
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Hardware-Aware Algorithm Designs for
Efficient Parallel and Distributed

Processing

CHARALAMPOS STYLIANOPOULOS

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2020

Hardware-Aware Algorithm Designs for Efficient Parallel and Distributed Processing

CHARALAMPOS STYLIANOPOULOS

Copyright © 2020 Charalampos Stylianopoulos
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-360-4
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 4827.
ISSN 0346-718X

Technical report 190D
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: chasty@chalmers.se

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

Hardware-Aware Algorithm Designs for Efficient Parallel and
Distributed Processing

Charalampos Stylianopoulos
Department of Computer Science and Engineering, Chalmers University of Technology

ABSTRACT
The introduction and widespread adoption of the Internet of Things, together

with emerging new industrial applications, bring new requirements in data
processing. Specifically, the need for timely processing of data that arrives at
high rates creates a challenge for the traditional cloud computing paradigm,
where data collected at various sources is sent to the cloud for processing. As
an approach to this challenge, processing algorithms and infrastructure are
distributed from the cloud to multiple tiers of computing, closer to the sources
of data. This creates a wide range of devices for algorithms to be deployed on
and software designs to adapt to.

In this thesis, we investigate how hardware-aware algorithm designs on a
variety of platforms lead to algorithm implementations that efficiently utilize
the underlying resources. We design, implement and evaluate new techniques
for representative applications that involve the whole spectrum of devices, from
resource-constrained sensors in the field, to highly parallel servers. At each tier
of processing capability, we identify key architectural features that are relevant
for applications and propose designs that make use of these features to achieve
high-rate, timely and energy-efficient processing.

In the first part of the thesis, we focus on high-end servers and utilize two
main approaches to achieve high throughput processing: vectorization and thread
parallelism. We employ vectorization for the case of pattern matching algorithms
used in security applications. We show that re-thinking the design of algorithms
to better utilize the resources available in the platforms they are deployed on,
such as vector processing units, can bring significant speedups in processing
throughout. We then show how thread-aware data distribution and proper inter-
thread synchronization allow scalability, especially for the problem of high-rate
network traffic monitoring. We design a parallelization scheme for sketch-based
algorithms that summarize traffic information, which allows them to handle
incoming data at high rates and be able to answer queries on that data efficiently,
without overheads.

In the second part of the thesis, we target the intermediate tier of computing
devices and focus on the typical examples of hardware that is found there. We
show how single-board computers with embedded accelerators can be used to
handle the computationally heavy part of applications and showcase it specifi-

iv

cally for pattern matching for security-related processing. We further identify
key hardware features that affect the performance of pattern matching algorithms
on such devices, present a co-evaluation framework to compare algorithms, and
design a new algorithm that efficiently utilizes the hardware features.

In the last part of the thesis, we shift the focus to the low-power, resource-
constrained tier of processing devices. We target wireless sensor networks and
study distributed data processing algorithms where the processing happens on
the same devices that generate the data. Specifically, we focus on a continuous
monitoring algorithm (geometric monitoring) that aims to minimize communi-
cation between nodes. By deploying that algorithm in action, under realistic
environments, we demonstrate that the interplay between the network protocol
and the application plays an important role in this layer of devices. Based on that
observation, we co-design a continuous monitoring application with a modern
network stack and augment it further with an in-network aggregation technique.
In this way, we show that awareness of the underlying network stack is important
to realize the full potential of the continuous monitoring algorithm.

The techniques and solutions presented in this thesis contribute to better
utilization of hardware characteristics, across a wide spectrum of platforms.
We employ these techniques on problems that are representative examples of
current and upcoming applications and contribute with an outlook of emerging
possibilities that can build on the results of the thesis.

Keywords: hardware-aware, parallelism, distributed processing, high-end, inter-
mediate, resource-constrained

List of Publications

Included publications

1. Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, Ma-
rina Papatriantafilou, “Multiple Pattern Matching for Network Security
Applications: Acceleration through Vectorization,” in the Journal of Par-
allel and Distributed Computing (JPDC), vol. 137, pp. 34 - 52, Elsevier
2020.
The above is an extended and elaborated version of the work that previ-
ously appeared in:
Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, Ma-
rina Papatriantafilou, “Multiple Pattern Matching for Network Security
Applications: Acceleration through Vectorization,” in the Proceedings
of the 46th International Conference on Parallel Processing (ICPP), pp.
472-482, IEEE 2017.

2. Charalampos Stylianopoulos, Ivan Walulya, Magnus Almgren, Olaf
Landsiedel, Marina Papatriantafilou, “Delegation sketch: a parallel design
with support for fast and accurate concurrent operations,” in the Proceed-
ings of the 15th European Conference on Computer Systems (EuroSys),
Article 4, pp. 1–16, ACM 2020.

3. Charalampos Stylianopoulos, Linus Johansson, Oskar Olsson, Magnus
Almgren, “CLort: High Throughput and Low Energy Network Intrusion
Detection on IoT Devices with Embedded GPUs,” in the Proceedings of
the 23rd Nordic Conference on Secure IT Systems (NordSec), Secure IT
Systems, pp. 87–202, LNCS vol. 11252, Springer 2018.

4. Charalampos Stylianopoulos, Simon Kindström, Magnus Almgren, Olaf
Landsiedel, Marina Papatriantafilou, “Co-Evaluation of Pattern Matching
Algorithms on IoT Devices with Embedded GPUs,” in the Proceedings
of the 35th Annual Computer Security Applications Conference (ACSAC),
pp. 17–27, ACM 2019.

v

vi

5. Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, Ma-
rina Papatriantafilou, “Geometric Monitoring in Action: a Systems Per-
spective for the Internet of Things,” in the Proceedings of the IEEE 43rd
Conference on Local Computer Networks (LCN), pp. 433-436, IEEE 2018.

6. Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, Ma-
rina Papatriantafilou, “Continuous Monitoring meets Synchronous Trans-
missions and In-Network Aggregation,” in the Proceedings of the 15th
International Conference on Distributed Computing in Sensor Systems
(DCOSS), pp. 157-166, IEEE 2019.

Appended publication
1. Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, Ma-

rina Papatriantafilou, Trevor Neish, Linus Gillander, Bengt Johansson,
Staffan Bonnier,“Industry Paper: On the Performance of Commodity
Hardware for Low Latency and Low Jitter Packet Processing,” in the Pro-
ceedings of the 14th ACM International Conference on Distributed and
Event-based Systems (DEBS), ACM 2020 (included as an Appendix).

Personal Contribution
I contributed to Paper 1, Paper 2, Paper 5, Paper 6 and Paper 7 as the lead
designer and main implementer. I also led the writing of the manuscripts and
collaborated with all other authors. In Paper 2, the design of Delegation Sketch
was performed in collaboration with Iwan Walulya.

Paper 3 builds on a prototype implementation from Linus Johansson and
Oskar Olsson. My contributions in this paper include: identifying the research
problem, extending the implementation, designing and performing extensive
benchmarks and leading the manuscript writing.

Paper 4 builds on an implementation by Simon Kindström. I extended that
implementation by integrating PFAC and vectorized versions of DFC into the
benchmark, introducing a new algorithm (HYBRID) and designing experiments
to study its performance. I was also the main manuscript writer.

The work leading to Paper 7 was performed during my research internship
in Ericsson. I was the lead writer and main designer of the experiments in this
paper and collaborated with all other authors.

viii

Acknowledgments
I would like to start by thanking the people that made this thesis possible: my
supervisors Marina Papatriantafilou, Magnus Almgren and Olaf Landsiedel.
Caring supervisors are hard to find, and I was lucky to have three such people.
They helped me in innumerable ways in every step of the way.

I am also grateful to the co-authors and collaborators that contributed to the
work in this thesis. Special thanks to Ivan Walulya, Linus Johansson, Oskar
Olsson and Simon Kindström. I would also like to thank the people that made my
internship a fun and fruitful experience. Many thanks to Staffan Bonnier, Linus
Gillander, Bengt Johansson, Trevor Neish, David Wahlstedt, Björn Svensson,
Anders Fagerlind and Harald Lüning.

I am honored to have Prof. Angelos Bilas as the faculty opponent during the
thesis defence. I would also like to thank the members of the grading committee:
Prof. Dr. Jörg Keller, Assoc. Prof. Sabri Pllana, Prof. Herbert Bos and Prof.
Ioannis Sourdis for participating in my defence. Many thanks to my examiner
Aarne Ranta and the follow-up groups that supported me during my studies.

Special thanks to the department’s administration that made many tasks
easier for me: Eva Axelsson, Rebecca Cyren, Marianne Pleen-Schreiber, Clara
Oders, Lars Norén and Michael Morin, as well as my manager Tomas Olovsson.

I am also grateful to past and present colleagues in the division that made
Chalmers a fun place to work. Many thanks to Adones, Ali, Aljoscha, Amir, Aras,
Bapi, Bastian, Bei, Beshr, Carlo, Christos, Dimitris, Elad, Fazeleh, Francisco,
Georgia, Hannah, Yiannis, Iosif, Joris, Karl, Katerina, Nasser, Oliver, Paul,
Philipas, Romaric, Thomas, Valentin T., Valentin P., Vincenzo and Wissam.

I would also like to thank the friends that were with me all this time. Thank
you Petros, Vaggelis, Stavros, Angelos, Chloe, Maria, Vasiliki, Manos, Suvi,
Nikos, Kostas, Efi, Elias, Dinos and Gesti.

My thanks go to my family, my parents and my siblings for their uncondi-
tional love and trust in me. I owe it all to them. Finally, many thanks to Kelly
for her love, trust and friendship against all odds.

Charalampos Stylianopoulos
Göteborg, August 2020

ix

Contents

List of Publications v

Personal Contribution vii

Acknowledgements ix

I Introduction 1

1 Thesis Overview 3
1.1 Motivation . 5
1.2 Hardware and Algorithm Diversity 6
1.3 Background . 7

1.3.1 Parallelism and Vectorization 8
1.3.2 General Purpose Computing in GPUs 9
1.3.3 Wireless Sensor Networks 11

1.4 Representative Problems . 12
1.4.1 Network Intrusion Detection and Pattern Matching . . . 13
1.4.2 Network Monitoring and Sketches 14
1.4.3 Distributed Continuous Monitoring and IoT 15

1.5 Related Work . 16
1.5.1 Hardware-aware algorithm design 16
1.5.2 Pattern Matching and Hardware Characteristics 17
1.5.3 Sketches and Parallelism 18
1.5.4 Continuous Monitoring and IoT 19

1.6 Research Questions . 20
1.7 Thesis Contributions . 21

1.7.1 Parallel Data Processing on High-End Servers 21
1.7.2 Fast and Energy-Efficient Processing on Embedded Ac-

celerators . 24
1.7.3 Distributed Processing on Resource-Constrained Devices 25

xi

xii CONTENTS

1.8 Conclusions and Emerging Future Directions 27
Bibliography . 28

II Parallel Data Processing on Massively Parallel Servers 37

2 Multiple Pattern Matching for Network Security Applications 41
2.1 Introduction . 42
2.2 Background . 46

2.2.1 Traditional approach to multiple-pattern matching 46
2.2.2 Filtering approaches and cache locality in multiple pat-

tern matching . 47
2.2.3 Vectorization . 47

2.3 System model . 48
2.4 S-PATCH: a vectorizable version of the DFC algorithm 49

2.4.1 Overview . 49
2.4.2 Filtering . 50
2.4.3 Verification . 53

2.5 V-PATCH: Vectorized algorithmic design of the S-PATCH algo-
rithm . 54
2.5.1 General design . 54
2.5.2 Design choices and optimizations 57
2.5.3 Scaling across multiple threads 58
2.5.4 Runtime complexity . 58

2.6 Performance model . 59
2.6.1 Usefulness . 60
2.6.2 Filter hit rates . 60
2.6.3 Overall cost . 61

2.7 Evaluation . 63
2.7.1 Experimental setup . 63
2.7.2 Overall throughput . 65
2.7.3 The effects of the number of patterns 66
2.7.4 Filtering parallelism . 69
2.7.5 Changing the vector length: results from Xeon-Phi . . . 70
2.7.6 Model evaluation . 71
2.7.7 Parallel execution . 73

2.8 Other related work . 75
2.8.1 Pattern matching algorithms 75
2.8.2 Regular expression matching 75
2.8.3 SIMD approaches to pattern matching 76

CONTENTS xiii

2.8.4 Other architectures . 76
2.9 Conclusions . 77
Bibliography . 78

3 Delegation Sketch: a Parallel Design for Sketches 85
3.1 Introduction . 86
3.2 Preliminaries . 89

3.2.1 The Count-Min and Augmented Sketch 89
3.2.2 System Model . 90

3.3 Problem analysis . 91
3.3.1 Thread-local sketches . 91
3.3.2 Single-shared sketch . 91
3.3.3 The need for a new design 92

3.4 Overview of Delegation Sketch 92
3.4.1 Domain Splitting . 92
3.4.2 Operation Delegation . 93

3.5 Domain Splitting and benefits . 94
3.5.1 Influence on the overestimation error 95
3.5.2 Influence on query efficiency 97
3.5.3 Influence on filter efficiency 97

3.6 Operation Delegation and synchronization 98
3.6.1 Delegate insertions . 98
3.6.2 Delegate queries . 100
3.6.3 Discussion on memory consumption and overestimation

error . 103
3.7 Evaluation . 104

3.7.1 Experiment setup . 104
3.7.2 Comparing the accuracy of queries 106
3.7.3 Processing throughput 107
3.7.4 Query latency . 112
3.7.5 Summary of the evaluation 114

3.8 Related work . 114
3.9 Conclusions and future work . 115
Bibliography . 117

III Fast and Energy-Efficient Processing on Embedded
Accelerators 123

4 CLort: Network Intrusion Detection with Embedded GPUs 127

xiv CONTENTS

4.1 Introduction . 128
4.2 Background . 129

4.2.1 Network Intrusion Detection Systems and Snort 130
4.2.2 The Aho-Corasick patten matching algorithm 130
4.2.3 General Purpose GPU Computing 131

4.3 Design of CLort . 131
4.3.1 CLort’s general design 132
4.3.2 Data transfers between the CPU and the GPU 133
4.3.3 Search on the GPU: Parallel Aho-Corasick 133
4.3.4 Packet Buffering: the double-buffering technique 134

4.4 Evaluation . 135
4.4.1 Experimental methodology 135
4.4.2 Evaluating throughput . 137
4.4.3 Sniffing the network . 138
4.4.4 Evaluating energy consumption 139

4.5 Related work . 142
4.5.1 NIDS on GPUs . 142
4.5.2 NIDS on IoT related devices 143

4.6 Conclusions . 143
Bibliography . 144

5 Co-Evaluation of Pattern Matching Algorithms on Embedded GPUs149
5.1 Introduction . 150
5.2 Benchmarking aim and considerations 152
5.3 Considered algorithms & novel designs 154

