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Abstract
Given two shapes A and B in the plane with Hausdorff distance 1, is there a shape S with Hausdorff
distance 1/2 to and from A and B? The answer is always yes, and depending on convexity of A
and/or B, S may be convex, connected, or disconnected. We show a generalization of this result
on Hausdorff distances and middle shapes, and show some related properties. We also show that a
generalization of such middle shapes implies a morph with a bounded rate of change. Finally, we
explore a generalization of the concept of a Hausdorff middle to more than two sets and show how
to approximate or compute it.
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1 Introduction

For two sets A and B in R2, we define the directed Hausdorff distance as

d ~H(A,B) = sup
a∈A

inf
b∈B

d(a, b),

where d denotes the Euclidean distance. The undirected Hausdorff distance is defined as

dH(A,B) = max(d ~H(A,B), d ~H(B,A)).
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13:2 Between Shapes, Using the Hausdorff Distance

Figure 1 Hausdorff morphs between three shapes.

If A and B are closed sets then dH(A,B) = r is equivalent to saying that r is the smallest
value such that A ⊆ B ⊕Dr and B ⊆ A⊕Dr, where ⊕ denotes the Minkowski sum, and Dr

is a disk of radius r centered at the origin. Recall that the Minkowski sum of sets A and B
is the set {a+ b | a ∈ A, b ∈ B}. As we will use the containment property throughout the
paper, we will only consider closed sets.

The Hausdorff distance has been widely used in computer vision [14] and computer
graphics [6, 11] for tasks such as template matching, and error computation between a model
and its simplification. At the same time, the Hausdorff distance is a classic mathematical
concept. Our research motivation is to study this profound concept from a new perspective.
Algorithms to compute the Hausdorff distance between two given sets are available for many
types of sets, such as points, line segments, polylines, polygons, and simplices in k-dimensional
Euclidean space [3, 4, 7]. However, the question whether a polynomial time algorithm exists
to compute the Hausdorff distance between general semialgebraic sets remains open [13].

In this paper, we consider the natural problem of finding a set that lies “between” two
or more input sets, in a Hausdorff sense. In Section 2 we investigate the Hausdorff middle
of sets A and B; this is a set that has minimum undirected Hausdorff distance to A and B.
Differently put, it minimizes the maximum of four directed Hausdorff distances. We show
that when the Hausdorff distance between A and B is assumed to be 1, there is always a
Hausdorff middle that has Hausdorff distance 1/2 to A and B, and this is the best possible.
We relate the convexity of A and/or B to the convexity and connectedness of the Hausdorff
middle, and study its combinatorial complexity.

We actually treat the middle more generally, by defining a class of sets that smoothly
interpolate between A and B, giving a morph between them. Figure 1 shows two examples
of such morphs. We prove that this morph has a bounded rate of change. Our approach does
not require any correspondence between features of the input to be calculated. However, our
approach is unusual in the sense that the intermediate shapes when morphing between e.g.
two polygons are not polygons themselves. Most morphing algorithms typically interpolate
only the boundary, and keep all intermediate shapes polygonal [5, 17, 8, 9, 10, 18].

In Section 3 we extend to Hausdorff middles of more than two sets and generalize
several results. We assume that the maximum Hausdorff distance over all pairs of input
sets is 1 and examine the smallest Hausdorff distance for a middle set. That is, given sets
M = {A1, . . . , Ak}, we are interested in the value α(M) = minS maxi=1,...,k dH(Ai, S). This
value α(M) is no longer 1/2, but depends on the input. For convex sets, we show that a
value ≈ 0.608 can always be realized and is sometimes necessary, whereas for non-convex
sets it can be as bad as 1. For a given set of polygons with total complexity n, we show
that α(M) and the Hausdorff middle can be computed in O(n6) time, and, for any constant
ε > 0, (1+ε)-approximated in O(n2 log2 n log 1/ε). We note that other interpolation methods
between two shapes do not have a natural generalization to a middle of three or more sets.

Our proofs use three types of arguments. First, many of our arguments rely on simple ma-
nipulations of the formal definition of the Hausdorff distance. Those arguments immediately
generalize to other normed vector spaces, for instance, (Rd, ‖·‖∞) or the continuous functions



M. van Kreveld, T. Miltzow, T. Ophelders, W. Sonke, and J. L. Vermeulen 13:3

A B A B A B

Figure 2 Three possible Hausdorff middles of A and B: two points, a line segment, and S1/2.

endowed with the uniform norm topology C(R). We do not state those generalizations
explicitly, as this is not our focus. The second type of argument is of a topological nature.
Using continuity and connectivity, we infer related properties to the output, by constructing
topological structures or conclude that they cannot exist. The third type of argument uses
2-dimensional Euclidean geometry directly. We construct features, like vertices, edges and
circular arcs and argue about their existence, and give distance bounds. These arguments are
often intricate and do not generalize. They are of particular value, as the two-dimensional
Euclidean plane is often the most interesting case in computational geometry.

