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Confidence nets, that is, collections of confidence intervals that fill out the parameter space and whose
exact parameter coverage can be computed, are familiar in nonparametric statistics. Here, the distributional
assumptions are based on invariance under the action of a finite reflection group. Exact confidence nets are
exhibited for a single parameter, based on the root system of the group. The main result is a formula for the
generating function of the coverage interval probabilities. The proof makes use of the theory of “buildings”
and the Chevalley factorization theorem for the length distribution on Cayley graphs of finite reflection
groups.

Keywords: buildings; confidence intervals; confidence nets; Coxeter groups; nonparametrics

1. Introduction

It is well known, and usually attributed to Wilks [31], that the order statistics from a random sam-
ple provide nonparametric confidence intervals for percentiles from a distribution: every interval
formed by the order statistics covers a given percentile with a computable probability. For the
median the probabilities are of binomial form. We shall refer to the situation in which the set of
coverage intervals cover the real line and the coverage probability of each interval is computable
as a confidence net.

An interesting example is given by Hartigan [16,17] for the median, given an independent sam-
ple from a distribution symmetric about the median. There, the net is based on all sub-sample
means: for a sample {yi |i ∈ n = {1, . . . , n}} and S ⊂ n, a subsample mean is 1

|S|
∑

i∈S yi , in

which each of the 2n intervals has coverage probability 1
2n . Hartigan’s typical value theorem [16]

is the basis for random subsampling, namely a resampling plan to construct confidence inter-
vals for the centre of a symmetric distribution on a real line. Atkins and Sherman [4] derived a
group-theoretic condition on a set of subsamples of a random sample from a continuous random
variable symmetric about zero to be sufficient to provide typical values for zero. With the current
interest in very large data sets, subsampling from complex data can be viewed as a natural so-
lution to the computational issues. While many methods have been devised to provide unbiased
and efficient estimation of average quantiles, to our knowledge no such method exploits invari-
ance under the action of a finite reflection group. Knowledge of invariance provides an omnibus
method for constructing covering nets, which cannot be obtained by inverting selected nonpara-
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metric multivariate rank tests (see [21]). Hartigan’s work has also had impact in the theory of the
bootstrap and resampling (see Efron [8], Efron and Tibshirani [9]).

Another example is the set of intervals formed by pairwise means, { yi+yj

2 }, sometimes called
Walsh averages. These are the basis for one version of the Hodges–Lehmann estimator for a mean
[18], which is the empirical median of all pairwise means (including the single observation).
There are strong connections to the Wilcoxon signed rank (sum) test where the same generating
function as derived for the group of type Bn in this paper is used in the computation of critical
values [24,29]. Indeed, the current paper could be represented as a group theoretic generalisation
of the generating function approach of these papers, or, given the duality between testing and
confidence intervals, as a way to invert certain permutation tests (see, for example, Tritchler [28]).

We first give an account of a general construction of nonparametric confidence interval nets
and then specialise to the case of finite reflection groups, showing the relation to the root systems
of the groups. Finite reflection groups have been classified completely up to isomorphism, and
via this classification are also known as finite Coxeter groups, which also have a purely algebraic
definition based on their presentations. We will not elaborate on this classification here but refer
the reader to [20] or [1]. Sections 3.1 and 3.2 cover in some detail the case of the finite Coxeter
groups of type Bn (the hyperoctahedral groups) and type Dn. It turns out that in the case of
type Bn the interval boundaries are the pairwise means, mentioned above, together with the
single observations. In the case of type Dn they are the pairwise means, but excluding the single
observations. The generating functions turn out to be familiar from the theory of partitions in
number theory.

In Section 4, the main result of the paper is given, namely a generating function for the inter-
val probabilities for a general finite Coxeter group (with one exception). Specifically, we show
(Theorem 4.2) that the frequency distribution for the intervals of the confidence net based on a
(almost any) finite irreducible Coxeter group is given by the generating function

G(q) =
∏m

i=1(1 − qdi )∏n
i=1(1 − qi)

,

where d1, . . . , dm are the basic invariant degrees of the group. As an example, when the group
is the Coxeter group of type B2, the generating function is G(q) = 1 + 2q + 2q2 + 2q3 + q4.
This indicates that over the five intervals, the relative (coverage) probability of the parameter θ

being in one of the middle three intervals is twice that of it being in one of the extremal intervals.
Details of this example and others appear in Sections 3 and 4.

The proof of this result is given in Section 6 and relies on showing that the probabilities are
derived from the Coxeter length function for the quotient of the Coxeter group by the symmetric
(permutation) group (the finite Coxeter group of type An). To translate the geometry of the confi-
dence net into group theory requires the theory of buildings (given in Section 5) and specifically
the mapping of intervals into “chambers” and the full collection of intervals, nets, into “galleries”
formed by chambers. Because of the strong links with group theory, we also put this paper for-
ward as a contribution to the rapidly developing area of “algebraic statistics”, in which there has
been renewed interest in permutation tests; see, for example, Morton et al. [25].

There is a long tradition of the study of “statistics” (also called indices) such as the length
function, on groups. For example, Reiner [27] studied the extension of such statistics from the
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symmetric groups to type Bn. Adin and Roichman [2] defined a new index called the flag major
index whose length was equidistributed in the type B case. They used this to study group actions
on polynomial rings. Geometric distance problems in genomic rearrangements can be reduced to
Coxeter length problems [10,11]. In statistics, Diaconis [7], Chapter 4C, makes the connection
between length distributions and non-parametric tests.

Our general formula (Theorem 4.2) agrees with that for Bn and Dn already derived in Sec-
tions 3.1 and 3.2, using a counting argument on the raw inequalities describing the cones of the
groups. The generating functions for the exceptional groups E6, E7, E8 and for the groups of
type An are given as examples after the main proof. The net in the case of E8 has a remarkable
93 cells. While these En cases can only be used for sample sizes 6,7 and 8 respectively, they are
nonetheless of independent interest. The paper concludes with short sections on an example not
in the group class, and some simple asymptotics.

