831 research outputs found

    Locally ss-distance transitive graphs

    Full text link
    We give a unified approach to analysing, for each positive integer ss, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally ss-arc transitive graphs of diameter at least ss. A graph is in the class if it is connected and if, for each vertex vv, the subgroup of automorphisms fixing vv acts transitively on the set of vertices at distance ii from vv, for each ii from 1 to ss. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s≥2s\geq 2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph, or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex orbits, or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups.Comment: Revised after referee report

    Disimplicial arcs, transitive vertices, and disimplicial eliminations

    Get PDF
    In this article we deal with the problems of finding the disimplicial arcs of a digraph and recognizing some interesting graph classes defined by their existence. A diclique of a digraph is a pair V→WV \to W of sets of vertices such that v→wv \to w is an arc for every v∈Vv \in V and w∈Ww \in W. An arc v→wv \to w is disimplicial when N−(w)→N+(v)N^-(w) \to N^+(v) is a diclique. We show that the problem of finding the disimplicial arcs is equivalent, in terms of time and space complexity, to that of locating the transitive vertices. As a result, an efficient algorithm to find the bisimplicial edges of bipartite graphs is obtained. Then, we develop simple algorithms to build disimplicial elimination schemes, which can be used to generate bisimplicial elimination schemes for bipartite graphs. Finally, we study two classes related to perfect disimplicial elimination digraphs, namely weakly diclique irreducible digraphs and diclique irreducible digraphs. The former class is associated to finite posets, while the latter corresponds to dedekind complete finite posets.Comment: 17 pags., 3 fig

    Countable locally 2-arc-transitive bipartite graphs

    Get PDF
    We present an order-theoretic approach to the study of countably infinite locally 2-arc-transitive bipartite graphs. Our approach is motivated by techniques developed by Warren and others during the study of cycle-free partial orders. We give several new families of previously unknown countably infinite locally-2-arc-transitive graphs, each family containing continuum many members. These examples are obtained by gluing together copies of incidence graphs of semilinear spaces, satisfying a certain symmetry property, in a tree-like way. In one case we show how the classification problem for that family relates to the problem of determining a certain family of highly arc-transitive digraphs. Numerous illustrative examples are given.Comment: 29 page
    • …
    corecore