories can be

thought of as encoding discrete “quantum” symmetries of some sort. In fact, they
are closely related to discrete quantum groups: the category Repf (G) of finite-
dimensional unitary representations of a compact quantum group G is a rigid C∗-
tensor category. Since Repf (G) is a category of representations, it comes with a
canonical monoidal forgetful functor into the category Hilbf of finite-dimensional
Hilbert spaces. Rephrased in this language, Woronowicz’ celebrated Tannaka–
Krĕın duality theorem [Wor87] tells us that the data of a discrete quantum group
—or its compact dual— are exactly given by a rigid C∗-tensor category C together
with a fibre functor F into Hilbf .

As generalisations of discrete groups, many avenues of research in the theory of
rigid C∗-tensor categories are motivated by known results about discrete groups.
In [VV18], we develop a spectral criterion to detect property (T) in the setting of

rigid C∗-tensor categories, inspired by Żuk’s criterion for discrete groups [Żuk01].
Using this criterion, we construct a family of examples of discrete quantum groups
with property (T) given by relations coming from triangle presentations [CMSZ91]
These discrete quantum groups are in some sense very different from classical
discrete groups with property (T).
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1. Property (T) for rigid C∗-tensor categories

A discrete group Γ has property (T) if and only if any unitary representation
of Γ admitting almost-invariant vectors must admit a non-zero invariant vector.
More formally, given any unitary representation of Γ on H such that there exists
a sequence (ξn)n of unit vectors in H satisfying g · ξn− ξn → 0 for all g ∈ Γ, there
must be a nonzero vector ξ ∈ H such that g · ξ = ξ for all g ∈ Γ.

The initial formulation of property (T) for standard invariants of subfactors
goes back to [Pop99]. However, the representation-theoretic framework developed
in [PV14, NY15, GJ15] allows for a definition in the language of monoidal cat-
egories that replicates the one cited above almost verbatim, e.g. by looking at
representations of the tube algebra of C.
In the case where C is the category of finite-dimensional unitary representations
of a compact quantum group G, there is a very interesting interaction between
several closely related versions of property (T). Property (T) for discrete quantum
groups was initially introduced by Fima in [Fim08], but it is not quite true for
general G that property (T) for the representation category C corresponds exactly

to the discrete dual Ĝ having property (T). The obstruction is that G must be

of Kac type for Ĝ to have property (T). By results of [PV14] and [Ara14], the

representation category C has property (T) if and only if the discrete dual Ĝ has
Arano’s central property (T) [Ara14]. For general G, this is strictly weaker than
the usual property (T), but all notions coincide when G is of Kac type [Ara14].

The results of [Ara14, Ara16] show that the representation categories of q-defor-
mations Gq, q 6= 1 of higher rank Lie groups have property (T). This then yields
examples of subfactors with property (T) standard invariants that are quite un-

related to discrete groups. However, the duals Ĝq are not property (T) discrete
quantum groups, since they are not of Kac type. In fact, until recently, all known
examples of discrete quantum groups with property (T) were commensurable with
discrete groups [FMP15]. Since property (T) passes between finite-index inclu-
sions, these discrete quantum groups in some sense “inherit” property (T) from
the discrete group, thus motivating our search for more examples.

2. A spectral criterion: new examples

Given a discrete group Γ with a finite, symmetric generating set S not containing
the identity, we define a finite graph L(S). The vertices are the elements of S, and
there is an edge between x, y ∈ S if x−1y ∈ S. The graph Laplacian of L(S) is the
positive operator ∆ that takes a function f : S → C and maps it to

(∆f)(s) = f(s)− 1

deg(s)

∑

t∼s
f(t).
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Clearly, the constant functions always lie in the kernel of f . If L(S) is moreover

connected, these are the only ones. Under these conditions, Żuk showed in [Żuk01]
that Γ has property (T) if the smallest non-zero eigenvalue of ∆ is strictly greater

than 1/2. Moreover, this bound is optimal. The crucial advantage of Żuk’s cri-
terion is that it can be computed from finitary data once one knows all relations
of the form xyz = e with x, y, z ∈ S, since the operator ∆ is quite simply given
by a finite matrix. Our spectral criterion is a monoidal category version of Żuk’s
result.

Theorem ([VV18]). Let C be a rigid C∗-tensor category and S a symmetric gen-
erating set of irreducibles not containing the tensor unit. Then there is a canonical
way to define a Laplacian operator ∆ on

⊕
i∈Irr(C),α∈S Hom(α, i ⊗ α). If zero is

a simple eigenvalue of ∆ and the smallest non-zero eigenvalue is strictly greater
than 1/2, then C has property (T).

Considering that finding concrete examples to apply Żuk’s criterion for discrete
groups to is not entirely trivial, it is somewhat remarkable that the categorical
formulation gives an elementary proof of property (T) for Repf (SUq(3)), q 6= 1
with respect to the generating set given by the fundamental representation and its
conjugate. This recovers a part of the result of [Ara14].

To obtain examples of Kac-type compact quantum groups of which the discrete
duals have property (T), we use the combinatorial data of triangle presentations.
These objects arise naturally in the study of groups acting simply transitively on
Euclidean Tits buildings of type Ã2 [CMSZ91]. Given any triangle presentation
T , we construct a Kac-type compact quantum group GT through a generators-
and-relations approach inspired by Woronowicz’ construction of SUq(3) [Wor87].

Theorem ([VV18]). Let T be a triangle presentation of order ≥ 2. Suppose
that the Euclidean building associated with T is a classical Bruhat–Tits building.
Then Repf (GT ) has property (T), and admits irreducible objects of arbitrarily high
dimension.

Since GT is of Kac type, the first part of the conclusion implies that the dual
of GT is a discrete quantum group with property (T). On the other hand, the

second part ensures that ĜT is not commensurable with a discrete group, so the

ĜT are in some sense “truly quantum” examples of discrete quantum groups with
property (T). Our proof relies heavily on the results of [CMSZ91] and on the
geometry of classical Bruhat–Tits buildings. Conjecturally, one should be able
to give a completely combinatorial proof that does not rely on any geometric
assumptions, but this seems out of reach for now.
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Bicommutant categories

Andre Henriques

Bicommutant categories are higher categorical analogs of von Neumann algberas.
Examples of bicommutant categories can be constructed from unitary fusion cat-
egories, and from conformal nets. We review these constructions, and present a
new result, joint with Dave Penneys: given two Morita equivalent unitary fusion
categories, their associated bicommutant categories are equivalent as tensor cat-
egories (not just Morita equivalent). We conjecture that, similarly, there exist
many non-isomorphic conformal nets whose associated bicommutant categories
are equivalent as tensor categories.

Below is a chart of higher (and lower) categorical analogs of Hilbert spaces, and
von Neumann algebras:
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complex number positive number

Hilbert space von Neumann algebra

W*-category bicommutant category

??

z 7→ |z|2

ξ, η ∈ H

7→

〈ξ, η〉 ∈ C
C is a

Hilbert sp. H
∋ ξ
7→ ‖

ξ‖
2

( C,
√ a ∈

C
) ←[ a

or
0 i
f a

=
0

H 7→ B(H)

L2A←[ A

a, b ∈ M

7→

〈a, b〉Hilb :=

paL
2(End(a⊕ b))pb Hilb is a

W*-cat. M ∋
a 7→

En
d(a

)

( A-M
od
, L

2 A
) ←[ A

M 7→ Endo(M)

category of

absorbing objects

the collection
of all

W*-categories
is a ...

Reps of a

bicom. category ...

Quantum symmetric spaces from reflection equation and module
categories

Makoto Yamashita

(joint work with Kenny De Commer, Sergey Neshveyev, Lars Tuset)

Reflection equation was introduced by Cherednik to understand quantum inverse
scattering problems on the half line and soon became a powerful guiding principle
to quantize Poisson homogenous spaces into actions of quantum groups in the
hands of Sklyanin, Gurevich, Donin, and others.
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Analogous to the case of the celebrated Kohno–Drinfeld theorem on the braided
tensor categories arising from the Knizhnik–Zamalodchikov equations and repre-
sentation theory of q-deformation quantum groups, there are two constructions of
reflection operators in the framework of module categories. On the one hand,
Enriquez and Etingof gave module categories from monodromy of cyclotomic
Knizhnik–Zamolodchikov equations through quantization problem of dynamical
r-matrices, following earlier work of Leibman, and Golubeva and Leksin. On the
other, Letzter, and Kolb and Balagovic gave coideal subalgebras of the q-deformed
universal enveloping algebra and universal reflection operator in a certain comple-
tion of tensor product.

One central question is whether these constructions give equivalent module cat-
egories, thereby inducing equivalent representations of the type B braid groups.
We solve this affirmatively in the formal ‘multiplier’ algebra setting, and more-
over show that the reflection operator becomes a complete invariant of categorical
structure.

A multiplier algebra is simply a direct product of matrix algebras; more for-
mally, the algebra for braided monoidal category associated with a semisimple
complex Lie group G is given by

U(G) =
∏

π : IrrG

End(Vπ)

where direct product is taken over the irreducible finite dimensional representa-
tions of G.

The algebra U(G)JhK of formal power series with this coefficient becomes a
quasi-Hopf algebra with the standard coproduct U(G)JhK → U(G2)JhK and the
associator Φ ∈ U(G3)JhK coming from the Knizhnik–Zamolodchikov equation,
and also becomes a Hopf algebra with the deformed coproduct ∆h : U(G)JhK →
U(G2)JhK coming from the Drinfeld–Jimbo quantization. Then the Kohno–Drinfeld
theorem can be summarized as Φ being a coboundary of some element F ∈
U(G2)JhK with respect to ∆h.

If θ is an involutive automorphism of G, by considering the representations
of Gθ which appear in some representation of G we obtain an analogous mul-
tiplier algebra U(Gθ). We then have two quasi-coactions of the quasi-bialgebra
(U(G)JhK,∆,Φ) on U(Gθ)JhK, one coming from the cyclotomic KZ equation (hence
with the trivial coaction map and a nontrivial associator Ψ ∈ U(Gθ×G2)JhK), and
another from the Letzter coideal (hence with a nontrivial coaction map αh and
the trivial associator). The problems becomes: first conjugate the map αh to the
standard coaction map (the restriciton of ∆), then to write the associator Ψ as a
‘mixed coboundary’ of some G ∈ U(Gθ ×G)JhK and F up to this conjugation.

The proof relies on elementary but curious combination of Lie algebra coho-
mology, Hochschild cohomology, and formality machinery from noncommutative
geometry inspired by works of Calaque and Brochier. The above problems have
easy solutions when the compact symmetric space U/Uθ, with U being a compact
form of G compatible with θ, does not have Hermitian structure, or equivalently,
if Gθ is semisimple since these cohomological obstruction vanish.
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In the Hermitian case the situation is more interesting: these symmetric spaces ap-
pear as coadjoint orbits, and at the quasi-classical limit, we expect a one-parameter
family of equivariant Poisson structures coming from the Kirillov
bracket. At the level of algebras, since Gθ has a one-dimensional center, it is dif-
fcult to obtain cohomological rigidity if one just looks at the universal enveloping
algebra of its Lie algebra. Nonetheless, the multiplier setting allows us to reduce
the first problem to Letzter’s description of spherical vectors for the coideal sub-
algebras. On the side of cyclotomic KZ equation, again we need to modify the
standard one by an action of formal characters to achieve nontrivial quasi-classical
limit, apparetly only possible in the multiplier setting. We then identify the lower
order coefficients of the monodromy for cyclotomic KZ equation and show a uni-
versality property to solve the second problem.
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Fusion, positivity, and finite-index subfactors in chiral conformal field
theory

James Tener

Conformal nets, vertex operator algebras, and Segal CFTs are three possible ax-
iomatizations of chiral conformal field theory. The goal of each approach is to en-
code all of the relevant physical models (as examples of the axioms) and expected
phenomena (as theorems), while discovering exciting new mathematics along the
way. The difficulty of proving a given physical fact (e.g. “WZW models are ra-
tional”) in one of these three languages can differ greatly between the different
frameworks. It is therefore highly desirable to develop mathematical infrastruc-
ture for rigorously translating between the languages of VOAs, conformal nets,
and Segal CFTs.

The traditional approach to constructing algebras of observables from fields is
to take the von Neumann algebra generated by fields smeared by functions sup-
ported in a region of space time. This approach was given a careful mathematical
treatment in recent work of Carpi-Kawahigashi-Longo-Weiner [2] which gives the
first general-purpose bridge between the theories of VOAs and conformal nets.
One of the challenges which arises in this approach is that the smeared fields are
unbounded operators, which come along with a variety of technical obstacles.

My talk focused on an alternate approach to relating conformal nets and VOAs
using only bounded operators which was developed in a recent series of articles
[12, 13, 14]. In this approach, local observables are constructed from fields not by
smearing, but instead by considering point insertion operators localized in ‘par-
tially thin’ annuli. This is based upon breakthrough ideas of Henriques which relate
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conformal nets, Segal CFT, and partially thin Riemann surfaces [7]. The first ar-
ticle in the series [12] describes a correspondence V ↔ AV between unitary VOAs
V and conformal nets AV in the vacuum sector. The correspondence in question
was conjectured at a talk at the 2015 Oberwolfach workshop Subfactors and Con-
formal Field Theory [1]. The second article [13] extends this correspondence to
non-vacuum representations, and the third [14] develops tools for comparing the
‘fusion’ product theories between VOAs and conformal nets. These tools are then
applied to resolve several open problems, including:

Theorem ([14]). Let V be a VOA which is a WZW model corresponding to a sim-
ple finite-dimensional complex Lie algebra at positive integer level, or a W-algebra
of type ADE in the discrete series. Then all subfactors arising from irreducible
representations of the conformal net AV corresponding to V have finite index.
Hence AV is rational.

The method of proof generalizes the approach pioneered by Wassermann [16],
and also relies on the work of Huang on rigidity [10, 9] and that of Henriques
classifying representations of WZW conformal nets [8]. Proofs of certain special
cases of this theorem had previously appeared, such as in the case of WZW models
of type ACG (all levels), type D (odd levels), and W-algebras of type A1 (the
Virasoro minimal models) [16, 15, 11, 3], as well as other isolated examples.

A second application of our framework is to positivity phenomena in VOAs.
It was shown by Gui that the category of unitary modules for a unitary VOA
is naturally a unitary modular category whenever a certain family of matrices
associated to the VOA are positive (semi)definite [5, 6, 4]. The positivity of the
matrices associated to WZW models associated to exceptional Lie algebras was
demonstrated in [14], and combined with Gui’s work this sufficed to close the
problem of unitarity of representation categories for WZW models.

Theorem ([14, 5, 6, 4]). Let V be a VOA which is a WZW model corresponding to
a simple finite-dimensional complex Lie algebra at positive integer level, or a W-
algebra of type AE in the discrete series. Then the category of unitary V -modules
is naturally a unitary modular tensor category.
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Quantum Operations on Conformal Nets

Marcel Bischoff

(joint work with Simone Del Vecchio and Luca Giorgetti)

Conformal Nets. Let I be the set of proper open intervals I ⊆ S1 on the circle.
A conformal net A associates with each I ∈ I a von Neumann algebra A(I) on
a fixed Hilbert space H, such that A(I) ⊆ A(J) for I ⊆ J and A(I) ⊆ A(J)′
for I ∩ J = ∅. Here M ′ = {m′ ∈ B(H) : mm′ = m′m for all m ∈ M} is the
commutant of M . There is a (projective) unitary positive-energy representation
U of the group of orientation preserving diffeomorphisms Diff+(S

1) of the unit
circle S1, such that U(g)A(I)U(g)∗ = A(gI) for g ∈ Diff+(S

1). The vector Ω ∈ H
is called the vacuum and is asked to be the (up to a phase) unique vector satisfying
U(R(θ))Ω = Ω for any rotation R(θ) : z 7→ eiθ. Then each A(I) is a type III1 factor
(or C). The Reeh–Schlieder property gives that Ω is cyclic and separating for A(I).

There is a notion of a subnet B ⊆ A and extension C ⊇ A of a given local
conformal net A. The problem of finding local extensions C ⊇ A is well-understood
at least in the finite index case. Here local extensions correspond to local Q-systems
in Rep(A) [LR95] and it is enough to know Rep(A) to classify such extensions. In
other words, it is a tensor categorical problem. Similarly, discrete extensions can
be described by local generalized Q-systems [DVG18].

Question 1. Given a conformal net A how can we characterize B ⊆ A?
We note that for type III subfactors we have duality between finite index subfac-

tors and extensions. But in the situation of conformal nets the the dual Q-system
does not live in Rep(A). Therefore knowing Rep(A) alone can only give us neces-
sary but no sufficient conditions for subnets B ⊇ A to exist.
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If G ≤ Aut(A) is a closed subgroup then the orbifold net AG is a subnet of A. If G
is finite then subgroups H ≤ G are in bijective correspondence with intermediate
nets B ⊆ C ⊆ A. We call a such a subnet Galois subnet. More precisely a subnet
B ⊆ A is called Galois if B = AAut(A|B). Here by Aut(A|B) we mean the subgroup
of automorphisms which fix the net B pointwise.

Example 2. If we consider the inclusion A := ASpin(N)1 ⊆ ASU(2)10 =: B then

Aut(A|B) is trivial but [A : B] = 3 +
√
3. Thus B ⊆ A is not Galois.