2. Confidence nets

Let Y be a random n-vector with probability density function f (y, θ), where θ is an unknown
k-dimensional parameter. For most of this paper, we will study the case k = 1, but begin in
this section with the general set-up. We assume that Y can be transformed by a measurable
transformation T (y, θ), typically θ -dependent, to a random variable Z:

Z = T (Y, θ),

which is also n-dimensional and has a distribution some of whose properties are known, inde-
pendently of θ .

Assume there exists a finite collection of sets {Ci, i = 1, . . . ,m}, such that:

1.
⋃

Ci =R
n.

2. The measure with respect to Z of any intersection Ci ∩ Cj , i �= j , is zero.
3. prob{Z ∈ Ci} = αi, i = 1, . . . ,m.
4. The αi are positive, do not depend on θ , and

∑m
i=1 αi = 1.

Define, for fixed y

Si(y) = {θ : Z ∈ Ci}.
Thus, Si(y) is the inverse of the function T (y, θ) for fixed y and

prob
{
Si(y) � θ

} = αi.

We should note that typically k (the dimension of θ ) is very much smaller than n.
A confidence net is based on the following coarsening in the description of the coverage sets Si

using geometric considerations. Suppose that there are N random sets {Uj(Y ), j = 0, . . . ,N −1}
in θ -space whose intersections cover θ with zero probability,

⋃N−1
j=0 Uj = R

k , and such that for
any i = 1, . . . ,m, there is a mapping j = u(i) such that

Si(y) = Uj (y),
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and moreover that every Uj can be obtained in this way. The mapping u(·) is typically a many-
to-one mapping, and given any j we can define the pre-image:

u−1(j) = {
i : j = u(i)

}
.

This implies that the Uj (Y ) are themselves (random) coverage sets with coverage probabilities

pj = prob
{
Uj (Y ) � θ

} =
∑

i∈u−1(j)

αi

for j = 0, . . . ,N − 1. Note also that since
∑N−1

j=0 αi = 1, we have
∑N−1

i=0 pi = 1. We refer to the
set {Uj (Y )} as an exact confidence net. We summarise this in the following definition.

Definition 2.1. For a parametric statistical model with random variable Y (possibly multivari-
ate), an (exact) confidence net is a collection of data dependent sets Uj (Y ), j = 0, . . . ,N − 1
whose union is the whole parameter space, and such that the probability that Uj (Y ) covers the
parameter θ is a known quantity αj , j = 0, . . . ,N − 1 and such that any intersection of the Uj

covers θ with probability zero.

Here we take a classical statistical approach to coverage nets. Thus, the notion is that the user
declares the sets Uj . Theories of inference based on collections of coverage sets can be thought
of as part of a well developed theory of belief functions based on upper and lower probabilities
and the theory of random sets based on Choquet capacities (see [6,30]). In terms of the former,
a coverage net is essentially a theory of random sets in which the upper and lower probabilities
coincide, and in which the Choquet capacity functional is additive over the σ -algebra of unions
of sets. That is to say, for the sets {Uj } we have for i �= j ,

prob{Ui ∪ Uj � θ} = prob{Ui � θ} + prob{Uj � θ},
and so on.

3. Reflection groups and cones

Let Y be an n-dimensional random vector and θ be a univariate parameter (k = 1). Define

Z(Y, θ) = (Y1 − θ,Y2 − θ, . . . , Yn − θ)T .

Let G be a finite reflection group acting on R
n and let {Ci, i = 1, . . . ,m}, where m = |G|, be the

collection of cones in R
n that are the transformations under G of the fundamental cone C1. Our

key condition, corresponding to condition (3) in Section 2, is that every such cone has the same
probability content with respect to the distribution of Z:

prob{Z ∈ Ci} = 1

m
, i = 1, . . . , |G|.
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Each statement {y ∈ Ci} yields a statement θ ∈ Uj . To find {Uj } we need to provide the
mapping i �→ j = u(i). The Uj are intervals and it is enough to give their endpoints. Then, for
each j we can define the count Nj = |u−1(j)|, namely the number of cones giving Uj(y). Then
under our assumptions

pj = prob{Uj � θ} = Nj

m
, j = 0, . . . ,N − 1.

Fortunately, although the orders of the groups can be very large, the geometry of finite reflec-
tion groups can be understood in terms of their root systems, and the number of roots is orders
of magnitude smaller. In all that follows the counts Nj will have a factor of n!, the order of the

symmetric group, and it is somewhat neater, therefore, to work with nj = Nj

n! . The main objective
of this paper is to find, for different groups, the generating function for the {nj }:

G(q) =
N−1∑
j=0

njq
j .

Every finite reflection group is defined by its roots. These are vectors {aj } that define the
perpendiculars to the defining hyperplanes

Hj = {
x : aT

j x = 0
}

forming the walls of the cones Ci . Roots are identified with half-spaces and therefore come in
pairs: ±aj , which are important in the classification of these groups (for more details on root
systems and the classification of finite reflection groups, see for instance [20]).

Before we proceed to a general approach, in the next two subsections we will use an elemen-
tary discussion of inequalities and a counting argument to derive the generating functions G(q),
in two cases.

3.1. The hyperoctahedral groups: Type Bn

The group of type Bn (we will refer to the group simply as “Bn”) operates on points z ∈ R
n by

permutation and sign change of the coordinates. It has order 2nn!. Its fundamental cone C1 is (by
convention) given by

z1 ≥ z2 ≥ · · · ≥ zn ≥ 0,

and it has fundamental roots given by each of the inequalities above. In standard notation the
roots are

{e1 − e2, e2 − e3, . . . , en−1 − en, en},
where the ei are unit vectors. The fundamental roots are thus

(1,−1,0, . . . ,0)T , (0,1,−1,0, . . . ,0)T , . . . , (0, . . . ,0,1)T .
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It is important to repeat that all other roots come from transformation of these roots under the
group. Each cone Ci is obtained by transformation of C1 under a suitable group element. We can
describe the cones compactly by inequalities:

±zπ(1) ≥ ±zπ(2) ≥ · · · ≥ ±zπ(n) ≥ 0,

where π = (π(1), . . . , π(n)) ranges over all n! permutations of {1, . . . , n}.
Substituting zi = yi − θ for i = 1, . . . , n, we have

±(yπ(1) − θ) ≥ ±(yπ(2) − θ) ≥ · · · ≥ ±(yπ(n) − θ) ≥ 0.