5.3.1 State machine based algorithms: Aho-Corasick and Par-
allel Failure-less Aho-Corasick 154

5.3.2 Filter based algorithms: DFC and V-Patch 156
5.3.3 A hybrid approach . 158

5.4 Hardware-oriented algorithm optimizations 159
5.4.1 Overview of the target platform 159
5.4.2 Relevant algorithm optimizations 160

5.5 Evaluation . 161
5.5.1 Evaluation methodology 162
5.5.2 Deciding parameters for DFC 164
5.5.3 Overall comparison . 166
5.5.4 Varying the data sets and the number of patterns 169
5.5.5 Deciding a filter size for HYBRID 170
5.5.6 Summary of the results 171

5.6 Related work . 172

CONTENTS xv

5.7 Conclusions . 173
Bibliography . 174

IV Distributed Processing on Resource-Constrained De-
vices 179

6 Geometric Monitoring: a Systems Perspective for the IoT 183
6.1 Introduction . 184
6.2 Overview of the problem . 186

6.2.1 The Geometric Monitoring Method (GM) 186
6.2.2 In the context of wireless sensor networks (WSNs) . . . 188

6.3 Applied GM and algorithmic implementation on Wireless IoT
Sensors . 189
6.3.1 Addressing system challenges: processing and commu-

nication . 189
6.3.2 Tunable system-parameters 191

6.4 Experimental methodology . 192
6.5 Evaluation from a holistic system perspective 193

6.5.1 Full-system simulations 193
6.5.2 Validation through testbed experiments 197
6.5.3 Runtime insights: a closer look 199
6.5.4 Accuracy/Responsiveness: the effect of packet losses . . 200

6.6 Other related work . 202
6.7 Conclusions and future work . 204
Bibliography . 204

7 GM with Synchronous Transmissions and Aggregation 209
7.1 Introduction . 210
7.2 Preliminaries . 212

7.2.1 The Geometric Monitoring Method (GM) 212
7.2.2 Crystal . 214

7.3 GM, Crystal and Arctium co-design 215
7.3.1 Overview . 215
7.3.2 Orchestrating GM communication with synchronous

transmissions . 216
7.3.3 Arctium: enhancing Crystal with in-network aggregation 217

7.4 Evaluation . 222
7.4.1 Experimental methodology 223
7.4.2 Combining GM and Crystal: overall performance 224

xvi CONTENTS

7.4.3 Arctium: in-network aggregation under heavy communi-
cation . 226

7.5 Related work . 228
7.6 Conclusions . 229
Bibliography . 230

V Appendix 233

A Commodity Hardware for Low Latency/Jitter Packet Processing 237
A.1 Introduction . 238
A.2 Preliminaries . 240

A.2.1 Ultra Reliable Low Latency Communication Requirements240
A.2.2 The Evolved Packet Core 241
A.2.3 User-space packet processing 241

A.3 Latency and Jitter . 241
A.3.1 Packet I/O and forwarding application 242
A.3.2 Operating system and hardware platform 243

A.4 Experimental methodology . 243
A.5 Empirical study . 246

A.5.1 Packet I/O framework . 246
A.5.2 Application layer optimizations 246
A.5.3 System layer configurations 247
A.5.4 Latency vs throughput 248

A.6 Discussion . 248
A.7 Related work . 249
A.8 Conclusions . 250
Bibliography . 251

Part I

Introduction

1
Thesis Overview

In the last two decades, cloud computing has become one of the most pre-
dominant and well-established computing paradigms. Computing resources,
storage, network and software services are aggregated in data centers and of-
fered on-demand to a vast number of users over the Internet. Cloud computing
infrastructure is the driving force of today’s major distributed systems such as
those run by Google and Facebook and cloud computing has up to now appeared
to be the solution to all the challenges any application might face: scalability,
elasticity, connectivity, high performance, low cost, reliability and security.

Recently, this traditional computing paradigm is being challenged by two
upcoming (and interconnected) trends that are quickly gaining ground. The first
major trend is the introduction of connectivity and computing components to
everyday objects, i.e., the Internet of Things (IoT). The number of devices that
are expected to be connected to the Internet in the coming years is impressive [1],
with 24.9 billion expected connected devices by 2025 [2]. This includes everyday
objects, cars, as well as devices that are part of the electricity grid and the
industry [3]. However, what is even more impressive is the amount of data that
they will produce. As an example, a modern connected car is equipped with
numerous sensors that are generating 4 TB of data per day [4], that cannot all be
sent to the cloud for processing. The challenge associated with all that data is
now this: how, when and where to process the high volumes of data, in order to

3

4 CHAPTER 1. THESIS OVERVIEW

extract value [5] [6]? Moreover, among rising concerns regarding the security
of that data from IoT and the devices that produce them [7], additional security
countermeasures are often deployed. These countermeasures need to inspect and
process the generated data (e.g. for intrusion detection) and have potential to
become a processing bottleneck.

The second major trend stems from the next generation of industrial ap-
plications, a.k.a. Industry 4.0. Industrial automation systems are now gaining
networking capabilities and become true cyber-physical systems, i.e., they com-
bine physical components (e.g. actuators and motors) that gather data from
sensors, with a cyber counterpart that is connected with other systems and con-
trollers that take decisions on that data and send back commands to the physical
counterpart [3]. As such, industrial automation systems are connected, with
either wired or wireless connections, to each other and with the controller. They
constantly generate and transfer data for analysis at a computing node. A typical
example of such analysis is predictive maintenance [8], where sensor readings
are used to predict the lifetime of machinery and schedule maintenance before a
malfunction occurs, thus ensuring that there are no interruptions in the produc-
tion line. In this example, the application needs to continuously monitor, either
data from individual sensors, or combined information from a set of sensors and
take action when unexpected variations are detected [9, 10].

The net result of these two trends is a new set of applications with a range of
requirements, from low latency control loops that quickly react to new data, to
high throughput processing of aggregated data coming from a large number of
connected sources. When considering such applications, the traditional cloud
computing paradigm is no longer a panacea. In the case of IoT applications, the
sheer number of connected devices and amount of data generated by each device
makes it infeasible to send all that traffic to the cloud, both in terms of network
bandwidth and processing capacity. In the case of Industry 4.0 applications,
the need to take control decisions quickly (within milliseconds [11], see also
the Appendix) means that sending the data to the cloud, doing the processing
there and then receiving back the results adds unnecessary delays that real-time
applications cannot tolerate.

The aforementioned requirements call for timely processing of data close to
its source in an efficient, distributed manner. For this reason, it is necessary to
decentralize the processing that is typically done in the cloud and distribute it
along different layers of computation, along the path of the data. This, in turn,
requires hardware-aware processing algorithms that can be efficiently deployed
at various tiers of computing infrastructure, taking into account the hardware
capabilities and constraints. This thesis considers how algorithms and processing
applications can be adapted to better utilize the architectural features found

1.1. MOTIVATION 5

Figure 1.1: An example of processing across tiers of computing infrastructure.
It includes a cloud layer with high-end servers, an intermediate layer close to the
gateways and the IoT layer with resource-constrained devices.

across those tiers of computation. Next, we explain the opportunities and new
challenges introduced by processing across a range of computing infrastructure.

1.1 Motivation

The core idea of computing across tiers of infrastructure is to move the processing
to where it is most needed, closer to the data origin. In this paradigm, the
processing and control logic that would typically be found on cloud servers are
now pushed down to intermediate nodes, closer to the sources of data. Base
stations and gateways will thus be enhanced with processing capabilities and
storage. As such, they will be entrusted, e.g., with the processing of aggregated
data coming from IoT networks, or some of the control logic of Industry 4.0
applications. Moreover, the IoT networks themselves will take over some of the
processing and control logic, so that a significant portion of data does not have
to be forwarded upwards. An example of such a tiered computing architecture is
shown in Figure 1.1. By processing a large portion of the generated data close to
the IoT layer, the up-link network bandwidth will no longer be a limiting factor
and there is an opportunity to significantly reduce the overall processing latency.

Nowadays, we start seeing such aspects of computing in tiers of processing
infrastructure and the way they affect different domains. Some characteristic
examples are the following: (i) As mentioned above, existing and future Industry
4.0 applications, such as factory automation, machine-to-machine communi-
cation and autonomous driving require fast, real-time processing of the data
they generate, which makes sending that data to the cloud infeasible. Instead,

6 CHAPTER 1. THESIS OVERVIEW

processing is moved, on or close to the cyber-physical systems [12]. In many
cases, the processing and the networking infrastructure co-exist on the same
tier of computing architectures [13, 14]. (ii) In the automotive industry, several
Electronic Control Units (ECUs) inside the car are being extended with more
processing capacity, with similar hardware to what is typically common in data
centers, including Graphic Processor Units (GPUs) [15]. These ECUs take over
new processing tasks that range from sensor fusion to image processing, keeping
the processing close to where the data is generated.

The concept of computation at different tiers of devices is being expressed
through many proposed computing paradigms [16], such as fog computing, mo-
bile edge computing and cloudlets. In fog computing [17], switches and access
points in the network, as well as the IoT devices themselves take on processing
tasks. In the mobile edge computing paradigm [13, 18], parts of the mobile
broadband infrastructure become responsible for processing, using servers that
are co-located with base stations (see also the Appendix). Cloudlets [19] are
small scale, dedicated data centers that are deployed close to applications. The
common premise in all those paradigms is that processing that is typically done
in data centers, is now distributed and deployed on a wide range of devices.

The distribution of processing responsibilities to different tiers of platforms
opens new, interesting research questions in several ways. On one hand, it
comes with a new set of challenges, which mainly revolve around the problems
of (i) how to distribute computational tasks on different tiers [12], (ii) how
to move them there, (iii) in what ways the different components interact and
connect with each other [5] and (iv) how to maintain Quality of Service [20]. On
the other hand—and this is important in the context of this thesis—processing
across different tiers of platforms brings together applications with different
requirements that target different platforms, under the same computing approach.
Processing methods originally designed for servers in the cloud now also become
relevant at the intermediate layer and must adapt to the hardware found there. At
the same time, computational tasks designed to operate on aggregated data on a
single node can benefit if the processing logic is made distributed and handled
close to, or even by the nodes that produce that data. This increases the design
space of existing solutions and poses interesting research questions.

1.2 Hardware and Algorithm Diversity

As mentioned earlier, processing is no longer done only in massive servers but
distributed across a wide spectrum, including intermediate processing layers
(e.g. close to base stations) and resource-constrained devices (Figure 1.1). This

1.3. BACKGROUND 7

is challenging, since the hardware found at different layers is very diverse.
Applications need to be hardware-aware, in order to take this into account and
make the most out of the processing and communication capabilities at each
layer.

In the cloud layer, the hardware typically consists of massively parallel
servers with abundant storage and computing resources. Applications that are
deployed at this layer must be adapted to take advantage of high parallelism and
are usually oriented towards high processing throughput. We outline some of the
techniques and challenges of efficient processing at this layer in Section 1.3.1.

The intermediate layer is typically flexible and in itself includes a range of
devices. Some deployments at this layer have very similar characteristics to the
cloud layer [19] and consist of powerful parallel servers. On other occasions,
the hardware at this layer is more resource-constrained and strikes a balance
between high performance and low energy consumption. Typical examples are
embedded, yet relatively powerful devices such as clusters of Raspberry Pis and
Odroid boards [21]. An interesting feature of this layer is that the hardware found
here is rapidly evolving and some of the capabilities typically found in cloud
servers [22], such as massive parallelism through general purpose Graphics
Processor Units (GPUs), have trickled down to this layer (see Section 1.3.2).

The cyber-physical/IoT layer is dominated by resource-constrained devices,
typically sensors with very limited processing capabilities [23]. Those devices
often have just enough power to collect data from their environment and send
them to the upper layer. Many deployments in this layer rely on wireless,
battery-powered devices that are expected to operate autonomously and without
maintenance for months or years [24]. As such, energy consumption is a primary
concern at this layer and applications need to optimize their processing and
communication protocols accordingly. A summary of communication protocols
with emphasis on energy consumption is presented in Section 1.3.3.

1.3 Background

As mentioned earlier, computing at a wide range of platforms is challenging due
to the different nature and characteristics of the devices involved. In the previous
section, we outline some of those hardware characteristics. In this section, we
provide the background on techniques that make use of these characteristics at
each layer of devices. Specifically, we discuss parallallelization and vectorization
techniques used in high-end servers, accelerator techniques that are relevant at
both high and intermediate tier of devices, as well as topics on wireless sensor
networks that consist of low-end, resource-constrained devices.

8 CHAPTER 1. THESIS OVERVIEW

1.3.1 Parallelism and Vectorization

In the last two decades, multi-core processors have become ubiquitous and have
permeated the design and architecture of many devices, from smartphones and
tablets to massive servers. This shift in processor design is directly related to the
breakdown of Dennard’s scaling [25]: the observation that the power consump-
tion of transistors is proportional to their size. Near the year 2000, Dennard’s
scaling stopped being in effect, due to physical limits in heat dissipation and
threshold voltage. As a result, semiconductor companies stopped trying to re-
duce the size of transistors as a way to increase the processing frequency of a
single core. Instead, they started packing more cores per chip. Nowadays, a
single chip may support multiple hundreds of cores [26]. These cores typically
communicate with each other through shared memory.

This widespread adoption of multicores has brought a corresponding shift
in software design. Application developers can no longer rely on processors
becoming faster over the years. Instead, high performance must be gained
through parallelization, in order to utilize all the available cores in the system.
In practice, however, parallelization does not come for free and it is hard to
achieve. Many applications are inherently sequential (e.g. a finite state machine
traversal) or have parts that cannot be parallelized and must be performed in
mutual exclusion with other threads (critical sections). Amdahl’s law [27],
used to predict the performance of parallel programs, suggests that even under
highly parallel platforms with hundreds of cores, the performance gain due to
parallelism on such applications is bound by the portions of their code that is
sequential. In addition to that, co-ordination between cores, e.g. through shared
data-structures, creates additional serialization points and points of contention
that make parallelization a hard task. Often, hardware-aware algorithm designs
are required to adapt applications to modern computing environments.

Apart from thread parallelism that utilizes multiple cores, modern processors
also support data parallelism within each core. This type of parallelism is
called Single Instruction Multiple Data (SIMD) because, at each step of the
execution, a single instruction is issued that operates on multiple data. It is
usually implemented by a separate hardware pipeline that supports (vector)
registers and execution units that operate on arrays of values, rather than single
values, with a single instruction. As an example, a typical addition operation that
adds the values stored in two registers and stores the result in a third register, is
extended to operate on two arrays of registers (e.g. 16 32-bit registers) and store
the result in a third array. The cost of these vector instructions for addition is
usually the same as their scalar counterparts.

SIMD parallelism was introduced as early as in 1966 [28] and became

1.3. BACKGROUND 9

widespread through its use in the Cray supercomputer [29] that used vectoriza-
tion in the 1970s. Since then, vector execution units have been part of most
mainstream processor designs [30, 31]. However, the usefulness of vectorization
as a technique has been limited to applications that are amenable to data paral-
lelism and requires that values must first be brought to the vector registers. If
the application does not store the data that needs to be processed in consecutive
memory locations and access it in a consecutive manner, that application cannot
be vectorized, at least not efficiently. As a result, successful uses of vectorization
have up to now been limited to specific, number-crunching applications with
very simple and predictable access patterns.

