25,223 research outputs found

    Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement

    Get PDF
    Here we study multiplayer linear games, a natural generalization of XOR games to multiple outcomes. We generalize a recently proposed efficiently computable bound, in terms of the norm of a game matrix, on the quantum value of 2-player games to linear games with nn players. As an example, we bound the quantum value of a generalization of the well-known CHSH game to nn players and dd outcomes. We also apply the bound to show in a simple manner that any nontrivial functional box, that could lead to trivialization of communication complexity in a multiparty scenario, cannot be realized in quantum mechanics. We then present a systematic method to derive device-independent witnesses of genuine tripartite entanglement.Comment: 7+8 page

    On The Communication Complexity of Linear Algebraic Problems in the Message Passing Model

    Full text link
    We study the communication complexity of linear algebraic problems over finite fields in the multi-player message passing model, proving a number of tight lower bounds. Specifically, for a matrix which is distributed among a number of players, we consider the problem of determining its rank, of computing entries in its inverse, and of solving linear equations. We also consider related problems such as computing the generalized inner product of vectors held on different servers. We give a general framework for reducing these multi-player problems to their two-player counterparts, showing that the randomized ss-player communication complexity of these problems is at least ss times the randomized two-player communication complexity. Provided the problem has a certain amount of algebraic symmetry, which we formally define, we can show the hardest input distribution is a symmetric distribution, and therefore apply a recent multi-player lower bound technique of Phillips et al. Further, we give new two-player lower bounds for a number of these problems. In particular, our optimal lower bound for the two-player version of the matrix rank problem resolves an open question of Sun and Wang. A common feature of our lower bounds is that they apply even to the special "threshold promise" versions of these problems, wherein the underlying quantity, e.g., rank, is promised to be one of just two values, one on each side of some critical threshold. These kinds of promise problems are commonplace in the literature on data streaming as sources of hardness for reductions giving space lower bounds

    The quantum communication complexity of sampling

    Get PDF
    Sampling is an important primitive in probabilistic and quantum algorithms. In the spirit of communication complexity, given a function f : X × Y → {0, 1} and a probability distribution D over X × Y , we define the sampling complexity of (f,D) as the minimum number of bits that Alice and Bob must communicate for Alice to pick x ∈ X and Bob to pick y ∈ Y as well as a value z such that the resulting distribution of (x, y, z) is close to the distribution (D, f(D)). In this paper we initiate the study of sampling complexity, in both the classical and quantum models. We give several variants of a definition. We completely characterize some of these variants and give upper and lower bounds on others. In particular, this allows us to establish an exponential gap between quantum and classical sampling complexity for the set-disjointness function

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Propagating large open quantum systems towards their steady states: cluster implementation of the time-evolving block decimation scheme

    Full text link
    Many-body quantum systems are subjected to the Curse of Dimensionality: The dimension of the Hilbert space H\mathcal{H}, where these systems live in, grows exponentially with systems' 'size' (number of their components, "bodies"). It means that, in order to specify a state of a quantum system, we need a description whose length grows exponentially with the system size. However, with some systems it is possible to escape the curse by using low-rank tensor approximations known as `matrix-product state/operator (MPS/O) representation' in the quantum community and `tensor-train decomposition' among applied mathematicians. Motivated by recent advances in computational quantum physics, we consider chains of NN spins coupled by nearest-neighbor interactions. The spins are subjected to an action coming from the environment. Spatially disordered interaction and environment-induced decoherence drive systems into non-trivial asymptotic states. The dissipative evolution is modeled with a Markovian master equation in the Lindblad form. By implementing the MPO technique and propagating system states with the time-evolving block decimation (TEBD) scheme (which allows to keep the length of the state descriptions fixed), it is in principle possible to reach the corresponding steady states. We propose and realize a cluster implementation of this idea. The implementation on four nodes allowed us to resolve steady states of the model systems with N=128N = 128 spins

    Quantum communication complexity of symmetric predicates

    Get PDF
    We completely (that is, up to a logarithmic factor) characterize the bounded-error quantum communication complexity of every predicate f(x,y)f(x,y) depending only on xy|x\cap y| (x,y[n]x,y\subseteq [n]). Namely, for a predicate DD on {0,1,...,n}\{0,1,...,n\} let \ell_0(D)\df \max\{\ell : 1\leq\ell\leq n/2\land D(\ell)\not\equiv D(\ell-1)\} and \ell_1(D)\df \max\{n-\ell : n/2\leq\ell < n\land D(\ell)\not\equiv D(\ell+1)\}. Then the bounded-error quantum communication complexity of fD(x,y)=D(xy)f_D(x,y) = D(|x\cap y|) is equal (again, up to a logarithmic factor) to n0(D)+1(D)\sqrt{n\ell_0(D)}+\ell_1(D). In particular, the complexity of the set disjointness predicate is Ω(n)\Omega(\sqrt n). This result holds both in the model with prior entanglement and without it.Comment: 20 page
    corecore