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a b s t r a c t

Extensions and variations of the basic problem of graph coloring are introduced. The
problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V 1, . . . , V k
of the vertex set of G such that, for some specified neighborhood Ñ(v) of each vertex v,
the number of vertices in Ñ(v)∩ V i is (at most) a given integer hiv . The complexity of some
variations is discussed according to Ñ(v), whichmay be the usual neighbors, or the vertices
at distance at most 2, or the closed neighborhood of v (v and its neighbors). Polynomially
solvable cases are exhibited (in particular when G is a special tree).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Various extensions of the basic graph coloring model (see [1]) have been studied by many authors from a theoretical
point of view and also with a motivation stemming from applications in communication systems, operations scheduling,
course timetabling, tomography, etc.
Herewe shall consider a few variations of the vertex coloring problemwhich consist essentially in restricting the number

of occurrences of the different colors in a given collection P of subsets Pi of vertices.
In [2], a formulation extending the basic image reconstruction problem in discrete tomography was discussed where the

subsets Pi were chains in the underlying graph G. It was motivated by a simple maintenance scheduling problem in a city
metro network.
Here we shall essentially consider colorings, i.e., partitions of the vertex set of a graph, such that, in some generalized

neighborhood of each vertex x, the number of occurrences of each color i is a given integer hix.
More precisely, we are given an undirected connected graph G = (V , E)with n vertices andm edges. Given two vertices

x and y, we denote by d(x, y) the distance between x and y (the length of a shortest x–y path). We denote by Nd(x) the
d-neighborhood of x ∈ V that is the set of vertices y such that d(x, y) = d. In the case where d = 1 we simply write
N(x) for the 1-neighborhood (or neighborhood, as usual) of x, i.e., the set of vertices y such that [x, y] ∈ E. We also define
N≤d(x) = ∪0≤l≤d Nl(x) as the set of vertices at distance at most d from x (with N0(x) = {x}).
We are also given a set of colors 1, 2, . . . , k as well as a set H = {h(x) = (h1x , . . . , h

k
x) ∈ Nk|x ∈ V }.

In the first problem, we have to find a k-partition V 1, V 2, . . . , V k of V such that∣∣∣N(x)⋂ V i
∣∣∣ = hix for all x ∈ V and all 1 ≤ i ≤ k. (1)
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We call this problem P (G,H, k). In addition, in case we want to obtain a proper coloring (two adjacent vertices must be in
two distinct sets V i and V j) we let P ∗(G,H, k) denote the corresponding problem.
We will also study the bounded version of these problems: we have to find a k-partition V 1, V 2, . . . , V k of V such that∣∣∣N(x)⋂ V i

∣∣∣ ≤ hix for all x ∈ V and all 1 ≤ i ≤ k. (2)

We will call these problemsBP (G,H, k) andBP ∗(G,H, k), respectively.
Our second problem is to find a k-partition V 1, V 2, . . . , V k of V such that∣∣∣N≤1(x)⋂ V i

∣∣∣ = hix for all x ∈ V and all 1 ≤ i ≤ k. (3)

We call this problem and its proper coloring version P≤1(G,H, k) and P ∗
≤1(G,H, k), respectively.

We will also be interested in P2(G,H, k) and P ∗2 (G,H, k), the problems of finding a k-partition, respectively a proper
coloring, V 1, V 2, . . . , V k of V such that∣∣∣N2(x)⋂ V i

∣∣∣ = hix for all x ∈ V and all 1 ≤ i ≤ k. (4)

Notice that our formulation includes the so-called cardinality constrained coloring problem which consists in determining
if a graph G = (V , E) has a proper k-coloring (V 1, . . . , V k) with given cardinality si for each color class V i (see [3–7] for
results on this problem): it suffices to take any d larger than or equal to the diameter of G in the set N≤d(x) defined above
(since then

⋃d
l=0 Nl(x) = V for each x) with h

i
x = si for all x and all 1 ≤ i ≤ k.