In the last few years, vectorization is regaining importance and relevance. As
the per-core frequency can no longer increase, vendors are using vectorization
as a means for applications to reach higher performance [32]. This shift is
mainly shown in two ways: (i) The number of values that can be stored in
each vector register (vector length) increases. Starting from 128 bit long, vector
registers increased within a few years to 256 bit and recently to 512 bit long
vector registers [33]. This increased register size means that more data values
can be operated, simultaneously, with a single instruction, which increases the
benefits of using SIMD. (ii) New vector instructions. Modern vector instruction
sets are enriched with support for more complex instructions. Notably, the
gather instruction allows reading data from non-consecutive memory locations in
memory and storing then in a vector register. Equivalently, the scatter instruction
allows storing the contents of a vector register to non-consecutive memory
locations. Hardware support for such instructions is a step towards lifting one
of the main drawbacks in vectorizing applications and allows a wider range of
applications to get performance benefits from vectorization.

In summary, parallelization and vectorization are techniques relevant to high-
end servers. Later in this thesis, we describe how we use them for applications
that require high-throughput processing.

1.3.2 General Purpose Computing in GPUs

Graphic Processor Units (GPUs) are hardware accelerators, originally designed
for graphic operations such as rendering and ray tracing. They are highly parallel
platforms, with thousands of processing elements per GPU, but each processing
element usually runs at a slower frequency than a CPU thread and typically
lacks the sophisticated mechanisms found in CPUs (e.g. out-of-order execution,
branch prediction etc). The large number of processing elements make them
a good fit for graphic and image processing applications, where usually every
processing element is responsible for processing a single pixel.

10 CHAPTER 1. THESIS OVERVIEW

Most GPUs are standalone co-processors, with their own separate memory
(device memory), connected to the rest of the system via a data bus. The memory
hierarchy of GPUs includes different types of memory [34], such as: (i) on-chip
caches used by each processing element (private memory) (ii) shared caches
between processing units (local memory), (iii) read-only memory for fast access
to addresses with spacial locality (constant memory) and (iv) memory accessible
for reads and writes by all processing elements (global memory). Another
important characteristic of GPU architectures is the use of large register files that
allow fast context-switching between processing tasks. This allows GPUs to hide
long memory access latency by replacing a task that is waiting for a memory
request to be served with another task that can do useful work, similar to some
CPU designs [35]. Finally, the processing elements in most GPUs are organized
in groups that issue instructions synchronously, in lock-step, with each element
operating on a different part of the data, similar to SIMD vectorization.

In the last fifteen years, GPUs have been proven increasingly successful
for many more applications than originally designed for. Their highly parallel
nature makes them good alternatives to CPUs, especially for applications where
threads can operate on disjoint parts of data without heavy inter-thread commu-
nication (also called embarrassingly parallel applications). As a result, they have
been used extensively in image recognition, machine learning and many high-
performance computing applications [36]. Another characteristic that makes
them appealing alternatives to CPUs is their overall low power consumption per
unit of computation [37].

Due to their applicability in various tasks, GPU platforms have evolved
rapidly and have become a crucial part of many processing platforms. Lately,
GPUs have permeated the intermediate layer of devices, as small, embedded
co-processors in single-board computers [21]. Embedded GPUs at this layer
offer less parallelism and processing power than their high-end counterparts,
and are oriented towards lower energy consumption [38]. Their architecture has
some interesting characteristics that distinguish them from high-end GPUs. As
an example, embedded GPUs typically do not have a separate device memory
and instead share the same physical memory with the CPU.

The use of GPUs for general purpose computing (GPGPU) has been made
possible and widespread through the use of two programming frameworks:
CUDA [39] and OpenCL [40]. CUDA was the first framework to be released and
the one that popularized GPGPU computing, targeting primarily NVIDIA GPUs.
OpenCL is an open standard and focuses on portability across different devices.
Deploying an application on GPUs typically requires the following steps: (i) the
data to be processed is copied from the CPU into the device memory of the
GPU, (ii) the CPU enqueues a command to the GPU to begin processing the data

1.3. BACKGROUND 11

through a predefined program written for the GPU (kernel), and (iii) the GPU
copies the results back to the main memory of the CPU.

Deploying efficient applications on GPUs is challenging due to several
reasons. First, an existing parallel application usually needs to be re-written under
a GPU programming framework. Second, the performance of the application
often depends heavily on the hardware characteristics, such as the device memory
size, the complex memory hierarchy and the number of threads that execute
instructions synchronously (warp). Another issue that affects the performance of
GPU applications is warp divergence, i.e., the situation where different threads
in a warp must execute different parts of the code, e.g., due to an if statement.
Finally, in many cases where the application requires frequent communication
between the CPU and the GPU, the data bus between them is a performance
bottleneck.

In summary, GPUs are widely used accelerator units for offloading general
purpose computing tasks, but come with challenges on how to make use of their
hardware features. Later in this thesis, we show how we make use of GPUs, in
particular embedded GPUs.

1.3.3 Wireless Sensor Networks

On the low end of the spectrum of computing devices in Figure 1.1, the hardware
characteristics are significantly different than in other layers. Here, the main
hardware components are: (i) a set of simple sensory hardware that periodically
collects data from the environment, (ii) a resource-constrained micro-controller
unit (MCU) for simple data and packet processing, and (iii) a radio transceiver for
communication with other nodes that is used to form networks (either structured
or mesh).

Sensors are typically battery powered and are expected to operate without
service for long periods of time. As such, the battery lifetime is the most
valuable resource and the design of hardware and software for wireless sensors
emphasizes on minimizing the energy footprint. As a consequence, applications
on wireless sensors need to deal with the fact that processing components are
very simple and resource-constrained.

In addition to computation, communication in Wireless Sensor Networks
(WSN) is also challenging, due to its energy cost. In fact, the radio is one the
most energy-hungry components, often consuming up to 10 times more energy
than the MCU. For this reason, the goal of most communication protocols is
radio duty cycling (RDC), where the radio is kept off as much as possible and is
turned on for only a small fraction of the total time. A simple and commonly
used RDC policy is to turn the radio on a fixed number of times per second,

12 CHAPTER 1. THESIS OVERVIEW

called the channel check rate (CCR) [41]. A node that wants to transmit, will
keep transmitting for a duration of at least 1/CCR seconds to ensure that all
neighbouring nodes have a chance to turn their radio on and receive. The channel
check rate is a tunable parameter of the protocol that directly affects the battery
lifetime of the nodes.

In addition to energy consumption, latency and reliability are other impor-
tant considerations in WSNs. Sensors usually form multi-hop networks over
unreliable and lossy links that are constantly subject to interference. For this
reason, a large body of WSN research has focused on how to design reliable
and low-latency network protocols. Traditionally, wireless communication pro-
tocols attempt to avoid cases where packet transmission from multiple nodes
overlaps in time, since this leads to interference and reduces the probability
that other nodes in the network will correctly receive packets. Some recent
protocol designs follow the opposite approach: transmissions from different
nodes are tightly scheduled in time and start concurrently. Due to the capture
effect [42], nodes in the network will successfully receive one of the packets if
all transmissions start at the same time (e.g. within 160µsec for IEEE 802.15.4
technologies [43]) and one packet is at least 3dB stronger than the rest. More-
over, due to constructive interference [44], if two packet transmissions start
within 0.5µsec from each other and the packets contain the same contents, these
transmissions do not interfere with each other. Utilizing those two effects in
wireless communications has given rise to protocols that achieve highly reliable,
low latency communication [43–45].

In summary, in wireless sensor networks, energy consumption, latency and
reliability are key objectives. Later in this thesis, we show how to design
applications and protocols with these objectives in mind.

1.4 Representative Problems

In this section, we describe three representative applications that are used as
a basis for the work in this thesis. These applications capture many of the
challenges and requirements of data processing scenarios mentioned in the
beginning of this introduction and are relevant for deployment on different layers
of computing platforms described in Section 1.3. The applications we consider
relate to monitoring data, coming from sources such as network packets or
sensor readings. In this thesis, we focus on how the data processing involved in
those monitoring applications can be done efficiently, on the hardware they are
typically deployed on.

1.4. REPRESENTATIVE PROBLEMS 13

1.4.1 Network Intrusion Detection and Pattern Matching

In the first problem domain, we consider the problems and challenges involved
in pattern matching, with a focus on its application in Network Intrusion De-
tection Systems (NIDSs). Pattern matching for NIDSs falls into the category of
applications that require fast processing of data coming from multiple sources
that is aggregated and processed on the high-end, or the intermediate layer of
devices (Figure 1.1).

NIDSs are typically found at the entry point of networks and their purpose
is to analyze the incoming and outgoing network traffic to detect any malicious
behavior, ranging from unauthorized access, malware that exploits software vul-
nerabilities, data exfiltration, etc. They typically employ sophisticated analysis
that considers not only the packet headers but also the contents of each packet
(deep packet inspection [46]). There are many available NIDSs, with Snort [47]
and Zeek (formerly called Bro [48]) being some of the most established and
mature in the open-source community.

Network Intrusion Detection Systems gain new significance in the context of
processing across a wide range of devices. We consider deployments of NIDS on:
(i) high-end servers in the cloud and (ii) the intermediate layer of devices between
the cloud and the IoT. On high-end servers, NIDSs are deployed to protect large
networks with high volumes of network traffic. Nowadays, with the growth
of Network Function Virtualization (NFV) technologies [49, 50], applications
such as firewalls and NIDSs are moving away from custom hardware boxes and
into the cloud, where they are deployed on general purpose servers as virtual
functions. This deployment model offers flexibility, since virtual functions can
be scaled up or down and replaced easily, depending on the traffic load.

On the lower end of the spectrum of devices, IoT networks are connected to
the Internet, sending sensor readings upwards towards the cloud and receiving
back control traffic. The end-devices producing sensitive data are potential
attack targets. However, since they are typically resource-constrained, traditional
security mechanisms cannot be easily deployed there. Hence, it is important to
add protection mechanisms, both at the entry point of the network and along
the data path towards the cloud. For this reason, we also focus on the deploy-
ment of NIDSs on the intermediate layer of devices, where the computational
resources make it possible to deploy some security countermeasures to protect
the vulnerable networks of resource-constrained devices.

An essential building block of many NIDSs is pattern matching, i.e., to
discover if any of many predefined patterns exist in an input stream (multiple

14 CHAPTER 1. THESIS OVERVIEW

pattern matching), for whitelisting or blacklisting.1 Considering the processing
involved in NIDSs, pattern matching is the most computationally intensive part
and represents a major performance bottleneck. More than 70% of the running
time of a NIDS can be spent on pattern matching [55, 56]. This fact, in conjunc-
tion with the ever-increasing rates of traffic that needs to be analyzed, pushes the
performance of NIDSs to their limits. Achieving high pattern matching through-
put is challenging yet crucial for these systems: if the processing throughput
cannot match the incoming traffic rate, the system will have to start dropping
packets and may miss potential attacks.

1.4.2 Network Monitoring and Sketches

In addition to Network Intrusion Detection, we also consider the processing
involved in network traffic monitoring, with emphasis on high performance.
Similarly to pattern matching, traffic monitoring also relates to high-speed
processing at high-end or intermediate layer of devices (Figure 1.1).

Monitoring and maintaining statistics on network traffic is an important
task that feeds valuable information to many other systems and actors. As an
example, a NIDS may be interested in constantly maintaining information about
the distribution of incoming traffic, since an abrupt change in that distribution
may indicate an attack [57, 58]. Similarly, a controller in a Software Defined
Network (SDN) may want to know the most popular destinations of traffic in the
network, in order to perform dynamic flow scheduling [59]. Statistics extracted
from data streams, such as top-k results, are useful in many scenarios [60].

In the context of different, interconnected layers of devices, traffic monitoring
is challenging due to the high volume of traffic being generated, e.g. from IoT
devices, aggregated at intermediate devices and sent to the cloud. Keeping
up with the incoming traffic rate is a challenge that requires high throughput
processing.

In addition, some traffic monitoring tasks come with inherent challenges in
terms of memory consumption. As an example, consider a simple monitoring
system that answers queries of the type: ”How many packets with source address
X have entered the network?”. In order to be able to give an exact answer, at
any point in time and for any given address, the system needs to store all the
incoming addresses and their counts, which consumes memory proportional
to the number of unique addresses found in the traffic stream. For high-speed

1Apart from its role in intrusion detection, pattern matching is also a core function in many other
tasks, such as virus detection [51], text search [52] and genome analysis [53] [54].

1.4. REPRESENTATIVE PROBLEMS 15

networks with more than 10Gb Ethernet links, this approach quickly becomes
impractical.

If an approximate answer to the aforementioned query is acceptable, there
are algorithmic solutions using constant memory without storing the actual
addresses. Sketches [61] are probabilistic data structures that are heavily used
for the purpose of traffic monitoring because they offer a configurable trade-off
between accuracy and memory consumption. They usually provide answers
to queries that have error of at most ε with probability at least 1 − δ (probably
approximately correct [62]). Sketches typically use multiple hash functions to
summarize the traffic stream using a fixed amount of space. The number of hash
functions and the range of values of each hash function can be adjusted to offer
accuracy guarantees on the queries performed on the sketch.

One of the challenges in creating new sketching approaches is to design new
hashing techniques that improve the accuracy of the sketch while maintaining
the same memory usage. Moreover, sketches need to be designed with high
performance in mind. Specifically, due to the environments and the applications
they are used in, sketches are required to have: (i) high insertion rate, so that they
can keep up with the traffic rate of high-speed networks, and (ii) high query rate,
i.e. the ability to support frequent queries on the sketch. The latter requirement
is necessary for applications that continuously monitor traffic and have to react
quickly to unpredictable changes [58].

1.4.3 Distributed Continuous Monitoring and IoT

Within the general area of monitoring applications, we shift the focus to resource-
constrained IoT networks (Figure 1.1) and target the important problem of
distributed monitoring of sensor readings, that is relevant to many applications
that operate on data from IoT networks or industrial applications.

We address the issue of continuously monitoring a distributed set of sensor
values and keeping track of a function of interest, defined over the network-wide
aggregate of these values. Often, the goal is to always be able to detect whether
the value of the monitored function has exceeded a predefined threshold. Keeping
track of such a function is a basic building block for many IoT applications and
control loops, e.g. for detecting outliers [63], hot-spots [64] or denial-of-service
attacks [65].

Monitoring sensor values is a prime example of IoT applications that require
local processing, close to the sources of data, in order to achieve timely monitor-
ing and low latency detection of a threshold violation. Ideally, the monitoring
logic can even be placed inside the IoT network and distributed to the sensor
nodes themselves.

