884 research outputs found

    On a graph coloring problem arising from discrete tomography

    Get PDF
    An extension of the basic image reconstruction problem in discrete tomography is considered: given a graph G = (V,E) and a family equation image of chains Pi together with vectors h(Pi) = (h1, . . . , hik), one wants to find a partition V1,…,Vk of V such that for each Pi and each color j, |Vj ∩ Pi| = hij. An interpretation in terms of scheduling is presented. We consider special cases of graphs and identify polynomially solvable cases; general complexity results are established in this case and also in the case where V1,...Vk is required to be a proper vertex k-coloring of G. Finally, we examine also the case of (proper) edge k-colorings and determine its complexity status

    On the use of graphs in discrete tomography

    Get PDF
    In this tutorial paper, we consider the basic image reconstruction problem which stems from discrete tomography. We derive a graph theoretical model and we explore some variations and extensions of this model. This allows us to establish connections with scheduling and timetabling applications. The complexity status of these problems is studied and we exhibit some polynomially solvable cases. We show how various classical techniques of operations research like matching, 2-SAT, network flows are applied to derive some of these result

    Variations of coloring problems related to scheduling and discrete tomography

    Get PDF
    The graph coloring problem is one of the most famous problems in graph theory and has a large range of applications. It consists in coloring the vertices of an undirected graph with a given number of colors such that two adjacent vertices get different colors. This thesis deals with some variations of this basic coloring problem which are related to scheduling and discrete tomography. These problems may also be considered as partitioning problems. In Chapter 1 basic definitions of computational complexity and graph theory are presented. An introduction to graph coloring and discrete tomography is given. In the next chapter we discuss two coloring problems in mixed graphs (i.e., graphs having edges and arcs) arising from scheduling. In the first one (strong mixed graph coloring problem) we have to cope with disjunctive constraints (some pairs of jobs cannot be processed simultaneously) as well as with precedence constraints (some pairs of jobs must be executed in a given order). It is known that this problem is NP-complete in mixed bipartite graphs. In this thesis we strengthen this result by proving that for k = 3 colors the strong mixed graph coloring problem is NP-complete even if the mixed graph is planar bipartite with maximum degree 4 and each vertex incident to at least one arc has maximum degree 2 or if the mixed graph is bipartite and has maximum degree 3. Furthermore we show that the problem is polynomially solvable in partial p-trees, for fixed p, as well as in general graphs with k = 2 colors. We also give upper bounds on the strong mixed chromatic number or even its exact value for some classes of graphs. In the second problem (weak mixed graph coloring problem), we allow jobs linked by precedence constraints to be executed at the same time. We show that for k = 3 colors this problem is NP-complete in mixed planar bipartite graphs of maximum degree 4 as well as in mixed bipartite graphs of maximum degree 3. Again, for partial p-trees, p fixed, and for general graphs with k = 2 colors, we prove that the weak mixed graph coloring problem is polynomially solvable. We consider in Chapter 3 the problem of characterizing in an undirected graph G = (V, E) a minimum set R of edges for which maximum matchings M can be found with specific values of p = |M ∩ R|. We obtain partial results for some classes of graphs and show in particular that for odd cacti with triangles only and for forests one can determine in polynomial time whether there exists a minimum set R for which there are maximum matchings M such that p= |R ∩ M|, for p= 0,1, ..., ν(G). The remaining chapters deal with some coloring (or partitioning) problems related to the basic image reconstruction problem in discrete tomography. In Chapter 4 we consider a generalization of the vertex coloring problem associated with the basic image reconstruction problem. We are given an undirected graph and a family of chains covering its vertices. For each chain the number of occurrences of each color is given. We then want to find a coloring respecting these occurrences. We are interested in both, arbitrary and proper colorings and give complexity results. In particular we show that for arbitrary colorings the problem is NP-complete with two colors even if the graph is a tree of maximum degree 3. We also consider the edge coloring version of both problems. Again we present some complexity results. We consider in Chapter 5 some generalized neighborhoods instead of chains. For each vertex x we are given the number of occurrences of each color in its open neighborhood Nd(x) (resp. closed neighborhood Nd+(x)), representing the set of vertices which are at distance d from x (resp. at distance at most d from x). We are interested in arbitrary colorings as well as proper colorings. We present some complexity results and we show in particular that for d = 1 the problems are polynomially solvable in trees using a dynamic programming approach. For the open neighborhood and d = 2 we obtain a polynomial time algorithm for quatrees (i.e. trees where all internal vertices have degree at least 4). We also examine the bounded version of these problems, i.e., instead of the exact number of occurrences of each color we are given upper bounds on these occurrences. In particular we show that the problem for proper colorings is NP-complete in bipartite graphs of maximum degree 3 with four colors and each color appearing at most once in the neighborhood N(x) of each vertex x. This result implies that the L(1,1)-labelling problem is NP-complete in this class of graphs for four colors. Finally in Chapter 6 we consider the edge partitioning version of the basic image reconstruction problem, i.e., we have to partition the edge set of a complete bipartite graph into k subsets such that for each vertex there must be a given number of edges of each set of the partition incident to this vertex. For k = 3 the complexity status is still open. Here we present a new solvable case for k = 3. Then we examine some variations where the union of two subsets E1, E2 has to satisfy some additional constraints as for example it must form a tree or a collection of disjoint chains. In both cases we give necessary and sufficient conditions for a solution to exist. We also consider the case where we have a complete graph instead of a complete bipartite graph. We show that the edge partitioning problem in a complete graph is at least as difficult as in a complete bipartite graph. We also give necessary and sufficient conditions for a solution to exist if E1 ∪ E2 form a tree or if they form a Hamiltonian cycle in the case of a complete graph. Finally we examine for both, complete and complete bipartite graphs, the case where each one of the sets E1 and E2 is structured (two disjoint Hamiltonian chains, two edge disjoint cycles) and present necessary and sufficient conditions