These problems are close to the well known L(h, k)-Labelling problems (see [8] for a survey). The problem consists in
an assignment of nonnegative integers to the vertices of a graph such that adjacent vertices get colors which differ by at
least h and vertices joined by a chain of length 2 receive colors differing by at least k (even if there is an edge joining these
vertices). Applications to channel assignment or to multihop radio networks are mentioned in [8]. Under the assumption
hix = 1, for all i and for all x, the colorings of BP ∗(G,H, k) and those of L(1, 1)-Labelling satisfy the same requirements:
adjacent vertices have different colors and vertices linked by a chain of length 2 (i.e., common neighbors of a single vertex)
have different colors. It is also close to the so-called star coloring problem studied in [9], and to the frugal coloring problem
studied in [10]. Related work has been carried out recently by several authors (see [11–16]) including dramatic applications
of coloring (see [17]).
One should also recall that nonproper coloring models have been used under the name of defective coloring in [18] in

a frequency assignment context where interferences had to be minimized. Applications to scheduling are also discussed
there.
For graph theoretical terms not defined here, the reader is referred to [1]. For complexity theory, the reader is referred

to [19].
Let us denote by s(z) = {i : hiz > 0}, z ∈ V , the set of colors required to occur in N(z). Then the set of possible colors for

a vertex x is given by L(x) =
⋂
z∈N(x) s(z). We have the following facts which will be used implicitly in the algorithms of the

following sections.

Fact 1.1. If P (G,H, k) has a solution, then L(x) 6= ∅ for all x ∈ V .

Fact 1.2. If, for a given x ∈ V , L(x) = {i}, then in any solution of P (G,H, k) we have x ∈ V i.

Notice that these facts also hold for P≤1(G,H, k).

Fact 1.3. If P ∗
≤1(G,H, k) has a solution, then for every vertex x there is a color i such that h

i
x = 1.

Fact 1.4. If P ∗
≤1(G,H, k) has a solution, then for each color i and each vertex x such that h

i
x 6= 1 we have x 6∈ V

i.

2. NP-completeness results

We shall study here the complexity status of problems P (G,H, 2), P ∗(G,H, 3), BP ∗(G,H, 3), BP ∗(G,H, 4),
P≤1(G,H, 2) and P ∗

≤1(G,H, 3).

Theorem 2.1. P (G,H, 2) is NP-complete even if G is 3-regular planar bipartite.

Proof. We use a transformation from the CUBIC PLANARMONOTONE 1-in-3SAT problemwhich is known to be NP-complete
(see [20]). In this problem we are given a set X of variables and a set C of clauses of the form (a ∨ b ∨ c) where a,
b and c are distinct variables without negation such that the underlying bipartite graph G = (X ∪ C, E) = (X ∪
C, {[xi, ĉ]|xi occurring in clause ĉ ∈ C}) is 3-regular and planar. The question is to decide whether there exists a truth
assignment such that exactly one variable in each clause is true.
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Fig. 1. The vertex gadget replacing a vertex x.

Consider an instance of CUBIC PLANAR MONOTONE 1-in-3SAT as well as its corresponding graph G. For each vertex ĉ ,
representing a clause, we set h(ĉ) = (1, 2), and for each vertex x, representing a variable x, we set h(x) = (3, 0).
Consider a positive instance of CUBIC PLANARMONOTONE 1-in-3SAT. Then for each variable x, if x is true, we assign x to V 1

and if x is false, we assign x to V 2. All the vertices representing clauses are assigned to V 1. Thus we get a positive answer for
the corresponding instance ofP (G,H, 2). Conversely, if an instance ofP (G,H, 2) is positive, then by setting x to true if x has
color 1 and to false if x has color 2, the corresponding instance of CUBIC PLANAR MONOTONE 1-in-3SAT is true: all vertices
corresponding to clauses ĉ are in V 1 since h(x) = (3, 0) for all vertices x. Every x will be in V 1 or V 2. Since h(ĉ) = (1, 2),
clause ĉ will have exactly one variable x occurring in V 1, i.e., one variable which is true. �

Theorem 2.2. P ∗(G,H, 3) is NP-complete even if G is 3-regular planar bipartite.