2 The Hausdorff middle of two sets

Consider two closed compact sets A and B in R2; we are interested in computing a Hausdorff
middle: a set C that minimizes the maximum of the undirected Hausdorff distances to A
and B. That is,

C = argmin
C′

max(dH(A,C ′), dH(B,C ′)).

Note that there may be many such sets that minimize the Hausdorff distance; see Figure 2 for
a few examples. It might seem intuitive to restrict C to be the minimal set that achieves this
distance, but this is ill-defined: the minimal set is not necessarily unique, and the common
intersection of all minimal sets is not a solution itself (see Figure 3). However, the maximal
set is well-defined and unique. Let dH(A,B) = 1. Then

S = (A⊕D1/2) ∩ (B ⊕D1/2)

is the maximal set with Hausdorff distance 1/2 to A and B (we prove this below in Lemma 2).
We want to show that dH(A,S) ≤ 1/2 and dH(B,S) ≤ 1/2. In fact, we can prove a more
general statement.

We define Sα := (A⊕Dα) ∩ (B ⊕D1−α) for α ∈ [0, 1]. We also use seg(a, b) to denote
the line segment connecting points a and b.

I Theorem 1. Let A and B be two compact sets in the plane with dH(A,B) = 1. Then
dH(A,Sα) = α and dH(B,Sα) = 1− α.

B

A

1/4

Figure 3 Two different minimal sets achieving minimal Hausdorff distance to A and B.
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S1/2A B2

Figure 4 Sets A and B for which S1/2 is disconnected. The shaded areas around A and B

represent A⊕D1/2 and B ⊕D1/2, respectively.

Proof. We first show that dH(A,Sα) ≤ α. The proof for dH(B,Sα) ≤ 1 − α is analogous
and therefore omitted. We will infer dH(A,Sα) ≤ α from d ~H(A,Sα) ≤ α and d ~H(Sα, A) ≤ α;
thereafter we will show equality.

Consider any point a ∈ A; by our assumption that dH(A,B) = 1, there is a point b ∈ B
with d(a, b) ≤ 1. Now consider a point s ∈ seg(a, b) with d(a, s) ≤ α and d(b, s) ≤ 1 − α;
clearly this point must be in Sα, as it is contained in both A ⊕ Dα and B ⊕ D1−α, and
it has d(a, s) ≤ α. As this works for every a ∈ A, it holds that d ~H(A,Sα) ≤ α. The fact
that d ~H(Sα, A) ≤ α follows straightforwardly from Sα being a subset of A ⊕ Dα. Thus,
dH(A,Sα) ≤ α.

To show equality, assume that the Hausdorff distance is realized by a point â ∈ A with
closest point b̂ ∈ B, at distance 1. Consider the point ŝ ∈ seg(â, b̂) with d(â, ŝ) = α and
d(b̂, ŝ) = 1 − α. As observed, ŝ ∈ Sα. Since ŝ is the closest point of Sα to â, and b̂ is the
closest point of B to ŝ, equality follows. J

I Lemma 2. Sα is the maximal set that satisfies dH(A,Sα) = α and dH(B,Sα) = 1− α.

Proof. Consider any set T for which we have d ~H(T,A) ≤ α and d ~H(T,B) ≤ 1 − α. As
A⊕Dα contains all points with distance at most α to A, we have that T ⊆ A⊕Dα; similarly,
we have that T ⊆ B ⊕D1−α. By the definition of Sα, this implies that T ⊆ Sα. As this
holds for any T , we conclude that Sα is maximal. J

2.1 Properties of Sα
In this section, we study the convexity and connectedness of Sα. Recall that a set A ⊆ R2

is convex if for any two points a, b ∈ A, the segment seg(a, b) between them is completely
contained in A. Also, recall that a set A ⊂ R2 is connected if for any two points a, b ∈ A,
there exists a continuous curve c : [0, 1]→ A such that c(0) = a and c(1) = b. This type of
connectedness is known as path-connectedness, but we use the term connected for simplicity.
We observe the following properties:
1. If A and B are convex, Sα is convex;
2. If A is convex and B is connected, Sα is connected;
3. For some connected sets A and B, Sα is disconnected.
Property 1 is straightforward: the Minkowski sum of A and B with a disk is convex, and the
intersection of convex objects is itself also convex. The example in Figure 4 demonstrates
Property 3; in fact, any Hausdorff middle will be disconnected for those input sets.

The next lemma establishes Property 2:
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b′

b

π

s

s′

ρ(b)

ρ(b′)

ρ3/4(b)

ρ3/4(b
′)

Figure 5 Illustration of the proof showing
that Sα is connected if A is convex (sketched for
α = 3/4). The shaded areas around A and B
represent A⊕D3/4 and B ⊕D1/4, respectively,
so that the doubly-shaded area is S3/4.

