9 research outputs found

    The Cost of Address Translation

    Full text link
    Modern computers are not random access machines (RAMs). They have a memory hierarchy, multiple cores, and virtual memory. In this paper, we address the computational cost of address translation in virtual memory. Starting point for our work is the observation that the analysis of some simple algorithms (random scan of an array, binary search, heapsort) in either the RAM model or the EM model (external memory model) does not correctly predict growth rates of actual running times. We propose the VAT model (virtual address translation) to account for the cost of address translations and analyze the algorithms mentioned above and others in the model. The predictions agree with the measurements. We also analyze the VAT-cost of cache-oblivious algorithms.Comment: A extended abstract of this paper was published in the proceedings of ALENEX13, New Orleans, US

    In-Place Parallel Super Scalar Samplesort (IPSSSSo)

    Get PDF
    We present a sorting algorithm that works in-place, executes in parallel, is cache-efficient, avoids branch-mispredictions, and performs work O(n log n) for arbitrary inputs with high probability. The main algorithmic contributions are new ways to make distribution-based algorithms in-place: On the practical side, by using coarse-grained block-based permutations, and on the theoretical side, we show how to eliminate the recursion stack. Extensive experiments shw that our algorithm IPSSSSo scales well on a variety of multi-core machines. We outperform our closest in-place competitor by a factor of up to 3. Even as a sequential algorithm, we are up to 1.5 times faster than the closest sequential competitor, BlockQuicksort

    Hardware-Aware Algorithm Designs for Efficient Parallel and Distributed Processing

    Get PDF
    The introduction and widespread adoption of the Internet of Things, together with emerging new industrial applications, bring new requirements in data processing. Specifically, the need for timely processing of data that arrives at high rates creates a challenge for the traditional cloud computing paradigm, where data collected at various sources is sent to the cloud for processing. As an approach to this challenge, processing algorithms and infrastructure are distributed from the cloud to multiple tiers of computing, closer to the sources of data. This creates a wide range of devices for algorithms to be deployed on and software designs to adapt to.In this thesis, we investigate how hardware-aware algorithm designs on a variety of platforms lead to algorithm implementations that efficiently utilize the underlying resources. We design, implement and evaluate new techniques for representative applications that involve the whole spectrum of devices, from resource-constrained sensors in the field, to highly parallel servers. At each tier of processing capability, we identify key architectural features that are relevant for applications and propose designs that make use of these features to achieve high-rate, timely and energy-efficient processing.In the first part of the thesis, we focus on high-end servers and utilize two main approaches to achieve high throughput processing: vectorization and thread parallelism. We employ vectorization for the case of pattern matching algorithms used in security applications. We show that re-thinking the design of algorithms to better utilize the resources available in the platforms they are deployed on, such as vector processing units, can bring significant speedups in processing throughout. We then show how thread-aware data distribution and proper inter-thread synchronization allow scalability, especially for the problem of high-rate network traffic monitoring. We design a parallelization scheme for sketch-based algorithms that summarize traffic information, which allows them to handle incoming data at high rates and be able to answer queries on that data efficiently, without overheads.In the second part of the thesis, we target the intermediate tier of computing devices and focus on the typical examples of hardware that is found there. We show how single-board computers with embedded accelerators can be used to handle the computationally heavy part of applications and showcase it specifically for pattern matching for security-related processing. We further identify key hardware features that affect the performance of pattern matching algorithms on such devices, present a co-evaluation framework to compare algorithms, and design a new algorithm that efficiently utilizes the hardware features.In the last part of the thesis, we shift the focus to the low-power, resource-constrained tier of processing devices. We target wireless sensor networks and study distributed data processing algorithms where the processing happens on the same devices that generate the data. Specifically, we focus on a continuous monitoring algorithm (geometric monitoring) that aims to minimize communication between nodes. By deploying that algorithm in action, under realistic environments, we demonstrate that the interplay between the network protocol and the application plays an important role in this layer of devices. Based on that observation, we co-design a continuous monitoring application with a modern network stack and augment it further with an in-network aggregation technique. In this way, we show that awareness of the underlying network stack is important to realize the full potential of the continuous monitoring algorithm.The techniques and solutions presented in this thesis contribute to better utilization of hardware characteristics, across a wide spectrum of platforms. We employ these techniques on problems that are representative examples of current and upcoming applications and contribute with an outlook of emerging possibilities that can build on the results of the thesis

    Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools

    Get PDF
    This dissertation focuses on two fundamental sorting problems: string sorting and suffix sorting. The first part considers parallel string sorting on shared-memory multi-core machines, the second part external memory suffix sorting using the induced sorting principle, and the third part distributed external memory suffix sorting with a new distributed algorithmic big data framework named Thrill.Comment: 396 pages, dissertation, Karlsruher Instituts f\"ur Technologie (2018). arXiv admin note: text overlap with arXiv:1101.3448 by other author

    On a Model of Virtual Address Translation

    No full text

    On a Model of Virtual Address Translation

    No full text
    corecore