Then a natural question is if we can generalize to a more general notion than
that of automorphisms. Evans and Gannon asked:

Question 3 ([EG11]). Can we orbifold a VOA[or conformal net] by something
more general than a group?

Quantum Operation on Conformal Nets. Quantum operations are described
by unital completely positive maps.

Let M ⊆ B(H) be a von Neumann algebra and Ω ∈ H a cyclic and separating
vector which induces the faithful state ω( · ) = (Ω, ·Ω). We denote by UCP(M,Ω)
the convex set of normal unital completely positive maps φ : M → M which pre-
serve the state, i.e. ω ◦ φ = ω.

LetA be a conformal net. We denote by QuOp(A) the set of (extremal) quantum
operations on A defined as follows. An element φ ∈ QuOp(A) is a family φ =
{φI ∈ UCP(A(I),Ω)}I∈I with the following properties. The family is compatible,
i.e. φI2 |A(I1) = φI1 for all Ii ∈ I with I1 ⊆ I2; each φI is an extreme point
in the convex space UCP(A(I),Ω); the map φI “preserves the (local) conformal
symmetry”, i.e. φI(U(γ)) = U(γ) for any γ ∈ Diff+(S

1) supported in I; and there
is a Markov adjoint φ̄ which is a family with all the above properties such that
ω(φ̄I(x)y) = ω(xφI(y)) for all x, y ∈ A(I).

One can show that invertible (under composition) quantum operations are au-
tomorphisms of the net, in other words QuOp(A)× = Aut(A). In this sense:
quantum operations on A generalize automorphisms of A.
Proposition 4. Let S ⊆ QuOp(A) be a set, then the fixed point net AS defined
by AS(I) = {a ∈ A(I) |φI(a) = a for all φ ∈ S} is an irreducible subnet of A.

We obtain the following Galois like theory for finite index subnets.

Theorem 5 ([Bis17]). Let A be a conformal net. There is a bijective correspon-
dence

{B ⊆ A | subnet with [A : B] <∞} ←→ {K ⊆ QuOp(A) |K finite hypergroup}
The correspondence is given by B 7→ QuOp(A|B) and K 7→ AK ⊆ A.

Here by K being a hypergroup1 we mean that id ∈ K, the set K is closed under
·̄ and that the convex hull Conv(K) is closed under composition and we have the
property that for any φ1, φ2 ∈ K we have id ≺ φ1 ◦ φ2 if and only if φ1 = φ̄2. The
number w ∈ [1,∞) determined by φ̄ ◦ φ = w−1 · id+ · · · is called the weight of φ.

1in the sense of Sunder–Wildberger [Sun92, SW03]
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Proposition 6 ([BR19]). Let A be a rational conformal net and K ⊆ QuOp(A).
Then each wφ for φ ∈ K is the index of an irreducible finite depth subfactor and

[A : AK ] =
∑

φ∈K wφ ∈ {1, 2, 3, 5+
√
5

2 , 4, 3 +
√
3, 5} ∪ (5 1

4 ,∞) .

Example 7. In Example 2 we get K = QuOp(A|B) = {id, φ} with the only non-
trivial relation in Conv(K) being

φ ◦ φ = 1
2+

√
3
id+ 1+

√
3

2+
√
3
φ .

Let F be a fusion ring. A (unitary) categorification F of F is a (unitary)
fusion category whose fusion ring is isomorphic to F . Every fusion ring gives an
abstract hypergroup KF = { 1

FPdimXX ∈ C[F ] |X ∈ F} and we can talk about a
categorification of a hypergroup.

Theorem 8 ([Bis17]). Let A be holomorphic net, i.e. a rational conformal net
with Rep(A) trivial. If K is a finite hypergroup in QuOp(A) then there is a unitary
fusion category F which is a unitary categorification of K such that Rep(A) is
braided equivalent to the Drinfel’d center Z(F).
Problem 9. For A a conformal net associated with a lattice [DX06] or a strongly
local vertex operator algebra [CKLW18] find φ ∈ QuOp(A) with φ◦φ = w−1 id+(1−
w−1)φ for small positive real numbers w > 1.

For example for the even A2×E6 lattice the hypothetical (see [EG11]) conformal
net associated with the Haagerup subfactor would give such an element φ with
w = 11+3

√
13

2 .

Infinite index subnets. Finally we are interested in infinite index subnets. We
equip QuOp(A) with the bounded weak topology. We have evidence to believe
the following conjecture:

Conjecture 10. Let A be a strongly additive conformal net. Then the correspon-
dence of Theorem 5 extends to a bijective correspondence

{B ⊆ A | discrete subnet} ←→ {K ⊆ QuOp(A) |K compact hypergroup}
Here we should use a certain notion of a discrete subnet (called subnet of com-

pact type in [Car04]) and a still need to find the precise notion of compact hy-
pergroup. A crucial step is to associate a compact hypergroup with any discrete
braided local inclusion (N ⊆M,Ω) presented in the talk by Luca Giorgetti.
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Weak quasi-Hopf algebras, VOAs and conformal nets

Sebastiano Carpi

(joint work with Sergio Ciamprone, Claudia Pinzari)

Weak quasi-Hopf algebras, introduced by Mack and Schomerus in [13, 14], are a
generalization of Drinfeld’s quasi-Hopf algebras. Every fusion category is tensor
equivalent to the representation category of a weak quasi-Hopf algebra [11]. After
these early works there seems has not been no relevant progress in the theory until
the recent work by Ciamprone and Pinzari [2] where some specific examples from
quantum groups at roots of unity in the type A case where studied in detail.

In a subsequent work by Ciamprone and Pinzari and me [3] we develop vari-
ous aspects of the theory and consider many examples and applications. Here, I
will briefly report of some the results contained in the latter work with emphasis
on the unitarity and conformal field theory aspects emerging in connection with
vertex operator algebras (VOAs) and conformal nets. These results indicate that
weak quasi-Hopf algebras give a useful and natural tool to study certain relevant
properties of fusion categories and conformal field theory.

A a weak quasi-Hopf algebra is a quintuple (A,∆, ε, S,Φ) satisfying various
assumptions. Here A is a unital associative algebra (over C), the coproduct ∆ :
A→ A⊗A is a homomorphism, the counit ε : A→ C is a nonzero homomorphism,
the antipode S : A→ A is an antiautomorphism, Φ is the associator.

In contrast with the quasi-Hopf algebra case the coproduct is not assumed to
be unital so that ∆(1A) is an idempotent in A⊗ A commuting with ∆(A) which
is in general different from 1A ⊗ 1A. This fact allows a much more flexibility.

The coproduct gives a tensor structure on the representation category Rep(A).
The tensor product π1⊗π2 on objects of Rep(A) is then given by the restriction
of π1 ⊗ π2 ◦∆ to the invariant subspace π1 ⊗ π2 ◦∆(1A)Vπ1 ⊗ Vπ2 . If A is finite-
dimensional and semisimple then Rep(A) is a fusion category.

Now, for a given (finite-dimensional and semisimple) A, the additive function
D : Gr(Rep(A)) → Z defined by D([π]) := dim(Vπ) is a weak integral dimension
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function i.e. it satisfies D([π1⊗π2]) ≤ D([π1])D([π2]), D([ι]) = 1 and D([π]) =
D([π]) ≥ 0. All fusion categories have integral weak dimension functions.

The following result is due to Häring-Oldenburg [11].

Theorem ([11]). Let C be a fusion category and D : Gr(C) → Z be an integral
weak dimension. Then there exists a finite dimensional semisimple weak quasi-
Hopf algebra (A,∆, ε, S,Φ) and a tensor equivalence F : C → Rep(A) such that
D([X ]) = dim(VF(X)) for all X ∈ Obj(C).

Extra structures on C give extra structures on A (see [11] and [3]): braidings
give R-matrices; C*-tensor structures on C give Ω-involutive structures on A (in
particular the algebras A become a C*-algebras). The weak quasi-Hopf algebra
associated to a fusion category C is highly non-unique. It depends on the choice
of the integral weak dimension function D and, once D is fixed, is only defined up
to a “twist”.

Now let C+ be a linear C*-category, C be a fusion category and F : C+ → C
be a linear equivalence. In the proof of the following theorem weak quasi-Hopf
algebras plays a crucial role.

Theorem 1. ([3]). If C is tensor equivalent to a unitary fusion category D+ then
C+ can be upgraded to a unitary fusion category so that F : C+ → C becomes a
tensor equivalence. This unitary tensor structure on C+ is unique up to unitary
equivalence and makes C+ unitary tensor equivalent to D+.

In fact the result is still valid if C is only assumed to be rigid and semisimple
provided that it has an integral weak dimension function. As a corollary we find
a positive answer to a question by Cesar Galindo in [6]

Corollary 2. ([3]). Two tensor equivalent unitary fusion categories must be
unitary tensor equivalent.

A different proof of the latter result was found independently by Reutter [15].

We now apply the previous theorem to the unitarizability of the representation
categories of unitary affine VOAs. Let g be a complex simple Lie algebra, let k be
a positive integer and let Vgk

be the corresponding simple level k affine VOA. It
is known that Vgk

is a unitary strongly rational VOA and that every Vgk
-module

is unitarizable. We denote by Repu(Vgk
) the linear C*-category of unitary Vgk

-
modules. Because of the unitarizability of the Vgk

-modules the forgetful functor
F : Repu(Vgk

)→ Rep(Vgk
) is a linear equivalence. By a result of Finkelberg [4, 5]

we know that Rep(Vgk
) is tensor equivalent to the “semisimplified” tensor category

R̃ep(Gq) associated to the representations of the quantum group Gq, with G the
simply connected compact Lie group corresponding to g and and the rooth of unity

q is given by q = e
iπ

d(k+h∨) . Here h∨ is the dual Coxeter number, d = 1 if g is ADE,
d = 2 if g is BCF and d = 3 if g is G2.

It was shown by Wenzl and Xu [17, 18] that R̃ep(Gq) is tensor equivalent to a
unitary fusion category. As a consequence we have the following result.
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Theorem 3. ([3]). Repu(Vgk
) has a structure of unitary fusion category which is

unique up to unitary equivalence.

Unitary tensor structures on Repu(Vgk
) have been constructed directly in a

series of papers [7, 7, 9] by Bin Gui for the Lie types A, B, C, D, and G2 and
more recently by James Tener in [16] for the remaining cases E6, E7, E8 and F4

by completely different methods. By our uniqueness result these structures agree
with those we have found.

Our method works also for many other VOAs such as e.g. lattice VOAs and
certain holomorphic orbifolds.

As another application of the theory of weak quasi-Hopf algebra we give a classifi-
cation of pseudo-unitary type A ribbon fusion categories. The starting point is the
work of Kazhdan and Wenzl [12] on the classification of type A tensor categories.
As a consequence of our results we have in particular the following theorem.

Theorem 4. ([3])Let C be a modular fusion category with modular matrices S, T
coinciding with the Kac-Peterson matrices for the sl(n) affine Lie algebra at posi-
tive integer level k. Then C is ribbon equivalent to Rep(Vsl(n)k).

Now let AVsl(n)k
be the conformal net on S1 associated to the strongly local

unitary VOA Vsl(n)k [1]. As a first consequence of Theorem 4 we have

Corollary 5. We have a unitary ribbon equivalence F : Repu(Vsl(n)k) →
Rep(AVsl(n)k

).

The same result has been independently obtained by Bin Gui [10] by different
methods (direct analytic proof instead of classification). As a second consequence
of Theorem 4 we obtain e new proof of Finkelberg’s equivalence in the type A case.

Corollary 5. If q = e
iπ

(k+n) there is a unitary ribbon equivalence F : Rep(Vsl(n)k)

→ R̃ep(SU(n)q).
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Non-rational conformal field theories

Joerg Teschner

Theoretical physics suggests that beyond the much-studied class of rational CFT
there should exist large classes of non-rational CFT. Such CFT should be math-
ematically very rich, due to links with harmonic analyisis, quantum Teichmueller
theory and two-dimensional quantum gravity. The main goal of my talk was be
to present hints that a rigorous mathematical study of important non-rational
conformal field theories may not be as elusive as it might seem. Liouville theory
and some recent results on the relation between free fermion and Virasoro confor-
mal blocks at c=1 offer a reasonably complete (partly conjectural) picture of the
relevant representation categories.

A conjecture was formulated in my talk for the decomposition of the Connes
fusion of two unitary highest weight representations of the Virasoro algebra with
central charge c¿25 and highest weights h satisfying 24 h ¿ c-1. It is conjectured
to decompose as the direct integral of representation from this series weighted
with a density that can be expressed in terms of the so-called DOZZ formula for
the three-point function of Liouville CFT, together with the formula proposed by
brothers Zamolodchikov for the expectation value of exponential Liouville fields
on the Poincare disc. In a suitable generalisation of the approach to Connes fusion
developed by Jones, Wassermann and Gui one would expect this decomposition
to be aconsequence of a partly conjectural braid relation of intertwining operators
derived in 2001.
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Classification of pure split invariant state with on-site symmetry

Yoshiko Ogata

A quantum spin chain is given by A :=
⊗

Z
Md, where Md is the algebra of d× d-

matrices. On quantum spin chain, we consider the on-site symmetry β given by a
finite group G and a unitary representation U on Cd with U(g) /∈ C1, for g 6= e.
The automorphism βg, for g ∈ G is defined by

βg(A) := Ad

(⊗

Z

U(g)

)
(A) , A ∈ A, g ∈ G.(1)

We consider the classification of the set SPG(A), the set of all pure split β-
invariant states. The criterion for the classification is as follows: ω0, ω1 ∈ SPG(A)
are equivalent if there are automorphisms αL, αR on AL, AR such that

(1) ω1 is quasi-equivalent to ω0 ◦ (αL ⊗ αR), and
(2) αL ◦ βg|AL

= βg|AL
◦ αL, and αR ◦ βg|AR

= βg|AR
◦ αR, for each g ∈ G.

It turns out that the complete invariant is the second cohomology class hω as-
sociated to a projective representation given for each ω ∈ SPG(A). Our main
theorem is that ω0 and ω1 are equivalent if and only if hω1 = hω0 .[O] This is a
problem motivated by the classification problem of SPT phases.
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Compact hypergroups from discrete subfactors

Luca Giorgetti

(joint work with Marcel Bischoff, Simone Del Vecchio)
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Extensions and subtheories in CFT.My talk is a follow-up of Marcel Bischoff’s
talk contained in this volume, and it aims to extend his results to the non-rational
CFT setting [2]. A local conformal net is an operator algebraic axiomatization of
chiral Conformal Field Theory, it consists of a collection of von Neumann alge-
bras A(I) on a common Hilbert space H, associated with open proper intervals of
the unit circle I ⊂ S1 and subject to various physically motivated assumptions,
the most important of which is locality: A(I) and A(J) elementwise commute if
I ∩ J = ∅. We refer to Marcel’s talk for the definition, and to the literature [4],
[12], [13], [10].

Given a local conformal net A, both extensions A ⊂ C and subtheories B ⊂ A
are described by nets of subfactors. The study of extensions has been initiated in
[19], the one of subtheories more recently in [1]. They have been spelled out in the
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case of subfactors with finite Jones index/theories with finitely many inequivalent
DHR superselection sectors (rationality assumption [16]).

Due to the locality constraint, the two problems, seemingly very similar, are
of a quite different nature [1]. To see this, let N ⊂ M be an irreducible infinite
subfactor onH with finite index, let ξ ∈ H be a jointly cyclic and separating vector
with associated Tomita’s conjugations JN and JM. Let γ = AdJNJM ∈ End(M)
be Longo’s canonical endomorphism [18], with dual canonical θ = γ|N ∈ End(N ).
Denote by ι : N →M the inclusion morphism, with dual morphism ῑ :M→ N
defined by γ = ιῑ. Thus also θ = ῑι. By the finiteness of the index, there are
solutions w ∈ N and v ∈ M of the conjugate equations for ι and ῑ. Namely,
wn = θ(n)w for all n ∈ N , and vm = γ(m)v for all m ∈ M, such that v∗ι(w) =
w∗ ῑ(v) = 1. The triples (θ, w, x = ῑ(v)) and (γ, v, y = ι(w)) are two C∗-Frobenius
algebras [3] respectively in End(N ) and End(M) (Q-systems), and it is well known
that they determine the inclusion N ⊂M either, respectively, from N orM only.
Moreover, all the Q-systems arise in this way. So the description of over/subfactors
is completely symmetric in the case of a single inclusion.

Back to the CFT situation, if N = B(I) ⊂ M = A(I), the main result of
[19] states that θ extends to a localized and transportable (DHR) endomorphism
of the net B, in symbols θ ∈ Rep(B), and that the Q-system (θ, w, x) in Rep(B)
determines the whole net extension B ⊂ A.