16 CHAPTER 1. THESIS OVERVIEW

Keeping track of a function defined over a network-wide aggregate is a
challenging task in practice. A simple solution is to aggregate every reading
from every node in the network at a central entity and compute the aggregate
there. Such an approach is impractical in networks with battery-constrained
devices: using the radio for transmission or reception is the single most expensive
operation in terms of energy [66]. Some solutions to the challenges associated
with this problem are to compress the transmitted data [67, 68], or reduce the
number of sensor readings that need to be transmitted, by letting all nodes locally
determine whether a reading should be transmitted. However, finding such
local criteria is challenging when the function to monitor is non-linear (e.g. the
variance of the readings) yet it is non-linear functions that are particularly
interesting for many real-world applications (e.g. detecting a denial-of-service
attack, using the entropy of a series of readings [65]).

1.5 Related Work

In this section, we summarize related work that is relevant to hardware-aware al-
gorithms, including each of the representative problems presented in Section 1.4.
We also contrast related work against aspects that the state-of-the-art does not
address, which later form the motivation behind the contributions included in
this thesis.

1.5.1 Hardware-aware algorithm design

Algorithm engineering [69] is often viewed as a cycle between design, analysis,
implementation and experimental evaluation of algorithms. In this cycle, the
design of algorithms relies heavily on models that capture important character-
istics of the hardware. Algorithms that are aware of the underlying hardware
model and interact efficiently with it, have a clear benefit over algorithms (even
asymptotically better ones) that do not take the hardware model into account.

Typical examples are hardware models that take into account the memory
hierarchy (e.g. caches, main memory, disk) and algorithms that optimize their
memory access pattern according to this hierarchy. Such models are used in e.g.
block-based matrix multiplication that makes use of spatial cache locality [70],
data structures such as B-trees [71] and many other applications [72]. Similar
models also drive algorithmic engineering for algorithms that are deployed
on specialized architectures, such as the Cell processor [73, 74] and Intel’s
SCC [75, 76] or similar platforms [77]. Recently, machine learning models have
been proven successful in automatic software optimization (a part of algorithmic

1.5. RELATED WORK 17

engineering) based on the underlying hardware [78].
Hardware platforms often offer specialized resources e.g. support for vector

instructions (Section 1.3.1) and GPUs (Section 1.3.2). Making use of such hard-
ware resources is not always straightforward and requires design of algorithms
that take them into account. Examples include redesigning database operations
and data structures to make use of vectorization [79] or GPUs [80]. Moreover,
acceleration using programmable networks cards [81] is starting to be used
extensively in many applications [82, 83]. In all of the above cases, algorithms
that successfully make use of the specialized hardware resources are specifically
designed with the hardware capabilities in mind.

1.5.2 Pattern Matching and Hardware Characteristics

Pattern matching has been an active field of research for many years and there are
many proposed approaches. The algorithm designed by Aho and Corasick [84] is
one of the most well known and the one currently used by the Network Intrusion
Detection System Snort. The first step of the Aho-Corasick algorithm is to create
a finite-state automaton from a previously known set of patterns that belong to
malicious attacks. Then, the algorithm scans the input traffic byte-by-byte to
traverse the automaton, until it arrives at a final state that indicates the detection
of an attack. Even though the Aho-Corasick algorithm performs only a small
number of operations per byte, it fails to perform well in practice, due to poor
cache locality. Nonetheless, the Aho-Corasick algorithm is a widely used pattern
matching kernel, both in software and in hardware [85].

State-of-the-art approaches have been proposed to address the limitations of
the Aho-Corasick algorithm. A family of algorithms in the literature replaces the
state machine of the Aho-Corasick algorithm with filters. Choi et al. [51] use a
series of succinct filters, created using a small part of each pattern that represents
an attack. In this way, most of the benign input traffic is quickly filtered out,
using cache-resident data structures. The part of the input that matches the
information in the filters is further examined in a later verification phase that
involves lookups in hash tables that contain the full patterns. Similarly, Moraru
et al. [86] use a modification of Bloom filters [87] to scan both the input and the
subset of patterns that are relevant. Sourdis et al. propose a similar selection of a
relevant subset of patterns and implement it in hardware [88]. They also present
a hardware implementation that uses perfect hashing [89] to find a potentially
matching pattern for a given part of the input.

Motivating challenges for this thesis: Even though the state-of-the-art
approaches have substantially increased the achieved throughput, they perform
sub-optimally in modern architectures, because they fail to make use of the new

18 CHAPTER 1. THESIS OVERVIEW

characteristics and features, as discussed in Section 1.3. On high-end servers,
most pattern matching algorithms do not make use of the vector execution units
and leave them underutilized. On intermediate layer devices, they fail to make
use of unique architectural features, such as the embedded GPUs found at this
layer. It is important to look deeper into the architecture of the devices NIDSs are
deployed on and determine the features and characteristics that can be utilized to
achieve high processing rates. We outline how the contributions in this thesis
address those challenges on high-end servers in Section 1.7.1 and on intermediate
layer devices in Section 1.7.2.

1.5.3 Sketches and Parallelism

There is a plethora of sketch-based algorithms that introduce different techniques
to summarize data streams [61, 90]. The Count-Min Sketch [91] is a simple
and widely used data structure that can answer approximate point queries, i.e. it
returns the frequency of a certain key in the stream. It consists of d rows and w
buckets per row, along with d different hash functions that map items into each
row. Upon arrival of a new key (e.g. a new IP address), the key is separately
hashed with each hash function and the value of the corresponding bucket is
incremented by one. When querying for the frequency of a key, the key is hashed
with all the hash functions and the answer to the query is the minimum value
of the corresponding buckets. This value represents the closet approximation,
since it is the bucket that has had fewer collisions with other, irrelevant keys.
The approximation error of such a query is e

w
N with probability 1 − 1

ed
, where

N is the number of keys that have been inserted in the sketch [91]. An invariant
of the Count-Min Sketch is that the answer to a query is never less than the true
frequency of the key in the stream. A different variation, the Count-Sketch [92]
uses the median, rather than the minimum value as an estimator. Apart from
those two approaches, the literature in sketches offers many other variations that
focus on the accuracy/memory consumption trade-off [91–93].

Motivating challenges for this thesis: In order to match the processing rate
required for high-speed networks, sketches need to be parallelized and make
use of the underlying hardware features. However, most of the work proposed
on sketches focuses on the single thread case and ignores parallelism. The few
parallel designs that exist fail to achieve both high insertion and high query rate
and focus on one of the two. We identify that there is a gap in the range of
solutions for parallel sketches. We also show that the parallelization of a sketch
has significant impact on its accuracy. There is great need for a sketch design
that makes use of the platform’s parallelism, handles millions of insertions per
second and at the same time supports frequent, concurrent queries that return

1.5. RELATED WORK 19

accurate results. We outline how we address this need in Section 1.7.1.

1.5.4 Continuous Monitoring and IoT

Sharfman et al. [94] proposed a general method called Geometric Monitor-
ing (GM) that can monitor any function (linear or not) defined over the average
of network readings and keep track of its value with respect to a threshold. When
using this algorithm, every node is capable of deriving constraints on its local val-
ues and avoid communication as long as those constraints are not violated. The
GM method has been extended with sketches [95] and prediction models [96]
and has been applied to outlier detection [63] and data stream queries [97].

In GM, any node must be able to let all other nodes in the network know
that a local threshold has been violated and propagate the new estimate across
the network, in an any-to-all communication pattern. However, most existing
WSN protocols focus on either data collection (all nodes send data to a single
sink) [68, 98] or data dissemination (the data from a single node is propagated
across the network) [44].

Motivating challenges for this thesis: Apart from the existing general anal-
ysis of continuous monitoring algorithms, such as the one described above, the
applicability to a real IoT deployment is unclear, from a practical perspective
and the literature offers no insights in how the system aspects of IoT networks
interact with such algorithms. Specifically, the underlying network stack can
have a significant impact on the efficiency of the algorithm, in terms of energy
consumption on the nodes, as well as latency and reliability of communication.
Moreover, the resource-constrained nature of the sensor nodes makes the pro-
cessing required by the algorithm challenging in practice. Finally, we note that
existing network protocols are not designed for the communication pattern that
is typically found in Geometric Monitoring (any-to-all) communication.

Due to the aforementioned gap between the application (continuous mon-
itoring) and the network stack, it is important to study the behaviour of the
application on top of network stacks in real-world sensor devices and identify the
bottlenecks due to communication and processing. Additionally, finding ways of
co-designing the network stack and the application can bridge this gap. Since
existing network protocols are not a good fit for this application, it is necessary
to re-design them or extend them and optimize their energy consumption with
respect to the communication pattern of the application. We show how we
approach those challenges in Section 1.7.3.

20 CHAPTER 1. THESIS OVERVIEW

1.6 Research Questions
In this thesis, we study the core processing algorithms of characteristic applica-
tions that can be deployed in a wide spectrum of devices. For these algorithms
we propose, implement and evaluate new designs that are closely coupled with
the characteristics and capabilities of the hardware typically found across the
different layers of computing devices.

By doing so, we attempt to demonstrate the following: Processing applica-
tions can greatly benefit (in terms of higher processing throughput and better
energy efficiency) from algorithm engineering that provides tailored solutions
that are aware of, and efficiently utilize, the hardware capabilities and character-
istics of the platforms where these applications are deployed.

The work in this thesis investigates the following research questions.

• RQ1: How can hardware support be used to achieve high processing
throughput on high-end and intermediate-layer devices?

• RQ2: How to co-design algorithms and communication protocols in order
to better serve the needs of distributed applications?

• RQ3: How can algorithms that are traditionally viewed on one tier of
computing devices be re-designed and deployed on different tiers?

• RQ4: How do the capabilities and system aspects of the platforms found
in different computing layers affect the design and implementation of
efficient processing algorithms?

RQ1 is relevant for applications that process large volumes of data, arriving
at high rates. Processing kernels for network traffic processing are good such
examples, including Network Intrusion Detection and packet monitoring, as
described in Sections 1.4.1 and 1.4.2. In such applications, the requirement for
high processing throughput often comes from the fact that the rate of processing
needs to match the incoming data rate. In the pursuit of high processing through-
put, the hardware itself offers capabilities that the processing algorithm must
utilize. Such suitable hardware capabilities can be found both on the high-end
and the intermediate layer (Figure 1.1). In the next section, we describe how
we make use of vectorization, parallelism and hardware acceleration in traffic
processing applications.

RQ2 becomes particularly relevant on the low tier of processing architectures
in Figure 1.1, that consists of resource-constrained, connected devices, such
as in Wireless Sensor Networks (Section 1.3.3). In this setting, the underlying
communication protocol plays an important role in the performance of distributed

1.7. THESIS CONTRIBUTIONS 21

applications and is an important consideration when designing algorithms that
are expected to perform efficiently (e.g., in terms of low latency and energy
consumption). In the next section, we show how co-designing the application
and the protocol leads to efficient distributed algorithms that perform well in
realistic deployments.

RQ3 is relevant in the context of moving processing away from the cloud
and distributing it in different tiers of devices (Section 1.1). When doing so,
algorithms that were originally designed to operate on a specific tier of devices
(e.g. the cloud) are now deployed in different tiers (e.g. on intermediate layer
devices). This raises interesting research questions on how the performance of
those algorithms will be affected by the change in hardware capabilities (e.g.
from parallel servers to single-board computers) and the different communication
environment (e.g. from data-center networks to WSN).

RQ4 is at the core of this thesis and is relevant to all tiers of processing
architectures. At each tier, a way to meet the application’s requirements (e.g. for
high processing throughput, low latency, low energy consumption) is through
algorithm designs that are tailored for the hardware platforms that they are
deployed on. Hardware features and constraints are often the main factors that
dictate the applicability and performance of algorithms. Algorithms can benefit
greatly when they are redesigned in a way that takes into account the underlying
platform. The work presented in this thesis includes examples of how such
hardware-aware algorithm engineering can be done for various applications and
platforms, as well as the benefits it brings.

We relate back to these research questions and how we address them in this
thesis, in the context of the research contributions described next.

1.7 Thesis Contributions
The contributions in this thesis are solutions to the open problems discussed in
Section 1.5 and connect to the research questions raised in Section 1.6. Table 1.1
shows which research questions are addressed in each part and chapter in this
thesis, starting after the present chapter. We summarize these contributions
below.

1.7.1 Parallel Data Processing on High-End Servers

In Part II of the thesis, we target the processing performed on high-end servers,
through two representative applications: (i) pattern matching for intrusion detec-
tion and (ii) network traffic monitoring. The common challenge that we address

22 CHAPTER 1. THESIS OVERVIEW

Part II Part III Part IV
Massively Parallel Embedded Resource-Constrained

Servers Accelerators Devices
Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

RQ1 # #
RQ2 # # # #
RQ3 # #
RQ4

Table 1.1: Research questions addressed in each chapter in this thesis.

in both target applications is to make the most out of the parallelism that the
hardware platforms at this tier of processing offer. By doing so, we contribute
towards RQ1 and RQ4 and show: (i) how hardware features can be utilized to
achieve high processing throughput and (ii) how can processing algorithms be
redesigned to make efficient use of such features.

(A) Vectorized pattern matching

In Chapter 2 we target the data parallelism within each core at high-end servers
and propose V-PATCH, a pattern matching algorithm that relies on vectorization
to process multiple bytes of input, in parallel. This work builds on the observation
that recent approaches to pattern matching that rely on quick filtering of the
input, have brought the problem close to the processor and achieve good cache
locality. As a result, long memory latency is no longer the dominant bottleneck
and the computational part of pattern matching becomes significant. With that
in mind, we target this computational part and show how to improve it further,
through vectorization (see Section 1.3).

We follow a two-step approach. First, we propose a refined and extended fil-
tering strategy that: (i) performs filtering based on cache-resident data structures
and is effective for the types of patterns found in real traffic, and (ii) is simple
enough to allow efficient vectorization. As an example, we deal separately with
small, but frequently found patterns and perform more targeted filtering for
longer patterns. Second, we design a vectorized version that uses specialized
instructions to parallelize the computation performed on the filters, together with
optimizations (e.g. filter merging) that allow us to make the most of the filtering
design. We complement the design of both the scalar and the vectorized versions
with an analytical model that predicts their respective performance based on the
number of patterns inserted in the filters.

We evaluate the effectiveness of V-PATCH using real malicious patterns from
Snort [99], against both real and synthetic traffic mixes. The results on two

1.7. THESIS CONTRIBUTIONS 23

platforms, an Intel Haswell processor and an Intel Xeon Phi co-processor, show
up to 1.8x and 3.6x times faster processing throughput respectively, compared
with the state-of-the-art. Furthermore, we find that the vectorized approach
retains a stable speedup of 1.4x over the scalar one, as the number of malicious
patterns increases. We also show that our analytical model that predicts the
behaviour of our algorithms is very close to the experimental results on real
data. Finally, we evaluate the performance of V-PATCH when deployed across
many cores on a highly parallel platform and show that it achieves processing
throughput of up to 45Gbps and close to 2 times higher throughput than the
standard algorithm in the field.

