139,891 research outputs found

    Detecting relevant changes in time series models

    Get PDF
    Most of the literature on change-point analysis by means of hypothesis testing considers hypotheses of the form H0 : \theta_1 = \theta_2 vs. H1 : \theta_1 != \theta_2, where \theta_1 and \theta_2 denote parameters of the process before and after a change point. This paper takes a different perspective and investigates the null hypotheses of no relevant changes, i.e. H0 : ||\theta_1 - \theta_2|| ? \leq \Delta?, where || \cdot || is an appropriate norm. This formulation of the testing problem is motivated by the fact that in many applications a modification of the statistical analysis might not be necessary, if the difference between the parameters before and after the change-point is small. A general approach to problems of this type is developed which is based on the CUSUM principle. For the asymptotic analysis weak convergence of the sequential empirical process has to be established under the alternative of non-stationarity, and it is shown that the resulting test statistic is asymptotically normal distributed. Several applications of the methodology are given including tests for relevant changes in the mean, variance, parameter in a linear regression model and distribution function among others. The finite sample properties of the new tests are investigated by means of a simulation study and illustrated by analyzing a data example from economics.Comment: Keywords: change-point analysis, CUSUM, relevant changes, precise hypotheses, strong mixing, weak convergence under the alternative AMS Subject Classification: 62M10, 62F05, 62G1

    Exchangeable Variable Models

    Full text link
    A sequence of random variables is exchangeable if its joint distribution is invariant under variable permutations. We introduce exchangeable variable models (EVMs) as a novel class of probabilistic models whose basic building blocks are partially exchangeable sequences, a generalization of exchangeable sequences. We prove that a family of tractable EVMs is optimal under zero-one loss for a large class of functions, including parity and threshold functions, and strictly subsumes existing tractable independence-based model families. Extensive experiments show that EVMs outperform state of the art classifiers such as SVMs and probabilistic models which are solely based on independence assumptions.Comment: ICML 201

    Testing statistical hypothesis on random trees and applications to the protein classification problem

    Full text link
    Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov--Smirnov-type goodness-of-fit test proposed by Balding et al. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford--Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton--Watson related processes.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS218 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    "Building" exact confidence nets

    Get PDF
    Confidence nets, that is, collections of confidence intervals that fill out the parameter space and whose exact parameter coverage can be computed, are familiar in nonparametric statistics. Here, the distributional assumptions are based on invariance under the action of a finite reflection group. Exact confidence nets are exhibited for a single parameter, based on the root system of the group. The main result is a formula for the generating function of the coverage interval probabilities. The proof makes use of the theory of "buildings" and the Chevalley factorization theorem for the length distribution on Cayley graphs of finite reflection groups.Comment: 20 pages. To appear in Bernoull

    Enrichment Procedures for Soft Clusters: A Statistical Test and its Applications

    Get PDF
    Clusters, typically mined by modeling locality of attribute spaces, are often evaluated for their ability to demonstrate ‘enrichment’ of categorical features. A cluster enrichment procedure evaluates the membership of a cluster for significant representation in pre-defined categories of interest. While classical enrichment procedures assume a hard clustering deïŹnition, in this paper we introduce a new statistical test that computes enrichments for soft clusters. We demonstrate an application of this test in reïŹning and evaluating soft clusters for classification of remotely sensed images

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page
    • 

    corecore