Proof. We use the same reduction as in the proof of Theorem 2.1 except that we take h(x) = (0, 0, 3) for each vertex
x representing a variable and h(ĉ) = (1, 2, 0) for each vertex ĉ representing a clause. Given a positive instance of CUBIC
PLANAR MONOTONE 1-in-3SAT, each variable x which is true is assigned to V 1; it is assigned to V 2 if it is false. All clauses ĉ
are assigned to V 3. So we obtain a feasible solution of P ∗(G,H, 3). Conversely, if an instance of P ∗(G,H, 3) is positive, all
vertices ĉ corresponding to clauses are in V 3 since h(x) = (0, 0, 3) for each x representing a variable. Since h(ĉ) = (1, 2, 0),
exactly one variable x occurring in ĉ will be true (xwill be in V 1) and two variables in ĉ will be false. This will give a positive
instance of CUBIC PLANAR MONOTONE 1-in-3SAT. �

Theorem 2.3. BP ∗(G,H, 4) is NP-complete even if G is bipartite with maximum degree 3 and hix = 1∀x ∈ V , i = 1, 2, 3, 4.

Proof. Weuse a reduction from the edge-3-coloring problemof a 3-regular graph. This problem is known to beNP-complete
(see [21]).
Let G′ be a 3-regular graph. For each vertex x of G′ we introduce the vertex gadget including (among others) vertices

x1, x2, x3, x4 shown in Fig. 1; each edge [x, y] of G′ corresponds to a unique edge [xu, yv] in the new graph.We replace locally
every edge [xu, yv] by the edge gadget J(xu, yv) given in Fig. 2. The resulting graph G = (V , E) is bipartite and has maximum
degree 3. Consider now a coloring κ of V satisfying the constraints ofBP ∗(G,H, 4)with hix = 1∀x ∈ V , i = 1, 2, 3, 4. Then
we clearly have the following two properties:

(i) in any vertex gadget replacing a vertex x, κ(x1), κ(x2), κ(x3), and κ(x4) are all different;
(ii) in any 4-cycle {[v1, v2], [v2, v3], [v3, v4], [v4, v1]} with neighboring vertices w1, w2, w3, w4 such that [vi, wi] ∈ E, we
must have κ(w1) = κ(v3), κ(w2) = κ(v4), κ(w3) = κ(v1), and κ(w4) = κ(v2).

Consider now an edge gadget J(xu, yv). W.l.o.g. we may assume that κ(x4) = 4 and κ(xu) = 1 in the vertex gadget
replacing vertex x. By property (ii), we immediately deduce that κ(a) = κ(e) = 4, κ(d) = 1, and κ(b), κ(c) ∈ {2, 3}.
So we may assume w.l.o.g. that κ(b) = 2 and κ(c) = 3. Then by repeatedly using property (ii) we get the following:
κ(a1) = κ(b′) = κ(d2) = 3, κ(a2) = κ(c ′) = κ(d1) = 2. Thus κ(a′), κ(d′) ∈ {1, 4}, κ(a′) 6= κ(d′). If κ(a′) = 4, then
κ(e′) = 1, but this will give us a contradiction, since κ(e) = 4. Hence κ(a′) = 1 and κ(yv) = 1. So we deduce that in any
solution ofBP ∗(G,H, 4)with hix = 1∀x ∈ V , i = 1, 2, 3, 4, and in any edge gadget J(xu, yv), xu and yv get the same color.
Suppose that an instance of BP ∗(G,H, 4) has a solution true. By coloring each edge [x, y] in G′ with the color of the

corresponding vertices xu, yv in G (remember that these two vertices have necessarily the same color c ∈ {1, 2, 3}), we get
a feasible 3-coloring of the edges of G′.
Now suppose that we have a 3-coloring of the edges of G′. If an edge [x, y] has color c ∈ {1, 2, 3}, then color the

corresponding vertices xu, yv in Gwith color c. Once we have done this for all the edges in G′, we can complete the coloring,
as explained above, using at most four colors and satisfying |N(x) ∩ V i| ≤ hix = 1∀x ∈ V , i = 1, 2, 3, 4. �

Corollary 2.1. L(1, 1) is NP-complete even in bipartite graphs with maximum degree 3 and four colors.

This result was derived in the context of total colorings in [22].
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Fig. 2. The edge gadget J(xu, yv) corresponding to an edge [xu, yv].