(B) Parallel approximate traffic monitoring

In Chapter 3 we target the problem of traffic monitoring with sketches (see
Section 1.5.3), in the context of highly parallel platforms. We propose Delegation
Sketch, a parallel design for sketch-based algorithms that supports concurrent
insertions and queries, at high rates. At the same time, we show that the queries
on the sketch have better accuracy than some of the baselines, while maintaining
the same memory consumption.

Our design is built around two techniques: (i) Domain Splitting and (ii) Op-
eration Delegation. Domain Splitting is used to split the range of incoming keys
to groups and assign each group to a different sketch. All occurrences of a key
will be inserted only in the sketch assigned for that key. By doing so, we ensure
that query operations are served fast: one needs to only search a single sketch
for a key. This also makes queries more accurate, as we do not accumulate the
errors of individual sketches. Operation Delegation is a mechanism that ensures
efficient synchronization of operations from different threads on the same sketch.

Our design makes use of filters, i.e., small buffers that aggregate multiple
occurrences of the same key. Their purpose is dual: (i) they allow threads to
perform most of the insertions on filters rather than on the full sketch, which
is faster due to their small size and (ii) they serve as a unit of synchronization
between threads. Once a filter is full, it is handed over to a thread that is
responsible for inserting the keys in that filter into the sketch. Finally, we
also propose a “query squashing” optimization that aggregates queries on the
same key by different threads into a single logical operation on the sketch, thus
reducing the cost of queries, especially under high contention.

We evaluate the performance of Delegation Sketch across different dimen-
sions: scalability, query rate, accuracy and processing latency. Our experiments
with real and synthetic data on massively parallel platforms with up to 288 threads
show that our approach supports up to 4X higher processing throughput and

24 CHAPTER 1. THESIS OVERVIEW

performs queries with up to 2.25X lower latency than the next best-performing
alternative. At the same time, Delegation Sketch has the same accuracy as the
most accurate alternative, using the same amount of memory.

1.7.2 Fast and Energy-Efficient Processing on Embedded Ac-
celerators

In Part III of this thesis, we target the intermediate tier of devices and the
hardware found there. Specifically, we focus on single-board computers with
embedded accelerators (GPUs) and we make use of their architectural features to
accelerate the processing involved in Network Intrusion Detection Systems. The
work in this part of the thesis contributes to RQ1, RQ3 and RQ4, by investigating
the design of high-throughput algorithms on single-board computers (rather than
high-end servers) and the effect of hardware features (embedded GPUs) on the
design and performance of these algorithms.

(A) Integrating GPU Computing as Part of NIDS

In Chapter 4, we propose CLort, an extension to the widely used NIDS Snort [47],
that is designed to make the most out of devices with embedded GPUs to
accelerate pattern matching. Our work relies on the fact that the hardware at
the intermediate layer, which serves as a gateway to IoT networks, is constantly
being improved and it gains some of the architectural features that are so far
used in more powerful platforms.

We analyze Snort and show how to offload the computationally heavy part of
intrusion detection (pattern matching) into the GPU and integrate GPU comput-
ing into Snort’s processing pipeline. We also integrate optimizations that allow
this offloading to be performed in an efficient way, by overlapping the processing
on both the CPU and the GPU.

Our evaluation shows that embedded GPUs are effective hardware platforms
for Network Intrusion Detection at the intermediate tier of devices. We exper-
iment with realistic traffic and show that using the GPU leads to 52% faster
processing than the CPU, while consuming 32% less energy. By making the most
of the available hardware resources, we show that single-board computers with
embedded GPUs can be deployed as “security boxes” that are able to process
traffic at high rates.

1.7. THESIS CONTRIBUTIONS 25

(B) Evaluation of Pattern Matching on Embedded GPUs

In Chapter 5, we take a closer look at the performance of pattern matching algo-
rithms on embedded GPUs. Specifically, we present the results of an evaluation
of different algorithms and investigate the particular characteristics of embedded
GPUs that affect the performance of these algorithms. Based on the results of
this evaluation, we also propose a new hybrid algorithm that combines ideas
from the existing approaches and outperforms them.

The purpose of our benchmark is to establish a co-evaluation framework
for different algorithms. We include existing algorithms that capture the main
approaches on pattern matching, including a GPUs adaptation of our own, as well
as a new, hybrid algorithm. We also examine a series of hardware characteristics
that make embedded GPUs distinct from the regular, high-end GPUs, such as
the lack of separate device memory.

We evaluate the included algorithms under our common benchmark, using
a series of real data and malicious patterns extracted from Snort. We find that
GPUs are attractive alternatives to CPUs for pattern matching at the intermediate
layer of devices, in terms of processing throughput and energy efficiency. We
also show that the unique features of embedded GPUs have a significant effect
on the performance of pattern matching algorithms and need to be taken into
account in the design of new approaches.

1.7.3 Distributed Processing on Resource-Constrained Devices

In Part IV of this thesis, we target networks of resource-constrained devices and
study applications that distribute the processing to the cyber-physical devices
themselves. Specifically, we focus on the application of continuous monitoring.
We contribute towards RQ2, RQ3 and RQ4 by showing: (i) the effect that the
underlying network protocol has on the design and performance of continuous
monitoring, and (ii) the benefits of co-designing the protocol together with the
application.

(A) A Full-System Perspective for Geometric Monitoring

In Chapter 6 of this thesis, we study Geometric Monitoring [94] (see Sec-
tion 1.4.3) from a full-system perspective, when applied on real IoT networks.
We design and deploy Geometric Monitoring on top of a mainstream wireless
sensor network stack. Then, we thoroughly evaluate the performance benefits
achieved in practice, the run-time behavior of the algorithm and the effects of
packet losses.

26 CHAPTER 1. THESIS OVERVIEW

We design the system on top of multi-hop mesh networks, without the need
for maintaining a topology. When a node detects significant changes in its sensor
readings, it will trigger a network-wide broadcast and inform every other node
of its new value. This is done by network flooding, where a node that receives
“new” information will broadcast it further to its neighbors. In the event that a
node fails to receive an update by any of its neighbors, that node will be out of
sync until a subsequent broadcast from the same origin arrives.

We investigate the important parameters of the network stack that determine
the effectiveness of the algorithm in practice. As we show in this chapter, the
rate at which nodes wake-up to receive traffic (Channel Check Rate, CCR)
greatly affects the energy savings of the GM method. We evaluate our design
using both full-system simulations and real IoT testbeds. Overall, we find that
GM brings significant benefits to monitoring tasks, in terms of communication
reduction. Specifically, when monitoring the variance and the average of real
temperature data, GM achieves 3x and 11x reduction in duty-cycle, respectively.
However, these benefits are limited compared to the communication reduction
of the algorithm in isolation (4.3x and 44x respectively), due to baseline energy
overhead of the network stack. Closer looks into the run-time behavior of the
algorithm show that (i) the communication pattern varies greatly, and (ii) packet
losses greatly impact the time a node is out of sync and reduce the ability of the
algorithm to detect violations in a timely manner.

(B) Application and Protocol Co-Design for Geometric Monitoring

The findings from the work presented in Chapter 6 show that the network
protocol used for communication between the nodes is a major prohibiting
factor that limits the effectiveness of the Geometric Monitoring method. In
Chapter 7, we build on this observation and take one step further: we co-design
Geometric Monitoring with a modern network protocol. By doing so, we provide
a practical realization of a system that continuously monitors sensor values with
a high degree of communication suppression (due to properties of Geometric
Monitoring) and operates at low duty-cycle with high reliability (due to properties
of the underlying communication protocol).

As a starting point, we use a modern, low-power communication protocol
(Crystal [98]) that relies on synchronous transmissions for fast and reliable data
collection to a single sink. We extend this protocol to match the communica-
tion pattern of Geometric Monitoring which requires any-to-all communication.
Moreover, we augment our design further by introducing an in-network ag-
gregation technique, named Arctium, that leverages latent opportunities of the
communication protocol to reduce the overall communication cost. Finally, we

1.8. CONCLUSIONS AND EMERGING FUTURE DIRECTIONS 27

redesign the application to better match the challenges related to processing in
resource-constrained devices. Specifically, we identify that Geometric Moni-
toring requires every node to periodically check their local threshold violation
criteria, which can be computationally challenging for resource-constrained
devices. To this end, we propose a simple relaxation of the violation check that
introduces a trade-off between computational efficiency and communication
reduction.

Our experiments on both simulations as well as deployments with real IoT
testbeds and data-sets, show that our design leads to an up to 10x reduction in
energy consumption compared to previous work. Our in-network aggregation
technique (Arctium) further reduces it by 1.13-1.38x. These results motivate
that careful co-design of the application and the communication protocol can
lead to low-power, continuous monitoring designs that have potential to perform
efficiently on real world deployments.

1.8 Conclusions and Emerging Future Directions

In this thesis, we show that algorithm engineering, that emphasizes on utilizing
the architectural features of hardware platforms, is crucial for the design of data
processing algorithms that scale, maintain high processing throughput and are
energy-efficient. We demonstrate this on the full spectrum of platforms, from
highly parallel servers, to intermediate-tier devices and resource-constrained
nodes, and in a variety of data processing applications.

At each of the three tiers of devices, we focus on key architectural features
and show how to utilize them to improve the efficiency of applications. For
the case of high-end servers, we focus on two key features: (i) vectorization,
where we make use of dedicated vector instructions that allow us to uncover data
parallelism in applications that would have otherwise not made the best use of
the hardware platform and (ii) many-core parallelism, where we focus on data
distribution and inter-thread coordination techniques that ensure scalability on
massively parallel platforms, while preserving key correctness properties [62].
On the intermediate tier of devices, we make use of the interesting mix of
platforms found there, specifically single-board computers with embedded ac-
celerators. On such devices, we show how to offload computationally heavy
tasks and identify how the unique characteristics of these platforms affect the
performance of applications. Finally, on resource-constrained devices, we iden-
tify the key role of the interplay between the processing application and the
communication protocol and propose algorithmic designs that integrate the two,
on modern and realistic deployments.

28 CHAPTER 1. THESIS OVERVIEW

In this thesis, we focus on applications that facilitate processing on a wide
range of platforms and provide techniques to improve their performance, based
on the hardware’s features. We chose these applications as characteristic exam-
ples of the processing involved in these layers, but it would be interesting to
study to what extent our techniques can be used in other applications. As the
fields of IoT and Industry 4.0 grow (see also the Appendix) and new application
domains emerge, it would be interesting to identify the main computational
kernels that are the same across applications and study how they interact with the
underlying hardware and the spectrum of the consistency levels that is achievable
and useful.

As the hardware across different layers of devices is evolving, it is important
to understand the change in types of hardware and architectural features. Future
directions include insights on more hardware types that constitute a smaller,
albeit important share of the platforms that are relevant across many tiers. As an
example, Field-Programmable Gate Arrays (FPGAs) are configurable hardware
platforms where the processing hardware itself and the way it interconnects can
be programmed to complete a specific task, with inherently high parallelism.
Such devices have already been proven useful in high throughput applications,
e.g. pattern matching [89]. It would be interesting to see the role that FPGAs
will play in the spectrum of computing infrastructure, as well as to determine
how the techniques we present in this thesis can be expressed in FPGA based
solutions.

Finally, an important step forward is to study how the techniques presented
in this thesis can be integrated into systems that span across multiple tiers of
processing hardware and interact with each other. Many applications, such as
industrial automation and predictive maintenance have components that span
across all tiers of infrastructure: sensor data collection from resource-constrained
devices, prediction algorithms close to sources of data and data analytics in the
cloud. The coordination and integration of all these components, each with its
own architectural features and opportunities is a new exciting challenge that is
relevant in the era of parallel and distributed computing over a range of platforms.

Bibliography
[1] D. Evans, “The Internet of Things: How the next evolution of the internet is

changing everything,” Cisco White Paper https://www.cisco.com/c/
dam/en us/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf,
January 2011, Accessed: 2020-06-17.

[2] P. Jonsson, S. Carson, G. Blennerud, J. Kyohun Shim, B. Arendse, A. Husseini,
P. Lindberg, and K. Öhman, “Ericsson Mobility Report,” https://www.eric

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf

BIBLIOGRAPHY 29

sson.com/4acd7e/assets/local/mobility-report/documents
/2019/emr-november-2019.pdf, November 2019, Accessed: 2020-04-27.

[3] N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics, May 2014,
pp. 1–4.

[4] B. Krzanich, “Data is the New Oil in the Future of Automated Driving,” https:
//newsroom.intel.com/editorials/krzanich-the-future-of-
automated-driving, November 2016, Accessed: 2020-04-27.

[5] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research Opportunities,”
IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–864, Dec 2016.

[6] M. Brodie, “Data: The World’s Most Valuable Resource,” Lectures in Computer
Science on Big Data and Applications https://michaelbrodie.com/ta
lks, July 2017.

[7] D. E. Sanger and N. Perlroth, “A New Era of Internet Attacks Powered by Everyday
Devices,” https://nytimes.com/2016/10/23/us/politics/a-
new-era-of-internet-attacks-powered-by-everyday-device
s.html, 2016, Accessed: 2020-06-17.

[8] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess, and J. A. Guzzo, “A
fog computing-based framework for process monitoring and prognosis in cyber-
manufacturing,” Journal of Manufacturing Systems, vol. 43, pp. 25 – 34, 2017.

[9] S. Rangwala and D. Dornfeld, “Sensor Integration Using Neural Networks for
Intelligent Tool Condition Monitoring,” Journal of Engineering for Industry, vol.
112, no. 3, pp. 219–228, 08 1990.

[10] M. Gabel, A. Schuster, and D. Keren, “Communication-efficient distributed variance
monitoring and outlier detection for multivariate time series,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, 2014, pp. 37–47.

[11] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair, and K. Kittichokechai, “5G radio
network design for ultra-reliable low-latency communication,” IEEE network, vol.
32, no. 2, pp. 24–31, 2018.

[12] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos, “Chal-
lenges and opportunities in edge computing,” in 2016 IEEE International Confer-
ence on Smart Cloud (SmartCloud), Nov 2016, pp. 20–26.

[13] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge comput-
ing—a key technology towards 5G,” ETSI white paper, vol. 11, no. 11, pp. 1–16,
2015.

[14] Y. Ku, D. Lin, C. Lee, P. Hsieh, H. Wei, C. Chou, and A. Pang, “5G radio
access network design with the fog paradigm: Confluence of communications and
computing,” IEEE Communications Magazine, vol. 55, no. 4, pp. 46–52, 2017.

https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving
https://michaelbrodie.com/talks
https://michaelbrodie.com/talks
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html

30 CHAPTER 1. THESIS OVERVIEW

[15] NVIDIA, “Volvo Selects NVIDIA DRIVE for Production Cars,” https://nvid
ianews.nvidia.com/news/volvo-selects-nvidia-drive-for-
production-cars, Accessed: 2020-05-19.

[16] K. Dolui and S. K. Datta, “Comparison of edge computing implementations: Fog
computing, cloudlet and mobile edge computing,” in 2017 Global Internet of Things
Summit (GIoTS), 2017, pp. 1–6.

[17] L. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a
comprehensive definition of fog computing,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 5, pp. 27–32, Oct. 2014.