Thus, every cone Ci is defined by a set of inequalities for θ , each of which yields a Uj interval
for θ .

Consider the case B3. First fix the order z1, z2, z3. The set of inequalities which describes the
cones for this order is

+(y1 − θ) ≥ +(y2 − θ) ≥ +(y3 − θ) ≥ 0,

+(y1 − θ) ≥ +(y2 − θ) ≥ −(y3 − θ) ≥ 0,

+(y1 − θ) ≥ −(y2 − θ) ≥ +(y3 − θ) ≥ 0,

−(y1 − θ) ≥ +(y2 − θ) ≥ +(y3 − θ) ≥ 0,

+(y1 − θ) ≥ −(y2 − θ) ≥ −(y3 − θ) ≥ 0,

−(y1 − θ) ≥ +(y2 − θ) ≥ −(y3 − θ) ≥ 0,

−(y1 − θ) ≥ −(y2 − θ) ≥ +(y3 − θ) ≥ 0,

−(y1 − θ) ≥ −(y2 − θ) ≥ −(y3 − θ) ≥ 0.

We are interested in the index of the interval that covers θ , that is, its position among the sub-
set means, because this determines the interval Uj for θ . There are

(3
2

) + 3 = 6 subset means,

namely the pairwise means
yi+yj

2 (i �= j ) and the individual yi ’s. For instance, the first row of
inequalities above yields θ ≤ y1, y2, y3, and consequently θ is also less than each of the pairwise
means, placing it in the zero-th position in interval U0. A less trivial example is the fourth row of
inequalities, whose manipulations yield

y1,
y1 + y2

2
,
y1 + y3

2
≤ θ ≤ y2, y3,

y2 + y3

2
,

so that θ is covered by U3. Note that other inequalities, such as y3 ≤ y2, follow from the same
row of the list of inequalities above, but these do not affect the coverage interval for θ . The
fifth row of inequalities also places θ in third position. Repeating this for each row, we obtain θ ,
respectively, in intervals: U0,U1,U2,U3,U3,U4,U5,U6 (noting the double representation of the
middle interval). We obtain the same distribution for all permutations π . This gives the ni count
as 1,1,1,2,1,1,1, with generating function

G(q) = 1 + q + q2 + 2q3 + q4 + q5 + q6.
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For B4 a similar calculation yields 4!24 = 384 sets of inequalities, in blocks of 24 = 16, one
block of inequalities for each permutation, as for B3. There are 11 intervals formed by the 10
values {yi,

yi+yj

2 , i, j = 1, . . . ,4, i �= j}. The ni count is 1,1,1,2,2,2,2,2,1,1,1 (summing to
16) with generating function

G(q) = 1 + q + q2 + 2q3 + 2q4 + 2q5 + 2q6 + 2q7 + q8 + q9 + q10.

From these examples, we see how to evaluate the vector (n0, . . . , nN−1) for Bn. For any line of
inequalities (cone) the kth interval covers θ if and only if there are exactly k elements from the set
of possible boundaries {yi,

yi+yj

2 , i < j} less than or equal to θ . Thus, for our initial permutation
and a particular cone:

nk = ∣∣{i : yi ≤ θ}∣∣ +
∣∣∣∣
{
(i, j) : i ≤ j ; yi + yj

2
≤ θ

}∣∣∣∣.
Now consider which sign combinations on the (yi − θ) lead to a contribution to nk . The possi-
bilities are:

1. yi ≤ θ : a single − at position i.

2.
yi+yj

2 ≤ θ : a pair −,+ in positions i < j , respectively.

3.
yi+yj

2 ≤ θ : a pair −,− in positions i < j , respectively.

Define indicator functions which capture the sign combination: xi = 1,0 for −,+ in the ith
position, respectively. We can then set up a counting function to capture ni :

ψ(x1, . . . , xn) =
n∑

i=1

xi +
n∑

i<j

xi(1 − xj ) +
n∑

i<j

xixj =
n∑

i=1

ixi .

Now, considering the xi as independent Bernoulli random variables, each {ixi} is independent
with support {0, i} and probability generating function 1

2 (1 + qi), by convolution, and multiply-
ing by 2n, we see that

Gn(q) = (1 + q)
(
1 + q2) · · · (1 + qn

)
,

which we confirm in the cases n = 3, n = 4, above.

3.2. The groups of type Dn

The group of type Dn (which we again will call simply the group Dn) is the group of permuta-
tions with an even number of sign changes, and has order 2n−1n!. It has fundamental cone

z1 ≥ z2 ≥ · · · ≥ zn, zn−1 + zn ≥ 0.

The roots are

{e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en},
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giving

(1,−1,0, . . . ,0)T , (0,1,−1,0, . . . ,0)T , . . . , (0, . . . ,0,1,−1)T , (0, . . . ,0,1,1)T .

In the case n = 4, the inequalities are

z1 ≥ z2 ≥ z3 ≥ z4; z3 ≥ −z4,

giving

y1 − θ ≥ y2 − θ ≥ y3 − θ ≥ y4 − θ; y3 − θ ≥ −(y4 − θ).

Now D4 allows permutations of the coordinates as well as even numbers of sign changes. There-
fore, the possible signs are as follows (the vertical and horizontal lines will be explained shortly):

+ + + +
− − + +
− + − +
+ − − +
− + + −
+ − + −
+ + − −
− − − −

The second line, for example, gives

−(y1 − θ) ≥ −(y2 − θ) ≥ y3 − θ ≥ y4 − θ; y3 − θ ≥ −(y4 − θ),

from which we deduce

θ ≥ y1 + y3

2
,
y1 + y4

2
,
y2 + y3

2
,
y2 + y4

2
,
y1 + y2

2
;

θ ≤ y3 + y4

2
.

The inequality θ ≥ y1+y2
2 is found by first noting that θ ≥ y2 ≥ y1. It is tempting to include the

singletons yi in the set of boundary points, but not all yj can be determined in this way which
means that intervals using the yi are not fully computable.

Following the last remark, we determine coverage of θ given by all pair means
yi+yj

2 , i < j .
We shall need to account for the following possibilities using slightly more complicated rules

than for Bn:

1. yi ≤ θ : a single − at position i, for i = 1, . . . , n − 1. This is used to help place the pair-
means.