Now, symmetrically, assume that also γ ∈ Rep(A) with Q-system (γ, v, y) in
Rep(A). Then the Jones basic construction M ⊂ M1, which has γ as dual
canonical endomorphism, is part of a net extensionA ⊂ D by [19] withM1 = D(I).
On the one hand, the net extension is necessarily relatively local with respect to
A by [19], i.e., A(I) and D(J) commute if I∩J = ∅. On the other hand, the Jones
projection eI = [B(I)Ω], with Ω ∈ H the vacuum vector of A, is independent
on the interval I by the Reeh-Schlieder property. Thus eI = eJ . In particular,
eImeI = meI for every m ∈ M = A(I), and B(I) = A(I). From this we conclude
that γ ∈ Rep(A) is only possible when B = A. The above discussion says that the
problem of determining relatively local extensions of a given local conformal net A
is a matter of finding Q-systems in Rep(A). Instead, subnets of A cannot be read
in Rep(A), just think of holomorphic nets where Rep(A) is trivial, or Virasoro
minimal models [5]. We propose to look at the structure of generalized (global)
gauge transformations of A (also called quantum operations) in order to describe
subtheories.

Non-rational CFTs and infinite index subfactors. If A is non-rational, it
may have conformal net extensions A ⊂ C with infinite index, i.e., such that every
subfactor A(I) ⊂ C(I) has infinite index. If the subfactors are “tamely” infinite
index, namely if they are discrete in terminology of [14], see the next section for
explanations, and assuming a slight strengthening of the locality assumption on
A (strong additivity), then relatively local extensions are described by generalized
Q-systems of intertwiners in Rep(A) [7] (a generalization of a C∗-Frobenius alge-
bra object with infinitely many (co)multiplications). Weakening the discreteness
assumption, the machinery of generalized Q-systems in End(N ) still works at the
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level of a single subfactor [9]. Another recent treatment of discrete subfactors,
close in spirit to generalized Q-systems of intertwiners, is due to [15]. Again as-
suming discreteness almost everywhere, we present below our generalization of the
study of conformal subnets of A, from finite [1] to infinite index [2].

A duality theorem for discrete subfactors. We abstract the properties of
subfactors coming from conformal inclusions, and formulate a duality theorem for
subfactors.

Let N ⊂M be an irreducible subfactor of type III with separable predual.

Definition 1. N ⊂ M is called semidiscrete if it admits a (necessarily unique)
normal faithful conditional expectation E :M→N ⊂M.

This property is guaranteed for conformal inclusion by the Bisognano-Wichmann
property, namely the modular group of (A(I),Ω) coincides with the one-parameter
unitary group implementing the dilations of I. Given that the dilations are imple-
mented on A and B ⊂ A by the same unitaries (the inclusion is conformal), the
existence of E (preserving the vacuum state) follows by Takesaki’s theorem.

Definition 2. N ⊂ M is called in addition discrete if the normal semifinite
faithful operator-valued weight Ê : M1 → M ⊂ M1 dual to E [17] is semifinite
on N ′ ∩M1.

Every finite index subfactor is in particular discrete, being Ê an everywhere
defined conditional expectation.

Proposition 3 ([14], [7]). Let N ⊂M be an irreducible semidiscrete subfactor of
type III. The following conditions are equivalent:

(i) N ⊂M is discrete.
(ii) The dual canonical endomorphism θ ∈ End(N ) is a countable direct sum

of irreducible subendomorphism with finite dimension [20], i.e., θ =
⊕

i ρi
and dρi <∞ for every i.

(iii) M admits a Pimsner-Popa basis {ψi} ⊂ M over N with respect to E
made of charged fields, namely ψin = ρi(n)ψi, n ∈ N , for every i.

The following condition is equivalent to the locality of the net A [19], [7] when
N ⊂ M comes from a local net extension B ⊂ A. It is a generalization of the
finite index notion of commutativity for C∗-Frobenius algebras.

Definition 4. An irreducible discrete subfactor N ⊂M of type III is called local if
it is braided, namely if θ lives in a unitary braided tensor subcategory of End(N )
with braiding denoted by {ερ,σ}, and if it admits a commutative Pimsner-Popa
basis of charged fields, namely ψiψj = ερj ,ρiψjψi for every i, j.

Once a Pimsner-Popa basis of charged fields is commutative, then all such
bases are commutative. Clearly, the commutativity condition can be equivalently
formulated with the opposite braiding εopρ,σ = ε∗σ,ρ. In CFT applications, the
braiding is the DHR braiding of Rep(B). See [11] for explanations.
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Theorem 5. For every irreducible discrete local subfactor N ⊂M of type III there
is a canonically associated set K = K(N ⊂ M) of quantum operations acting on
M via unital completely positive (ucp) maps and such that N =MK . HereMK is
the fixed points subalgebra. Moreover, K has the structure of a compact metrizable
hypergroup.

Roughly speaking, a compact hypergroup is a compact Hausdorff topological
space K such that the space of bounded Radon measures M(K) admits a Banach
algebra structure with respect to a “convolution product”. Denoted by δk the
Dirac measure concentrated in k ∈ K (an extreme point in the set of probability
measures P (K)), then the convolution δk∗δh is a probability measure. In the group
case, δk ∗ δh is again extreme in P (K) and it is equal to δkh. There is an antilinear
involution on measures δk 7→ δk̄ which exchanges the order of products and which
generalizes the group inversion. There is a convolution neutral element δid. Further
continuity properties are required in some notion of hypergroup present in the
literature, and omitted in others. All the topological properties collapse in the
case of finite hypergroups.

No compact quantum gauge groups. Instead of digging further into the
definition of hypergroup, we mention the main consequence of our construction
for conformal inclusions: Hopf algebras or compact quantum groups cannot act as
(global) gauge symmetries on a local conformal net.

Theorem 6. Let N ⊂M be an irreducible semidiscrete local subfactor of type III
with depth 2, then K is a compact group.

The depth 2 condition, namely the factoriality of N ′ ∩M2 where N ⊂ M ⊂
M1 ⊂M2 is (the beginning of) a Jones tower, is equivalent to N being the fixed
points under the action onM of a compact quantum group [14], [21]. Moreover,
note that discreteness is not assumed in the previous theorem, as it follows from
semidiscreteness and depth 2 by a result of [8]. In particular

Corollary 7. Let B ⊂ A be a conformal inclusion of local conformal nets. If
B(I) ⊂ A(I) has depth 2, then B is a compact group orbifold subnet of A.

In the case of finite index subnets, this fact is known both in the von Neumann
algebraic and in the vertex operator algebraic axiomatization of chiral CFT.

Examples in CFT. A family of compact (non-finite) examples of hypergroups
in chiral CFT come from local conformal extensions of B = Virc=1. They are all
irreducible and the discrete ones are intermediate in B ⊂ A = ASU(2)1 [6], [22]. In

this case, B = AG with G = SO(3) and every B ⊂ C ⊂ A is of the form C = AH
with H a closed non-normal subgroup of G. Then we have B = CG//H, where
K = G//H is a double coset compact hypergroup.

Further examples of “disconnected” compact hypergroups which are not double
cosets can be produced by tensoring with finite index local conformal net exten-
sions B1 ⊂ A1, namely B ⊗ B1 ⊂ A⊗A1. We are not aware by now of any more
exotic “connected” example arising in CFT.
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Compact hypergroups of ucp maps. We briefly sketch the construction of the
hypergroup K and we mention the main technical result (Theorem 9) of [2]. Let
Ω ∈ H be a cyclic and separating unit vector forM such that (Ω, ·Ω) = (Ω, E(·)Ω),
e.g., the vacuum vector of a local conformal net.

The hypergroup appearing in Theorem 5 is defined by

K := Extr(MarkovN (M,Ω))

where MarkovN (M,Ω) is the set of normal faithful ucp maps φ :M→M which
are N -bimodular, Ω-stochastic and which admit an Ω-Markov adjoint. We refer
to Marcel’s talk for the precise definitions. Here we only mention the following

Lemma 8. If N ⊂ M is as in Theorem 5, then every ucp N -bimodular map
φ :M→M is automatically in MarkovN (M,Ω).

The hypergroup “convolution” of ucp maps φ1, φ2 is the composition φ1◦φ2, the
neutral element is the identity map id, and the involution is the Markov adjunction
φ 7→ φ̄. The topology on K is induced by Arveson’s bounded weak topology, or
equivalently, in this case, the pointwise ultra-strong/weak operator topology. The
non-trivial steps of the construction, namely the compactness of the subset of
extreme points and the measure theoretical interpretation of ucp maps are settled
by the following

Theorem 9. Let N ⊂M be as in Theorem 5. There is a homeomorphism between
the set MarkovN (M,Ω) and the set of states of a commutative unital separable
C∗-algebra C∗

red(N ⊂M) associated with the subfactor.
In particular, K is identified with the spectrum of C∗

red(N ⊂M).
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Conformal Field Theories as Scaling Limit of Anyonic Chains

Zhenghan Wang

This talk is based on the joint work [1]. In the study of two dimensional topological
phases of matter, the bulk physics is modelled by anyon models or unitary modular
tensor categories (UMTCs). In fractional quantum Hall physics, the boundary
physics is modelled by conformal field theories. It is conjectured that every anyon
model can be reconstructed as the representation category of a vertex operator
algebra (VOA). In this paper, we investigate this conjecture from the point-view
of anyonic chains (ACs).

We provide a mathematical definition of a low energy scaling limit of a se-
quence of general non-relativistic quantum theories in any dimension, and apply
our formalism to anyonic chains. We formulate a conejcture on conditions when
a chiral unitary rational (1+1)-conformal field theory would arise as such a limit
and verify the conjecture for the Ising minimal model M(4, 3) using Ising anyonic
chains. Part of the conjecture is a precise relation between Temperley-Lieb gener-
ators {ei} and some finite stage operators of the Virasoro generators {Lm+L−m}
and {i(Lm − L−m)} for unitary minimal models M(k + 2, k + 1). Assuming the
conjecture, most of our main results for the Ising minimal model M(4, 3) hold for
unitary minimal models M(k + 2, k + 1), k ≥ 3 as well. Our approach is inspired
by an eventual application to an efficient simulation of conformal field theories by
quantum computers, and supported by extensive numerical simulation and physi-
cal proofs in the physics literature.

Anyons are modelled by simple objects in unitary MTCs. ACs are the anyonic
analogues of quantum Heisenberg spin chains investigated purely as an academic
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curiosity first. Abstractly, ACs’ conceptual origin can be traced back at least to
Jones’ Baxterization of braid group representations and his idea of generalized spin
chains regarding ”spins” as something each with a large algebra of observables at
sites and being tensored together with generalized tensor products such as Connes
fusion. In the scaling limit, ACs are exactly solvable but not known to be rigorously
solvable mathematically. We reverse the logic in this paper to regard ACs as
localization of CFTs, thus provide a space locality for VOAs. Our philosophy,
as inspired by algorithmic discrete mathematics, is that instead of using ACs to
approximate VOAs, VOAs serve as good approximations of sufficiently large finite
ACs in their low energy spectrum.

Our limit of a sequence of quantum theories {(Wn, Hn)} will be dictated by
both space and energy localities. The Hilbert space W of a quantum theory has
two important bases: the basis BS encoding the spacial locality, and the basis BE
of energy eigenstates ofH . We will refer to the two bases as space basis and energy
basis, respectively. Operators can be local with respect to one of the two bases,
but there is a tension of locality with respect to both bases. To define a limit of
the sequence of quantum theories {(Wn, Hn)}, we need to embed the Hilbert space
Wn intoWn+1. Which locality of space and energy is preserved by the embedding
leads to different notions of limit. We will construct the scaling limit of a sequence
of quantum theories {(Wn, Hn)} from their low energy behaviors when the lattice
sizes go to zero, therefore we preserve energy locality. Preservation of space locality
will lead to the thermodynamic limit.

Besides the Hilbert space and Hamiltonian, another essential feature of any
quantum theory is the algebra of observables. Since our quantum theories are
non-relativistic, time needs to be addressed differently. The algebra structure
of observables encodes consecutive measurements as multiplication, hence some-
what reflects time in the limit. As noted above, our formulation of scaling limit
will have everything that can be computed using some limit of physical objects.
Compared to other well-established formulations of chiral CFTs such as VOAs
following Wightman’s axioms, and LCNs, our scaling limit results in a much big-
ger set of observables. In fact, we will show, in the case of Ising anyonic chain,
our resulting observables contain as a subset corresponding to smeared fields (or
Wightman’s) observables φ(f), a subset corresponding to bounded observables of
LCN and a subset corresponding to observables in the VOA M(4, 3). We conjec-
ture the same holds for all unitary minimal models M(k + 2, k + 1) for k ≥ 3.

An important desideratum of our scaling limit is finitely complete and accessible
in the sense that any sequence that should have a limit indeed has one in the
scaling limit, and anything in the scaling limit is a limit of some sequence. So
the theory in the limit should be completely describable by the sequence of finite
theories and there should be no extra object that is not some limit of finite objects.
Our scaling limits VOA V = ⊕∞

n=0Vn should be regarded as computable using
the AC approximations. Philosophically, such VOAs V = ⊕∞

n=0Vn from ACs
categorify computable integral sequences such that each vector space Vi serves as
a categorification of the integer dimVi.
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Modular distortion for II1 multifactor bimodules

David Penneys

(joint work with Marcel Bischoff, Ian Charlesworth, Samuel Evington, Luca
Giorgetti, and André Henriques)

This project started at the 2018 AMSMathematics Research communities program
on Quantum Symmetries: Subfactors and Fusion Categories.

Bimodules over factors and unitary fusion categories. Let A,B be II1
factors and AHB an A − B bimodule. We call H dualizable if there are maps
evH ∈ HomB−B(H ⊠A H → L2B) and coevH ∈ HomA−A(L2A → H ⊠B H)
satisfying the zig-zag equations. By [Bis97] (see also [EK98, BDH14]), dualizability
is equivalent to H being bifinite: dim(AH)·dim(HB) <∞, in which case H breaks
up as a finite direct sum of simple bimodules. As an example, given a finite index
II1 subfactor, the state independent Haagerup L2 space L2B [Haa75] is an A−B
bimodule. Below, we assume all bimodules are dualizable.

We call AHB finite depth if the unitary multitensor category (semisimple rigid
tensor C* category)

C = C(H) :=

(
ACA ACB
BCA BCB

)
⊂ Bim(A⊕B)

generated by H under ⊠,⊕,⊆, · is multifusion in the sense of [EGNO15].

Definition 1. The modular distortion of AHB is

δ = δ(H) :=

(
dim(AH)

dim(HB)

)1/2

∈ R>0.

We say AHB has constant distortion if for all sub-bimodules AKB ⊆ AHB, δ(K) =
δ(H). We call AHB extremal if AHB has constant distortion δ = 1.

One can view the modular distortion as an analog of the modular function on
a locally compact group, i.e., the ratio of left to right Haar measure.

Remark 11. The set of modular distortions of invertible A−A bimodules is the
fundamental group of A.

Given a unitary tensor category C and a group G, a G-grading on C is a de-
composition C =

⊕
g∈G Cg such that ⊗ : Cg × Ch → Cgh. There is a finest grading

called the universal grading group UC [EGNO15]. For a II1 factor, we denote the
universal grading group of the dualizable bimodules Bimd(A) by UA.
Question 2. What is UR where R is the hyperfinite II1 factor?
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Observe that δ gives a multiplicative map from the simple dualizable A − A bi-
modules to R>0, which gives a group homomorphism δ : UA → R>0. Using this,
we have an extremely quick proof of the following folklore result.

Proposition 3 (Folklore, [EK98]). If AHA is finite depth, then AHA is extremal.

Proof. Since C(H) is fusion, UA is finite. Hence δ(UA) ⊂ R>0 is a compact group,
so it must be {1}. �

By [Pop90], a finite depth hyperfinite II1 subfactor A ⊂ B is completely deter-
mined by its standard invariant C(AL2BB). As a corollary, every unitary fusion
category C admits an essentially unique embedding C →֒ Bim(R), and every em-
bedding is realized by a II1 subfactor. [FR13, Izu17].

Bimodules over multifactors and unitary multifusion categories. Inspired
by our investigation of bicommutant categories [HP17], we would like to extend
this result to n × n unitary multifusion categories C. Here, n × n means C is
indecomposable and dim(End(1C)) = n, so we can orthogonally decompose 1C =⊕n

i=1 1i into n simples, and C = (Cij)ni,j=1 where Ci,j = 1i ⊗ C ⊗ 1j.
We observe that an n × n multifusion category is faithfully graded by the

groupoid Gn with n objects and a unique isomorphism between any two objects.
Only thinking about the arrows of the groupoid, an operator algebraist may prefer
to think of Gn as a system of matrix units for Mn(C).

One can already see there will be a slight difference for embeddings of 2 × 2
unitary multifusion categories.

Proposition 4. Any 2 × 2 unitary multifusion category admits an essentially
unique embedding C →֒ Bim(R⊕2) up to the modular distortion on C12.

All distortions can arise from embeddings. However, not all embeddings arise
from subfactors A ⊆ B where C →֒ Bim(A ⊕ B), as we always have δ(AL

2BB) =
[B : A]1/2, and the indices of possible subfactors realizing a 2× 2 unitary multifu-
sion category will be a discrete subset of R>0 in some interval above 1.

Example 5. Given any projection p ∈ P (R) with tr(p) ∈ (0, 1], we have an
embedding

Mat2(Hilbfd) →֒ Bim(R ⊕ pRp)
(
L2R L2Rp
pL2R pL2Rp

)

Observe that δ(L2Rp) = tr(p)−1 which can take any value in [1,∞).