Fig. 3. The vertex gadget replacing a vertex x.

We will need the following Lemma in the proof of Theorem 2.4.

Lemma 2.1. BP ∗(G,H, 3) is NP-complete even if G is planar with maximum degree 4 and hix = 2∀x ∈ V , i = 1, 2, 3.

Proof. We use a reduction from the problem of 3-coloring a planar graph with maximum degree 4. This problem is known
to be NP-complete (see [23]). Let G′ be a planar graph with maximum degree 4. We replace each vertex x by the vertex
gadget shown in Fig. 3 and an edge [x, y] in G′ will be replaced by a suitable edge [xu, yv], u, v ∈ {1, 2, 3, 4}. We obtain a
planar graph Gwith maximum degree 4.
Now suppose that there is a 3-coloring of G such that |N(x) ∩ V i| ≤ 2∀x ∈ V , i = 1, 2, 3. Necessarily x1, x2, x3 and x4

must be colored with the same color as x′. Coloring the corresponding vertex x in G′ with this color will give us a 3-coloring
of G′.
Conversely, suppose we have a 3-coloring of the vertices of G′. If x has color c , then color the corresponding vertices

x′, x1, x2, x3, x4 with this same color c in G. Then the remaining vertices can be colored using three colors in such a way that
|N(x) ∩ V i| ≤ 2∀x ∈ V , i = 1, 2, 3. So we get a positive solution for the instance ofBP ∗(G,H, 3). �

Theorem 2.4. BP ∗(G,H, 3) is NP-complete even if G is planar bipartite with maximum degree 4 and hix = 2∀x ∈ V ,
i = 1, 2, 3.

Proof. We use a transformation fromBP ∗(G′,H, 3)which is NP-complete when G′ is planar with maximum degree 4 and
hix = 2∀x ∈ V , i = 1, 2, 3, as shown in Lemma 2.1. Let G

′ be a planar graph with maximum degree 4. We replace each
edge [x, y] by the edge gadget shown in Fig. 4. We obtain a planar bipartite graph Gwith maximum degree 4. Now suppose
that there is a 3-coloring of G such that |N(x) ∩ V i| ≤ hix = 2∀x ∈ V , i = 1, 2, 3. Denote by c this coloring. We must have
c(a) = c(b), since otherwise all vertices in N(a) ∩ N(b) should have the same color, which would violate the requirements
on hia = h

i
b = 2; similarly c(e) = c(f ). So let c(a) = c(b) = 1 and c(e) = c(f ) = 2. We must have c(g) = c(x) = 3; then
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Fig. 4. The edge gadget replacing an edge [x, y].

c(d) 6= c(a) = 1 since d ∈ N(a) and c(d) 6= c(f ) = 2 since h2a = 2, so c(d) = 3 = c(x) = c(g). Finally, c(y) 6= c(d) = 3
(y ∈ N(d)), c(y) 6= 1 (since h1d = 2), so c(y) = 2 = c(e) = c(f ). Thus x and y get different colors. Coloring the vertices x, y
in G′ with the color they get in G, we obtain a 3-coloring of G′. In fact, since c(e) = c(y) and |N(x) ∩ V i| ≤ 2, i = 1, 2, 3, in
G, we will obtain a solution in G′ satisfying the constraints |N(x) ∩ V i| ≤ 2∀x ∈ V , i = 1, 2, 3.
Conversely, suppose that there is a 3-coloring of G′ with |N(x) ∩ V i| ≤ 2∀x ∈ V , i = 1, 2, 3. Then by coloring the

corresponding vertices in Gwith the same colors and by applying the rules mentioned above for the remaining vertices, we
get a feasible 3-coloring of G. �

Theorem 2.5. P≤1(G,H, 2) is NP-complete even if G is planar bipartite of maximum degree 4.