2. yi+yn

2 ≤ θ : − in position i and − in position n for i = 1, . . . , n − 1.

3.
yi+yj

2 ≤ θ for 1 ≤ i < j ≤ n: a pair −,+ in positions i, j respectively,



“Building” exact confidence nets 3153

4.
yi+yj

2 ≤ θ for 1 ≤ i < j ≤ n − 1: a pair −,− in positions i, j respectively. This follows by
noting that yi, yj ≤ θ , as in rule (1), above.

We can split rule (3), above, into two cases: when the + is in position 1, . . . , n− 1; and when the
+ is in position n (hence the vertical line in the preceding figure). The latter can be combined
with rule 2 to give rule 1. Again we take the indicator with xi = 1 for − and xi = 0 for + and
our counter is

ψ(x) =
n−1∑
i=1

xi +
n−1∑
i<j

xi(1 − xj ) +
n−1∑
i<j

xixj =
n−1∑
i=1

ixi .

Thus, the generating function for the ni , again using a convolution argument, is

Gn−1(q) = (
1 + q2)(1 + q3) · · · (1 + qn−1).

In the following section, we re-derive these generating functions in a general framework, using
the theory of buildings.

4. The main result

As mentioned in the Introduction we will use some theory developed around the concept of
indices (sometimes call “statistics”) attached to an element g of a group G. MacMahon [23]
discussed, for the symmetric group, descent, excedance, length and the major index. Authors are
often interested in the frequency of the distinct values of an index as g ranges over the whole
group, and there are strong combinatorial results, going back to MacMahon, showing that one
index has the same distribution as another, even though the actual indices (as mappings) are
different. This work is relevant for us because (i) we have a special index which is the value j

of our interval Uj of the net construction; (ii) generating functions play an important role; and
(iii) the study of such indices is being extended to finite reflection groups such as Bn and Dn.

A starting point for the construction of these indices is the Cayley graph of a group. If S is
the set of generators of our group, then the Cayley graph is a graph (E,V )G where each vertex
vg ∈ V is labelled by a group element g ∈ G and each edge eg,h by a single right multiplication
by a generator s ∈ S: h = gs; only generators may be used. The length, l(g) of a group element
g ∈ G is the length of the minimal path on the graph from the identity e to g, when each edge
counts unity:

l(g) = min{k ≥ 0 : g = si1si2 · · · sik , for si1 ∈ S}.
The Cayley graph for the group B2 has two generators which we may take (on the (z1, z2)

plane) as (i) s1 the reflection in the line z1 = z2 and (ii) s2 the reflection in the z1 = 0 axis. The
Cayley graph and corresponding lengths are given in Figure 1.

The length frequency distribution is {f0, f1, . . . , fm} where fj = #{g : l(g) = j, g ∈ G} and
m is the diameter of the group. The generating function for the length frequencies is

G(q) =
m∑

j=0

fjq
j .
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e

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2

0

1 1

2 2

3 3

4

Figure 1. The Cayley graph for B2 with its elements’ lengths.

We can compute G(q) using the Chevalley factorization theorem (see for instance [20], Sec-
tion 3.15):

Theorem 4.1. Let W be an irreducible Coxeter group. Then the length generating function is

GW(q) =
m∏

j=1

1 − qdj

1 − q
,

where d1, . . . , dm are the basic invariant degrees of the group.

Table 1, taken from [20], Section 3.7, lists the degrees for the crystallographic Coxeter groups.
The polynomial GW(q) is known as the Poincaré polynomial of W .

With our running B2 example,

GW(q) = (1 − q2)(1 − q4)

(1 − q)2
= 1 + 2q + 2q2 + 2q3 + q4,

giving the frequencies (1,2,2,2,1), as expected from the graph in Figure 1.

Table 1. Degrees for the crystallographic
Coxeter groups

Type d1, d2, . . .

An 2,3, . . . , n + 1
Bn, Cn 2,4, . . . ,2n − 2,2n

Dn 2,4,6, . . . ,2n − 2, n

E6 2,5,6,8,9,12
E7 2,6,8,10,12,14,18
E8 2,8,12,14,18,20,24,30
F4 2,6,8,12
G2 2,6
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The length distribution for the symmetric group is

GSn(q) =
n∏

i=1

1 − qi

1 − q
.

In the main theorem, which follows, the formula is obtained by dividing the generating function
for the length distribution of our group given in Theorem 4.1, by that for the symmetric group.

Theorem 4.2. The generating function for the frequency distribution for the intervals of the
confidence net based on a finite irreducible Coxeter group G of any type except F4 is given by

G(q) =
∏m

j=1(1 − qdj )∏n
i=1(1 − qj )

,

where d1, . . . , dm are the basic invariant degrees of the group.

The exclusion of F4 in the theorem statement is necessary because the result depends on the
symmetric group being a maximal parabolic subgroup of G, which holds in all cases except F4

(see for instance [12], Appendix A). We leave the calculation of the generating function for F4

as an exercise along the lines of the examples in Sections 3.1 and 3.2.
Before we prove this theorem (in Section 6), we demonstrate with two examples that its results

agree with those calculated in Sections 3.1 and 3.2.
For Bn the formula in Theorem 4.2 gives

GW(q)

Gn(q)
=

∏n
i=1(1 − q2i )∏n
i=1(1 − qj )

=
n∏

i=1

(
1 + qj

)
,

as expected. Note that we have two ways of counting the number of intervals: the number of live
roots, following Lemma 5.1, and the degree of G(s):

n +
(

n

2

)
=

n∑
j=1

j.

For Dn the formula is

GW(q)

Gn(q)
=

∏n−1
j=1(1 − q2j )(1 − qn)∏n

i=1(1 − qj )
=

n−1∏
j=1

(
1 + qj

)
,

again, as expected.
Before we proceed to the proof of Theorem 4.2, we need to introduce some more of the tools

of the theory of buildings.
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5. Rays, chambers and Cayley graphs

Returning to our construction from Section 3, in vector notation we have

Z(y, θ) = y − θ j, (5.1)

where j = (1,1, . . . ,1)T . For fixed y, we shall refer to the one dimensional affine subspace
defined by (5.1), as θ varies, as the ray from y, denoted Ey :

Ey = {z : z = y − θ j, θ ∈R}.
We have:

Lemma 5.1. Let {Ci} be the collection of all cones generated in the standard way by a finite
reflection group, and let y be a non-zero vector.