[18] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge computing: A
taxonomy,” in Proc. of the Sixth International Conference on Advances in Future
Internet. Citeseer, 2014, pp. 48–55.

[19] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: Bringing the
cloud to the mobile user,” in Proceedings of the third ACM workshop on Mobile
cloud computing and services, 2012, pp. 29–36.

[20] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, “Monitoring
self-adaptive applications within edge computing frameworks: A state-of-the-art
review,” Journal of Systems and Software, vol. 136, pp. 19 – 38, 2018.

[21] Hardkernel, “Odroid XU4,” https://www.hardkernel.com/shop/odro
id-xu4-special-price, Accessed: 2020-06-17.

[22] E. Kanellou, N. Chrysos, S. Mavridis, Y. Sfakianakis, and A. Bilas, “Gpu provi-
sioning: The 80-20 rule,” in European Conference on Parallel Processing. Springer,
2018, pp. 352–364.

[23] MEMSIC, “TelosB Mote Platform,” http://www.memsic.com/userf
iles/files/Datasheets/WSN/telosb datasheet.pdf, Accessed:
2020-05-19.

[24] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin, G. P. Jesi, R. L. Cigno,
L. Mottola, A. L. Murphy, M. Pescalli, et al., “Is there light at the ends of the tunnel?
Wireless sensor networks for adaptive lighting in road tunnels,” in Proceedings of
the 10th ACM/IEEE International Conference on Information Processing in Sensor
Networks. IEEE, 2011, pp. 187–198.

[25] R. H. Dennard, F. H. Gaensslen, Y. Hwa-Nien, V. Leo Rideovt, E. Bassous, and
A. R. Leblanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[26] Intel, “Intel Xeon Phi Processor,” https://www.intel.com/content/
www/us/en/processors/xeon/xeon-phi-processor-product-
brief.html, Accessed: 2020-06-17.

[27] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer, vol.
41, no. 7, pp. 33–38, 2008.

https://nvidianews.nvidia.com/news/volvo-selects-nvidia-drive-for-production-cars
https://nvidianews.nvidia.com/news/volvo-selects-nvidia-drive-for-production-cars
https://nvidianews.nvidia.com/news/volvo-selects-nvidia-drive-for-production-cars
https://www.hardkernel.com/shop/odroid-xu4-special-price
https://www.hardkernel.com/shop/odroid-xu4-special-price
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
https://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-product-brief.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-product-brief.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-product-brief.html

BIBLIOGRAPHY 31

[28] Y. Oyanagi, “Future of supercomputing,” Journal of Computational and Applied
Mathematics, vol. 149, no. 1, pp. 147 – 153, 2002, Scientific and Engineering
Computations for the 21st Century - Methodologies and Applications Proceedings
of the 15th Toyota Conference.

[29] G. Bell, “A Brief History of Supercomputing:“the Crays”, Clusters and Beowulfs,
Centers. What Next?,” http://gordonbell.azurewebsites.net/s
upers/supercomputing-a brief history 1965 2002.htm, 2002,
Accessed: 2020-08-17.

[30] G. Mitra, B. Johnston, A. P. Rendell, E. McCreath, and J. Zhou, “Use of SIMD
Vector Operations to Accelerate Application Code Performance on Low-Powered
ARM and Intel Platforms,” in 2013 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum, 2013, pp. 1107–1116.

[31] Intel, “Intrinsics for Intel Advanced Vector Extensions 2 (Intel AVX2) Instructions,”
https://software.intel.com/content/www/us/en/develop/d
ocumentation/cpp-compiler-developer-guide-and-refere
nce/top/compiler-reference/intrinsics/intrinsics-for-
intel-advanced-vector-extensions-2.html, Accessed: 2020-06-
17.

[32] Intel, “Vectorization: A Key Tool To Improve Performance On Modern CPUs,”
https://software.intel.com/content/www/us/en/develop/a
rticles/vectorization-a-key-tool-to-improve-performanc
e-on-modern-cpus.html, Accessed: 2020-05-19.

[33] J. Hofmann, J. Treibig, G. Hager, and G. Wellein, “Comparing the performance of
different x86 SIMD instruction sets for a medical imaging application on modern
multi- and manycore chips,” in Proc. of the 2014 Workshop on Programming Models
for SIMD/Vector Processing. 2014, ACM.

[34] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21 Symposium
(HCS). IEEE, 2009, pp. 1–314.

[35] J. Keller, W. J. Paul, and D. Scheerer, “Realization of prams: Processor design,”
in Distributed Algorithms, Gerard Tel and Paul Vitányi, Eds., Berlin, Heidelberg,
1994, pp. 17–27, Springer Berlin Heidelberg.

[36] NVIDIA, “Record 136 NVIDIA GPU-Accelerated Supercomputers Feature in
TOP500 Ranking,” https://blogs.nvidia.com/blog/2019/11/19
/record-gpu-accelerated-supercomputers-top500/, Accessed:
2020-05-19.

[37] S. Huang, S. Xiao, and W. Feng, “On the energy efficiency of graphics processing
units for scientific computing,” in 2009 IEEE International Symposium on Parallel
Distributed Processing, 2009, pp. 1–8.

[38] ARM, “ARM Mali-T628 product page,” https://www.arm.com/products
/multimedia/mali-cost-efficient-graphics/mali-t628.php,
Accessed: 2018-03-14.

http://gordonbell.azurewebsites.net/supers/supercomputing-a_brief_history_1965_2002.htm
http://gordonbell.azurewebsites.net/supers/supercomputing-a_brief_history_1965_2002.htm
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2.html
https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php

32 CHAPTER 1. THESIS OVERVIEW

[39] Nvidia, “About CUDA,” https://developer.nvidia.com/about-
cuda, Accessed: 2018-03-11.

[40] Khronos Group, “OpenCL Overview,” https://www.khronos.org/open
cl/, Accessed: 2018-03-11.

[41] A. Dunkels, “The ContikiMac radio duty cycling protocol,” Tech. Rep. 2011:13,
ISSN 1100-3154, 2011, Swedish Institute of Computer Science.

[42] K. Leentvaar and J. Flint, “The capture effect in FM receivers,” IEEE Transactions
on Communications, vol. 24, no. 5, 1976.

[43] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and efficient
all-to-all data sharing and in-network processing at scale,” in Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems. November 2013,
ACM.

[44] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network flooding
and time synchronization with Glossy,” in Proceedings of the 10th ACM/IEEE
International Conference on Information Processing in Sensor Networks, April
2011.

[45] T. Istomin, M. Trobinger, A. L. Murphy, and G. P. Picco, “Interference-resilient
ultra-low power aperiodic data collection,” in Proceedings of the 17th ACM/IEEE
International Conference on Information Processing in Sensor Networks, 2018.

[46] P. Lin, Y. Lin, Y. Lai, and T. Lee, “Using string matching for deep packet inspection,”
Computer, vol. 41, no. 4, 2008.

[47] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” in Proc. of the
13th USENIX Conf. on System Administration, Seattle, Washington, 1999, USENIX
Association.

[48] V. Paxson, “Bro: a System for Detecting Network Intruders in Real-Time,” Com-
puter Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[49] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Net-
work function virtualization: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, 2015.

[50] Y. Li and M. Chen, “Software-defined network function virtualization: a survey,”
IEEE Access, vol. 3, 2015.

[51] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han, “DFC: Accelerating string
pattern matching for network applications,” in 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16), Santa Clara, CA, 2016, pp.
551–565, USENIX Association.

[52] G. Navarro, “NR-grep: a fast and flexible pattern-matching tool,” Software: Practice
and Experience, vol. 31, no. 13, pp. 1265–1312, 2001.

[53] G. Navarro and M. Raffinot, Flexible pattern matching in strings: practical on-line
search algorithms for texts and biological sequences, Cambridge University Press,
2002.

https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

BIBLIOGRAPHY 33

[54] S. Memeti and S. Pllana, “Combinatorial optimization of DNA sequence analysis
on heterogeneous systems,” Concurr. Comput. Pract. Exp., vol. 29, no. 7, 2017.

[55] S. Antonatos, K. Anagnostakis, and E. Markatos, “Generating Realistic Workloads
for Network Intrusion Detection Systems,” SIGSOFT Softw. Eng. Notes, vol. 29, pp.
207–215, 2004.

[56] J. B. D. Cabrera, J. Gosar, W. Lee, and R. K. Mehra, “On the statistical distribution
of processing times in network intrusion detection,” in 43rd IEEE Conf. on Decision
and Control (CDC), Dec 2004, pp. 75–80.

[57] V. Gulisano, M. Callau-Zori, Z. Fu, R. Jiménez-Peris, M. Papatriantafilou, and
M. Patiño-Martı́nez, “STONE: A streaming DDoS defense framework,” Expert
Systems with Applications, vol. 42, no. 24, pp. 9620 – 9633, 2015.

[58] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for data centers,”
in 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), Santa Clara, CA, Mar. 2016, pp. 311–324, USENIX Association.

[59] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford,
“Heavy-hitter detection entirely in the data plane,” in Proceedings of the Symposium
on SDN Research, New York, NY, USA, 2017, pp. 164–176, ACM.

[60] V. Gulisano, Y. Nikolakopoulos, I. Walulya, M. Papatriantafilou, and P. Tsigas, “De-
terministic real-time analytics of geospatial data streams through scalegate objects,”
in Proceedings of the 9th ACM International Conference on Distributed Event-
Based Systems, New York, NY, USA, 2015, DEBS ’15, p. 316–317, Association for
Computing Machinery.

[61] G. Cormode, “Sketch techniques for approximate query processing,” Foundations
and Trends in Databases. NOW publishers, 2011.

[62] A. Rinberg and I. Keidar, “Intermediate value linearizability: A quantitative correct-
ness criterion,” 2020.

[63] S. Burdakis and A. Deligiannakis, “Detecting Outliers in Sensor Networks Using
the Geometric Approach,” in 2012 IEEE 28th International Conference on Data
Engineering, Washington, DC, USA, April 2012, pp. 1108–1119.

[64] I. Sharfman, A. Schuster, and D. Keren, “Aggregate threshold queries in sensor net-
works,” in 2007 IEEE International Parallel and Distributed Processing Symposium,
Rome, Italy, March 2007, pp. 1–10.

[65] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statistical ap-
proaches to DDoS attack detection and response,” in Proceedings DARPA Informa-
tion Survivability Conference and Exposition, Washington, DC, USA, April 2003,
pp. 303–314.

[66] A. Barberis, L. Barboni, and M. Valle, “Evaluating energy consumption in wireless
sensor networks applications,” in 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools. IEEE, 2007, pp. 455–462.

34 CHAPTER 1. THESIS OVERVIEW

[67] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. C. Koppisetty, and M. Pa-
patriantafilou, “Driven: a framework for efficient data retrieval and clustering
in vehicular networks,” in 2019 IEEE 35th International Conference on Data
Engineering (ICDE), 2019, pp. 1850–1861.

[68] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P. Picco, “Practical Data
Prediction for Real-World Wireless Sensor Networks,” IEEE Trans. on Knowledge
and Data Eng., 2015.

[69] P. Sanders, Algorithm Engineering – An Attempt at a Definition, pp. 321–340,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[70] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “When cache blocking of
sparse matrix vector multiply works and why,” Applicable Algebra in Engineering,
Communication and Computing, vol. 18, no. 3, pp. 297–311, 2007.

[71] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious B-trees,”
in Proceedings 41st Annual Symposium on Foundations of Computer Science, 2000,
pp. 399–409.

[72] L. Arge, M. A. Bender, E. Demaine, C. Leiserson, and K. Mehlhorn, “Abstracts
collection – cache-oblivious and cache-aware algorithms,” in Cache-Oblivious and
Cache-Aware Algorithms, Dagstuhl, Germany, 2005, Dagstuhl Seminar Proceedings,
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

[73] M. Alvanos, G. Tzenakis, D. S. Nikolopoulos, and A. Bilas, “Task-based parallel
h.264 video encoding for explicit communication architectures,” in 2011 Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation, 2011, pp. 217–224.

[74] J. Keller, C. Kessler, K. König, and W. Heenes, “Hybrid parallel sort on the cell
processor,” in 9th workshop on parallel systems and algorithms–workshop of the
GI/ITG special interest groups PARS and PARVA. Gesellschaft für Informatik e. V.,
2008.

[75] N. Melot, C. Kessler, K. Avdic, P. Cichowski, and J. Keller, “Engineering parallel
sorting for the intel scc,” Procedia Computer Science, vol. 9, pp. 1890 – 1899, 2012,
Proceedings of the International Conference on Computational Science, ICCS 2012.

[76] I. Walulya, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas, “Concurrent data
structures in architectures with limited shared memory support,” in Euro-Par 2014:
Parallel Processing Workshops, Cham, 2014, pp. 189–200, Springer International
Publishing.

[77] Y. Nikolakopoulos, M. Papatriantafilou, P. Brauer, M. Lundqvist, V. Gulisano, and
P. Tsigas, “Highly concurrent stream synchronization in many-core embedded
systems,” in Proceedings of the Third ACM International Workshop on Many-Core
Embedded Systems, New York, NY, USA, 2016, MES ’16, p. 2–9, Association for
Computing Machinery.

BIBLIOGRAPHY 35

[78] S. Memeti, S. Pllana, A. Binotto, J. Kołodziej, and I. Brandic, “Using meta-
heuristics and machine learning for software optimization of parallel computing
systems: a systematic literature review,” Computing, vol. 101, no. 8, pp. 893–936,
2019.

[79] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking SIMD vectorization
for in-memory databases,” in Proc. of the 2015 ACM SIGMOD Int. Conf. on
Management of Data. 2015, ACM.

[80] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake, GPU-Accelerated
Database Systems: Survey and Open Challenges, pp. 1–35, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2014.

[81] A. B. Maccabe, W. Zhu, J. Otto, and R. Riesen, “Experience in offloading protocol
processing to a programmable NIC,” in Proceedings. IEEE International Conference
on Cluster Computing, 2002, pp. 67–74.

[82] A. Sapio, M. Canini, C. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy,
M. Moshref, D. R. K. Ports, and P. Richtárik, “Scaling distributed machine learning
with in-network aggregation,” CoRR, vol. abs/1903.06701, 2019.

[83] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports, “Just say NO to
paxos overhead: Replacing consensus with network ordering,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah,
GA, Nov. 2016, pp. 467–483, USENIX Association.

[84] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid to Bibliographic
Search,” Commun. ACM, vol. 18, no. 6, June 1975.

[85] H. Bos and K. Huang, “Towards software-based signature detection for intrusion
prevention on the network card,” in Recent Advances in Intrusion Detection, Alfonso
Valdes and Diego Zamboni, Eds., Berlin, Heidelberg, 2006, pp. 102–123, Springer
Berlin Heidelberg.

[86] I. Moraru and D. Andersen, “Exact pattern matching with feed-forward bloom
filters,” J. Exp. Algorithmics, vol. 17, Sept. 2012.