A

1/2

B2 S1/2

A B1 S1/2

Figure 6 Although B2 is a translate of B1,
the middle set between A and B2 is not a trans-
late of the middle set between A and B1.

I Lemma 3. Let A and B be two connected regions of the plane with Hausdorff distance 1,
and A convex. Then Sα = (A⊕Dα) ∩ (B ⊕D1−α) is connected for α ∈ [0, 1].

Proof. See Figure 5 for an illustration. Because A is convex, there is a continuous map
ρ : B → A that maps each point of B to a closest point (within distance 1) in A. For b ∈ B,
let ρα(b) = αρ(b) + (1− α)b. We have that ρα : B → Sα is also continuous.

Now take any two points s and s′ in Sα; respectively, they have points b and b′ ∈ B
within distance 1 − α. The segments between s and ρα(b) and between s′ and ρα(b′) lie
completely in Sα. Take a continuous curve π from b to b′ inside B. The image of π under ρα
connects ρα(b) to ρα(b′) within Sα, so s and s′ are connected inside Sα. J

We note that Sα may contain holes. Furthermore, Sα is not shape invariant when B is
translated with respect to A. For example, let A be the union of the left and bottom sides of
a unit square and let B1 and B2 be the left and right sides of that same unit square. Then
(A⊕D1/2) ∩ (B1 ⊕D1/2) is not a translate of (A⊕D1/2) ∩ (B2 ⊕D1/2). See Figure 6.

2.2 Complexity of Sα
In this section, we describe the complexity of Sα in terms of the number of vertices, line
segments, and circular arcs on its boundary, for several types of polygonal input sets. Recall
that ∂A denotes the boundary of set A.

I Lemma 4. Let A be a convex polygon with n vertices and B a simple polygon with m
vertices. Then Sα consists of O(n+m) vertices, line segments and circular arcs, and this
bound is tight in the worst case.

Proof. For brevity we let A⊕ = A⊕Dα and B⊕ = B ⊕D1−α.
There is a trivial worst-case lower bound of Ω(n+m) by taking α = 0 or α = 1. Note

that if the boundaries of A⊕ and B⊕ would consist of only line segments, the upper bound is
easy to show: A⊕ is convex, and its boundary can therefore intersect each segment of ∂B⊕
at most twice, making ∂Sα consist of (parts of) segments from ∂A⊕ and ∂B⊕ and at most
O(m) intersection points. The problem is that ∂A⊕ and ∂B⊕ also contain circular arcs, in
which case an arc of ∂B⊕ may intersect ∂A⊕ many times.

ISAAC 2020
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A⊕b

Figure 7 An arc b of ∂B⊕ (blue) may intersect ∂A⊕ (red) many times when α < 1− α.

To show an upper bound of O(n + m), we distinguish two cases. In the first case, we
assume α ≥ 1− α. Note that in this case, the circular arcs that are part of the boundary
of A⊕ have a radius larger or equal to those of B⊕. Additionally, ∂A⊕ is smooth and an
alternating sequence of circular arcs and segments, as A is convex. In this case, we do in
fact have that any line segment or circular arc b of ∂B⊕ can intersect ∂A⊕ at most twice.
Consider two intersection points of b with ∂A⊕: as the curvature of ∂A⊕ is at most that of b,
there can never be another intersection point between these two.

For the second case, we assume α < 1− α. Again, take an arbitrary arc b of ∂B⊕ that
intersects some arc a of ∂A⊕. We distinguish two cases: the center point of the disk whose
boundary contains a is inside B⊕, or it is outside. If it is outside, b can only intersect ∂A⊕
in two points. If it is inside, ∂A⊕ may intersect b many times; see Figure 7. We charge these
intersections to the arcs of ∂A⊕. We argue that each arc a of ∂A⊕ is charged at most four
times: Consider any α-disk Dα and any (1− α)-disk D1−α containing the center of Dα, the
latter will cover at least 1/3 of the perimeter of the former. Hence, the boundary of the
union of any number of such (1− α)-disks intersects Dα at most four times. The circular
arcs of ∂A⊕ cannot be charged more often because they are less than a full circle. J

I Lemma 5. Let A and B be two simply connected polygons of n and m vertices, respectively.
Then Sα consists of O(nm) vertices, line segments and circular arcs, and this bound is tight
in the worst case.

Proof. The worst-case lower bound of Ω(nm) follows by taking A and B to be two rotated
“combs”; see Figure 4. For α = 1/2, Sα consists of Ω(nm) distinct components. The upper
bound follows directly from the fact that A⊕Dα and B ⊕Dα have complexities O(n) and
O(m), respectively. J

In fact, any Hausdorff middle has complexity Θ(nm) for the example in Figure 4. Sα is
maximal, and other middles must have at least some part of every component of Sα.