In order to embed multifusion categories, we must use II1 multifactors, which
are finite direct sums of II1 factors. Below, A and B will denote multifactors where

A =
⊕a

i=1Ai and B =
⊕b

j=1 Bj , where Z(A) = spanC{pi}ai=1 with Ai = piA and

Z(B) = spanC{qj}bj=1 with Bj = qjB.
A II1 multifactor bimodule AHB is dualizable if and only if Hij := piHqj

is bifinite for all i, j. Again, we will only consider dualizable bimodules. We
will also restrict our attention to connected bimodules, i.e., those which satisfy
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Z(A) ∩ Z(B) ∩ B(H) = C1H . The definition of finite depth is the same as above
for multifactor bimodules.

Definition 6. The modular distortion of AHB is a partially defined matrix δ =
δ(H) ∈Ma×b(R>0) where δij = δ(Hij) when Hij 6= 0. We say AHB is extremal if
every Ai −Ai bimodule generated by H in C(H) is extremal.

Using the fact that a unitary multitensor category has a universal grading
groupoid UC [Pen18], a similar proof as in Proposition 3 above shows that finite
depth implies extremal for multifactor bimodules.

Theorem 7. The following are equivalent for a multifactor bimodule AHB.

• H is extremal.
• Hij has constant distortion for each i, j, and (δij) extends to a well-defined

groupoid homomorphism Ga+b → R>0, i.e.,

δijδi′j′ = δij′δi′j ∀ 1 ≤ i ≤ a and ∀ 1 ≤ j ≤ b.
The analog of Popa’s uniqueness theorem for finite depth connected II1 multifac-

tor inclusions only holds under the additional assumption that the two inclusions
have identical distortions.

Example 8 ([Pop95b]). Consider the inclusion P = C ⊕ C ⊂ M2(C) ⊕ C = Q
whose bipartite adjacency matrix is [

1 0
1 1

]

where the rows are indexed by i and the columns by j. The inclusion A = P ⊗R ⊂
Q⊗R = B does not admit any downward Jones basic construction [Jon83]. Taking
the next two steps in the Jones tower A0 ⊂ A1 ⊂ A2 ⊂ A3, we get a Morita
equivalent inclusion A2 ⊂ A3 with the same standard invariant which manifestly
admits two downward basic constructions. One quickly observes these inclusions
have different distortions:

δ(A0L
2A1A1) =

(
1 3/2
2 3

)
δ(A2L

2A3A3) =

(
5/2 3/2
5/3 1

)
.

One calculates that

δ(A2nL
2A2n+1A2n+1)

n→∞−−−−→
(
φ2 φ
φ 1

)

where φ is the golden ratio.

We calculate general formulas for the behavior of the distortion under Morita
equivalence and taking basic constructions using some results from [GdlHJ89]. An
inclusion A ⊂ B admits an infinite Jone tunnel if and only if the distortion is
standard. This condition is calculated from matrix (Dij) of statistical dimensions
of (L2B)ij . We show this is equivalent to Popa’s homogeneity criterion [Pop95b]
when we endow B with the unique Markov trace, and with Giorgetti-Longo’s
notion of super-extremality [GL19]. Using techniques from [Ocn88] and [Pop90],
we prove the following.
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Theorem 9. An n× n unitary multifusion category admits an essentially unique
embedding C →֒ Bim(R⊕n) up to the modular distortion.

Again, not all embeddings are realized from multifactor inclusions, and we have
explicit formulas to determine which distortions arise from inclusions.

Remark 12. At this workshop, we learned of the result [Tom18] which could also
be used to prove the uniqueness part of the above results.
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On super-modular categories

Julia Plavnik

Elementary particles such as electrons and photons are either fermions or bosons.
But elementary excitations of topological phases of matter behave like exotic par-
ticles called anyons. Unitary modular categories play an important role since they
model the emergent anyon systems of bosonic topological phase of matter. Be-
cause of this and their connections to other fields in mathematics, modular tensor
categories have been largely studied. While a substantial part of the theory of
anyons can be developed using unitary modular categories by bosonization, to
fully capture topological properties of anyons in fermionic topological phases of
matter require super-modular categories.

A super-modular category is a unitary pre-modular category with Müger
center braided equivalent to the unitary pre-modular category sVec of super vector
spaces. An algebraic motivation for studying super-modular categories is that any
unitary braided fusion category is the equivariantization of either a modular or
super-modular category, see [13, Theorem 2]. Topological motivations include the
study of spin 3-manifold invariants ([13, 1, 2]) and (3 + 1)-TQFTs ([14]).

One way to construct examples of super-modular categories is from modular
tensor categories via the Deligne product, more precisely, B = C⊠ sVec is a super-
modular category if C is modular. This class of examples is called split super-
modular categories and all pointed super-modular categories are of this form. But
not all examples of super-modular categories are split. An interesting family of
non-split super-modular categories is PSU(2)4m+2. The quantum group modular

category SU(2)4m+2, is constructed from Uq(su2) at the root of unity q = e
πi

4m+4 .
This modular tensor category has rank 4m + 3 and has a fusion subcategory
PSU(2)4m+2 that is generated by simple objects with even labels. So, PSU(2)4m+2

has rank 2m+ 2 and it has only two integral objects, the first and last one. Both
integral objects are invertible ones, and can be read from the formulas for the S and
T -matrices of PSU(2)4m+2 (which are explicitely described in [4]) that the non-
trivial invertible generates the Müger center and it has twist −1, i.e., PSU(2)4m+2

is a super-modular category. Moreover, this category is non-split super-modular
since r + 1 does not divide 4m+ 3, which shows that the ranks would not work.

Another way to encounter super-modular categories is from spin-modular
categories, which are modular categories with a distinguish fermion. A dis-
tinguished fermion is just an invertible object of order two with twist equal to
−1. This fermion gives rise to a Z2-grading on the modular tensor category,
where the trivial component corresponds to the centralizer of the sucategory sVec

http://www.ams.org/mathscinet-getitem?mr=MR1339767
http://arxiv.org/abs/1812.04222
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generated by the fermion. Then, the trivial component has half of the dimen-
sion of the original category and it is, by construction, a super-modular category.
The family PSU(2)4m+2 is an example of a super-modular category arising from
a spin-modular category, the category SU(2)4m+2. It is conjectured that every
super-modular categoy arises in this way. This conjecture was first posted by
Müger in the most general case of pre-modular fusion categories [12]. Unpub-
lished counter-examples due to Drinfeld exist in the symmetric case and Galindo
and Venegas gave some explicit counter-examples in that context in [8]. It is still
an open question if every super-modular category admits a minimal modular ex-
tension, that is, if there exist a modulartensor category of double of the dimension
of the super-modular category that contains it as a fusion subcategory. This is
known as the minimal modular extension conjecture and it was proved for sVec by
Kitaev [10]. Moreover, it is known that if a minimal modular extension exists then
there are exactly 16 non-equivalent ones [11]. In [4], an explicit construction of the
minimal modular extensions of PSU(2)4m+2 is given via the zesting construction.
The open question of existence of minimal modular extensions was also posed in
the language of Witt equivalence classes in [7].

The theory of modular categories is solid and has achieved a good level of
maturity. Given the proven success of this theory, the goal is to develop a parallel
theory for the super-modular case. There has been important progess on this
direction. For example, even if the S-matrix of a super-modular category is non-

invertible, it can always be factorized as S =
(
1 1
1 1

)
⊗ Ŝ, where Ŝ is an invertible

and symmetric matrix. Moreover, the T -matrix can be expresed as a product

T =
(
1 0
0 −1

)
⊗ T̂ , with T̂ a diagonal matrix. Notice that

(
1 1
1 1

)
and

(
1 0
0 −1

)
are

the S- and T -matrices from sVec, respectively. Since the fermion f is transparent,
f ⊗X 6∼= X , for any simple X , which implies that super-modular categories have
even rank. Moreover, f ⊗ X 6∼= X∗, for any X simple. Then, there is a non-
canonical partition of the classes of isomorphisms of simple objects Π = Π0Π1 in
the super-modular category B, such that Π1 = fΠ0, 1 ∈ Π0, and if X ∈ Π0 then
X∗ ∈ Π0. Associated to this partition, we have the so-called naive fusion rules

N̂k
i,j = Nk

i,j +Nfk
i,j . One nice feature of the naive fusion rules is that they can be

recovered from Ŝ via a Verlinde type formula. There is also a balancing equation
and a formula for the second Frobenious-Schur indicator of self-dual simple objects
similar to the ones for modular tensor categories but in terms of N̂ , Ŝ, and T̂ . For
more details about the properties of super-modular categries see [4], [6] .

Another crucial result is the generalization of the celebrated congruence sub-
group Theorem for modular categories by Ng and Schauenburg to the context of
super-modular categories. We consider the modular group SL(2,Z) =< s, t >,

where s =

(
0 −1
1 0

)
and t =

(
1 1
0 1

)
. The assignment s → Ŝ, t2 → T̂ 2 gives a

projective representation ρ̂ of Γθ = 〈s, t2〉 ⊂ SL(2,Z). Moreover, it was proved
in [3] that this projective representation has finite image, that is ρ̂(Γθ) is a finite
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group, when the super-modular category admits a minimal modular extension
(which is conjectured to be always true).

A fundamental advance for the theory of super-modular categories was the
proof of rank-finiteness, i.e., given a rank (number of isomorphism classes of simple
objects) there are only finitely many super-modular cateogries (up to equivalence)
of that rank. This was proved in the more general setting of G-crossed braided
fusion categories in[9]. This results makes the classification by rank plausible. The
classification of super-modular categories up to rank 6 was achieved in [6] and all
of them are either split or of the form PSU(2)4m+2, for m = 0, 1, 2. Also, this
classification gives rise to a classification of spin-modular categories up to rank
11. To be able to advance in the classification program, more tools are needed.
An essential technique is the study of the Galois symmetries for super-modular
categories, which has been deeply developed in [5]. For example, the Galois group
of a super-modular category B is an abelian subgroup of Sr, where r is half of
the rank of B. This has been crutial to push the classification (up to fusion rules)
of super-modular up to rank 8, when the quantum dimensions and naive fusion
rules are bounded by 14. The study of the possible Ŝ-matrices for each abelian
subgroup of S4 and the possible splitting of the naive fusion rules give 3 prime
realizations of super-modular categories with the given bounds [5].
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Free products of finite-dimensional von Neumann algebras and free
Araki-Woods factors

Michael Hartglass

(joint work with Brent Nelson)

The study of von Neumann algebra free products can be traced to the development
of the field of free probability by Voiculescu in the late 1980’s. In 1993, Dykema was
able to classify the structure of free products of finite-dimensional von Neumann
algebras (A1, φ1) ∗ (A2|, φ2) equipped with tracial states φ1 and φ2 in terms of
the interpolated free group factors (L(Ft))t>1 [1]. In 1997, Dykema studied free
products of finite-dimensional von-Neumann algebras equipped with non-tracial
states, and determined a necessary and sufficient condition for factorality as well as
the spectrum of the modular operator in terms of spectra of the modular operators
for each φi [2]. Dykema asked the whether (A1, φ1)∗ (A2, φ2) ∼= (B1, ψ1)∗ (B2, ψ2)
whenever the groups generated by σ(∆φ1)∪σ(∆φ2 ) and σ(∆ψ1)∪σ(∆ψ2 ) coincide.
Here ∆ϕ is the modular operator of a faithful normal state, ϕ, and σ(x) is the
spectrum of an operator x.

Utilizing a Fock space construction, Shlyakhtenko constructed the free Araki–
Woods factors, a natural type III analogue for the free group factors [7]. In the
almost periodic case, these are denoted as (TG, ϕG) where G is a countable multi-
plicative subgroup of the positive real numbers. The state ϕG is almost periodic
with point spectrum G, and (TG, ϕG) ∼= (TH , ϕH) if and only if G = H . The con-
struction of these factors, along with Dykema’s work on non-tracial free products,
prompted Shlyakhtenko to ask whether the free product factors of Dykema are in
fact isomorphic to free Araki–Woods factors.

Houdayer gave a partial answer to this question in 2007 when he investigated
certain free products of the form (C⊕C)∗M2(C) andM2(C)∗M2(C) and identified
them with free Araki–Woods factors [5]. Houdayer’s result was a significant step
in understanding non-tracial free products, but his work could not determine every
finite dimensional free product. Even free products of the form Mm(C) ∗Mm(C)
were not able to be identified.

In joint work with Nelson, [4], we have been able to completely classify the
structure of free products of finite dimensional von Neumann algebras in terms of
free Araki Woods factors (possibly direct sum a finite-dimensional piece), therefore
giving a positive answer to questions of Dykema and Shlyakhtenko. We also extend
the classification to free products of certain hyperfinite von Neumann algebras with
almost periodic states.

Our new tool is analyzing a von Neumann algebra assigned to a weighted
graph [3]. We are able to identify more complicated free products in terms of
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this weighted graph, and use techniques developed in our other work on these
weighted graphs to identify these free products. The study of these weighted
graph von Neumann algebras can be traced to Jones and Penneys when they used
these to construct a discrete subfactor N ⊂M where N ∼= L(F∞) andM is a type
IIIλ factor for λ ∈ (0, 1] [6]. A corollary of our analysis is identifying M with an
appropriate free Araki–Woods factor.
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New Spherical Planar Algebras and Fusion Rules

Zhengwei Liu

(joint work with Christopher Ryba)

We constructed a continuous family of spherical planar algebras C with a generic

parameter q in [1]. When q = e
2πi

2N+2 , we constructed unitary fusion categories
CN,k,ℓ with three discrete parameters N, k, ℓ ∈ N, N > 0, k + ℓ > 0. We also ob-
tain infinitely many non-unitary semi-simple pivotal monoidal category, and non-
semisimple ones for different q ∈ C. For each CN,k,ℓ, we obtain a 3D Turaev-Viro
TQFT. Two sequences CN,0,1 and CN,1,1, N ∈ N+ are particularly interesting.
We showed that the unitary fusion category CN,0,1 (or CN,1,1) is a module cat-
egory of the representation category of quantum SU(N)N+2 (or SU(N + 2)N).
Such modules categories are called exceptional quantum subgroups by Adrian Oc-
neanu. We obtain a new type of Schur-Weyl duality for families of exceptional or
(type E) quantum subgroups. (This is different from the Schur-Weyl duality from
the co-ideal construction of conformal pairs. In that approach, one obtains type
D quantum subgroups of quantum SU(N)).

Feng Xu constructed an exceptional quantum subgroup of SU(N)N+2 using the
α-induction of the conformation inclusion SU(N)N+2 ⊂ SU(N(N+1)/2)1 in 1998
[2]. It is not hard to believe that it is isomorphic to CN,0,1, because exceptional
quantum subgroups are rare in general, but it is not easy to prove two (higher-
rank) unitary fusion categories are isomorphic. In recently joint work with Xu [3],
we are able to prove that they are isomorphic using the classification result in [1].
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We remark that the fusion categories CN,1,0, N ∈ N+, can be parameterized as a
spherical category Cq,1,0 over C(q). We conjecture that the corresponding three-
manifold invariant from Turaev-Tiro TQFTs can also be parameterized. The
exceptional quantum subgroups CN,0,1 can not be parameterized as a spherical
category Cq,0,1 over C(q), because the pivotal structure is not well-defined in the
limit N →∞.

Computing the fusion rule of the exceptional quantum subgroups CN,0,1, N ∈
N+, has been an challenging open question, since Xu constructed this sequence
from conformal inclusions in 1998. The fusion rules were known only for small
rank cases (N ≤ 5). Ocneanu illustrates the fusion rule of the fundamental rep-
resentations acting on the modules for quantum SU(N), N = 2, 3, 4, as a colored
graph in [5].

In recent joint work with Christopher Ryba [4], we are able to compute the
fusion rule of Cq,1,0 in a closed from in terms of the Littleword-Richardson coeffi-
cients. The simple objects of Cq,1,0 are labelled by all Young diagrams. We obtain
a new fusion rule on Young diagrams. We also obtained the characters of these
simple objects and their generating function in a closed form in terms of symmetric
polynomials with infinitely many variables. Furthermore, for the fusion category
CN,k,ℓ, we obtain the fusion rule for the action of the fundamental representations
in a closed form. In particular, we answered the question of Xu on the fusion rule
of the exceptional quantum subgroup CN,0,1 posed in 1998. This is the first known
fusion rule for a sequence of exceptional quantum subgroups.
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Rokhlin actions of fusion categories

Yuki Arano

The classification problem of a single operator algebra has been worked out by
many people both in C*-algebra and von Neumann algebra setting. As a next step,
it is natural to classify relative positions of two algebras, namely the subalgebras.
In the von Neumann algebra setting, the classification of subfactor, which is a
main topic of this conference, has been fascinated many operator algebraists.

One can summarize a strategy of the classification as follows:
First from a finite-index inclusion of C*-algebras A ⊂ B (or a subfactor), we

consider the rigid C*-tensor category Bimod(A) of all Hilbert A-bimodules of finite
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index, so that B sits in this category. Furthermore B admits an algebra object
structure (i.e. the multiplication internal to the tensor category)

B ⊗A B → B.

