4,805 research outputs found

    Wedges, Cones, Cosmic Strings, and the Reality of Vacuum Energy

    Full text link
    One of J. Stuart Dowker's most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the twentieth century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld's technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowker space and the cone and wedge spaces that result from it. We point out that the (vanishing) vacuum energy of Minkowski space results, from the point of view of Dowker space, from the quantization of angular modes, in precisely the way that the Casimir energy of a toroidal closed universe results from the quantization of Fourier modes; we hope that this understanding dispels any lingering doubts about the reality of cosmological vacuum energy.Comment: 28 pages, 16 figures. Special volume in honor of J. S. Dowke

    Memories of Mary Ellen Rudin

    Get PDF
    An invited collective remembrance celebrating Mary Ellen Rudin's lif

    Sparse Nerves in Practice

    Get PDF
    Topological data analysis combines machine learning with methods from algebraic topology. Persistent homology, a method to characterize topological features occurring in data at multiple scales is of particular interest. A major obstacle to the wide-spread use of persistent homology is its computational complexity. In order to be able to calculate persistent homology of large datasets, a number of approximations can be applied in order to reduce its complexity. We propose algorithms for calculation of approximate sparse nerves for classes of Dowker dissimilarities including all finite Dowker dissimilarities and Dowker dissimilarities whose homology is Cech persistent homology. All other sparsification methods and software packages that we are aware of calculate persistent homology with either an additive or a multiplicative interleaving. In dowker_homology, we allow for any non-decreasing interleaving function α\alpha. We analyze the computational complexity of the algorithms and present some benchmarks. For Euclidean data in dimensions larger than three, the sizes of simplicial complexes we create are in general smaller than the ones created by SimBa. Especially when calculating persistent homology in higher homology dimensions, the differences can become substantial

    Zero modes, entropy bounds and partition functions

    Full text link
    Some recent finite temperature calculations arising in the investigation of the Verlinde-Cardy relation are re-analysed. Some remarks are also made about temperature inversion symmetry.Comment: 12 pages, JyTe

    Heat kernel asymptotics: more special case calculations

    Get PDF
    Special case calculations are presented, which can be used to put restrictions on the general form of heat kernel coefficients for transmittal boundary conditions and for generalized bag boundary conditions.Comment: Invited talk at International Meeting on Quantum Gravity and Spectral Geometry, Naples, Italy, 2-6 July 2001. 9 pages, LaTe
    • …
    corecore