258,612 research outputs found

    On a generalization of distance sets

    Get PDF
    A subset XX in the dd-dimensional Euclidean space is called a kk-distance set if there are exactly kk distinct distances between two distinct points in XX and a subset XX is called a locally kk-distance set if for any point xx in XX, there are at most kk distinct distances between xx and other points in XX. Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of kk-distance sets on a sphere in 1977. In the same way, we are able to give the same bound for locally kk-distance sets on a sphere. In the first part of this paper, we prove that if XX is a locally kk-distance set attaining the Fisher type upper bound, then determining a weight function ww, (X,w)(X,w) is a tight weighted spherical 2k2k-design. This result implies that locally kk-distance sets attaining the Fisher type upper bound are kk-distance sets. In the second part, we give a new absolute bound for the cardinalities of kk-distance sets on a sphere. This upper bound is useful for kk-distance sets for which the linear programming bound is not applicable. In the third part, we discuss about locally two-distance sets in Euclidean spaces. We give an upper bound for the cardinalities of locally two-distance sets in Euclidean spaces. Moreover, we prove that the existence of a spherical two-distance set in (d−1)(d-1)-space which attains the Fisher type upper bound is equivalent to the existence of a locally two-distance set but not a two-distance set in dd-space with more than d(d+1)/2d(d+1)/2 points. We also classify optimal (largest possible) locally two-distance sets for dimensions less than eight. In addition, we determine the maximum cardinalities of locally two-distance sets on a sphere for dimensions less than forty.Comment: 17 pages, 1 figur

    Good Random Matrices over Finite Fields

    Full text link
    The random matrix uniformly distributed over the set of all m-by-n matrices over a finite field plays an important role in many branches of information theory. In this paper a generalization of this random matrix, called k-good random matrices, is studied. It is shown that a k-good random m-by-n matrix with a distribution of minimum support size is uniformly distributed over a maximum-rank-distance (MRD) code of minimum rank distance min{m,n}-k+1, and vice versa. Further examples of k-good random matrices are derived from homogeneous weights on matrix modules. Several applications of k-good random matrices are given, establishing links with some well-known combinatorial problems. Finally, the related combinatorial concept of a k-dense set of m-by-n matrices is studied, identifying such sets as blocking sets with respect to (m-k)-dimensional flats in a certain m-by-n matrix geometry and determining their minimum size in special cases.Comment: 25 pages, publishe

    The Merrifield-Simmons conjecture holds for bipartite graphs

    Full text link
    Let G=(V,E)G = (V, E) be a graph and σ(G)\sigma(G) the number of independent (vertex) sets in GG. Then the Merrifield-Simmons conjecture states that the sign of the term σ(G−u)⋅σ(G−v)−σ(G)⋅σ(G−u−v)\sigma(G_{-u}) \cdot \sigma(G_{-v}) - \sigma(G) \cdot \sigma(G_{-u-v}) only depends on the parity of the distance of the vertices u,v∈Vu, v \in V in GG. We prove that the conjecture holds for bipartite graphs by considering a generalization of the term, where vertex subsets instead of vertices are deleted.Comment: 8 page

    Between Shapes, Using the Hausdorff Distance

    Get PDF
    Given two shapes A and B in the plane with Hausdorff distance 1, is there a shape S with Hausdorff distance 1/2 to and from A and B? The answer is always yes, and depending on convexity of A and/or B, S may be convex, connected, or disconnected. We show a generalization of this result on Hausdorff distances and middle shapes, and show some related properties. We also show that a generalization of such middle shapes implies a morph with a bounded rate of change. Finally, we explore a generalization of the concept of a Hausdorff middle to more than two sets and show how to approximate or compute it

    Rate-distance tradeoff for codes above graph capacity

    Get PDF
    The capacity of a graph is defined as the rate of exponential growth of independent sets in the strong powers of the graph. In the strong power an edge connects two sequences if at each position their letters are equal or adjacent. We consider a variation of the problem where edges in the power graphs are removed between sequences which differ in more than a fraction δ\delta of coordinates. The proposed generalization can be interpreted as the problem of determining the highest rate of zero undetected-error communication over a link with adversarial noise, where only a fraction δ\delta of symbols can be perturbed and only some substitutions are allowed. We derive lower bounds on achievable rates by combining graph homomorphisms with a graph-theoretic generalization of the Gilbert-Varshamov bound. We then give an upper bound, based on Delsarte's linear programming approach, which combines Lov\'asz' theta function with the construction used by McEliece et al. for bounding the minimum distance of codes in Hamming spaces.Comment: 5 pages. Presented at 2016 IEEE International Symposium on Information Theor
    • …
    corecore