Now this B and its algebra structure recoversA ⊂ B. The algebra object coming in
this way is axiomatized in terms of Q-systems of Longo, so this gives a one-to-one
correspondence between the Q-systems in Bimod(A) and finite-index extension B
of A. This does not reduce the problem easier, since the category Bimod(A) is
usually too huge to hundle. Instead consider the C*-tensor category C generated by
A (which is automatically rigid), which is often small enough to handle, especially
when the index is small enough. Using this, we can decompose the problem into
the following three parts.

(1) Determine what kind of rigid C*-tensor categories arises in this way.
(2) Classify all Q-system in a given rigid C*-tensor categories.
(3) Classify all realization of a given rigid C*-tensor category as bimodules over

A. In other words, classify all (fully faithful) tensor functor C → Bimod(A).

As a particular example of rigid C*-tensor category, consider the rigid C*-tensor
category Hilbf

G of all G-graded Hilbert spaces where G is a discrete group. In this
case, the problem (1) corresponds to the classification of the group itself, where as
the Q-system (modulo Morita equivalence) is in one-to-one correspondence with
the pair of the finite subgroup H ⊂ G and the second cohomology class ω ∈
H2(H,T ). We would like to think these data as an invariant of the inclusion
instead of classifying all of them. We are particularly interested in the problem
(3), since the functor Hilbf

G → Bimod(A) is nothing but the (stabilized cocycle)
action of G on A. In this way, we will see the functor C → Bimod(A) as an action
of a tensor category on an operator algebra.

In the von Neumann algebra case, one can classify all group actions on a hy-
perfinite factor. Furthermore, by Popa’s striking result [4], such action of tensor
category is also known to be unique (up to some equivalence relation) for hyper-
finite II1-factor. This is related to Tomatsu’s talk in this workshop.

In the C*-algebra case, it is difficult to classify the finite group actions on a C*-
algebra without any additional assumption. In [2], Izumi introduced the property
so-called the Rokhlin property and used it to classify finite group actions on a C*-
algebra. We mimic this in the actions of tensor categories and give a classification
result for actions of rigid C*-tensor categories on a C*-algebra, which also gives a
first classification result for inclusions of C*-algebras. The formal statement is as
follows. We refer [1] for the detailed definition appearing in the theorem.

Theorem 1. Let C be a C*-fusion category. Let α, β : C → Bimod(A) be two
actions of C with the Rokhlin property. Assume α(X) and β(X) are approximately
unitarily equivalent for each X ∈ C. Then α and β are naturally tensor equivalent
modulo Aut(A).

This particular shows the following.
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Theorem 2. Let A ⊂ B and A ⊂ B′ be two inclusions of simple C*-algebras where
the associated tensor category C is fusion and the action C → Bimod(A) has the
Rokhlin property. Assume B and B′ are approximately unitarily equivalent as
A-bimodules. Then there exists an isomorphism θ : B → B′ such that θ(A) = A.
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Centrally free actions of amenable C∗-tensor categories on von
Neumann algebras

Reiji Tomatsu

A cocycle action of a C∗-tensor category C on a properly infinite von Neumann
algebra M is a unitary tensor functor (α, c) : C → End(M)0. Namely, we have
endomorphisms αX with conjugate endomorphisms, Tα ∈ M for T ∈ C (X,Y )
and also unitaries uX,Y ∈M for X,Y ∈ C satisfying

• αX ◦ αY = AduX,Y ◦ αX⊗Y , α1 = id,
• uX,Y uX⊗Y,Z = αX(uY,Z)uX,Y⊗Z , uX,1 = 1 = u1,X ,
• TααX(x) = αY (x)T

α for x ∈M ,
• uX,Y [S ⊗ T ]α = SααU (T

α)uU,V for S ∈ C (U,X) and T ∈ C (V, Y ).

The amenability of C in the sense of Popa means the Følner type condition on
Irr(C ) holds [1].

We will say that a cocycle action (α, c) of C on M is centrally free if for every
X ∈ Irr(C )\{1}, there exists no non-zero projection p ∈M such that αωX(x)p = xp
for all x ∈Mω. Our main result is the following [4].

Theorem 1. Let C be an amenable rigid C∗-tensor category and M an infinite
factor. Let (α, cα) and (β, cβ) be a centrally free cocycle actions of C onM . If they
are approximately unitarily equivalent, then they are cocycle conjugate. Namely,
there exist vX ∈M and θ ∈ Int(M) such that

• Ad vX ◦ αX = θ ◦ βX ◦ θ−1 for X ∈ C .

• vXαX(vY )c
α
X,Y v

∗
X⊗Y = θ(cβX,Y ).

• vY Tαv∗X = θ(T β) for T ∈ C (X,Y ).

If C = HilbΓ, the C
∗-tensor category of the finite dimensional Γ-graded Hilbert

spaces (Γ denotes an amenable discrete group), then we have the following.

Corollary 2 (Connes, Jones, Ocneanu). Two centrally free cocycle actions of an
amenable discrete group on an AFD factor are cocycle conjugate when they are
approximately unitarily equivalent.
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For the representation category C = Rep(G) of a coamenable compact quantum
group of Kac type, we have the corollary obtained by Masuda and the author.

Corollary 3. Two centrally free cocycle actions of an amenable discrete Kac quan-
tum group on an AFD factor are cocycle conjugate when they are approximately
unitarily equivalent.

If M is the AFD type III1 factor, then any two endomorphisms are approxi-
mately unitarily equivalent and a centrally trivial endomorphism is a direct sum
of modular automorphisms. Hence we obtain the following result proved by Izumi
for fusion categories and Masuda for strongly amenable categories.

Corollary 4 (Izumi, Masuda). Any outer cocycle actions of amenable C on the
AFD type III1 factor M with no modular parts are cocycle conjugate.

Our result also has an application to subfactor theory. Let ρ : N → M be an
inclusion ∗-homomorphism between infinite factors N and M . Suppose that ρ has
a conjugate ∗-homomorphism ρ : M → N . Then ρ generates the full subcategory
C ρ = (C ρ

ij)
1
i,j=0 of the following C∗-2-category:

D :=

(
D00 D01

D10 D11

)
=

(
Mor(N,N)0 Mor(M,N)0
Mor(N,M)0 Mor(M,M)0

)
.

Note ρ ∈ C
ρ
10 ⊂ D10 and ρ ∈ C

ρ
01 ⊂ D01.

The standard invariant G(C ρ), which is introduced by Jones and axiomatized by
Popa, is the data consisting of a certain commutative diagram with left inverses
and the Jones projections. It is known that G(C ρ) is the complete isomorphism
invariant for C∗-2-categories C ρ. Then we recover the following Popa’s celebrated
classification theorem of amenable subfactors ([2, Theorem 5.1], [3, Remark 7.2.1]).

Theorem 5. Let N
E⊂ M and Q

F⊂ P be inclusions of factors with separable
preduals and finite indices. Suppose the following conditions hold:

• N and Q are isomorphic.

• The standard invariants of N
E⊂M and Q

F⊂ P are amenable and isomor-
phic.

• N ⊂M and Q ⊂ P are centrally free.

• N E⊂M and Q
F⊂ P are approximately inner.

Then N
E⊂M is isomorphic to Q

F⊂ P .
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Families of quadratic categories and their modular data

Pinhas Grossman

(joint work with Masaki Izumi)

Let C be a unitary fusion category. Let Irr(C) be the set of isomorphism classes of
simple objects. Let Inv(C) ⊆ Irr(C) be the set of isomorphism classes of invertible
objects, which forms a group. The group Inv(C) acts on Irr(C) by (left) tensor
product. If Inv(C) = Irr(C), then the category C is called pointed. It is known
that every pointed fusion category is of the form VecωG, the category of G-graded
vector spaces with associator given by ω ∈ H3(G,C∗) (where G = Inv(C)).

The category C is called quadratic if Irr(C) has a unique nontrivial orbit under
the action of Inv(C). Near-group categories are quadratic categories such that
|Irr(C)\Inv(C)| = 1. In this case, if we label the simple objects by g ∈ G(= Inv(C))
and label the unique non-invertible simple object by X , then the fusion rules are
given by the formulas

g ⊗ h ∼= gh, g ⊗X ∼= X ⊗ g ∼= X and X ⊗X ∼=
⊕

g∈G
g ⊕mX,

where m is a non-negative integer.
Another class of quadratic categories are Haagerup-Izumi categories. For a

Haagerup-Izumi category C, we have |Irr(C)\Inv(C)| = |Inv(C)| and the simple
objects are labeled by g and g ⊗X for g ∈ Inv(C) and a particular non-invertible
simple object X . The fusion rules are given by

g ⊗ h ∼= gh, g ⊗X ∼= X ⊗ g−1, and X ⊗X = 1⊕
⊕

g∈G
g ⊗X.

(The definition given in [10] also has some cohomological assumptions, which are
automatically satisfied for categories coming from 3G subfactors, i.e. when 1⊕X
admits a Q-system).

The principal even part of the Haagerup subfactor, which is the finite-depth
subfactor with the smallest index above 4, is a Haagerup-Izumi category for the
group G = Z3 [1]. Haagerup-Izumi categories are known to exist for all cyclic
groups of order at most 10 [8, 3, 6], but have not been proven to exist for any
groups with order greater than 10 (although numerical evidence for existence for
odd cyclic groups up to order 19 is provided in [3]).

If C is a Haagerup-Izumi category for an odd group G, then the non-invertible
simple objects of C lie in a single orbit under the action of the group of inner
automorphisms Inn(C) ∼= Inv(C) = G. One can then equivariantize by the action
of Inn(C), and the resulting fusion category CG is a near-group category with
Inv(CG) = G×G [9].

This is not the case for even groups, where conjugation by order-two elements
fixes the non-invertible simple objects. However, it turns out that under a mild
assumption, the number of order-two elements is necessarily small.
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Theorem. [5] Let C be a Haagerup-Izumi category for a finite Abelian group G =
Inv(C), and suppose that the object 1⊕(g⊗X) admits a Q-system for every g ∈ G.
Let G2 = {g ∈ G : 2g = 0}. Then |G2| ≤ 4.

In light of this result, we consider families of Haagerup-Izumi categories for
groups G = Z2m×Z2n×H , with |H | odd. The casem = n = 0 is the odd case, and
is related to near-group categories by equivariantization, as noted above. There
are no known examples with both m,n > 1.

For other values ofm and n and trivialH , a number of prominent examples from
the classification of small-index subfactors appear. The case m = n = 1 is realized
by the even part 3Z2×Z2 subfactor with index 3 +

√
5. A Z3 equivariantization of

this category gives the even part of the 4442 subfactor [11, 10]. The casem = 2 and
n = 0 gives the principal even part of the 3Z4 subfactor. A Z2 de-equivariantization
of this category gives the even part of the 2D2 subfactor [10]. The case m = 2
and n = 1 is realized by an equivariantization of a category Morita equivalent to
the Asaeda-Haagerup categories [7].

We also compute the modular data for several examples of Haagerup-Izumi cat-
egories for small groups and their (de)-equivariantizations, and make some general
conjectures. First we recall the situation for pointed categories.

A metric group is a finite Abelian group equipped with a non-degenerate qua-
dratic form. There is an equivalence of categories between the category of metric
groups (whose morphisms are group homomorphisms which preserve the quadratic
forms) and the category of pointed modular tensor categories (whose morphisms
are equivalence classes of braided monoidal functors) [2]. Under this correspon-
dence, the quadratic form gives the T matrix of the modular tensor category.

Evans and Gannon conjectured a remarkably simple formula for the modular
data of the Drinfeld center of a near-group category for an odd group H [4]. Their
formula is expressed entirely in terms of two metric groups. One of these groups
is H , with the quadratic form determined by the associativity structure of the
near-group category. However, the other group is mysterious, and is not apparent
in the near-group structure.

We generalize their conjecture to near-group categories for not-necessarily-odd
groups, and formulate conjectures for the modular data of Drinfeld centers of
various families of Haagerup-Izumi categories and their (de)-equivariantizations.
In each case, the formula is expressed in terms of a pair of involutive metric
groups, along with some conditions on their Gauss sums, fixed point subgroups,
and relative sizes.

Ultimately, we describe five infinite families of potential modular data in [6].
For each family, the modular data for certain choices of groups and quadratic forms
are conjectured to be realized by Drinfeld centers of quadratic categories. These
conjectures have been verified for small examples, but the problem of existence
of the corresponding infinite families of quadratic categories remains wide open.
The families of potential modular data also includes many examples which do not
correspond to Drinfeld centers of fusion categories, and the realization of these
examples remains an interesting open question as well.
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Locally convex topological completions of modules for a vertex
operator algebra

Yi-Zhi Huang

Vertex operator algebras are algebraic structures such that conformal field theories
can be constructed and studied using modules and intertwining operators for them.
See [H2], [H3], [H8] and [H11] for a program to construct conformal field theories
using the representation theory of vertex operator algebras.

For a vertex operator algebra satisfying certain natural finiteness and reductiv-
ity conditions, the intertwining operators among irreducible modules satisfy com-
mutativity and associativity (operator product expansion) (see [H1] and [H9]). An
intertwining operator algebra is roughly speaking the direct sum of the (finitely
many) irreducible modules for such a vertex operator algebra equipped with the
(finite-dimensional) spaces of intertwining operators satisfying commutativity and
associativity (see [H2] and [H6]). The notion of intertwining operator algebra can
be viewed as a mathematical definition of chiral genus-zero rational conformal field
theory (see [H4]).

Under stronger finiteness and reductivity conditions, intertwining operators
have the modular invariance property, that is, the q-traces of products of in-
tertwining operators form modular invariant vector spaces [H10]. These modular
invariant vector spaces give genus-one chiral rational conformal field theories.

But to construct chiral weakly conformal field theories in the sense of G. Segal
(see [S]), we need to construct locally convex topological completions of modules
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appearing in the intertwining operator algebras and prove that one can associate
continuous and trace-class maps between tensor products of these completions to
Riemann surfaces with parametrized boundaries and that Segal’s axioms hold. We
also expect that such completions should be closely related to the Hilbert spaces
in the approach to conformal field theory using conformal nets.

In [H5] and [H7], the author constructed locally convex topological completions
of finitely generated modules for a finitely generated vertex operator algebra us-
ing the correlation functions obtained from the products of vertex operators for
modules and the exponentials of the Virasoro operators. But these completions
are not large enough to allow the actions of intertwining operators and operators
associated to genus-one elements.

For genus-zero chiral conformal field theories, correlation functions are given
by analytic extensions of products of intertwining operators among modules. For
genus-one chiral conformal field theories, correlations functions are given by ana-
lytic extensions of q-traces of genus-zero correlation functions. To construct locally
convex topological completions of modules, we need to use all these correlation
functions. But when we construct higher-genus correlation functions, we need to
prove that multi-q-traces of genus-zero correlation functions are convergent. This
convergence is still a conjecture now. In fact this higher-genus convergence con-
jecture is the main unsolved problem in the construction of higher-genus rational
conformal field theories.
If we assume that this higher-genus convergence conjecture is true, then the idea
in the construction in [H5] and [H7] still works. Consider a vertex operator al-
gebra satisfying the finiteness and reductive conditions mentioned above so that
the associativity and modular invariance of intertwining operators hold. Assume
that the higher-genus convergence conjecture is true. Then using the correlation
functions obtained from taking multi-q-traces of the genus-zero correlation func-
tions obtained from the analytic extensions of products of intertwining operators,
we can generalize the construction in [H5] and [H7] to obtain locally convex topo-
logical completions of modules for the vertex operator algebra. The correlation
functions can be extended to maps between tensor products of these completions
and we obtain a conformal field theory in the sense of G. Segal.

We now state a conjecture which should be related to the equivalence between
the vertex operator algebra approach and the conformal nets approach to unitary
rational conformal field theories.

Conjecture. If the chiral conformal field theory is unitary, then the Hilbert
space completions and the locally convex topological completions of modules for
the vertex operator algebra are the same.
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Semisimplicity for finite, non-zero index vertex operator subalgebras

Robert McRae

Subtheories of conformal field theories are rich sources of new conformal field theo-
ries, but then the question arises of whether the subtheory inherits nice properties,
such as rationality, from the old one. For example, in the conformal nets approach
to two-dimensional chiral conformal field theory, the following is known: if B ⊆ A
is a finite index inclusion of conformal nets, then B is rational if and only if A is.
So far, it is still a conjecture that an equivalent result holds in the vertex operator
algebra approach to conformal field theory. Indeed, it is not even completely clear
what the “index” of a vertex operator algebra inclusion V ⊆ A should be.

Here we present a rationality result for vertex operator subalgebras V ⊆ A
under the assumption that V has a braided ribbon tensor category C of modules
that includes A, so that we can take the index of the inclusion to be the categorical
dimension of A in C. This means the index will be finite, but since A and V need
not be unitary, we will need to assume the index is non-zero. Since rationality for
vertex operator algebras is a semisimplicity property, the theorem we will present
is a semisimplicity result for categories of grading-restricted modules, which have
finite-dimensional homogeneous subspaces.
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The starting point for studying extensions V ⊆ A with A a module in a braided
tensor category C of V -modules is [4, Theorem 3.2], which states that A is a
commutative algebra in C. Specifically, the vertex operator for A induces a multi-
plication homomorphism

µA : A⊠A→ A,

where ⊠ is the Huang-Lepowsky tensor product of V -modules. The multiplication
µA is associative and commutative in the sense that

µA ◦ (IdA ⊠ µA) = µA ◦ (µA ⊠ IdA) ◦ AA,A,A, µA,A = µA,A ◦ RA,A,

where A and R are the natural associativity and commutativity isomorphisms of
C, respectively. Moreover, the algebra is unital: the inclusion ιA : V → A satisfies

µA ◦ (ιA ⊠ IdA) = lA,

where l is the left unit isomorphism of C.
For any algebra A in C, we have the category CA of A-modules in C. Objects

are pairs (X,µX) where X is an object of C and µX : A⊠X → X is an associative,
unital A-action. Morphisms in CA are C-morphisms that intertwine A-actions. The
category CA is a tensor category but is not braided. However, the full subcategory
C0A of “local” or “untwisted” modules, defined by the property

µX ◦ RX,A ◦ RA,X = µX ,

is braided. For a vertex operator algebra extension V ⊆ A, C0A is the category of
grading-restricted A-modules in C [4, Theorem 3.4].