2.3 Sα as a morph
By increasing α from 0 to 1, Sα morphs from A = S0 into B = S1. (Examples of such
morphs are presented in Figures 1 and 8.) The following lemma shows that this morph has a
bounded rate of change.

I Lemma 6. Let Sα and Sβ be two intermediate shapes of A and B with α ≤ β. Then
dH(Sα, Sβ) = β − α.

Proof. We have dH(Sα, Sβ) ≥ β − α because, by the triangle inequality, dH(A,B) = 1 ≤
dH(A,Sα) + dH(Sα, Sβ) + dH(Sβ , B) ≤ α+ dH(Sα, Sβ) + 1− β.
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S1/2

A

B

1

S1/4

S3/4

1 1 1

Figure 8 Example morphs.
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1

A

B

S1/2

Figure 9 The left and middle figure show the offsets of A, respectively B with distance 1/2.
The right figure shows the resulting S1/2 in green. Any connected Hausdorff middle must cross the
vertical middle line or stay on one side of it. In both cases, the Hausdorff distance doubles.

It remains to show that dH(Sα, Sβ) ≤ β − α. We show that Sβ ⊆ Sα ⊕Dβ−α; the proof
that Sα ⊆ Sβ +Dβ−α is analogous. Let p be some point in Sβ . Then, by definition of Sβ ,
there exist some points a ∈ A and b ∈ B such that d(a, p) ≤ β and d(b, p) ≤ 1− β. Let p̄ be
the point obtained by moving p in the direction of a by β − α. By the triangle inequality,
we then have that d(a, p̄) ≤ β − (β − α) = α and d(b, p̄) ≤ (1− β) + (β − α) = 1− α. This
implies that p̄ ∈ Sα. As p was an arbitrary point in Sβ , and d(p, p̄) ≤ β − α, we have that
Sβ ⊆ Sα ⊕Dβ−α. So dH(Sα, Sβ) ≤ β − α. J

The lemma implies that, even though the number of connected components of Sα can
change when α changes, new components arise by splitting and never “out of nothing”, and
the number of components can only decrease through merging and not by disappearance.

The morph from A to B has a consistent submorph property, formalized below.

I Observation 7. If a morph from A = S0 to B = S1 contains a shape C, then the morph
from A to C concatenated with the morph from C to B is the same as the morph from A to
B: they contain the same collection of shapes in between and in the same order.

As a corollary of this observation, {α ∈ [0, 1] | Sα is convex} is a connected interval.

2.4 The cost of connectedness
For some applications, it might be necessary to insist that Sα is always connected. However,
in the worst case, the cost of connecting all components of Sα can be that its Hausdorff
distance to A and B becomes 1. See Figure 9 for an example where this is the case. In fact,
any connected Hausdorff middle has distance 1 for this example.

3 The Hausdorff middle of more than two sets

A natural question is whether the results from the previous section extend to more than two
input shapes. There are several ways to formalise the notion of a Hausdorff middle between
multiple shapes. Analogous to the case of two sets, we are interested in a middle shape
that minimizes the maximum Hausdorff distance to each input set. LetM = {A1, . . . , Am}
be a collection of m input shapes with largest pairwise Hausdorff distance 1. We define
Tα as

⋂
i(Ai ⊕ Dα); the (maximum) middle set is then given by the smallest value α for

which Tα ⊕ Dα contains all input sets. We denote this smallest α by α(M) := min{α |
maxi dH(Ai, Tα) ≤ α }. If α is clear from the context, we use the notation A⊕ to mean
A⊕Dα.
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p

Tα

T⊕
α

Figure 10 The pairwise Hausdorff distance in this construction is 1, and for any α < 1, T⊕
α does

not contain point p.

In this section, we first study the largest possible α(M) for general and convex input.
We then study some general properties of Tα with respect to connectivity and convexity.
After this, we consider whether there is some subset ofM that requires the same value of α,
and obtain a Helly-type property for convex input. Lastly, we will give various algorithms to
compute or approximate α(M) efficiently.

3.1 The largest α(M)
In this section, we are interested in the largest possible value of α(M). We first discuss the
general case and then study the case where all sets A ∈ M are convex. In both cases, we
provide an exact answer. This section relies on some tedious calculations, which turn out to
be easier if we do not normalize pairwise distances of our objects to 1.

As it turns out, for some inputs it may be the case that α(M) = 1; see Figure 10. Here,
there can be no shape with Hausdorff distance < 1 to all the input shapes, meaning any of
the three input shapes can be chosen as “the middle”. Hence, for two sets, we always have
α(M) = 1/2, but for more sets, it depends on the input, and α(M) will be in [1/2, 1]. The
example in Figure 10 requires non-convex sets, raising the question of what the range of
α(M) can be when all Ai are convex.