    Graph coloring with cardinality constraints on the neighborhoods

    Get PDF
    AbstractExtensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V1,…,Vk of the vertex set of G such that, for some specified neighborhood Ñ(v) of each vertex v, the number of vertices in Ñ(v)∩Vi is (at most) a given integer hvi. The complexity of some variations is discussed according to Ñ(v), which may be the usual neighbors, or the vertices at distance at most 2, or the closed neighborhood of v (v and its neighbors). Polynomially solvable cases are exhibited (in particular when G is a special tree)

    Histogram Tomography

    Full text link
    In many tomographic imaging problems the data consist of integrals along lines or curves. Increasingly we encounter "rich tomography" problems where the quantity imaged is higher dimensional than a scalar per voxel, including vectors tensors and functions. The data can also be higher dimensional and in many cases consists of a one or two dimensional spectrum for each ray. In many such cases the data contain not just integrals along rays but the distribution of values along the ray. If this is discretized into bins we can think of this as a histogram. In this paper we introduce the concept of "histogram tomography". For scalar problems with histogram data this holds the possibility of reconstruction with fewer rays. In vector and tensor problems it holds the promise of reconstruction of images that are in the null space of related integral transforms. For scalar histogram tomography problems we show how bins in the histogram correspond to reconstructing level sets of function, while moments of the distribution are the x-ray transform of powers of the unknown function. In the vector case we give a reconstruction procedure for potential components of the field. We demonstrate how the histogram longitudinal ray transform data can be extracted from Bragg edge neutron spectral data and hence, using moments, a non-linear system of partial differential equations derived for the strain tensor. In x-ray diffraction tomography of strain the transverse ray transform can be deduced from the diffraction pattern the full histogram transverse ray transform cannot. We give an explicit example of distributions of strain along a line that produce the same diffraction pattern, and characterize the null space of the relevant transform.Comment: Small corrections from last versio

    A tutorial on the use of graphs in discrete tomography

    Get PDF
    Starting from the basic image reconstruction problem in discrete tomography some graph theoretical models are proposed. This suggests the study of some variations and extensions of the basic problem. Applications in scheduling and timetabling are described. We exhibit polynomially solvable cases and we review the complexity status of some related problems

    09061 Abstracts Collection -- Combinatorial Scientific Computing

    Get PDF
    From 01.02.2009 to 06.02.2009, the Dagstuhl Seminar 09061 ``Combinatorial Scientific Computing \u27\u27 was held in Schloss Dagstuhl -- Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Graph coloring with cardinality constraints on the neighborhoods

    Get PDF
    Extensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph a k-coloring, i.e., a partition (V_1,\cdots,V_k) of the vertex set of G such that, for some specified neighborhood \tilde|{N}(v) of each vertex v, the number of vertices in \tilde|{N}(v)\cap V_i is (at most) a given integer h_i^v. The complexity of some variations is discussed according to \tilde|{N}(v), which may be the usual neighbors, or the vertices at distance at most 2, or the closed neighborhood of v (v and its neighbors). Polynomially solvable cases are exhibited (in particular when is a special tree)
    • …
    corecore