We can now state the main result:

Theorem 1. Suppose V ⊆ A is a vertex operator algebra extension and A is an
object of a braided ribbon category C of V -modules. In addition, assume that:

• There is a V -module homomorphism εA : A→ V such that εA ◦ ιA = IdV .
• The algebra A is a self-dual object in C with evaluation given by εA ◦µA :
A⊠A→ V and some coevaluation iA : V → A⊠A.

• We have µA ◦ iA = [A : V ]ιA for some non-zero scalar [A : V ].

Then C is semisimple if and only if C0A is.

The “only if” direction of this theorem is [5, Theorems 3.2 and 3.3] and is
a categorical generalization of Maschke’s Theorem for finite groups. The index
[A : V ] here is actually the categorical dimension of A in C: although the definition
of categorical dimension incorporates the ribbon structure on C, that is, the natural
isomorphism of objects with their double duals, this natural isomorphism on A
will be the identity. Note also that by [5, Lemma 1.20], A will be self-dual with
evaluation εA ◦ ιA automatically if A is a simple algebra.

For the “if” direction of the theorem, we need the index [A : V ] to construct
a projection functor from CA to C0A: for any (X,µX) in CA, [A : V ]−1 times the
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composition

X
l−1
X−−→V ⊠X

iA⊠IdX−−−−−→ (A⊠A)⊠X
A−1

A,A,X−−−−−→ A⊠ (A⊠X)

IdA⊠RA,X−−−−−−−→ A⊠ (X ⊠A)
IdA⊠RX,A−−−−−−−→ A⊠ (A⊠X)

IdA⊠µX−−−−−→ A⊠X
µX−−→ X

is the projection fromX onto its maximal C0A-submodule. Using this projection, we
can show that semisimplicity of C0A (a much weaker condition than semisimplicity
of all CA) implies that the unit object V in C is projective. This plus the rigidity
of C then implies C is semisimple.

The “if” direction of the theorem reduces the question of rationality for a finite,
non-zero index subalgebra to C2-cofiniteness of the subalgebra plus rigidity of its
module category:

Corollary 1. Suppose V ⊆ A is a vertex operator algebra extension such that A is
strongly rational, V is C2-cofinite, the braided tensor category of grading-restricted
V -modules is rigid, and there is a V -module homomorphism εA : A→ V such that
εA◦ιA = IdV . If the categorical dimension [A : V ] 6= 0, then V is strongly rational.

The corollary applies for example to coset extensions: suppose U ⊆ A is a
strongly rational vertex subalgebra (with different conformal vector) that is equal
to its double commutant and C is its commutant (or coset). Then we get an
extension U ⊗ C ⊆ A, and εA exists if A is semisimple as a U ⊗ C-module. If the
category of grading-restricted C-modules is rigid, then [A : V ] 6= 0 by [2, Theorem
5.12]. Thus if C is C2-cofinite with a rigid module category, the corollary applies
to V = U ⊗ C, so V , and hence also C, is strongly rational.

To see that the conditions in the corollary are necessary, consider the extension
W (p) ⊆ V√2pZ, p ∈ Z≥2, where W (p) is the triplet W -algebra and V√2pZ is a
lattice vertex operator algebra with modified conformal vector. This new Virasoro
module structure on V√2pZ is not semisimple, andW (p) is the maximal semisimple
Virasoro submodule. Although V√2pZ is rational, W (p) is C2-cofinite [1], and the
category of grading-restricted W (p)-modules is a rigid braided tensor category
[3, 6], W (p) is not rational because its representation category is not semisimple.
The corollary fails because the inclusion W (p) →֒ V√2pZ has no left inverse and
V√2pZ is not a self-dual W (p)-module. Thus the index cannot be defined as in the
theorem, and it is natural to expect that the categorical dimension of V√2pZ as a
W (p)-module will be 0.
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Module categories and graph planar algebras

Noah Snyder

(joint work with Pinhas Grossman, Scott Morrison, David Penneys, Emily
Peters)

A common question that appears throughout algebra is given an algebraic object
described by generators and relations how do you show that the object this defines
a nontrivial? In complete generality this problem is impossible to solve, in partic-
ular it is known that there’s no algorithm which takes a presentation of a group
and determines whether the group is nontrivial. A major technique used in group
theory is to identify what G is by constructing a free and transitive action of G on a
set X . In subfactor planar algebras, the main way to show that a subfactor planar
algebra given by generators and relations is nonzero is to embed it inside the Jones
Graph Planar Algebra of the principal graph Γ [6]. The goal of this talk, based on
Section 3 of our paper [4], is to explain how the Jones-Penneys GPA embedding
theorem [7] can be reinterpreted in terms of actions, and so is analogous to the
above idea in group theory. In particular, this gives a generalization of the GPA
embedding theorem to module categories, and in fact says that the classification
of module categories is the same as the classification of GPA embeddings. More
generally we expect that most constructions in subfactor theory can be generalized
to incorporate a module category.

The starting point is the following theorem of Jones-Penneys which motivated
constructing subfactor planar algebras via graph planar algebras following Peters
[8] and used in Bigelow-Morrison-Peters-S. [1] to construct the Extended Haagerup
subfactor.

Theorem 1 (Jones-Penneys). The planar algebra PA(N ⊂ M) of a subfactor
embeds into the graph planar algebra of its principal graph GPA(Γ)

Question 2 (Jones). What are all graphs Γ with embeddings PA(N ⊂ M) →֒
GPA(Γ)?

For the Haagerup subfactor a partial answer to this question was given by
Peters.

Theorem 3 (Peters). The planar algebra of the Haagerup subfactor embeds into
the graph planar algebras of its principal graph, its dual principal graph, and
one other graph (called the “broom”). Furthermore, any other graph with this
property would have to be quite complicated.

The main result of our Section 3, based on related ideas in Etingof-Ostrik [2]
and De Commer-Yamashita [3], is the following.
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Theorem 4 (GMPPS). If C is a pivotal unitary 2-shaded multi-fusion category,
then embeddings C →֒ GPA(Γ) are classified by pivotal unitary module categories
whose fusion rules are given by Γ.

Warning 5. In order to make this statement precise one needs to be a bit careful
about how it interacts with automorphisms of Γ. This is made precise in the paper,
but it’s a little tricky.

Warning 6. Note here that for subfactors C denotes the whole 2-shaded planar
algebra PA(N ⊂M), and not just the even part of that planar algebra. Relatedly
this explains why both the principal graph and the dual principal graph occur.
Namely C as a C-module is not irreducible and splits into two summands: one of
these summands corresponds to embedding into the GPA of principal graph and
the other into the GPA of the dual principal graph.

The idea of the proof of our main theorem is given by the following outline:

• Module categories M correspond to embeddings of categories C
→ End(M). This is well-known and easy, and furthermore is exactly
in analogy to group actions as discussed in the introductory paragraph,
where a group action of G on X is the same thing as a map G→ Aut(X).
• Rewrite End(M) using graphs to get a version of a “graph planar alge-
bra.” This is essentially what is done already in Etingof-Ostrik [2] and De
Commer-Yamashita [3].
• Add the adjectives pivotal and unitary. That is, we need to see that uni-
tary pivotal maps C → End(M) correspond to unitary pivotal module
categories. This is closely related to definitions of Schaumann in the piv-
otal case [9], and definitions and theorems of De Commer-Yamashita in
the unitary case [3]. We also need to check that the graph-y version of
End(M) agrees exactly with the Jones graph planar algebra (whereas with
other adjectives one only gets something analogous to a GPA).

The speaker endeavored to explain that this whole approach could be summarized
as thinking about C → End(M) until one achieved a state of Zen at which point
it became clear that many theorems were just talking about C → End(M). The
audience perhaps remained skeptical.

In particular, we have the following two consequences of our main theorem:

Theorem 7 (BMPPS). The planar algebra of the Haagerup subfactor embeds
into the graph planar algebras of its principal graph, its dual principal graph, the
broom, and no other graphs.

Proof. Combine our main theorem with the classification of module categories
over the Haagerup fusion categories by Grossman-S. [5]. (You need to be slightly
careful about shadings in order to recover the correct bipartite graphs which are
built by appropriately combining the graphs in GS.) �

Theorem 8 (BMPPS). The Extended Haagerup subfactor has two additional
module categories, this gives two new fusion categories in the higher Morita equiv-
alence class of the Extended Haagerup fusion categories.
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Proof. By our main theorem we need only construct an embedding of the Extended
Haagerup planar algebra into the graph planar algebras of two new graphs. This
can be done by exact computer calculation using the machinery developed in
[1] �
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Generalised orbifolds of 3dTQFTs

Ingo Runkel

(joint work with Nils Carqueville, Gregor Schaumann, Vincentas Mulevičius)

Let C be a modular fusion category over C, that is, a semisimple C-linear finite
braided tensor category with a ribbon twist and whose braiding is non-degenerate.

To C, the Reshethikhin-Turaev construction [1] assigns a three-dimensional
topological quantum field theory

ZRT
C : B̂ord3(C)→ Vec

Here, B̂ord3(C) denotes the category of three-dimensional bordisms with embedded
C-labelled ribbon graphs. The hat refers to additional geometric structure needed
to cancel a glueing anomaly. Vec is the category of C-vector spaces, and ZRT

C is
the symmetric monoidal functor constructed in [1].

It is possible to extend the domain of ZRT
C to a larger bordism category B̂orddef3 (C)

which contains oriented stratifications with strata of dimensions 0–3, labelled by
certain data in C. We denote the functor on this extended domain by ZC . Its defi-
nition is sketched in the following picture, whose ingredients we proceed to explain:
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ZC

( )
:= ZRT

C

( )

Let us start with the stratified bordism on the left hand side. The labelling is as

follows:

- 3-strata: No label. Or, equivalently, all 3-strata are labelled by C.
- 2-strata: Special symmetric Frobenius algebras A ∈ C, that is, symmetric
Frobenius algebras such that product and coproduct compose to idA and counit
and unit compose to dim(A). (Labels A,B in the picture.)

- 1-strata: (Bi)modules in C over the tensor product of algebras which label the
2-strata adjacent to a given 1-stratum. In the picture, M (where the 2-stratum
labelled B ends on the 2-stratum labelled A) is an A - A⊗B bimodule, N an
A⊗B - A bimodule, and K an A-A bimodule.

- 0-strata: Morphisms in C with appropriate compatibility with the various alge-
bra actions. In the picture, f is an A-A-bimodule morphismM ⊗A⊗BN → K.

The value of ZC on the left hand side is now defined in two steps. First, triangulate
all 2-strata, pass to the dual of the triangulation and place ribbons labelled by the
corresponding algebra on the edges and (co)product morphisms on the vertices

[2, 3, 4]. This produces a bordism in B̂ord3(C) as indicated on the right hand
side. On that bordism evaluate the original ZRT

C . To define ZC on objects one in
addition needs to pass to the image of an idempotent.

Theorem [4]. ZC : B̂orddef3 (C)→ Vec is a symmetric monoidal functor.

After defining ZC , one obvious question is if it can detect non-isotopic embed-
dings of surfaces into closed three-manifolds. For embedded spheres one quickly
finds that the answer is “no”, because the triangulation prescription above implies
that an embedded sphere labelled A simply multiplies ZC by an overall constant
dim(A), independent of the embeddding.

However, ZC can detect different embeddings of 2-tori, as the following example
of three different embeddings into a 3-torus shows. The modular fusion category C
here is that of integrable representations of ŝu(2)16, which allows for three Morita-
classes of simple algebras [5], and we denote represetatives by A17, D10 and E7.
(If one replaces a label A of a 2-stratum by a Morita-equivalent algebra A′, and if
both A and A′ are simple as algebras, then ZC just changes by an overall constant.)
The value of ZC in each case is:
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A ZC

( )
ZC

( )
ZC

( )

A17 17 17 17

D10 34 18 10

E7 34 18 7

That the last column coincides with the rank is a consequence of the fact that the
trace of the modular invariant matrix of the same designation has this property.

An important application of ZC is the definition of generalised orbifolds. The
idea is to “carry out a state-sum construction internal to a given TQFT”, and
generalised orbifolds can be defined in any dimension [6]. It is similar in spirit to
the definition of higher idempotents [7].

Here, we will consider generalised orbifolds of Reshetikhin-Turaev TQFTs [8].

The orbifold theory is defined on B̂ord3, which is the same as B̂ord3(C) but without
the embedded C-coloured graphs (the orbifold TQFT can be defined on stratified
bordisms, too, but the details still have to be worked out). The definition of the
orbifold TQFT depends on algebraic data A (see below) and is roughly as follows:

Zorb,A
C (M) := ZC

( )

Here, M is a bordism in B̂ord3. On the right hand side, we fill M with a “foam”

(a stratification such that all cells are contractible). The labelling of the strata is
fixed by an orbifold datum, which is a tuple

A = (A, T, α, ᾱ, ψ, φ) .

The algebraA labels 2-strata, T is an A - A⊗A-bimodule which labels 1-strata, and
α, ᾱ : T ⊗ T → T ⊗ T label the 0-strata (depending on the various orientations).
ψ ∈ EndAA(A)

× and φ ∈ C× are normalisation constants. This data has to
satisfy conditions as detailed in [8] which ensure that the right hand side above is
independent of the choice of foam. One finds:

Theorem [8]. Zorb,A
C : B̂ord3 → Vec is a symmetric monoidal functor.

There are three key examples of orbifold data, the last of which justifies the
name “generalised orbifold” [8].

(1) Given a spherical fusion category S one obtains an orbifold datum in C = Vec
with A =

⊕
U∈Irr(S) End(U), T =

⊕
U,V,W∈Irr(S) S(U ⊗ V,W ), and α, ᾱ are

defined via the associator of S.



Subfactors and Applications 3119

(2) Given a commutative special symmetric Frobenius algebra A in any modular
fusion category C one can choose T = A, α = ᾱ = ∆ ◦ µ and ψ = idA, φ = 1.

(3) Let B be a G-crossed ribbon fusion category (for G a finite group), such that
C = Be is modular. Choose a simple object mg ∈ Bg for each g ∈ G. Then
we can take A =

⊕
g∈Gm

∗
g ⊗mg and T =

⊕
g,h∈Gm

∗
gh ⊗mg ⊗mh.

In example 1, Zorb,A
C is precisely the Turaev-Viro state sum construction and thus

Zorb,A
Vec agrees with ZRT

Z(S), where Z(S) denote the Drinfeld centre of S. In example

2 one expects to obtain ZRT
D for D = ClocA , the category of local A-modules, and

in example 3 one expects D = BG, the G-equivariantisation (or gauging) BG of B,
but the details remain to be worked out.

Quite generally, we expect that Zorb,A
C is equivalent to ZRT

D for some modular
fusion category D which lies in the same Witt-class as C. To determine D from
the pair (C,A) one can investigate what properties Wilson lines in the general
orbifolds would have. This leads to the definition of a category [9]

CA for A = (A, T, α, ᾱ, ψ, φ) an orbifold datum.

The objects of CA are triples (M, τ1, τ2) where M is an A-A-bimodule and τ1,2 :
M ⊗ T → T ⊗M are certain intertwiners, subject to conditions. Morphisms are
bimodule intertwiners f :M → N compatible with the τ ’s.

Theorem [9]. CA is a modular fusion category.

In examples 1 and 2 above, we have VecA ∼= Z(S) and CA ∼= ClocA as ribbon cat-
egories, respectively, and the third example (which should give CA ∼= BG) remains

to be worked out. It is now natural to conjecture that Zorb,A
C is equivalent to ZRT

CA
.

After the talk, David Penneys and David Reutter explained to me that CA is
most likely equivalent to an enriched Drinfeld centre as defined in [10] (it is in the
three examples).
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Von Neumann equivalence and properly proximal groups

Lauren Ruth

(joint work with Ishan Ishan, Jesse Peterson)

Two countable groups Γ and Λ are measure equivalent if they have commuting
measure-preserving actions on a σ-finite measure space (Ω,m) such that the ac-
tions of Γ and Λ individually admit a finite-measure fundamental domain. This
notion was introduced by Gromov in [Gro93, 0.5.E] as an analogy to the topo-
logical notion of being quasi-isometric for finitely generated groups. The basic
example of measure equivalent groups is when Γ and Λ are lattices in the same
locally compact group G. In this case, Γ and Λ act on the left and right of
G respectively, and these actions preserve the Haar measure on G. For certain
classes of groups, measure equivalence can be quite a course equivalence rela-
tion. For instance, the class of countable amenable groups splits into two measure
equivalence classes, those that are finite, and those that are countably infinite
[Dye59, Dye63, OW80]. Amenability is preserved under measure equivalence, as
are other (non)-approximation type properties such as the Haagerup property or
property (T). Outside the realm of amenable groups there are a number of power-
ful invariants to distinguish measure equivalence classes (for example, Gaboriau’s
celebrated result that states that measure equivalent groups have proportional ℓ2-
Betti numbers [Gab00]) and there are a number of striking rigidity results, such
as Furman’s work in [Fur99a, Fur99b] where he builds on the superrigidity re-
sults of Margulis [Mar75] and Zimmer [Zim84], or Kida’s works in [Kid10, Kid11]
where he considers measure equivalence for mapping class groups, or for classes of
amalgamated free product groups.