If we have three convex sets that are points, and they form the corners of an equilateral
unit-side triangle, then we can easily see that α(M) = 1/

√
3 ≈ 0.577 and the middle shape

is exactly the point in the middle of the triangle.
An example with three line segments shown in Figure 11 surprisingly achieves (for

λ ≈ 0.253135, θ ≈ 123.37◦) a larger value α∗ ≈ 0.6068 = r, which we call the magic value.
Lemma 9 shows that no three convex sets achieve α(M) > α∗. Thus the magic value is the
best possible upper bound for three convex sets.

We define the magic value as α∗ := 1/z ≈ 0.6068, where z := min{λ + 1 − cos(2θ) |
λ ≥ 0, θ ∈ (90◦, 180◦), and λ+ 1− cos(2θ) = ‖(−λ cot(2θ)− sin(2θ) + sin(θ), λ− cos(2θ) +
cos(θ))‖} ≈ 1.647986325231 (at λ ≈ 0.253135, θ ≈ 123.37◦, verified using Wolfram Cloud).

I Lemma 8. Let M = {A1, . . . , Am} be a collection of convex regions in the plane, and
α := α(M). There is some Ai ∈M with d ~H(Ai, Tα) = α.

Proof. By construction, we have d ~H(Tβ , Ai) ≤ β for all i and all β. (Recall that this
is equivalent to Tβ ⊆ Ai ⊕ Dβ .) Moreover, if Tβ is nonempty, then for any i, the map
γ 7→ d ~H(Tγ , Ai) is continuous on the domain [β,∞), as Tγ changes continuously. We show

ISAAC 2020
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r =
α

1
θ

θ

λ

A1

A3

A2

Tr

Figure 11 Three segments A1, A2, and A3. Of these, A3 is the diameter of a circle with radius r;
the other two (A1 and A2) are tangent to the circle and are copies of one another reflected through
A3, such that all pairwise Hausdorff distances are at most 1 (length of dashed segments). The top
left vertex of A3 is furthest (at distance r) from the middle set Tr (green), so α({A1, A2, A3}) is the
radius r of the circle.

α

zα

θ

θ

b(θ) = (−α sin(2θ), α− α cos(2θ))

t = (0, α)

(−α sin(θ), α− α cos(θ)) = a

pλ(θ) = (−λ cot(2θ)− α sin(2θ), λ+ α− α cos(2θ))

λC

H(θ)

b(−θ) = (0, 0) H(−θ)

Ht

Figure 12 Derivation of the expression for z.

that for some i, we have d ~H(Ai, Tα) = α. If instead d ~H(Ai, Tα) < α for all i, then unless Tβ
is empty for all β < α, we can decrease α, contradicting minimality of α. If instead α is the
minimal value for which Tα is nonempty, then Tα has no interior (when viewed as a subset
of the plane). Because Tα is the intersection of convex sets, it is convex. If it has no interior,
it is either a segment or a point, and by convexity it must lie on the boundary of A⊕i for
some i, contradicting that d ~H(Ai, Tα) < α. J

I Lemma 9. Let M = {A1, A2, A3} be convex regions in the plane. Let α := α(M) and
d = maxi,j dH(Ai, Aj), then d ≥ α/α∗ (equivalently d ≥ zα).

Proof. We refer to the full paper for full details, and only provide a proof sketch here.
We argue that in order to obtain d ≤ zα, the regions A1, A2, and A3 may without loss of

generality be assumed to have a particular shape. We have d ~H(Ai, Tα) ≤ α for all i, and by
Lemma 8, also that d ~H(Ai, Tα) = α for some i. So without loss assume that d ~H(A3, Tα) = α,
due to a point a ∈ A3 with closest point t ∈ Tα. We argue that t lies on the boundary of
Tα, and since Tα does not intersect the open disk of radius α centered at a, Tα is either
(a) tangent to this disk at point t, or (b) has a corner of A⊕1 ∩ A

⊕
2 there. We can exclude
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case (a) because by convexity, the directed Hausdorff distance from a to the region A1 or A2
that gives rise to the tangent would be at least 2α, and hence d ≥ 2α > zα. Because we are
looking for shapes that satisfy d ≤ zα, case (b) remains, so t lies on the boundaries of A⊕1
and A⊕2 simultaneously. Let C be the circle of radius α centered at t. Neither A1 nor A2 lie
inside C, but both A1 and A2 touch C, say at points b1 and b2, respectively. By convexity,
the tangents to C at b1 and b2 define half-planes in which A1 and A2 must lie. Note that a
also lies on C, and without loss of generality, b1 lies (between 90◦ and 180◦) clockwise and
b2 lies (between 90◦ and 180◦) counter-clockwise of a on C. Since the half-planes containing
A1 and A2 must lie sufficiently close to a for the Hausdorff distance from A3 to be small, the
actual angles are actually quite a bit less than 180◦ from a. On the other hand, the angle
between the two half-planes cannot be too large because the point of A1 closest to a also
needs to be sufficiently close to A2. This trade-off leads to the claimed value of z, derived
from Figure 12 as shown in the full version of the paper. J

3.2 Properties of Tα
In this subsection, we use α := α(M) for simplicity. Similar to Section 2.1, we examine the
properties of Tα for different types of input. We arrive at straightforward generalizations of
the results obtained for two sets:
1. If all Ai are convex, then Tα is convex.
2. If one of the Ai is connected and the rest are convex, then Tα is connected.
3. For some input where each Ai is connected, and at least two are not convex, Tα is

disconnected.