[87] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communi-
cations of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[88] I. Sourdis, V. Dimopoulos, D. Pnevmatikatos, and S. Vassiliadis, “Packet pre-
filtering for network intrusion detection,” in 2006 Symposium on Architecture For
Networking And Communications Systems, 2006, pp. 183–192.

[89] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis, “Scalable multigigabit pattern
matching for packet inspection,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, no. 2, pp. 156–166, 2008.

[90] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al., “Synopses for mas-
sive data: Samples, histograms, wavelets, sketches,” Foundations and Trends in
Databases, vol. 4, no. 1–3, pp. 1–294, 2011.

36 CHAPTER 1. THESIS OVERVIEW

[91] G. Cormode, “Count-min sketch,” in Encyclopedia of Algorithms, pp. 464–468.
Springer, New York, NY, 2016.

[92] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data
streams,” in Proceedings of the 29th International Colloquium on Automata, Lan-
guages and Programming, Berlin, Heidelberg, 2002, pp. 693–703, Springer-Verlag.

[93] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian: Separate
and guard hot items in data streams,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, New York, NY,
USA, 2018, pp. 2584–2593, ACM.

[94] I. Sharfman, A. Schuster, and D. Keren, “A geometric approach to monitoring
threshold functions over distributed data streams,” in Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, New York, NY, USA,
2006, pp. 301–312, ACM.

[95] M. Garofalakis, D. Keren, and V. Samoladas, “Sketch-based Geometric Monitoring
of Distributed Stream Queries,” Proc. VLDB Endow., vol. 6, no. 10, pp. 937–948,
Aug. 2013.

[96] N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, and A. Schuster,
“Prediction-based Geometric Monitoring over Distributed Data Streams,” in Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, New York, NY, USA, 2012, pp. 265–276, ACM.

[97] M. Garofalakis, “Approximate Geometric Query Tracking over Distributed Streams,”
IEEE Data Eng. Bull., vol. 38, no. 3, pp. 103–112, 2015.

[98] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza, “Data Prediction + Synchronous
Transmissions = Ultra-low Power Wireless Sensor Networks,” in Proceedings of
the 14th ACM Conference on Embedded Network Sensor Systems, 2016.

[99] Cisco, “Snort Rules and IDS Software Download,” https://www.snort.or
g/downloads/#rule-downloads, 2018, Accessed: 2018-05-07.

https://www.snort.org/downloads/#rule-downloads
https://www.snort.org/downloads/#rule-downloads

Part II

Parallel Data Processing on
Massively Parallel Servers

PAPER I

Charalampos Stylianopoulos, Magnus Almgren,
Olaf Landsiedel, Marina Papatriantafilou

Multiple Pattern Matching for Network Security
Applications: Acceleration through Vectorization

Journal of Parallel and Distributed Computing (JPDC)
vol. 137, pp. 34 - 52, Elsevier 2020.

A preliminary version of this paper was published in:
the Proceedings of the 46th International Conference on Parallel Processing

(ICPP)
Bristol, United Kingdom

August 14-17, 2017, pp. 472 - 482

2
Multiple Pattern Matching for

Network Security Applications:
Acceleration through Vectorization

41

42 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

Abstract

As both new network attacks emerge and network traffic increases in volume,
the need to perform network traffic inspection at high rates is ever increasing. The
core of many security applications that inspect network traffic (such as Network
Intrusion Detection) is pattern matching. At the same time, pattern matching
is a major performance bottleneck for those applications: indeed, it is shown
to contribute to more than 70% of the total running time of Intrusion Detection
Systems. Although numerous efficient approaches to this problem have been
proposed on custom hardware, it is challenging for pattern matching algorithms
to gain benefit from the advances in commodity hardware. This becomes even
more relevant with the adoption of Network Function Virtualization, that moves
network services, such as Network Intrusion Detection, to the cloud, where
scaling on commodity hardware is key for performance.

In this paper, we tackle the problem of pattern matching and show how to
leverage the architecture features found in commodity platforms. We present
efficient algorithmic designs that achieve good cache locality and make use of
modern vectorization techniques to utilize data parallelism within each core. We
first identify properties of pattern matching that make it fit for vectorization and
show how to use them in the algorithmic design. Second, we build on an earlier,
cache-aware algorithmic design and show how we apply cache-locality combined
with SIMD gather instructions to pattern matching. Third, we complement our
algorithms with an analytical model that predicts their performance and that can
be used to easily evaluate alternative designs. We evaluate our algorithmic design
with open data sets of real-world network traffic: Our results on two different
platforms, Haswell and Xeon-Phi, show a speedup of 1.8x and 3.6x, respectively,
over Direct Filter Classification (DFC), a recently proposed algorithm by Choi
et al. for pattern matching exploiting cache locality, and a speedup of more than
2.3x over Aho-Corasick, a widely used algorithm in today’s Intrusion Detection
Systems. Finally, we utilize highly parallel hardware platforms, evaluate the
scalability of our algorithms and compare it to parallel implementations of DFC
and Aho-Corasick, achieving processing throughput of up to 45Gbps and close
to 2 times higher throughput than Aho-Corasick.

2.1 Introduction

Pattern matching is an essential building block for many security applications,
such as antivirus programs or Network Intrusion Detection Systems (NIDS). In
its core, pattern matching algorithms operate on two sets of input: (i) a predefined

2.1. INTRODUCTION 43

set of patterns and (ii) an incoming stream of data and attempt to detect if any
of the patterns exist in the stream. In this work, we focus on the problem of
fixed-string, multiple pattern matching, i.e. the patterns are string literals and,
differently from single pattern matching [1, 2], we are simultaneously tracking
the presence of many patterns. In the context of Network Intrusion Detection
Systems, the set of patterns are signatures of known malicious attacks (usually
in the order of thousands) that the system aims to detect and the data stream is
the reassembled stream of packets captured from the network interface.

Motivation and Challenges. Pattern matching represents a major perfor-
mance bottleneck in many security mechanisms, especially when there is a need
to employ analysis on the full packet’s payload (Deep Packet Inspection). In
intrusion detection, for example, more than 70% of the total running time in spent
on pattern matching [3, 4]. Moreover, with the increasing interest in Network
Function Virtualization (NFV) [5, 6], applications like firewalls and Network
Intrusion Detection are now expected to be placed in the application layer of the
control plane [7], where they need to rely on commodity hardware features for
performance, like multi-core parallelism and vector processing pipelines.

Regarding the hardware features available in such commodity hardware, vec-
torization is gradually taking a more central role [8]. For example, architectures
with SIMD instruction-sets now provide wider vector registers (256 bits with
AVX) and introduce new instructions, such as gathers, that make vectorization
applicable to a wider range of applications. Moreover, modern processor de-
signs are shifting towards new architectures, like Intel’s Xeon Phi [9], that, for
example, supports 512 bit vector registers. On those platforms, vectorization is
not just an option but a must, in order to achieve high performance [10]. In this
work we introduce algorithmic designs to utilize these capabilities.

The introduction of gathers and other advanced SIMD instructions (cf. sec-
tion 2.3) allows even applications with irregular data patterns to gain performance
from data parallelism. For example, SIMD can speed up regular expression
matching [11–13]. Here, the input is matched against a single regular expres-
sion at a time, represented by a finite state machine that can fit in L1 or L2
cache. Working close to the CPU is crucial for these approaches, otherwise the
long latency of memory accesses would hide any computation speedup through
vectorization.

The domain of multiple pattern matching for Network Intrusion Detection
has challenging constraints that limit the effectiveness of these approaches: ap-
plications need to simultaneously evaluate thousands of patterns and traditional
state-machine-based algorithms, such as Aho-Corasick [14], use big data struc-
tures that by far exceed the size of the cache of today’s CPUs. The size of the
patterns varies greatly (from 1-byte to several hundred byte patterns) and can

44 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

appear anywhere in the input. That is why SIMD techniques have not been pre-
viously considered for exact multiple pattern matching – with a few exceptions
discussed in Section 2.8 – in the domain.

Moreover, the role of the use of memory hierarchies and of the mechanisms
to access data more efficiently is a significant topic in computer science research
and practice as well (c.f., e.g, [15, 16] and references therein). The results
from [16] suggest that the memory hierarchy (caches, but also virtual address
translation) have a significant effect on the actual running time of algorithms,
even as simple ones as a random scan of an array. Inspired by those results,
we also focus on the effects of the memory hierarchy and study how proper
use of the latter can help matching algorithms perform much better in practice.
In a similar spirit, it is known that the role of the patterns of data accesses for
stateful processing and the impact of processing that avoids unnecessary move
of data, also utilizing hardware for acceleration, is significant for efficiency (c.f.,
e.g, [17–19]) in general, and even more so in stream processing.

Approach and Contributions. In this paper, we introduce a vectorizable
design of an exact pattern matching algorithm which nearly doubles the per-
formance when compared to the state of the art, on SIMD-capable commodity
hardware, such as Intel’s Haswell processors or Xeon Phi [9]. Building upon
recent work [20, 21] that take steps in addressing the cache-locality issues in
pattern matching, we propose algorithmic designs for multiple pattern matching
that bring together cache locality and modern SIMD instructions, to achieve
significant speedups when compared to the state of the art. Combining cache
locality and vectorization introduces new trade-offs on existing algorithms. Com-
pared to traditional approaches that perform the minimum required number of
instructions, but on data that is away from the processor, our approach, instead,
performs more instructions, but these instructions find data close to the processor
and can process them in parallel using vectorization.

Our work builds on a family of recent algorithms that take steps towards
providing good cache locality for multiple exact pattern matching [20, 21]. They
filter parts of the input streams using small, cache efficient data structures. We
argue that, as a result, memory latencies are no longer the dominant bottleneck
for this family of algorithms while their computational part becomes more
significant. In this work, we follow a two-step approach. First, we propose
a refined and extended method, which is able to benefit from vectorization
while ensuring cache locality. Second, we design its vectorized version by
utilizing SIMD hardware gather operations. To evaluate our approach, we apply
our techniques to the DFC algorithm [20], as a representative example that
outperforms existing techniques in Network Intrusion Detection applications,
including [21], on which our proposed approach can be applied as well. We

2.1. INTRODUCTION 45

… H J U K G L G L G L F P F J F Y K F G …

Input	Stream

Data	parallel	
evaluation	with	a	
vectorized pattern	
matching	engine

… H J U K G L G L G L F P F J F Y K F G …

Pattern	matching	
engine

Input	Stream

H J J J A …

A V V C C …

J R L 9 H …

F 7 J G J …

Pattern	Database

Tr
ad
iti
on

al
	

Ap
pr
oa
ch

Ve
ct
or
iza

tio
n	

in
	V
-P
AT
CH

Evaluating	the	input	
iteratively

Pattern	matching	
engine

Figure 2.1: A general example of pattern matching at the top, and our proposed
vectorized pattern matching approach at the bottom.

also include an analytical model that predicts the cost of both our scalar and
vectorized algorithms, taking into account the number of malicious patterns
given at startup. Finally, we deploy our algorithms on multi-core architectures
and utilize all the available hardware parallelism, both within each core (with
vectorization) and across many cores. A high-level illustration of our approach
is shown in Figure 2.1.

In particular, we target the computational part of pattern matching for perfor-
mance optimization and make the following contributions:

• We propose algorithmic designs for multiple pattern matching which (a) ensure
cache locality and (b) utilize modern SIMD instructions.

• We devise a new pattern matching algorithm, based on these designs, that
utilizes SIMD instructions to outperform the state of the art, while staying
flexible with respect to pattern sizes.

• We introduce an analytical model to predict the performance of both our scalar
and vectorized algorithms, based on the number of patterns. We evaluate the
model with real-world data and find that it closely follows the observed trends.

• We implement the algorithm and thoroughly evaluate it under both real-world
traces and synthetic data sets. We outperform the state of the art by up to 1.8x
on commodity hardware and up to 3.6x on the Xeon-Phi platform.

• We evaluate the scalability of our algorithms when using all the parallelism
offered by the platform and achieve up to 40 Gbps processing throughput on the
Haswell platform and 45Gbps on the Xeon-Phi. We also design and evaluate

46 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

parallel implementations of existing algorithms (DFC and Aho-Corasick) and
compare it against our algorithms. We find that our vectorized parallel version
outperforms parallel Aho-Corasick by almost 2 times.

The remainder of the paper is organized as follows: Section 2.2 gives an
overview of important pattern matching algorithms and background on vector-
ization. Section 2.3 describes our system model. In Section 2.4, we present our
scalar approach leading to a new, vectorized design, described in Section 2.5.
In Section 2.6 we introduce an analytical model to predict the performance of
our scalar and vectorized algorithms. Section 2.7 presents our experimental
evaluation on the performance of our algorithms under a variety of evaluations
scenarios. In Section 2.8, we give an overview of other related work and we
conclude in Section 2.9.

2.2 Background

In this section we present traditional approaches to pattern matching, followed
by a brief description of the DFC algorithm (Choi et al. [20]) to which we apply
our approach. Next, we introduce the required background on vectorization
techniques.

2.2.1 Traditional approach to multiple-pattern matching

The most commonly used pattern matching algorithm for network-based intru-
sion detection is by Aho-Corasick [14]. It creates a finite-state automaton from
the set of patterns and reads the input byte by byte to traverse the automaton and
match multiple patterns. Even though it performs a small number of operations
for every input byte, it implies– in practice and on commodity hardware – a
low instruction throughput due to frequent memory accesses with poor cache
locality [20]: As the number of patterns increases, the size of the state automaton
increases exponentially and does not fit in the cache. In addition, the time to
create such as state machine increases with the number of patterns [22] and
quickly becomes a significant bottleneck. Nevertheless, the method is heavily
used in practice; e.g., both Snort [23], one of the best known intrusion detection
systems, as well as CloudFlare’s web application firewall [24], use it for string
matching.

2.2. BACKGROUND 47

2.2.2 Filtering approaches and cache locality in multiple pat-
tern matching

Besides state-machine based approaches, there is a family of algorithms that
rely on filtering to separate the innocuous input from the matches. Recent
work focuses on alleviating the problem of long latency lookups on large data
structures. Choi et al. [20] present a novel algorithmic design called DFC (Direct
Filter Classification), that replaces the state machine approach of Aho-Corasick
with a series of small, succinct summaries called filters. Such a filter is a bit-
array that summarizes only a specific part of each pattern, e.g. its first two bytes,
having one bit for every possible combination of two characters that can be
found in the patterns. The algorithm is structured in two phases, the filtering and
verification:

• In the filtering phase, a sliding window of two bytes over the input goes
through an initial filter, as described above, to quickly evaluate whether the
current position is a possible starting point of a match. The two-byte windows
that passed the initial filter are fed to other, similar filters, each specializing on
a family of patterns depending on their length. Since the filters are small (8KB
each), they usually fit in L1 cache. Thus, the main part of the algorithm differs
from Aho-Corasick and uses only cache-resident data structures, resulting in
up to 3.8 times fewer cache misses [20].

• If a window of two characters passed all filters, there is a strong indication
that it is a starting point of a match. For this reason, in the next verification
phase, the DFC algorithm performs lookups on specially designed hash tables,
containing the actual patterns and performs exact matching on the input and
the pattern, to verify the match.