Proof. We use a transformation from P (G′,H, 2) for a 3-regular planar bipartite graph G′ (see Theorem 2.1). From G′ we
build a graph G as follows: for each vertex x′ of G′, we introduce a new vertex x; x and x′ are linked by the edge [x, x′];
every edge [x′, y′] of G′ is also an edge of G. Thus G is planar bipartite with maximum degree 4. Now, for each new vertex
x we set h(x) = (1, 1), and if we have h(x′) = (a, b) in the instance of P (G′,H, 2) we set h(x′) = (a + 1, b + 1) for its
corresponding instanceP≤1(G,H, 2). Let V 1, V 2 be a 2-coloring of G′; then we obtain a 2-coloring for G as follows: the twin
x of x′ is introduced into V 2 if x′ ∈ V 1, and vice versa. Conversely, if we have a 2-coloring of G, then by deleting the new
vertices we obtain a 2-coloring of G′. �

Theorem 2.6. P ∗
≤1(G,H, 3) is NP-complete even if G is planar bipartite of maximum degree 4.

Proof. We use a reduction from CUBIC PLANAR MONOTONE 1-in-3SAT. Let G be the 3-regular planar bipartite graph
associated with this problem. For each vertex x in G representing a variable, we introduce a new vertex x′ and an edge
[x, x′]. We obtain a planar bipartite graph with maximum degree 4. We set h(x) = (1, 1, 3), h(x′) = (1, 1, 0), and for the
vertices ĉ representing the clauses we set h(ĉ) = (1, 2, 1).
Suppose that an instance of CUBIC PLANAR MONOTONE 1-in-3SAT has a solution true. Then for each variable x which is

true, we assign x to V 1 and x′ to V 2, and for each variable x which is false, we assign x to V 2 and x′ to V 1. All the vertices ĉ
representing a clause are assigned to V 3. Thus we get a positive answer to the corresponding instance of P ∗

≤1(G,H, 3).
Conversely, assume that an instance ofP ∗

≤1(G,H, 3) has a value true; then, since h(x
′) = (1, 1, 0), vertices x, x′ cannot be

in V 3; onewill be in V 1, and the other in V 2. Since every xmust have exactly three neighbors in V 3, all vertices ĉ representing
clauses are necessarily in V 3. Setting x to true if x has color 1 and to false if x has color 2, we get a positive answer to the
instance of CUBIC PLANAR MONOTONE 1-in-3SAT. �

3. The special case of trees

We shall now give a general dynamic programming algorithm which will show that P (G,H, k),P ∗(G,H, k),
P≤1(G,H, k),P ∗≤1(G,H, k),BP (G,H, k) and BP ∗(G,H, k) can be solved in polynomial time when G is a tree. A version
adapted to P (G,H, k)will be described and we will show later how it can be modified to handle the other problems.
We consider a tree T = (V , E) on n vertices. We root T at an arbitrary leaf r , i.e., a vertex of degree 1. For any vertex

x of T we denote by T (x) the subtree of T rooted at vertex x. By extension T (x) will also be the set of vertices in T (x). Let
f (x) denote the father of x, x 6= r , and let S(x) denote the set of sons of x in T . Also, let T ′(x), x 6= r , be the subtree of T
with vertex set T (x) ∪ {f (x)}. Now we define for each vertex x 6= r a set F(x) = {(b, c) : ∃ a coloring κ of T ′(x) such that
κ(x) = b, κ(f (x)) = c}. If F(x) = ∅ for some vertex x, then clearly there is no solution to P (G,H, k).
If x is a leaf in the rooted tree, then F(x) = {(b, c) : b ∈ s(f (x)), hcx = 1}; note that the set F(x) can be determined in

constant time. In order to determine F(x) for any vertex x which is neither a leaf nor the root r , we shall use an auxiliary
graph. Given such a vertex x, we define for each b ∈ L(x), and each c ∈ L(f (x)) a bipartite graph B(x, b, c) as follows:
B(x, b, c) = (V1, V2, E) with V1 = S(x), V2 = W1 ∪ W2 ∪ · · · ∪ Wk, where Wi = {ij : j = 1, 2 . . . , hix} for i 6= c , and
Wc = {cl : l = 1, . . . , hcx − 1}. We introduce an edge [z, w], z ∈ V1, w ∈ V2, if and only if (a, b) ∈ F(z) and w ∈ Wa. Then
clearly a coloring κ of T ′(x)with κ(x) = b and κ(f (x)) = c corresponds to a perfect matching in B(x, b, c).
Thus F(x), x 6= r , can be characterized recursively as follows:

(i) if x is a leaf, then F(x) = {(b, c) : b ∈ s(f (x)), hcx = 1};
(ii) otherwise F(x) = {(b, c) : ∃ perfect matching in B(x, b, c)}.
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Then we get the following algorithm:

Algorithm. 1. Number the vertices in reverse order of Breadth First Search (the leaves come first, the root is at the end).
Let x1, . . . , xn be the vertices.