Property 1 follows from the same argument as before: Tα is the intersection of convex
sets, and therefore itself convex. Property 3 can be shown by extending the construction
from Figure 4 with some other sets: if the intersection of two of the sets is not connected,
adding more sets will not make Tα connected as long as the pairwise Hausdorff distance does
not increase. We establish Property 2 with the following lemma:

I Lemma 10. Let M = {A1, . . . , Am} be a set of connected regions of the plane, with Ai
convex for i < m. Then Tα is connected.

Proof. Consider the set T ′α =
⋂m−1
i=1 A⊕i . This set is convex, as it is the intersection of convex

sets. Also note that by definition of Tα, Am has directed Hausdorff distance at most α to T ′α.
Let A = T ′α and B = Am, normalised such that d ~H(B,A) = 1. We now apply Lemma 3 to A
and B, using zero as the value for α. We obtain the result that Tα = T ′α ⊕D0 ∩Am ⊕Dα is
connected. Note that the Hausdorff distance from A to B may be bigger than one, but this
does not matter for the proof of Lemma 3. J

3.3 Helly-type properties
An interesting question is whether there are any sets in the input that could be removed while
maintaining the same optimal value of α. To make this precise, we need some definitions.
We say a collectionM of m sets is d-sufficient, if there is a collectionMd ⊂ M of d sets
such that α(M) = α(Md).

I Lemma 11. For every m, there is a collectionM of m connected sets in the plane that is
not m− 1 sufficient.
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dh = 1

r = 1 + ε

(a)

α = 1+ε
2

Tα

α = 1+ε
2

(b)

α = 1+ε/2
2

Tα

(c)

Figure 13 When the input sets are not convex, all sets may be necessary to realise the value of
α. The dotted circle is part of all sets (as indicated by the colored dots); each pair of sets has an
overlapping protrusion, spaced equally around the circle. (a) shows the radius of the circle and the
Hausdorff distance. (b) shows that when all sets are present, the required value of α is (1 + ε)/2. (c)
shows that with the blue set removed, the required value of α is reduced to (1 + ε/2)/2: the dilation
of the protruded part of Tα fully contains the part of the disk that would otherwise not be covered,
indicated by the dashed and dotted arcs.

Figure 13 depicts a collection of four sets which are not 3-sufficient. The example has
one set that is a disk of radius 1 + ε (shown in orange on the left), and m− 1 sets that are
circles on the boundary of this disk with m− 1 protrusions of some small length ε. These
protrusions are evenly spaced along the boundary of the disk, and in each location there
is a distinct set out of the m − 1 sets missing (each subset of size m − 2 is represented
by some protrusion). This way, for the case where all sets are present (Figure 13b), the
protrusions do not have any influence on Tα, meaning that α ≥ (1 + ε)/2 is required to let
T⊕α contain the entire disk. However, if we remove one set (other than the yellow disk), there
will be one protrusion where all sets are now present, meaning it will change the shape of Tα
(Figure 13c). Because of this, the center of the disk will already be covered with a smaller
value of α, namely (1 + ε/2)/2. Note that if we remove the yellow disk, it is sufficient to use
a value of α = ε/2. Further note that with a minor adaptation, all sets become polygonal
and simply-connected.

We have shown that in general, we cannot remove any sets from the input while maintaining
the same value of α. However, when all input sets are convex, we can show that there is
always a subset of size at most three that has the same optimal value of α.

I Lemma 12. Let M = {A1, . . . , Am} be a collection of convex sets. Then there exists a
subcollectionM′ ⊆M of size at most three such that α(M) = α(M′).

Proof. Consider growing some value β from 1/2 to 1. At some point, T⊕β contains all sets
inM. There are two ways in which this can happen: (1) Tβ is non-empty for the first time,
and immediately the condition holds, or (2) Tβ grows, and its dilation now covers the last
point of all sets inM. As Tβ is convex no new components can appear except for the first,
and thus we have only those two cases.