1. If y is in general position (not lying in any defining hyperplane Hi ), then the ray Ey in-
tersects the faces of a fixed number N of the cones Ci at values θ1(y) < θ2(y) < · · · <

θN−1(y).
2. Any θj (y) is given by

θj (y) = aT y

aT a
,

for some positive root a which is not orthogonal to j.
3. N − 1 is the number of roots not orthogonal to j.

Proof. By elementary geometry, when y is in general position the ray Ey intersects every defin-
ing hyperplane Hi exactly once except when j lies in an Hi , in which case it does not intersect
that Hi . Because for any hyperplane Hi , its root ai , by definition defines the orthogonal subspace
to Hi , the latter condition is equivalent to being orthogonal to ai . Each cone has two intersection
points except for the end cones when the intersection are at θ1(y) and θN−1(y). Part (2) follows
since the intersection points satisfy: aT

j (y − θ j) = 0. �

We refer to hyperplanes Hi as being live if their roots are not orthogonal to j. The intervals we
require are

U0 = (−∞, θ1(y)
]
, U1 = [

θ1(y), θ2(y)
]
, . . . ,

UN−2 = [
θN−2(y), θN−1(y)

]
, UN−1 = [

θN−1(y),∞)
.

To prove Theorem 4.2, we need to introduce some of the group-theoretic geometry behind it.
An excellent reference for further reading on this topic is [1], Chapter 1.

The chamber graph of a finite reflection group has cones (called chambers in this context) as
vertices, with two cones having an edge if they share a common face. A path in the chamber graph
is called a gallery: imagine a walk through chambers with doors in the common wall (facet).
With each edge given length unity, distance between chambers is defined (as for a Cayley graph)
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by the shortest distance between the chambers, and we call the corresponding gallery minimal.
A gallery is minimal if it does not cross any wall more than once ([1], Proposition 1.56). Since
a straight line in general position (in an obvious sense) cannot cut any wall of a chamber more
than once, it defines a minimal gallery. For both the Cayley graph and the chamber graph, Ce is
the cone corresponding to the identity element e of the group, and we call this the fundamental
cone.

Following Lemma 5.1, the ray Ey defines a gallery that we denote Gy . This gallery starts in
the identity chamber Ce and has length N (there are N chambers along it). The index j of a
chamber Cg yielding the interval

Uj = [
θj (y), θj+1(y)

]
is the distance in the gallery Gy from Ce to Cg . Consequently, the number of cones |u−1(j)|
that map into a given index j is the number of group elements of distance j from Ce along the
gallery Gy .

Now consider reflections in the walls of a chamber. Suppose this chamber is a translation by w

of the fundamental chamber Ce, so that its faces are translations of the fundamental hyperplanes
that are the faces of Ce. If Hs is a face of Ce (for a generator s of G), then it is translated by
w to wHs , and reflection in this hyperplane corresponds to action by the reflection wsw−1 (in
general this is not a fundamental reflection). Thus, reflection in the face wHs of wCe gives the
chamber given by the left multiplication of w by wsw−1, namely wsw−1w = ws, or wsCe. In
other words, we move from the chamber wCe to the chamber wsCe. Thus, movement along a
gallery corresponds to right multiplication by a generator.

As an aside, it is worth noting that the movement along the gallery by right multiplication
provides a correspondence between the chamber graph and the Cayley graph, in which the move-
ment along edges is given by left multiplication w → sw. The chamber graph, however, is the
natural place for our results because it has a very direct link with the geometry.

6. Proof of Theorem 4.2

Theorem 4.2 states, in effect, that the distribution of distances of group elements along galleries
defined by the rays Ey is the same as the distribution of lengths of minimal coset representatives
when the quotient of G is taken by the symmetric group Sn. This is because the numerator of this
generating function is the Poincaré polynomial of the group, and the denominator is that of the
symmetric group (see [20], Section 1.11 for more details). For background reading on the theory
of reflection groups and buildings there are many good sources, but we recommend in particular
Abramenko and Brown [1], Humphreys [20], and Kane [22].

To prove Theorem 4.2, it suffices to show that the set of group elements along the galleries
defined by the rays Ey is precisely the set of minimal length coset representatives of Sn in G,
for G of the types given in the theorem. We prove this in Proposition 6.3, below, but first a short
lemma.

Lemma 6.1. The roots from Sn are all orthogonal to j = (1,1, . . . ,1)T .
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Proof. Action by any element of Sn fixes j ; that is, reflection in any root from Sn fixes j, which
means that the root must be orthogonal to j. �

There are some well-known facts about Coxeter groups that we refer to in what follows, gath-
ered in the lemma below.

Lemma 6.2. Let W be a finite Coxeter group, and W ′ a parabolic subgroup of W .

1. The minimal length elements of the cosets of W ′ in W are unique.
2. The minimal length elements of the cosets of W ′ in W add in length when multiplied by any

element of W ′.
3. If W ′ is a parabolic subgroup of W , then the length distribution of distinguished coset

representatives of W ′ in W is given by GW(t)/GW ′(t), where GW(t) and GW ′(t) are the
respective Poincaré polynomials.

4. The length of the longest word w0 in Sn is the number of positive roots in the root system
of Sn.

Proof. These statements are all given in various texts, but in particular all are in [20]: for (1)
and (2) see [20], Section 1.10; for (3) see [20], Section 1.11; and for (4) see [20], Section 1.8. �

Proposition 6.3. For chambers defined by the action of a finite Coxeter group on R
n, let the

gallery Gy be the series of adjacent chambers beginning with Ce, defined by the ray Ey where y

is some point in Ce .

(i) The group elements labelling chambers in Gy are all minimal length Sn-coset represen-
tatives.

(ii) Every Sn-coset has its minimal length element appearing on a gallery Gy for some y.