2. For i = 1 to n− 1 compute F(xi). If F(xi) = ∅ for some vertex xi, there is no solution to P (T ,H, k).
3. If there exists c such that for each x ∈ S(r) (c ′, c) ∈ F(x), then there exists a coloring κ such that κ(r) = c; else there is
no solution to P (G,H, k)

4. Construct the feasible coloring of P (T ,H, k) starting from the root r and recalling the pairs (c, c ′) ∈ F(xi) for i =
1, . . . , n− 1.

Theorem 3.1. The above algorithm solves problem P (T ,H, k) in O(k2n2.5) time.

Proof. When (c, c ′) ∈ F(x) it means that there is a feasible solution for the problem associated with the subtree T (x)where
x has color c and its father y = f (x) has color c ′. Since, for each x, all pairs (c, c ′) are examined we will obtain a solution
whenever one exists. If there exists c such that for each x ∈ S(r) (c ′, c) ∈ F(x), assign color c to r; then for each arc (y, x)
where y is colored with color c (x is not yet colored) and (c ′, c) ∈ F(x), assign color c ′ to x; x is then colored.
Let us now analyse the complexity of this dynamic programming approach. For each vertex x in T we have O(k2) pairs of

colors (c, c ′) for which we have to check whether they belong to F(x). A perfect matching can be determined in O(n2.5) in a
bipartite graph with n vertices (see [24]). In our case the auxiliary bipartite graph B(x, b, c)which we construct for a vertex
x of T contains 2(d(x)− 1) vertices, where d(x) = |N(x)|, and hence a perfect matching can be computed in O(d(x)2.5) time.
Thus the values of F for each vertex and each pair of colors can be obtained in O(k2

∑
x∈T d(x)

2.5) time, i.e., our algorithm
has a complexity of O(k2n2.5). �

We will now explain how the previous algorithm can be adapted to the problems P ∗(G,H, k),P≤1(G,H, k),
P ∗
≤1(G,H, k),BP (G,H, k) andBP ∗(G,H, k):

• P ∗(G,H, k)
We just have to add the constraint that b 6= c in the definition of F ; in this way we avoid having two adjacent vertices
which will be colored with the same color.
• P≤1(G,H, k)
First we have to adapt the definition of L(x), i.e., L(x) =

⋂
z∈N≤1(x)

s(z). Then wemust modify the computation of F in the
following way:
1. if x is a leaf, (c, c ′) ∈ F(x) iff
(a) hcx = h

c′
x = 1, with c 6= c

′

or
(b) hcx = 2, with c = c

′

2. if x is not a leaf, (c, c ′) ∈ F(x) iff
∀z ∈ S(x) there exists a color c ′′ such that (c ′′, c) ∈ F(z) and there exists a partition U1,U2, . . . ,Uk of S(x) such that
(a) |Ui| = hix if i 6= c, c

′

(b) |Uc | = hcx − 1, and |Uc′ | = h
c′
x − 1, if c 6= c

′

(c) |Uc | = hcx − 2, if c = c
′.

In the auxiliary graph B(x, b, c) constructed as before we introduce hcx − 1 vertices for color c (instead of h
c
x as used in

P (G,H, k)).
• P ∗

≤1(G,H, k)
We use the version for P≤1(G,H, k) and add the constraint that b 6= c in the definition of F .
• For all bounded problems BP , we adapt the above procedure as follows: instead of constructing a perfect matching in
B(x, b, c), we simply determine a matching saturating all vertices in V1. It need not be a perfect matching since we must
have at most hix vertices of color i in the neighborhood of x but not necessarily exactly h

i
x.