If Γy (X,µ) is a free probability measure-preserving action on a standard mea-
sure space, then associated to the action is its orbit equivalence relation, where
equivalence classes are defined to be the orbits of the action. If Λy (Y, ν) is an-
other free probability measure-preserving action, then the actions are orbit equiv-
alent if there is an isomorphism of measure spaces that preserves the orbit equiv-
alence relations, i.e., θ(Γ · x) = Λ · θ(x), for each x ∈ X . If E ⊂ X is a positive
measure subset, then one can also consider the restriction of the orbit equivalence
relation to E. The two actions are stably orbit equivalent if there exist positive
measure subsets E ⊂ X and F ⊂ Y such that the restricted equivalence relations
are measurably isomorphic. A fundamental result in the study of measure equiv-
alence is that two groups are measure equivalent if and only if they admit free
probability measure-preserving actions that are stably orbit equivalent [Fur99a,
Section 3] [Gab05, PME5]. Moreover, in this case one can take the actions to be
ergodic. Also associated to each probability measure-preserving action Γy (X,µ)
is the Murray-von Neumann crossed product von Neumann algebra L∞(X,µ)⋊Γ
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[MvN37]. This is the von Neumann subalgebra of B(L2(X,µ)⊗ ℓ2Γ) that is gen-
erated by a copy of L∞(X,µ) acting on L2(X,µ) by pointwise multiplication,
together with a copy of the group Γ acting diagonally by σγ ⊗ λγ , where σγ is the
Koopman representation σγ(f) = f ◦γ−1 and λγ is the left regular representation.
The crossed product L∞(X,µ)⋊Γ is a finite von Neumann algebra with a normal
faithful trace given by the vector state corresponding to 1 ⊗ δe ∈ L2(X,µ)⊗ ℓ2Γ,
and if the action is free then this will be a factor if and only if the action is
also ergodic, in which case L∞(X,µ) is a Cartan subalgebra of the crossed prod-
uct. Non-free actions are also of interest in this setting. In particular, the case
when (X,µ) is trivial gives the group von Neumann algebra LΓ, which is a fac-
tor if and only if Γ is ICC, i.e., every non-trivial conjugacy class in Γ is infinite
[MvN43]. A celebrated result of Singer shows that two free ergodic probability
measure-preserving actions Γy (X,µ) and Λy (Y, ν) are stably orbit equivalent
if and only if their von Neumann crossed products are stably isomorphic in a way
that preserves the Cartan subalgebras [Sin55]. Singer’s result demonstrates that
the study of measure equivalence is closely connected to the study of finite von
Neumann algebras, and there have been a number of instances where techniques
from one field have been used to settle long-standing problems in the other. This
exchange of ideas has especially thrived since the development of Popa’s deforma-
tion/rigidity theory; see for instance [Pop06a, Pop06b, Pop06c, Pop07a, Pop08], or
the survey papers [Pop07b, Vae07, Vae10, Ioa13, Ioa18], and the references therein.

Two groups Γ and Λ areW ∗-equivalent if they have isomorphic group von Neu-
mann algebras LΓ ∼= LΛ. This is somewhat analogous to measure equivalence
(although a closer analogy is made between measure equivalence and virtual W ∗-
equivalence, which for ICC groups asks for LΓ and LΛ to be virtually isomorphic
in the sense that each factor is stably isomorphic to a finite index subfactor in the
other factor [Pop86, Section 1.4]) and both equivalence relations preserve many
of the same “approximation type” properties. These similarities led Shlyakhtenko
to ask whether measure equivalence implied W ∗-equivalence in the setting of ICC
groups. It was shown in [CI11] that this is not the case, although the converse
implication of whether W ∗-equivalence implies measure equivalence is still open.
As with measure equivalence, we have a single W ∗-equivalence class of ICC count-
ably infinite amenable groups [Con76], which shows that W ∗-equivalence is quite
coarse. Yet there do exist countable ICC groups that are not W ∗-equivalent to
any other non-isomorphic group [IPV13, BV14, Ber15, CI18].

Returning to discuss measure equivalence, if Γ and Λ have commuting actions
on (Ω, µ) and if F ⊂ Ω is a Borel fundamental domain for the action of Γ, then
on the level of function spaces, the characteristic function 1F gives a projection
in L∞(Ω,m) such that the collection {1γF}γ∈Γ forms a partition of unity, i.e.,∑

γ∈Γ 1γF = 1. This notion generalizes quite nicely to the non-commutative set-
ting where we will say that a fundamental domain for an action on a von Neumann
algebra ΓyσM consists of a projection p ∈ M such that

∑
γ∈Γ σγ(p) = 1, where

the convergence is in the strong operator topology. Using this perspective for a
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fundamental domain we may then generalize the notion of measure equivalence by
simply considering actions on non-commutative spaces.

Definition 1. [IPR19] Two groups Γ and Λ are von Neumann equivalent, written
Γ ∼vNE Λ, if there exists a von Neumann algebra M with a semi-finite normal
faithful trace Tr and commuting, trace-preserving, actions of Γ and Λ onM such
that the Γ and Λ-actions individually admit a finite-trace fundamental domain.

Von Neumann equivalence is clearly implied by measure equivalence, and, in
fact, von Neumann equivalence is also implied by W ∗-equivalence. Indeed, if
θ : LΓ → LΛ is a von Neumann algebra isomorphism then we may consider
M = B(ℓ2Λ) where we have a trace-preserving action σ : Γ × Λ → Aut(M)
given by σ(s,t)(T ) = θ(λs)ρtTρ

∗
t θ(λ

∗
s), where ρ : Λ → U(ℓ2Λ) is the right regular

representation, which commutes with operators in LΛ. It’s then not difficult to see
that the rank one projection p onto the subspace Cδe is a common fundamental
domain for the actions of both Γ and Λ. In fact, we show that virtual W ∗-
equivalence also implies von Neumann equivalence.

We introduce a general induction procedure for inducing representations via
von Neumann equivalence from Λ to Γ, and using these induced representations
we show that some of the properties that are preserved for measure equivalence
and W ∗-equivalence are also preserved for von Neumann equivalence.

Theorem 2. [IPR19] Amenability, property (T), and the Haagerup property are
all von Neumann equivalence invariants.

A group Γ is properly proximal if there does not exist a left-invariant state on
the C∗-algebra (ℓ∞Γ/c0Γ)

Γr consisting of elements in ℓ∞Γ/c0Γ that are invariant
under the right action of the group. Properly proximal groups were introduced in
[BIP18], where a number of classes of groups were shown to be properly proximal,
including non-elementary hyperbolic groups, convergence groups, bi-exact groups,
groups admitting proper 1-cocycles into non-amenable representations, and lattices
in non-compact semi-simple Lie groups of arbitrary rank. It is also shown that
the class of properly proximal groups is stable under commensurability up to
finite kernels, and it was then asked if this class was also stable under measure
equivalence [BIP18, Question 1(b)]. Proper proximality also has a dynamical
formulation [BIP18, Theorem 4.3], and using this, together with our induction
technique applied to isometric representations on dual Banach spaces, we show that
the class of properly proximal groups is not only closed under measure equivalence
but also under von Neumann equivalence.

Theorem 3. [IPR19] If Γ ∼vNE Λ then Γ is properly proximal if and only if Λ is
properly proximal.

An example of Caprace, which appears in Section 5.C of [DTDW18], shows
that the class of inner amenable groups is not closed under measure equivalence.
Specifically, if p is a prime and Fp denotes the finite field with p elements, then
the group SL3(Fp[t

−1]) ⋉ Fp[t, t
−1]3 is not inner amenable, although is measure

equivalent to the inner amenable group SL3(Fp[t
−1]) ⋉ Fp[t

−1]3) × Fp[t]3. Using
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the previous theorem we then answer another question from [BIP18] by providing
with SL3(Fp[t

−1])⋉ Fp[t, t
−1]3 an example of a non-inner amenable group that is

also not properly proximal.
The notion of von Neumann equivalence also admits a generalization in the

setting of finite von Neumann algebras.

Definition 4. [IPR19] Two finite von Neumann algebras M and N are von Neu-
mann equivalent, written M ∼vNE N if there exists a semi-finite von Neumann
algebraM containing commuting copies M and Nop, such that we have interme-
diate standard representations M ⊂ B(L2(M)) ⊂ M and Nop ⊂ B(L2(N)) ⊂ M
that satisfy the property that finite-rank projections in B(L2(M)) and B(L2(N))
are finite projections inM.

We show that this does indeed give an equivalence relation, which is coarser
than the equivalence relation given by virtual isomorphism. The connection to
von Neumann equivalence for groups is given by the following theorem:

Theorem 5. [IPR19] If Γ and Λ are countable groups, then Γ ∼vNE Λ if and only
if LΓ ∼vNE LΛ.
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R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 5, 365–370.
[Gab05] D. Gaboriau, Examples of groups that are measure equivalent to the free group,

Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1809–1827.



3124 Oberwolfach Report 49/2019

[Gro93] M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol.
2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ.
Press, Cambridge, 1993, pp. 1–295.

[Ioa13] Adrian Ioana, Classification and rigidity for von Neumann algebras, European Con-
gress of Mathematics, Eur. Math. Soc., Zürich, 2013, pp. 601–625.
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Geometric quantization via measured Gromov-Hausdorff convergence
of metric measure spaces

Mayuko Yamashita

(joint work with Kota Hattori)

In this talk, I explain a new approach to problems in geometric quantizations,
using the theory of convergence for metric measure spaces. This is a joint work
with Kota Hattori (Keio University).

1. Geometric quantization

On a closed symplectic manifold (X,ω), the prequantum line bundle is a triple
(L,∇, h) of a complex line bundle π : L→ X equipped with a hermitian metric h
and a hermitian connection∇ whose curvature form F∇ is equal to −

√
−1ω. Given

a prequantized symplectic manifold (X,ω, L,∇, h), the geometric quantization is
a procedure to give a representation of the Poisson angebra consisting of functions
on (X,ω) on a Hilbert space H, called the quantum Hilbert space.

There are several known ways to construct quantum Hilbert spaces. One funda-
mental problem in geometric quantization is to find relations among quantizations
given by different methods. In this talk we consider two classes of quantizations,
Kähler quantizations and real quantizations, as we now explain.

A Kähler quantization is given by choosing an ω-compatible complex structure
J on X = XJ . In this case L becomes a holomorphic line bundle over XJ , and the
quantum Hilbert space is defined by H = H0(XJ , L), the space of holomorphic
sections of L. On the other hand, a real quantization is given by choosing a
Lagrangian fibration µ : X2n → Bn. Given a Lagrangian fibration, a point b ∈ B
is called a Bohr-Sommerfeld point if the space of pararell sections on (L,∇)|π−1(b),

denoted by H0(π−1(b); (L,∇)), is nontrivial. The set of Bohr-Sommerfeld points,
BS ⊂ B, is a discrete subset. In this case, the quantum Hilbert space is defined
by H = ⊕b∈BSH0(π−1(b); (L,∇)).

The first natural problem is whether the dimensions of H coincide or not.
Given a compatible complex structure J and a Lagrangian fibration µ, the equal-
ity dimH0(XJ , L) = #BS has been observed in many examples. This includes
the case when the Lagarangian fibration is nonsingular and the Kodaira vanishing
holds, and the case when µ is the moment map for a toric symplectic manifold,
and the case for the moduli space of SU(2)-flat connections on a closed surfaces
([4]).

These interesting phenomena lead us to the next problem: Why they coincide?
Can we provide a canonical isomorphism between the quantum Hilbert spaces
obtained by two quantizations? One way to answer this problem is to construct a
one-parameter family of ω-compatible complex structures {Js}s>0 on (X,ω) and
show that the spaces H0(XJs

, L) converge to the space ⊕b∈BSH0(π−1(b); (L,∇))
in an appropriate sense. This has been worked out in several examples, including
the case for the abelian varieties by Baier, Mourão and Nunes ([2]) and the case
for toric symplectic manifolds by Baier, Florentino, Mourão and Nunes ([1]).
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The purpose of this talk is to present a new approach to this problem using the
theory of convergence of metric measure spaces. We investigate the behavior of the
spectrum of ∂̄-Laplacians, in particular that of the holomorphic sections, from the
viewpoint of the spectral convergence of the Laplace operators on metric measure
spaces.

2. Main results

If we have a ω-compatible complex structure J , it associates a Riemannian metric
on X defined by gJ := ω(·, J ·). The metric gJ , together with the hermitian
connection ∇ on L, defines a Riemannian metric ĝJ on the frame bundle S of L.
We have a canonical isomorphism

L2(X, gJ ;L) ≃ (L2(S, ĝJ )⊗ C)ρ,

where ρ is the S1 action given by principal S1-action on L2(S, ĝJ ) and by the

formula e
√−1t ·z = e

√−1tz on C. Under this isomorphism, we have an idetification
of operators,

2∆∂J
= ∆ρ

ĝJ
− (n+ 1),

where ∆ρ
ĝJ

denotes the metric Laplacian on (S, ĝJ) restricted to the space

(L2(S, ĝJ)⊗C)ρ. In this way, we reduce the problem to the analysis of the spectral
structure given by ((L2(S, ĝJ )⊗ C)ρ,∆ρ

ĝJ
).

From now on we fix a nonsingular Lagrangian fibration µ : X → B, and consider
one parameter families of ω-compatible complex structures {Js}0<s<δ on (X,ω).
First let us note that, the Lagrangian fibration µ defines a Lagrangian subbundle
of (TX ⊗ C, ω) by the formula Pµ := ker dµ ⊗ C, and an ω-compatible complex

structure J also defines a Lagrangian subbundle PJ := T 1,0
J X . Let us denote by

Lag(V, α) the space of Lagrangian subspaces of a symplectic vector space (V, α)
and a subspace Lag(V, α)+ ⊂ Lag(V, α) is defined in [3]. We assume the following
condition ♠ for {Js}. Let pr : X × [0, δ) → X be the projection and pr∗Lagω be
the pullback bundle.

♠ There is a smooth section P of pr∗Lagω → X × [0, δ) such that P(·, s) =
PJs
|U for s > 0, P(·, 0) = Pµ|U and

d

ds
P(x, s)

∣∣∣
s=0
∈ TPµ(x)Lag(TxX ⊗ C, ωx)+

for any x ∈ X .

So the basic strategy is to consider the family {(S, ĝJs
)}s>0 of Riemannian

manifolds with isometric S1-actions, analyze its Gromov-Hausdorff limit space
and guarantee the spectral convergence to the operator on the limit space.
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As for the convergence of spaces, we have the following. Let g∞ and ν∞ be a
Riemannian metric and a measure on Rn × S1 defined by

g∞ :=
1

(1 + ‖y‖2) (dt)
2 +

n∑

i=1

(dyi)
2,

dν∞ := dy1 · · · dyndt,

where y = (y1, . . . , yn) ∈ Rn and e
√−1t ∈ S1. We define the isometric S1-action

on (Rn × S1, g∞, ν∞) by (y, e
√−1t) · e

√−1τ := (y, e
√−1(t+τ)) for e

√−1τ ∈ S1. The
following is a part of the main results of [3].

Theorem 2.1 ([3, Theorem 7.16]). Under the above assumptions, we further as-
sume that there is κ ∈ R such that Ricgs ≥ κgs holds for all 0 < s < δ. Let b ∈ B,
and fix ub ∈ (π ◦ µ)−1(b).

(1) Assume that b is a Bohr-Sommerfeld point. Let νĝs be the Riemannian
measure of ĝs. Then for some positive constant K > 0, we have a pointed
S1-equivariant measured Gromov-Hausdorff convergence

{(
S, ĝs,

νĝs
K
√
s
n , ub

)}

s

S1pmGH−−−−−−→
(
Rn × S1, g∞, ν∞, (0, 1)

)

as s → 0. The spectrum of the limit Laplacian restricted to the subspace
(L2(Rn × S1; ν∞)⊗ C)ρ is given by

Spec(∆ρ
g∞) = 2Z≥0 + n+ 1,

and the multiplicity of the eigenvalue 2N + n+ 1 is (N+n−1)!
(n−1)!N ! .

(2) Assume that b is not a Bohr-Sommerfeld point. Then, we have
{(

S, ĝs,
νĝs

K
√
s
n , ub

)}

s

S1pmGH−−−−−−→
(
Sb∞, g

b
∞, ν

b
∞, p

b
∞
)

as s → 0. Here, the left hand side is some metric measure space with
isometric S1-action which satisfies

(L2(Sb∞)⊗ C)ρ = {0}.
However, the result above does not imply the desired spectral convergence di-

rectly, because we have diam(S, ĝJs
) → ∞ in our situation. By the localization

argument of eigenfunctions, we were able to show the following spectral conver-
gence result.