Proof. First, note that Sn is a parabolic subgroup of every finite Coxeter group G except F4, and
we consider G acting on R

n ([12], Appendix A). Explicitly: Sn is a parabolic subgroup of the
groups of types An, Bn and Dn that we consider acting on R

n, and of the groups of types En for
n = 6,7,8 (acting on R

n); S3 and S4 are parabolic subgroups of the groups H3 and H4 acting on
R

3 and R
4, respectively; and S2 is (rather trivially) a parabolic subgroup of each of the dihedral

groups I2(m) acting on R
2.

Part (i). We begin by showing that the element corresponding to the last chamber in the
gallery is in the same coset as the longest word in the group G. The length of the longest word
w0 in Sn is the number of positive roots in the root system of Sn (Lemma 6.2(4)), which is the
number of roots orthogonal to j (Lemma 6.1). Let C be the Sn-coset containing w0. Because
minimal coset elements add in length with any element of Sn (Lemma 6.2(2)), the minimal coset
representative in C must have length the number of positive roots not orthogonal to j.

An element of C appears in some gallery Gy , for some y, by Lemma 6.3. The number of cham-
bers in each gallery is the number of roots not orthogonal to j. Since crossing each hyperplane
from one chamber to the next along the gallery adds at most 1 in length, the longest element on
any gallery is at most length the number of roots not orthogonal to j. Therefore the longest word
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of the group must be in a coset whose minimal length element is precisely the number of roots
not orthogonal to j. This can only be the last chamber in the gallery.

We now show that all other group elements on the gallery are minimal right coset representa-
tives.

Take a minimal right coset representative si1 · · · sim on the gallery Gy . We claim that the pre-
ceding element on the gallery, si2 · · · sim , is also a minimal length coset representative. If not,
then there is a w ∈ Sn satisfying �(si2 · · · simw) < �(w) + (m − 1) (length is additive for min-
imal coset representatives in Coxeter groups; see Lemma 6.2(2)). But then �(si1si2 · · · simw) <

�(w) + (m − 1) + 1 since multiplying by a generator can add at most 1 to the minimal length.
That is, �(si1si2 · · · simw) < �(w) + m, contradicting the minimality of si1 · · · sim . It follows that
all elements corresponding to cones along a gallery Gy are minimal coset representatives.

Part (ii). It suffices to show that each Sn coset contains an element in the gallery Gy . Consider
a point Z = (Z1, . . . ,Zn) in the fundamental cone that is also on the ray Ey = {y − θ j|θ ∈ R}.
The inequality its coordinates must satisfy is

Zn ≥ · · · ≥ Z1 ≥ 0 (6.1)

for Z = (Z1, . . . ,Zn). Because the entries in j are all equal, this means yn ≥ · · · ≥ y1 ≥ 0 for
y = (y1, . . . , yn).

Moving along the ray Ey in the positive direction (decreasing θ ) does not change the in-
equalities in equation (6.1) (all components stay positive) and hence the ray stays in the fun-
damental cone. Increasing θ moves the ray through the gallery into different cones as first
Zn ≥ · · · ≥ Z2 ≥ 0 ≥ Z1, then Zn ≥ · · · ≥ Z3 ≥ 0 ≥ Z2 ≥ Z1 and so on.

On the other hand, acting by Sn on a point on the ray permutes the entries, but this fixes the
entries of j and simply permutes the entries of y. So a chamber on the gallery corresponds to an
ordering of form Zn ≥ · · · ≥ Zi+1 ≥ 0 ≥ Zi ≥ · · · ≥ Z1, and the other chambers in its Sn coset
are obtained by permuting these entries.

Now consider an arbitrary point v in R
n and denote the cone it is contained within by Cw(v).

The action of Sn permutes the entries of v, and there is a permutation that puts the entries in
increasing order. Every point that is in increasing order is in a cone that is on a ray-gallery, so we
are done. �

We are now in a position to prove our main result. Recall that this gives a generating function
for the frequency distribution of intervals in the confidence net based on an irreducible finite
Coxeter group.

Proof of Theorem 4.2. The set of all rays Ey from the identity chamber to the last chamber
(labelled by g) gives the set of all possible galleries from 1 to g. Each group element in each
gallery is a minimum length coset representative of Sn in G, and all Sn-cosets have their minimal
length representative occurring in such a gallery (Proposition 6.3).

Recall that u−1(j) is the set of chambers that are in the j th position along a ray Ey . When we
start with the identity chamber, this is simply the set of group elements of length j that appear
in galleries. From Proposition 6.3, this is the set of minimal coset representatives of length j . So
the number nj is the number of minimal coset representatives of length j , and this is given by
our formula, by Lemma 6.2(3). �
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7. Further examples

In Sections 3.1 and 3.2, we gave examples of confidence nets from our theory for types B and
D respectively, and recalculated them using Theorem 4.2 after its statement. Here we add types
E6, E7, E8 and An. The remaining types of finite Coxeter group (omitted) are types H3 and H4,
the dihedral groups I2(m), and the group F4 (to which Theorem 4.2 does not apply).

7.1. Type E

Inserting the dj values for E6, E7 and E8 from Table 1 and obtaining help in factorization from
Maple we have the following formulae:

E6 : (q + 1)
(
q2 + 1

)(
q2 − q + 1

)(
q4 − q2 + 1

)(
q2 + q + 1

)(
q6 + q3 + 1

)(
q4 + 1

)

E7 : (q + 1)4(q2 − q + 1
)2(

q6 + q3 + 1
)(

q6 − q3 + 1
)

(
q6 − q5 + q4 − q3 + q2 − q + 1

)
(
q2 + 1

)(
q2 + q + 1

)(
q4 − q2 + 1

)(
q4 − q3 + q2 − q + 1

)(
q4 + 1

)

E8 : (
q4 + q3 + q2 + q + 1

)(
q6 + q3 + 1

)(
q6 − q3 + 1

)(
q4 + 1

)
(
q6 − q5 + q4 − q3 + q2 − q + 1

)(
q8 − q7 + q5 − q4 + q3 − q + 1

)
(
q8 + q7 − q5 − q4 − q3 + q + 1

)(
q8 − q6 + q4 − q2 + 1

)(
q8 − q4 + 1

)
(
q2 + q + 1

)2(
q4 − q3 + q2 − q + 1

)2(
q2 + 1

)2

(
q4 − q2 + 1

)2(
q2 − q + 1

)3
(q + 1)4.