4. The case of P2(G,H, k) and P ∗
2 (G,H, k)

Here we will consider a special case of trees for which P2(G,H, k) and P ∗2 (G,H, k) can be solved in linear time. We
will first give conditions of a solution for a star. We recall that a star S(y; x1, . . . , xn) is a tree with n ≥ 2 such that
E = {[y, xi] : 1 ≤ i ≤ n}. y is the center of the star and the xi’s are the external vertices.

Proposition 4.1. Given a star S(y; x1, . . . , xn) with a collection H of nonnegative integral vectors h(x) = (h1x , h
2
x , h

3
x , . . . , h

k
x)

for each external vertex x, the following statements are equivalent:
(a) {x1, . . . , xn} has a unique coloring with hi vertices of color i;
(b) (1) for each external vertex x, h1x + h

2
x + h

3
x + · · · + h

k
x = n− 1;

(2) for each color i,
n− hi external vertices x have hix = hi and
hi vertices x have hix = hi − 1;

(3) for each color i let V (i) = {x|hix = hi − 1}; then V (i) ∩ V (j) = ∅ for all i, j with i 6= j.
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Proof. (a)⇒ (b):
∑k
i=1 h

i
x is the number of colors (with their multiplicities) which have to occur at distance 2 from x. Since

|N2(x)| = n − 1 for each external vertex x, (1) holds. An external vertex of color i (resp. color j 6= i) will have hi − 1 (resp.
hi) vertices at distance 2 with color i, so (2) will hold. The set of external vertices with color iwill be V (i), and (3) holds.
(b)⇒ (a): For each i we color the hi vertices x of V (i) with color i and this will give us the required coloring which is

uniquely defined. �

Remark 4.1. If G is a star, then the treatments of P2(G,H, k) and P ∗2 (G,H, k) are similar. We just have to assign any color
c ∈ {1, . . . , k} to the central vertex y for P2(G,H, k) and any color c ∈ {1, . . . , k} not used in N(y) (if there is one) for
P ∗2 (G,H, k).

Remark 4.2. P2(G,H, k) when G is a star with n ≥ 2 external vertices is the same problem as P (G′,H, k) when G′ is a
complete graph of order n; if we consider the pairs of external vertices xp, xq (1 ≤ p, q ≤ n) in a star, they are all at distance
2. In a complete graph G′ all pairs of vertices are at distance 1. Hence the announced equivalence.

For a special case of trees, we give a complete description of a simple algorithm which will determine in linear time
whether a solution exists or not for P2(G,H, k).
We define a quaternary tree (or shortly quatree) as a tree where all internal vertices (i.e., non leaves) have degree at least

4. Let (B,W ) be the bipartition of the vertex set V (B is the set of black vertices and W of white vertices). The reader will
find more about special trees in [25].
A pendent star Sh(y; x0, x1, . . . , xn) in a quatree Q is the subgraph induced by the vertex set {y} ∪ N(y) where N(y) =

{x0, x1, . . . , xn} and x1, . . . , xn are leaves of Q . Q being a quatree, we have n ≥ 3. So Sh is a star for which at least three
external vertices are leaves of Q . Notice that x0 is generally not a leaf (except when Q itself is a star).

Proposition 4.2. Let Sh(y; x0, x1, . . . , xn) be a pendent star. A necessary condition for a coloring of N(y) to exist is that for any
two external vertices xp, xq either h(xp) = h(xq) or |hcxp − h

c
xq | ≤ 1 for each color c and there are exactly two colors, say c and

c ′, such that hcxp 6= h
c
xq and h

c′
xp 6= h

c′
xq .

Proof. As for the case of a star (see proof of Proposition 4.1) in any coloring there is no pair of external vertices xp, xq with
|hcxp−h

c
xq | ≥ 2 for some color c . We have necessarily

∑k
i=1 h

i
x = n, so we cannot have exactly one color c such that h

c
xp 6= h

c
xq .

Now suppose that there are at least three colors c1, c2, c3 with h
ci
xp 6= h

ci
xq , i ∈ {1, 2, 3}. As for the case of a star (see the proof

of Proposition 4.1), if hcixp = h
ci
xq − 1, xp must have color ci. It follows that xp or xq has at least two distinct colors, which is a

contradiction. �

Proposition 4.3. Let Sh(y; x0, x1, . . . , xn) be a pendent star. If there is a coloring of Sh, it is unique.