Theorem 2.2 (HY, in preperation). Under the above assumptions, we have a
compact convergence of spectral structures,

((L2(S, ĝJs
)⊗ C)ρ,∆ρ

ĝJs
)→ ⊕b∈BS((L2(Rn × S1; ν∞)⊗ C)ρ,∆ρ

g∞).

In particular, if we denote by λjs the j-th eigenvalue (j ≥ 1) of ∆∂̄Js
acting

on L2(X ;L), counted with multiplicity, we can express lims→0 λ
j
s as follows. For
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j ≥ 1, let N(j) ∈ Z≥0 be such that the following inequality is satisfied.

#BS · (N(j)− 1 + n)!

n!(N(j)− 1)!
< j ≤ #BS · (N(j) + n)!

n!(N(j))!
.

Then we have

lim
s→0

λjs = N(j).

In particular, the number of eigenvalues converging to 0 is equal to #BS.
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On Jones’ actions of Thompson’s groups

Arnaud Brothier

Richard Thompson’s groups F ⊂ T ⊂ V are countable discrete groups that have
been extensively studied in geometric group theory. The group F is the collection
of all piecewise linear bijections of the unit interval with slopes power of two
and breakpoints dyadic rational. The larger groups T and V are defined similarly
except that one allows to permute intervals in a cyclic way for T and in any way for
V . In particular, F is a subgroup of the homeomorphisms of the unit interval and
T a subgroup of the homeomorphisms of the unit circle. Those three groups follow
uncommon behaviours and many questions regarding their analytical properties
are open today. The most famous one is to know if F is amenable or not but
even the same question regarding weak amenability in the sense of Cowling and
Haagerup is still unknown.

Those groups recently appeared in Jones’ subfactor theory somewhat surpris-
ingly when Jones was trying to reconstruct a conformal field theory (CFT) directly
from a subfactor. Thompson’s group T emerged as a discrete replacement of the
spatial diffeomorphism group. On the way to build CFT Jones found a beautiful
formalism for constructing actions of the Thompson’s groups and more generally
actions of groups of fractions. This talk is about the use of these new machinery
for proving that certain groups have the Haagerup property. The main result is
the following:
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Theorem: If G is any discrete group with the Haagerup property, then so does
the (permutational) wreath product obtained from G and the usual action of
Thompson’s group V on the set of dyadic rational Q2 inside the unit interval.

Recall that a discrete group has the Haagerup property if it admits a net of
positive definite functions vanishing at infinity and converging pointwise to one.
It is a weakening of amenability that is essential in group theory but also in other
fields of mathematics like operator algebras, ergodic theory and is linked to topol-
ogy. Indeed, it is equivalent to Gromov A-(T)-meanability (existence of a proper
isometric action on a Hilbert space), implies Baum-Connes conjecture and thus
Novikov conjecture. It is also a key property used in Popa’s deformation/rigidity
theory. As Gromov’s terminology suggests it is a strong negation of Kazhdan prop-
erty (T): a discrete group having both property is necessarily finite. Farley proved
that all three Thompson’s groups have the Haagerup property using Gromov’s
characterization. However, this does not imply our theorem. Indeed, the class of
groups with the Haagerup property is closed under taking subgroups, under taking
direct product but unfortunately is not closed under taking extension and in par-
ticular semidirect products of groups having the Haagerup property needs not to
satisfy the Haagerup property. Cornulier, Stalder and Valette have exhibit large
classes of wreath products without the Haagerup property built from groups with
the Haagerup property. Using actions on wall they were able to show that wreath
product built from an homogenous action of a group on its quotient by a normal
subgroup provides groups with the Haagerup property if the three groups involved
have this property. Moreover, by defining wreath product for non-discrete groups
and using Schlichting completions Cornulier was able to push this later result by
replacing the normal subgroup by a commensurated subgroup. It turns out that
the examples we provide using Jones’ technology are very different from all pre-
vious examples produced. Moreover, thanks to a theorem of Cornulier concerning
presentations of groups, they provide the first examples of wreath products with
the Haagerup property that are finitely presented and don’t have the Haagerup
property for trivial reasons that is the group acting is not amenable (here V ) and
the base space on which V acts is not finite (here Q2).

Elements of F can be written as a pair of finite rooted binary trees with the
same number of leaves. Formally, it is the group of fractions of the category of
binary trees (at the object 1). Other nice categories give groups of fractions and
for instance the braid groups arise in that way as well as the larger Thompson’s
groups T, V . Jones realized that given any functor starting from the category of
forests to another category one can form an action of F that we call a Jones’ action.
In particular, if the target category is the category of Hilbert spaces one obtain
a unitary representation of F that can be extended to V under mild assumptions
on the functor. Our strategy to prove the theorem is then the following. First
we produce a one parameter family of unitary representations of V using the
deformation of a functor from the forests to Hilbert spaces. Second, we consider
a particular functor from the forests to the category of groups. This provides a
Jones’ action of V on a group. We recognize that the semidirect product is the
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wreath product of the theorem. Third, we made the key observation that this later
semidirect product can be interpreted as a group of fractions for a larger category
of decorated forests. Fourth, we adapt the first point to the category of decorated
forests and obtain the Haagerup property.

Dynamical characterization of categorical Morita equivalence

Sergey Neshveyev

(joint work with Makoto Yamashita)

Let C1 and C2 be essentially small rigid C∗-tensor categories. Then the following
conditions are equivalent:

(1) there is a rigid C∗-bicategory (with two 0-cells) of the form
(
C1 D
D̄ C2

)

such that D 6= 0;
(2) there is a C∗-Frobenius algebra B ∈ C2 such that C1

∼= BimodC2(B);
(3) there is a nonzero C1-C2-module C∗-category D such that

(a) D is semisimple as a linear category,
(b) the action of C2 on D is proper in the sense that if (Ui)i are represen-

tatives of the isomorphism classes of simple objects in C2 then, for
any objects X and Y , we have C2(X,Y Ui) = 0 for all but a finite
number of i’s,

(c) the functor C1 → EndC2(D) defined by the action of C1 on D is an
equivalence of C∗-tensor categories.

If these conditions are satisfied, then C1 and C2 are called Morita equivalent,
and a C1-C2-module C∗-category D as in (1) or (3) is called invertible. Such a
bimodule category D is automatically indecomposable.

Assume now that Ci = RepGi for a compact quantum group Gi, i = 1, 2. In this
case it is known that any indecomposable C1-C2-module C∗-category is equivalent
to the category DA of finitely generated G1-G2-equivariant C

∗-Hilbert A-modules
for a unital C∗-algebra A equipped with commuting actions G1 y A x G2. A
natural question is what invertibility of DA means in terms of the actions of Gi
on A.

Theorem. [1] Assume that we are given commuting actions G1 y A x G2 of
compact quantum groups G1 and G2 on a unital C∗-algebra A. Then the corre-
sponding (RepG1)-(RepG2)-module category DA is invertible if and only if the
following conditions are satisfied:

(1) for each i = 1, 2, the action of Gi on A is free, or equivalently, the subal-
gebra of regular elements of A with respect the action of Gi is a Gi-Galois
extension of AGi ;

(2) the fixed point algebras AGi are finite dimensional;
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(3) there is a G1-G2-equivariant isomorphism

AG1 ⊗A ∼= AG2 ⊗A
of AG1 ⊗AG2-A-modules.

Condition (3) in the theorem can be reformulated in the following less di-
gestable, but more concrete and verifiable form:

(a) the quantum dimension dimq A
G1 of AG1 considered as a G2-module co-

incides with the quantum dimension dimq A
G2 of AG2 considered as a

G1-module;
(b) if ψ1 is the state on A

G1 obtained as the composition of the G2-equivariant
conditional expectation AG1 → (AG1)G2 with the normalized categorical
trace on (AG1)G2 = EndRepG2(A

G1), (xi)i is a basis in AG1 and (xi)i is
the dual basis with respect to ψ1, so that ψ1(xix

k) = δik, and we similarly
define a state ψ2 on AG2 , choose a basis (yj)j in AG2 and consider the
dual basis (yj)j , then

∑

i

xiyxi = λψ2(y)1 and
∑

j

yjxyj = λψ1(x)1

for all x ∈ AG1 and y ∈ AG2 , where λ = dimq A
G1 = dimq A

G2 .
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A generating problem for subfactors

Yunxiang Ren

Modern subfactor theory was initialed by Vaughan Jones by his remark index
theorem [1]. Since then, there are many different understanding of the central
object, namely, the standard invariants for subfactors [2, 3, 4]. Later on, Vaughan
Jones introduced the subfactor planar algebras as a topological axiomatization
of standard invariants [5]. A planar algebra P• consists of a sequence of finite-
dimensional C∗-algebras Pm,± (which are called the m-box spaces) and a natural
action of the operad of planar tangles. This perspective displays that the stan-
dard invariants is a representation of fully labeled planar tangles in the flavor of
topological quantum field theory.

From the perspective of planar algebras, Bisch and Jones proposed the classi-
fication of subfactors by simple generators and relations [6, 7, 8]. The motivat-
ing examples are the Birman-Murakami-Wenzl (BMW) planar algebras which are
known to satisfy the following conditions:

(I) The planar algebra is generated by its 2-boxes.
(II) dimP2,± = 3.
(III) dimP3,± ≤ 15.
(IV) The planar algebra P• satisfies Yang-Baxter relations.
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Such planar algebras are called Yang-Baxter planar algebras and they are com-
pletely classified in [9]. Significantly, a new family of subfactor planar algebras
were discovered which has a deep connection to conformal field theory. It is worth
to point out that Condition (IV) implies Condition (III) but not the other way
around. Therefore, a natural question arises: does there exists subfactor planar al-
gebra satisfying Condition (I), (II) and (III) but not (IV). In particular, Vaughan
Jones asked the following question in the late nineties.

Question 0.1 (Jones, 1990s). Is the subfactor planar algebra for R⋊ (S2×S3) ⊂
R⋊ S5, denoted by generated by its 2-boxes?

It is not difficult to see that the subfactor planar algebra in Question 0.1 satisfies
(II),(III) but not (IV). However, it is unknown whether (I) holds. This question
is also closely related to the classification of spin models for Kauffman polynomial
from self-dual strongly regular graphs by Jaeger. In particular, he discovered a new
spin model based on the Higman-Sims graph. The spin model is described by a spin
model planar algebra and the adjacency matrix is a 2-box. Therefore, Question
0.1 can be also asked for this particular spin model planar algebra associated to
Higman-Sims graph. The answer was no provided by the fact the planar subalgebra
generated by the adjacency matrix admits Yang-Baxter relations.

This question can be asked in a general setup: given a strongly regular graph
Γ, the associated group-action model PΓ

• is defined to be fixed-point planar sub-
algebra of the spin model planar algebra. The adjacency matrix AΓ is a 2-box in
the planar algebra. Therefore, Question 0.1 can be asked for spin model planar
algebras associated with strongly regular graphs in general, namely, whether the
planar algebra PΓ

• is generated by AΓ. Since the spin model planar algebra PΓ
•

is defined by the combinatorial data of the graph Γ, the generating property in
Question 0.1 is intrinsically determined by Γ.

Definition 0.2. Let Γ be a strongly regular graph. We say Γ has property (G)
if the associated planar algebra PΓ has the generating property, namely, it is
generated by its adjacency matrix AΓ.

In particular, the referred subfactor planar algebra in Question 0.1 can be ob-
tained from the Kneser graphKG5,2, also known as the Petersen graph. In [10], we
provided an affirmative answer to Question 0.1, namely, the Kneser graph KG5,2

has property (G). Later on, Jones imposed the same question with the subfactor
planar algebras for S2 × Sn−2 ⊂ Sn, namely,

Question 0.3 (Jones, 2017). Are the subfactor planar algebras for S2×Sn−2 ⊂ Sn
generated by their 2-boxes?

By exploiting the universal skein theory for group-action models, we first give

constructions of generators for the planar algebras P
KGn,2
• under the assumption

that the transposition R is generated by 2-boxes, namely, R ∈ 〈PKGn,2

2 〉. Then
we confirm the validity of the assumption provided with a universal construction,
and thus we prove the main theorem, namely,
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Theorem 0.4. The subfactor planar algebra P
KGn,2
• has the generating property,

namely, the Kneser graph KGn,2 has property (G) for n ≥ 5.

We first remark that the relation between the transposition and the generating
property was first revealed independently by Jones and Curtin. They showed that
any planar subalgebra Q• of some spin model, Q has the generating property if
and only if R ∈ 〈Q2〉.We enhance the statement by dropping the assumption that
Q is a planar subalgebra of some spin model. In this case, the transposition R is
characterized by skein relations.

Theorem 0.5. Suppose Q• is a planar algebra. Then the following are equivalent:

(1) There exists a group action G y X such that Q• is isomorphic to the
associated group-action model PG

• .
(2) There exists S ∈ Q4 and W ∈ Q3 such that they satisfy Reidemeister

moves, flatness and Frobenius relations.

Secondly, it was pointed out by Snyder and Reutter during this workshop at
Oberwolfach that the generating property in Definition 0.2 is also studied in the
theory of quantum permutation groups. A graph Γ is said to have no quantum
symmetry if its quantum automorphism group coincides with its automorphism
group.

Γ has property (G)⇐⇒ Γ has no quantum symmetry.

An important task is to determine finite graphs with no quantum symmetry. The-
orem 0.4 implies the following corollary.

Corollary 0.6. The Kneser graph KGn,2 has no quantum symmetry for n ≥ 5.

In the end, Theorem 0.4 confirms that the simplest generator for the planar

algebra for P
KGn,2
• is a single 2-box AΓ. However, Universal skein theory for

group actions tells us that in the simplest skein theory, the generators are a 2-
box and an n-box; and one of the relations appears in the 2n-box space. This
phenomenon gives us a hint that the complexity of skein theory might be more
subtle than the sizes of generators and relations.
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Coideal Algebras and Subfactors

Hans Wenzl

Let H be a Hopf algebra with coproduct ∆. A subalgebra K ⊂ H is a right coideal
algebra if ∆(K) ⊂ K ⊗ H . This makes Rep(K) into a right module category of
the tensor category Rep(H) of finite-dimensional representations of H .

An important class of fusion tensor categories were constructed using the Drin-
feld-Jimbo quantum groups Uqg by H.H. Andersen and coauthors (see e.g. [1]).
They were obtained as a quotient of a special subcategory of Rep(Uqg). It was
shown in [4] that for suitable roots of unity q these fusion categories are C∗ tensor
categories. They can be used to construct a sequence of examples of irreducible
subfactors for each irreducible representation of a semisimple Lie algebra g. The
main topic of this talk is the question whether we can find coideal subalgebras of
Uqg which would also yield nontrivial module categories for the associated fusion
categories.

An interesting class of coideal subalgebras U ′
qg
θ ⊂ Uqg were constructed by

a number of authors about twenty years ago, see e.g. [2] for precise references.
They are q-deformations of the fixed point algebra Ugθ ⊂ Ug, where θ is an order
two automorphism of the Lie algebra g. Such order two automorphisms have all
been determined by Cartan in his classification of symmetric spaces. Analogues
of the corresponding module categories in the setting of fusion categories were
constructed in [3] for special cases, namely for the embeddings son ⊂ sln and
spn ⊂ sln. However, this was done via categorical methods without explicitly
using the coideal algebras. More precisely, for V the vector representation of
sln, detailed knowledge of EndUqsln(V

⊗m) and of EndSO(n)(V
⊗m) together with

a compatibility condition for traces (essentially what is known in subfactor theory
as the commuting square condition) determined the structure of an algebra which
was shown to be isomorphic to EndU ′

qson(V
⊗m). In particular, explicit formulas

for the indices and descriptions for the principal graphs were determined in [3].
For the special cases treated in the paper, let g = gθ ⊕ p as a gθ module. Then
the index for the corresponding subfactor N ⊂M for q = eπi/ℓ is given by

[M : N ] = b(gθ)ℓn(p)
∏

ω>0

1

4 sin2(ω, ρ̌)π/ℓ
,

where the product goes over the weights ω > 0 of p coming from positive roots of g,
n(p) is the multiplicity of the zero weight in p, b(gθ) is a small integer depending on
the special case gθ ⊂ g and ρ̌ is half the sum of the positive roots of g. Moreover, it
turned out that the indices of these subfactors are essentially the same as the ones
constructed via conformal nets in [5] in the special case SO(3) ⊂ SU(3). However,
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it is very hard to calculate indices of subfactors in the conformal net approach in
general.

The evidence in the last paragraph suggests that similar constructions might
be possible for other or quite possibly all embeddings gθ ⊂ g. To prove this,
a general construction of module categories with a C∗-structure and subfactors
from coideal algebras U ′

qg
θ ⊂ Uqg would be desirable. This has proved to be

surprisingly difficult so far (see also the talk by Makoto Yamashita which deals
with a similar problem). Some evidence was given in the talk how a more careful
study of the relative positions of the Cartan algebras of g and gθ can be used to
get to the proper generalizations of dimension functions and index formulas for
other embeddings U ′

qg
θ ⊂ Uqg. This is still work in progress.
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