Let us consider E8 in a little more detail. It has order 21435527 = 696 729 600, meaning that
R

8 is split into this many cones. The root system is described in the standard way as:

{±ei ± ej : 1 ≤ i < j},
{

1

2

8∑
i=1

λiei : λi = ±1,

8∏
i=1

λi = 1

}
.

Again we have two ways of counting. The number of live roots are those not orthogonal to j =
(1,1,1,1,1,1,1,1)T . From the first set above, we have those of the form (1,1,0, . . .), namely(8

2

)
. From the second set we have all those for which the number of ones and zeros is different

and even, being careful not to double count. This gives(
8
2

)
+ 1 +

(
8
2

)
+

(
8
6

)
= 92.
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On the other hand G(s) = a0 +a1q +· · · is a polynomial of degree 92 whose N = 93 coefficients
are laid out below to show the symmetry.

1 1 1 2 3 6 6 8 10 13 17
21 26 32 38 46 55 64 74 86 98 112

127 142 157 175 193 211 230 249 267 287 307
325 343 361 377 393 409 421 432 443 452 458
464 466 466 466 464
458 452 443 432 421 409 393 377 361 343 325
307 287 267 249 230 211 193 175 157 142 127
112 98 86 74 64 55 46 38 32 26 21

17 13 10 8 6 4 3 2 1 1 1

7.2. Type An

The usual interpretation of the action of type An is as the restriction of the symmetric group Sn+1
to the hyperplane: H : ∑n=1

i=1 xi = 0. When n = 2 this yields a figure in 2-dimensions with cones
with apex angle 1

3π . The role of Sn in the above examples is now played by An−1. Referring to
the first entry in Table 1 this gives the generating function

G(q) =
∏n+1

i=2 (2 − qi)∏n+1
i=2 (2 − qi)

=
n+1∑
i=0

qi,

giving a discrete uniform distribution on the net chambers.
The statistical interpretation takes a little care. There are different choices one can make for

the representation of An−1 as a subgroup of An. A simple choice is for An−1 to be the restriction
to the hyperplane H of the group that permutes the first n coordinates. Let us require that the
“data” Y also lies in H and that the model is given by

Y = θk + Z,

where prob{Z ∈ Ci} = 1
(n+1)! and the Ci are the cones of An in H (with similar assumptions as

in the Introduction). The key is to make the vector k, which is the analogue of the previous j, to
be invariant under An−1. Thus, we can take

k = (1,1, . . . ,1,−n)T .

Following Lemma 5.1, we find the boundary of the net chamber by taking the intersection of the
ray Y − θk with the live root of An that is all those not orthogonal to k. These are

(1,0, . . . ,0,−1)T , (0,1, . . . ,0,−1)T , . . . , (0,0, . . . ,0,1,−1)T .

Taking the j th member of this list first we see that the boundary is given by

yj − θ − (yn+1 + nθ) = yj − yn+1 − (n + 1)θ.
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But since Y ∈ H , we have yn+1 = −∑n
i=1 yi . This means that the boundaries are the n sample

quantities

1

n + 1

(
2yj +

n∑
i �=j

xi

)
, j = 1, . . . , n,

giving n + 1 chambers, as expected.

8. A non-group cone example

Exact coverage nets also arise for the situation in which R
n is divided into cones that are con-

gruent, but not arising as the fundamental cones of a reflection group. Consider the partition of
the positive orthant into n cones generate by a “long diagonal” and n− 1 principal axes. Leaving
out the first principal axis, we obtain generators:

(1,1, . . . ,1)T , (0,1,0, . . . ,0)T , (0,0,1, . . . ,0)T , . . . , (0,0, . . . ,1)T .

The other cones are generated by successively omitting principal axes. Now take all sign changes
to reach all other quadrants. This divides Rn into n2n congruent cones.

Assume the Z-probability content of each cone is equal and apply the method used for the
other examples. We first check how many, and which, walls are cut by a typical ray, and group
together the cones which lead to the same “index”, as above. The number of planes is 2n + 1.
After a little work, it turns out that the intervals formed by the order statistics y(1) < y(2) < · · · <
y(n) and all neighbour pairs

y(i)+y(j)

2 form a net of 2n intervals.
The successive net vectors (ignoring commas) are the rows below for n = 2, . . . ,6.

1 1 1 1
1 1 2 2 1 1

1 2 3 3 3 3 1 1
1 1 4 4 6 6 4 4 1 1

1 1 5 5 10 10 10 10 5 5 1 1

Note how each row is constructed by repeating the integer of the previous row of the Pascal
triangle eg the row 1,6,15,20,15,6,1 is split 6 → (1,5),15 → (5,10),20 → (10,10), giving
the last row of the tableau above. The generating function is

(1 + q)
(
1 + q2)n−1

.

9. Some asymptotics

The generating function for Bn is well-known in the theory of partitions. It is the generating
function for the number partition of an integer into at most n distinct parts. The infinite ver-
sion G(q) = ∏

(1 + qi)∞i=1 gives the number of partitions into j distinct parts, with no other
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restrictions, and the two generating functions are identical up to qn. The general G(q) has a long
history. Following their celebrated work on partitions [15], Hardy and Ramanujan also studied
this case, giving an asymptotic formula, see [14,19]. For an extensive review, see [3].

Noting the convergence of the Binomial distribution to the Normal (and following computer
experimentation), it is natural to conjecture that for Gn(s) the {an} follow an asymptotic distri-
bution, and indeed this is the case. The associated probability distribution is that of the random
variable

U =
n∑

j=1

jVj ,

where the Vi are i.i.d. Bernoulli random variables with probability 1
2 . Then, a theorem of Hájek

and Šidák [13] for sums of independent random variables with unequal means and variance gives
U ∼ N(μ,σ) where μ = 1

2

∑n
j=1 = 1

4n(n + 1) and σ 2 = 1
4

∑n
j=1 j2 = 1

24n(n + 1)(2n + 1).

An Edgeworth-type expansion shows that the standardized random variable U−μ
s

can be ap-
proximated by

φ(u)

(
1 + κ4

24
H4(u)

)
,

where φ is the standard Normal density, κ4 is the fourth cumulant of the standardized variable,
and H4 = u4 − 6u2 + 3 is the order 4 standard Hermite polynomial.