In Case 1, Tβ is either a segment or a point. If it is a segment, it is generated by two
parallel edges of some Ai, Aj ∈M such that we have α({Ai, Aj}) = α(M). If it is a point, it
is the common intersection of the dilation of some number of sets fromM; we argue that you
can always pick three sets for which β is optimal. Let a be the single point in Tβ ; consider
the vectors V perpendicular to the boundaries of the dilated input sets intersecting in this
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point. The vectors V must positively span the plane1: otherwise, all vectors would lie in the
same half-plane, and a would not be the first point to appear in Tβ . As we are in the plane,
there must be subset U ⊂ V of three vectors that positively span the plane by themselves.
The three corresponding sets Ai, Aj , Ak ∈M satisfy α({Ai, Aj , Ak}) = α(M).

In Case 2, as our input sets are convex, Tβ itself is also convex. Let a ∈ Ai be the last
point ofM to be covered by T⊕β . As T⊕β is convex, a must be on its boundary, and therefore
either on an edge or a circular arc of T⊕β . Each edge can be traced back directly to an edge of
some Aj , in which case Ai and Aj have Hausdorff distance 2β, and α({Ai, Aj}) = α(M) for
any choice of k. Each circular arc is generated by a vertex of Tβ , which in turn is generated
by the intersection of the boundaries of some A⊕j and A⊕k , in which case we also have that
α({Ai, Aj , Ak}) = α(M). J

Combining the previous lemma with Lemma 9, we obtain the following result.

I Theorem 13. LetM = {A1, . . . , Am} be a collection of convex regions in the plane, and
let Tα =

⋂
iA
⊕
i . Then α(M) is at most the magic value α∗ ≈ 0.6068.

3.4 Algorithms
For any given collection of shapesM = {A1, . . . , Am}, we want to compute α(M). We present
two algorithms, a simple approximation algorithm and a more complex exact algorithm.
They both use the same decision algorithm as a subroutine. To be precise: given a collection
of sets M and some α, the decision algorithm decides if α ≤ α(M). We first present an
algorithm for the decision problem. Then we sketch how they are used in the approximation
algorithm and the exact algorithm; details are deferred to the appendix. We denote all
vertices and edges of the Ai as features ofM.

Assuming the input has total complexity n, we can test a given value of α as follows.
Compute the intersection Tα of the dilations A⊕1 , . . . , A⊕m in O(n2 logn) time, using the
construction of an arrangement of straight and circular arcs [19]. The set Tα will always have
at most quadratic complexity, but it can be disconnected. Next we compute T⊕α . We take
every connected component T of Tα separately, compute T⊕, and then compute their union.
Since the connected components of Tα are disjoint and can be partitioned into O(n2) convex
pieces, the Minkowski sums of these pieces with Dα form a set of pseudo-disks with summed
complexity O(n2), see [20]. It is known that such a union has O(n2) complexity and can be
computed in O(n2 log2 n) time [1, 20]. Thus, we can compute Tα in O(n2 log2 n) time.

Note that Tα ⊆ A⊕i , by definition. It remains to test Ai ⊆ T⊕α , for each Ai. We test all
those containments by a standard plane sweep [12] in O(n2 logn) time. As soon as we find
any proper intersection between an arc of ∂(T⊕α ) and some edge of some ∂Ai, we can stop
the sweep and conclude that α needs to be larger. If there were no proper intersections of
this type, there were only O(n2) events (and not O(n3)), including the ones between edges
of different ∂Ai. When there are no proper intersections, each shape Ai lies fully inside or
outside T⊕α . We can test this in O(n2 logn) time (replace each Ai by a single point and then
test by a plane sweep or planar point location [12]), and conclude that α must be larger or
smaller than the one tested. Thus this decision algorithm takes O(n2 log2 n) total time.

The decision algorithm leads to a simple approximation algorithm to find a value of α
that is at most a factor 1 + ε from the optimum. We can perform dlog 1/εe steps of binary
search in the range [1/2, 1], testing if T⊕α contains all Ai using the above decision algorithm.
This takes O(n2 log2 n log 1/ε) time in total.

1 We say vi ∈ R2 span the plane positively, if for every point p ∈ R2 there are some numbers ai ∈ R+ such
that

∑
aivi = p.
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α

α

α

2α 2α

α
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Figure 14 Left, two sets shown by red and blue line segments, and the construction of Tα from
lines parallel to edges ofM and circles centered at vertices ofM. Right, construction of T⊕

α from
lines at distance 2α from edges ofM, circles of radius 2α centered at vertices ofM, and circles of
radius α centered at certain vertices of Tα.

We can compute an exact value of α(M) in polynomial time. To this end, we imagine
a continuous process where we grow α from 1/2, and keep track of T⊕α . The first time
(smallest α) T⊕α covers all Ai, we have found the Hausdorff distance α(M) corresponding to
the Hausdorff middle, and we can construct Tα explicitly as the Hausdorff middle. Such an
approach is sometimes called wavefront propagation or continuous Dijkstra; it has been used
before to compute Voronoi diagrams [12, 16], straight skeletons [2] and shortest paths on
terrains [22]. This approach is combinatorial if there are finitely many events and we can
determine each on time, before it occurs. Instead of explicitly maintaining T⊕α when α grows,
we will determine a polynomial-size set of critical α values that contains the sought one, and
find it by binary search, using the decision algorithm described above.