Proof. Suppose that the condition of Proposition 4.2 is satisfied.
In the case where h(xp) = h(xq) for each 1 ≤ p, q ≤ n, each external vertex x has the same color c. Then for each x,

hcx = n − 1 or h
c
x = n. In the first case, there is a color c

′
6= c such that, for each x, hc

′

x = 1 and thus x0 must get color c
′. In

the second case, all external vertices x0, x1, . . . , xn necessarily have color c.
In the case where there exist two vertices xp, xq with h(xp) 6= h(xq), there is a color c such that hcxp = h

c
xq − 1. Thus xp

has necessarily color c. So there is another color c ′ with hc
′

xp = h
c′
xq + 1 and xq must have color c

′. For each external vertex xf ,
f 6= p, q, since h(xp) 6= h(xq) we have h(xf ) 6= h(xp) or h(xf ) 6= h(xq). So as above we obtain the color of vertex xf . In this
way we can assign a color to each external vertex x. If an external vertex x receives two distinct colors, clearly there is no
solution. Now, from each vector h(x), we determine a unique color of x0. If there are distinct colors assigned to x0, there is
no solution; otherwise we obtain a coloring for x0, x1, . . . , xn and this coloring is unique. �

Theorem 4.1. P2(Q ,H, k) can be solved in linear time when Q is a quatree. Moreover, if there is a coloring, it is unique.

Proof. In the following algorithm, wewill start by coloring the vertices ofW and a similar second run will color the vertices
of B. W.l.o.g. we may remove all black leaves for the first run of the algorithm.

Algorithm. 1. G← Q
2. while G 6= ∅ or G is not a star
for each pendent star Sh(y; x0, x1, . . . , xn) do
2.1 if the condition of Proposition 4.2 is not satisfied then there is no solution
2.2 color x0, x1, . . . , xn according to h(x1), . . . , h(xn)
2.3 if the coloring fails, there is no solution
2.4 update h(x0) according to the (unique) coloring constructed
G← G \ {y, x1, . . . , xn}

3. if G is a star, then color x0, x1, . . . , xn
if the coloring fails, then there is no solution.

In step 2.2 the unique coloring is obtained as described in the proof of Proposition 4.3.
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Applying the algorithm to B, we finally obtain a unique coloring of Q if such a coloring exists.
For each pendent star Sh(y; x0, x1, . . . , xd), the condition of Proposition 4.2 can be checked in timeO(d(y)) and its coloring

(Proposition 4.3) can be obtained in time O(d(y)). It follows that the whole complexity is O(
∑
y d(y)) = O(n) since Q is a

quatree. �

From the previous result we conclude the following.

Corollary 4.1. P ∗2 (Q ,H, k) can be solved in linear time when Q is a quatree. Moreover, if there is a coloring, it is unique.

A (unique) coloring exists if there exist a coloring of the white vertices and a coloring of the black vertices and if both
colorings are compatible (no two adjacent vertices get the same color).
We have restricted ourselves to the case of quatrees; this has allowed us to obtain a simple linear algorithm. Notice

first that if all internal black vertices in a tree have degree 2, then the problem of coloring the white vertices is equivalent
to P1(G′,H ′, k), where G′ is the tree obtained by removing each black vertex linked to two white vertices w1, w2 and
introducing an edge [w1, w2].
In addition (i.e., besides having all internal black vertices with degree 2), if we have a degree at least 4 for each internal

white vertex, then one can solve the coloring problem by using the algorithm of P1(G,H, k) for the white vertices and the
first run of the algorithm of P2(G,H, k) in quatrees for the black vertices.
For the general case where G is a tree, the algorithms proposed here do not seem easy to be adapted to handle this case

even if a single color class (B orW ) has at the same time internal vertices of degree 2 and internal vertices with degree at
least 4.

5. Conclusion

We have studied some problemswhich could be solved in polynomial time for trees or sometimes for a subclass of trees:
the quatrees. These are generallyNP-complete for more general graphs. It would be interesting to examine some extensions
of these problems in the case of general trees; in particular, considering generalized neighborhoods likeN≤d(v) (with d ≥ 2)
could lead to further results.
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