After a little work we derive, for Bn,

κ4 = −12

5

3n2 + 3n − 1

n(n + 1)(2n + 1)
.

Keeping the O( 1
n
) terms, we have the approximation

φ(u)

(
1 − 3

20
H4(u)

1

n
+ O

(
1

n2

))
.

There are similar result for Dn.
For E8 the distribution mean and variance are (μ,σ 2) = (46, 6811

3 ) and probabilities roughly
follow a normal distribution with this mean and variance. The approximation using H4 is sur-
prisingly good. For the standardized distribution

κ4

24
= − 365 311

28 896 080
= −0.01264 . . . .

Converting the approximation back to the original cell probabilities the maximum absolute devi-
ation and the root mean squared error are approximately 1.5×10−4 and 7.3×10−5 , respectively.
For the Edgeworth-type approximation, the integral (or in this case the sum) of the approximate
probability will typically not be unity. In this case, the sum of the approximands is 1.0001534 . . .

so that the error is of the same order as the maximum deviation.
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10. Conclusions and further work

This paper is a contribution to coverage problems in which, essentially, there are only group
symmetry conditions on the underlying distribution. The most obvious limitation of the present
paper is that it only covers a single parameter, although much classical non-parametrics is of
this type. The long term aim is to use the ideas of this paper to develop coverage nets based
on chambers in more than one dimension. Roughly, the requirements are (i) a large group that
houses the distributional assumptions, (ii) a smaller sub-group under which the (linear) model
is invariant, (iii) a valid quotient or coset operation, (iv) the use of the Chevalley factorization
formula to perform the counting, and (v) more extensive use of the theory of buildings. Another
challenge is to apply the theory to infinite groups such as affine Weyl groups which already have
applications in physics, material science and genomics [5,10,26]. Finally, there may be theory
with upper and lower probabilities where exactness is hard to find which would lead to some
kind of group-based belief functions.

Acknowledgments

Andrew R. Francis thanks the Australian Research Council for funding via grant FT100100898.
Milan Stehlík acknowledges the Chilean Fondecyt Rroyecto Regular grant N 1151441. The au-
thors are grateful to the referees and Editor for much help and encouragement.

References

[1] Abramenko, P. and Brown, K.S. (2008). Buildings: Theory and Applications. Graduate Texts in Math-
ematics 248. New York: Springer. MR2439729

[2] Adin, R.M. and Roichman, Y. (2001). The flag major index and group actions on polynomial rings.
European J. Combin. 22 431–446. MR1829737

[3] Andrews, G.E. (1998). The Theory of Partitions. Cambridge: Cambridge Univ. Press. MR1634067
[4] Atkins, J.E. and Sherman, G.J. (1992). Sets of typical subsamples. Statist. Probab. Lett. 14 115–117.

MR1173408
[5] Bodner, M., Patera, J. and Peterson, M. (2012). Affine reflection groups for tiling applications: Knot

theory and DNA. J. Math. Phys. 53 013516, 21. MR2919555
[6] Dempster, A.P. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Math.

Stat. 38 325–339. MR0207001
[7] Diaconis, P. (1988). Group Representations in Probability and Statistics. Institute of Mathematical

Statistics Lecture Notes—Monograph Series 11. Hayward, CA: IMS. MR0964069
[8] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional

Conference Series in Applied Mathematics 38. Philadelphia, PA: SIAM. MR0659849
[9] Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and

other measures of statistical accuracy. Statist. Sci. 1 54–77. MR0833275
[10] Egri-Nagy, A., Gebhardt, V., Tanaka, M.M. and Francis, A.R. (2014). Group-theoretic models of the

inversion process in bacterial genomes. J. Math. Biol. 69 243–265. MR3215080
[11] Francis, A.R. (2014). An algebraic view of bacterial genome evolution. J. Math. Biol. 69 1693–1718.

MR3275210

http://www.ams.org/mathscinet-getitem?mr=2439729
http://www.ams.org/mathscinet-getitem?mr=1829737
http://www.ams.org/mathscinet-getitem?mr=1634067
http://www.ams.org/mathscinet-getitem?mr=1173408
http://www.ams.org/mathscinet-getitem?mr=2919555
http://www.ams.org/mathscinet-getitem?mr=0207001
http://www.ams.org/mathscinet-getitem?mr=0964069
http://www.ams.org/mathscinet-getitem?mr=0659849
http://www.ams.org/mathscinet-getitem?mr=0833275
http://www.ams.org/mathscinet-getitem?mr=3215080
http://www.ams.org/mathscinet-getitem?mr=3275210


“Building” exact confidence nets 3165

[12] Geck, M. and Pfeiffer, G. (2000). Characters of Finite Coxeter Groups and Iwahori–Hecke Alge-
bras. London Mathematical Society Monographs. New Series 21. New York: The Clarendon Press.
MR1778802

[13] Hájek, J. and Šidák, Z. (1967). Theory of Rank Tests. Prague: Academic Press. MR0229351
[14] Hardy, G.H., Littlewood, J.E. and Pólya, G. (1988). Inequalities. Cambridge Mathematical Library.

Cambridge: Cambridge Univ. Press. MR0944909
[15] Hardy, G.H. and Ramanujan, S. (1918). Asymptotic Formule in Combinatory Analysis. Proc. Lond.

Math. Soc. S2-17 75. MR1575586
[16] Hartigan, J.A. (1969). Using subsample values as typical values. J. Amer. Statist. Assoc. 64 1303–

1317. MR0261737
[17] Hartigan, J.A. (1975). Necessary and sufficient conditions for asymptotic joint normality of a statistic

and its subsample values. Ann. Statist. 3 573–580. MR0391346
[18] Hodges, J.L. Jr. and Lehmann, E.L. (1963). Estimates of location based on rank tests. Ann. Math. Stat.

34 598–611. MR0152070
[19] Hua, L. (1942). On the number of partitions of a number into unequal parts. Trans. Amer. Math. Soc.

51 194–201. MR0006195
[20] Humphreys, J.E. (1990). Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced

Mathematics 29. Cambridge: Cambridge Univ. Press. MR1066460
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