The value α(M) that we aim to compute occurs when T⊕α has grown just enough to cover
all Ai. This can happen in three ways, roughly corresponding to a vertex of Ai becoming
covered, an edge of Ai becoming covered at some point “in the middle”, or a hole of T⊕α
collapsing and disappearing interior to Ai. We call the vertices, edges, and arcs ofM and
T⊕α the features (of their boundaries). The three ways of covering all Ai, expressed in the
features ofM and T⊕α , are now: (1) a feature of T⊕α coincides with a vertex of some Ai, (2)
a vertex of T⊕α lies on a feature of some Ai, or (3) features of T⊕α collapse and cause a hole of
T⊕α to disappear. In the last case, when that hole was inside some Ai, this can be the event
where Ai is covered fully for the first time. In all cases, one, two, or three features of T⊕α
and zero or one feature of some Ai are involved, and at most three features in total. When
three edge or circular arc features pass through a single point for some value of α, we say
that these features are concurrent. Similarly, when an edge or circular arc passes through a
vertex for some α, we say they are concurrent.

It can be that more than three features of T⊕α pass through the point where e.g. a hole in
T⊕α disappears, but then we can still determine this critical value by examining just three
features of T⊕α , and computing the α value when the curves of these three features are
concurrent.

Let us analyze which features make up the boundary of T⊕α , see Figure 14. There are
four types: (1) straight edges, which are at distance 2α from an edge ofM, and parallel to
it, (2) circular arcs of radius 2α, which are parts of circles centered at vertices of M, (3)
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circular arcs of radius α, centered at a vertex of Tα, and (4) vertices where features of types
(1)–(3) meet. Every one of the features of the boundary of T⊕α is determined by one or two
features ofM. In particular, each arc of type (3) is centered on an intersection point which
is a vertex of Tα, of which there can be Θ(n2) in the worst case (Figure 4). Depending on the
type of intersection point, its location may change linearly in α, or according to a low-degree
algebraic curve (when the intersection has equal distance α to an edge and a vertex ofM).

Since any critical value can be determined as a concurrency of two (vertex and edge or
arc) or three features (three edges or arcs) fromM and T⊕α , and features of T⊕α in turn are
determined by up to two features ofM, every critical value depends on at most six features
of the input,M. If we choose any tuple with up to six features ofM, and compute the α
values that may be critical, we obtain a set of O(n6) values that contain all critical α values,
among which α(M). We can compute this set in O(n6) time, as it requires O(1) time for
each tuple of up to six features ofM.

I Theorem 14. Let M be a collection of m polygonal shapes in the plane with total com-
plexity n, such that the Hausdorff distance between any pair is at most 1, and let ε > 0 be a
constant. The Hausdorff middle can be computed exactly in O(n6) time, and approximated
within ε in O(n2 log2 n log 1/ε) time.

Parametric search could result in a faster exact algorithm, but for this one would need to
express whether input features are close to a given Sα in terms of low degree polynomials.
This is nontrivial given that Sα as function of α varies in a complex manner.

4 Discussion and future research

We have defined and studied the Hausdorff middle of two planar sets, leading to a new morph
between these sets. We also considered the Hausdorff middle for more than two sets. While
we assumed that the input sets are simply-connected, our definition of middle and the morph
immediately generalize to more general sets, like sets with multiple components and holes.
In this sense our definition of middle is very general. Other interpolation methods between
shapes do not generalize to more than two input sets and cannot easily handle sets with
multiple components.

There are many interesting open questions. For example, when both input sets are
one-dimensional curves, is there a natural way to define a Hausdorff middle curve that is
also 1-dimensional?

Besides the maximal middle set, there are other options for a Hausdorff middle. For
example, we can choose Sα clipped to the convex hull of A∪B, which is also a valid Hausdorff
middle. In Figure 9, the green shape would be reduced to the part inside the square, which
may be more natural. This Hausdorff middle can also be used in a morph.

Another interesting question could be if, for two shapes A and B, we can find a translation
or rigid motion of A such that some measure on the Hausdorff middle (e.g. area, perimeter,
diameter) is minimised.

For two or more shapes in the plane, we could also define a middle based on area-of-
symmetric-difference. Here we may want to average the areas for the middle shape, and
possibly choose the middle that minimizes perimeter. This problem is related to minimum-
length area bisection [21].

Similarly, for a set of curves, we could define a middle curve based on the Fréchet distance.
This appears related to the Fréchet distance of a set of curves rather than just a pair [15].
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