Other algorithms in this family, like [21] as well as this work, operate on the
same idea: the input is filtered using cache resident data structures, and only the
“interesting” parts of the input is forwarded for further evaluation.

2.2.3 Vectorization
Single Instruction Multiple Data (SIMD) is an execution model for data parallel
applications, which utilizes processing units that operate on a vector of elements
simultaneously, instead of separate elements at a time. SIMD instructions utilize
the vector execution units, a separate pipeline found in modern processors that
operates on multiple registers with almost the same cost as the equivalent scalar
instructions. SIMD vectorization is a desirable goal in computationally intensive,

48 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

number-crunching applications, where computation is performed on independent
data, sequentially stored in memory. However, until recently, most algorithms
that did not follow this sequential access patterns were difficult to vectorize.

Vector instruction sets have evolved over time, introducing bigger registers
and support for more complex instructions. Originally offering support for up
to 128 bits, vector instruction sets are now extended to 256 bit-long vector
registers and new generation platforms, such as the Xeon-Phi [9], support up
to 512 bit-long vector registers, which indicates the vendor effort to accelerate
applications that utilize data parallelism. Recently, vector instruction sets on
commodity hardware have been enriched with the gather instruction [25] that
enables accessing data from non-contiguous memory locations (described in
detail in Section 2.3). Polychroniou et al. [26] study the effect of vectorization
with the gather instruction on a series of data structures, such as Bloom-Filters,
hash-table lookups, joins and selection scans, among others. We are building on
these works with SIMD instructions and extend their design to pattern matching
with the applications we focus on.

2.3 System model

In this section we introduce the assumptions and requirements that our approach
makes on the hardware. We focus on mainstream CPUs, with vector processing
units (VPUs) that support gather instructions. The latter make it possible to
fetch memory from non-contiguous locations using only SIMD instructions1.

The semantics of gather are as follows: let W be the vector length, which
is the maximum number of elements that each vector register can hold. The
parameters to the instruction are a vector register (I) that holds W indexes
and an array pointer (A). As output, gather returns a vector register (O) with
the W values of the array at the respective indexes. It is important to note that
gather does not parallelize the memory accesses; the memory system can only
serve a few requests at a time. Instead, its usefulness lies in the fact that it can be
used to obtain values from non-contiguous memory locations using only SIMD
code. This increases the flexibility of the SIMD model and allows to efficiency
employ it for workloads previously not considered, i.e., where the memory
access patterns are irregular. The alternative is to load the values using scalar

1In Intel processors, the gather instruction was introduced with the AVX2 instruction set and is
included in the latest family of mainstream processors; gather also exists in other architectures, such
as the Xeon Phi co-processor [9].

2.4. S-PATCH: A VECTORIZABLE VERSION OF THE DFC ALGORITHM 49

code, then transfer them one by one from the scalar registers into vector registers.
Generally, switching between scalar and vector code is not efficient [26, 27].

Apart from gather, the rest of the instructions we use can be found across
almost all the vector instruction sets available. Worth mentioning is the shuffle
instruction, that makes it possible to permute individual elements within the
vector register in any desired order. For example, we employ it for handling the
input and output of the algorithm (cf. Section 2.5).

The size of the cache, especially the L1 and L2, is very important for the
algorithmic design, as we describe later in Section 2.4. Common sizes in modern
architectures is 32 KB of L1 data cache with 256 KB of L2 cache and we will
use this as a running example. Our design is applicable to other cache sizes as
well.

2.4 S-PATCH: a vectorizable version of the DFC
algorithm

In this section, we begin by introducing S-PATCH (Scalar PATTern matCHing),
an efficient algorithmic design for multiple pattern matching. It is designed with
both cache locality and vectorizability in mind.

2.4.1 Overview
To enable efficient vectorization, we introduce significant modifications to the
original DFC design. The key insight for the modifications, explained later in
detail, is that small patterns will be found frequently in real traffic, so they should
be identified quickly without adding too much overhead. On the other hand, long
patterns are found less frequently, but detecting them takes longer and requires
more characters from the input to pinpoint them accurately.

As in the original DFC, our approach has two parts, but it is organized as
two separate rounds. In the filtering round, we examine the whole input and
feed it through a series of filters that bear some similarities to DFC, but adapted
to consider properties of realistic traffic, as motivated above. The verification
round is as in DFC and performs exact matching on the full patterns that are
stored in hash tables. Compared with DFC, S-PATCH focuses on efficient
filtering in the first round, because this is the computationally intensive part
of the algorithm that, as we show, can be efficiently vectorized. Splitting the
two parts in separate rounds improves cache locality, since the data structures
used in each round do not evict each other and, as shown in Section 2.5, makes
vectorization more practical.

50 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

2.4.2 Filtering
In this first phase the goals are to (i) quickly eliminate the parts of the input
that cannot generate a match and (ii) store the input positions where there is
indication for a match. In general, key properties of the filtering phase include:

• Good filtering rate. A big fraction of the input is filtered out at this stage.
This is important, in order to avoid performing verification frequently,
as it has higher cost than filtering. The achieved filtering rate is directly
dependant on the number of patterns inserted in each filter (see also the
cost and hit rate predicted by the model described in Section 2.6).

• Low overhead. Every filter introduces additional computations and mem-
ory accesses, so there needs to be a balance between its overhead and
the amount of input that is filtered out. Later in Section 2.6, our model
quantifies the filtering overhead and the filtering rate, to help us maintain
that balance.

• Size-efficiency. All the filters need to fit in L1 or L2 cache, while also
leaving room for the input and the array for the intermediate results in
cache. This is very important, because it ensures that the lookups on the
filters will be fast and, as explained later, vectorization using the gather
instruction will be feasible.

Our proposed filter design (cf. Figure 2.2) consists of three filters, each with
a specific purpose. The first one stores information about the short patterns
(less than 4 characters). It has one bit for every possible combination of two
characters, and if a particular combination is the beginning of a pattern, the
corresponding bit is set. Similarly, the second filter uses the same indexing and
accounts for the longer patterns together with the third filter. An example of how
filters are populated (in this example, Filter 2) is shown in Figure 2.3. In more
detail on how we scan the input against the filters (cf. also Algorithm 2.1).

(A) First filter:

In the first part of the filtering, we examine two bytes of the input at a time and
use them to calculate an index for filters 1 and 2. If the corresponding bit in the
first filter is set, we directly store the current input position in an array for further
processing (lines 5-7).

Filter 1 is responsible for patterns that are one to three bytes long and uses a
two-byte index. For the case of one byte long patterns, we add in the filter all
possible combinations of two byte pairs starting with that byte (e.g., if “A” is

2.4. S-PATCH: A VECTORIZABLE VERSION OF THE DFC ALGORITHM 51

Filter	 3	
(>	 3	 B)	
	
	

	
	
	

Index:	 Hash,	 4	 char	

Hash	
tables	

Filter	 1	 	
(1	 –	 3	 B)	

	
	
	
	

Index:	 2	 char	

… …	

Input	

Filter	 2	
(>	 3	 B)	

	
	
	
	

Index:	 	 2	 char	

… …	

…	 A	 E	 J	 K	 T	 T	 6	 J	 W	 J	 O	 …	

HT	 HT	

PaGern	 length	
specific	 filters	 … …	

Figure 2.2: Filter Design of S-PATCH. HT stands for the Hash Tables that
contain the full patterns.

…
a c t i v a t e
a d m i n . d l l
b a c k d o o r
g e t . a s p

… Pattern	set

… 0 0 0 0 0 0 0 0 0 0 0 0 0 Filter	2	(8	KB)
ac adab ... ba bb ... ge ...

… 0 1 0 0 0 0 0 0 0 0 0 0 0… 0 1 1 0 0 0 0 0 0 0 0 0 0… 0 1 1 0 0 0 1 0 0 0 1 0 0

Figure 2.3: An example showing how Filter 2 is populated, for a given pattern
set.

a pattern, we add “AA”, “AB”, “AC” etc. in the filter). For the case of three
byte patterns, we use the first two bytes as input in the filter. During detection, if
there is a hit in such a position, the verification phase that is explained later will
check whether the third byte also matches.

(B) Second filter:

We also perform a lookup on the second filter using the same index, at line 8.
A hit may indicate that we have a match with a longer pattern, but it may also
be a false positive (e.g. compare the strings “attribute” and “attack”). Thus,
before storing the current input position after a match with the second filter, the
algorithm uses more bytes (in our case four) from the input stream with a third
filter to gain stronger indications whether there is actually a match. Only when
the match in the second filter is corroborated with a match from the third filter is
the current position in the input stream stored for further processing (line 11).

Filters 1 and 2 both use two bytes as an index but are populated using patterns
(one to three bytes for filter 1, the rest for filter 2). The reason is that Filter 2 is

52 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

Algorithm 2.1. Pseudocode for S-PATCH.

Data: D: data to inspect
1 # A short : temporary array for short patterns
2 # A long : temporary array for long patterns
3 for i=0, i <D.length, i++ do
4 index = Read two bytes from pos i in D
5 if (Filter1[index] is set) then
6 Store i in A short
7 end
8 if (Filter2[index] is set) then
9 new index = hash 4 bytes from input

10 if Filter3[new index] is set) then
11 Store i in A long
12 end
13 end
14 end
15 for i=0, i <A short.length, i++ do
16 Verification for small patterns
17 end
18 for i=0, i <A long.length, i++ do
19 Verification for big patterns
20 end

used a pre-filter for filter 3, to determine if it is necessary to perform the more
expensive filtering that filter 3 requires.

(C) Choosing the index size:

Regarding filters 1 and 2, isolating the two bytes, is more costly than accessing 4
bytes, because it implies an extra shift or bit-masking to isolate them. However,
the reason for choosing two bytes is to keep the size of the corresponding filter
8KB long so it can fit in cache. If we were to use either 3 or 4 bytes, that would
leave us with two options: a) keep the same direct indexing, but the filter size
would not fit in either L1 or L2 cache (2 MB filter size if using 3 bytes or 512MB
if using 4 bytes). The cost of accessing even L3 cache is more than 10 times
more than a L1 cache hit. b) not use direct mapping and use a hash function on a
small filter that fits L1 cache (similar to filter 3, described next). In this case, we
would have to pay the cost of computing the hash and we would likely end up
with many collisions in the hash table.

Both of the cases mentioned above incur very high overhead, so we chose to
prioritize keeping the filters in cache using two-byte, directly addressable filters.
Fitting the filter in the L1 cache is also the reason why filters are compacted, and
every element is one bit. The cost of extracting a specific bit is negligible if it
allows us to keep the filter in L1 cache, especially for Filters 1 and 2 that are

2.4. S-PATCH: A VECTORIZABLE VERSION OF THE DFC ALGORITHM 53

accessed frequently. Similar arguments for the design of 2-byte indexed filters
can be found in [20].

(D) Third filter:

The third filter is populated using the first four bytes of long patterns (four bytes
or longer). For the third filter, the index is calculated differently; we cannot have
a filter with all combinations of four bytes, due to cache-size limitations. Instead,
we use a multiplicative hash function for the four bytes of input to compute
the index in the filter, at line 9. As index, we use the hash value of those four
bytes, modulo the number of bits in the filter. If, e.g., the third filter is also 8KB
long, we end up with a two byte index that has been created as a hash of the
first four bytes from each pattern. There is a trade-off between having a large
enough filter to avoid collisions (thus providing a good filtering rate) and having
it small enough to fit in cache. The reason why we choose four bytes as input
will become clear in the next section (4 bytes fit in each one of the 32-bit vector
register values).

Note that the performance of the filtering phase is intrinsically tied to the
filter designs and the type of input. The reason why our proposed design is more
effective is twofold. Short patterns, although few,2 are likely to generate many
matches. As an example, if strings like GET and HTTP are part of the pattern set,
they will frequently be found in real network traffic. Treating them separately in
a dedicated filter allows us to focus on the longer patterns in other filters. Long
patterns, found more rarely, require more information to be distinguished from
innocuous traffic.

2.4.3 Verification
After the filtering, all the possible match positions in the input have been stored in
a temporary array. At this point, we need to compare the input at these positions
with the actual patterns, before we can safely report a match. As mentioned
before, the verification phase is as described by Choi et al. [20], except that
it is now done in a separate round, after the current chunk of input has been
processed by the filtering phase. For ease of reference we paraphrase here.

Among several optimizations, Choi et al. [20] use specially designed compact
hash tables that are different for different pattern lengths. Translated to our
improved filtering design, if the input at some position i passed the filtering, in

221% of Snort’s v2.9.7 patterns are 1-4 bytes long [20].

54 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

the verification phase the algorithm will perform a match on the compact hash
table that stores references to all the patterns of appropriate size. For example, if
i passed the third filter that stores information on patterns that are four bytes or
longer, in the verification phase, the algorithm performs a match on the compact
hash table that stores patterns of four bytes or longer (lines 18-20). Each hash
table is indexed with as many bytes as the shortest pattern that the hash table
contains (in this case, four bytes of the input will be used as an index to the
hash table). Each bucket in the hash table contains references to the full patterns
and the algorithm has to compare each one of them individually with the input,
before reporting a match. Eventually, the algorithm identifies all the occurrences
of all the patterns, producing the same output as Aho-Corasick.

Example: As an example, if “abcdefgh” and “abcdklmn” are malicious
patterns, the hash table at the index where “abcd” hashes to, will contain a
pointer to a linked list that contains the two patterns that start from “abcd”. The
algorithm will then perform exact pattern matching between these patterns and
the input. If necessary, more layers of filtering can be used in the hash tables
themselves, as described in [20].

In general, the compact hash tables as we use them in this phase, do not fit L1
or L2 cache (but they might fit L3 cache) and accessing them incurs high latency
misses. However, the success of the approach lies in the fact that the filtering
phase will reject most of the input, so the algorithm resorts to verification only
when it is needed (when there is a high probability for a match). That is why
our efforts focus on the filtering part, where the data structures are close to the
processor and can benefit from vectorization.

2.5 V-PATCH: Vectorized algorithmic design of the
S-PATCH algorithm

In this section we outline the general design of V-PATCH and outline relevant
optimizations. Next we describe how to parallelize the algorithms presented so
far and discuss their runtime complexity.

2.5.1 General design
A basic issue when vectorizing S-PATCH is its non-contiguous memory accesses.
The sequential version accesses the filters at nonadjacent locations for every
window of two characters, whereas in a vectorized design W indexes are stored
in a vector register (of length W), each pointing to a separate part of the data
structure. For this reason, we use the SIMD gather instruction that allows us

2.5. V-PATCH: VECTORIZED ALGORITHMIC DESIGN OF THE S-PATCH ALGORITHM 55

Shuffling	 mask:	 M	

	 	 	 	 AB	 	 	 	 	 BC	 	 	 	 	 CD	 	 	 	 	 DE	 EF	 FG	 GH	 HI	

Output	 Vector	 Register:	 O	

Raw	 Input	 Vector	 Register:	 R	

O = shuffle(R, M)

ABCD	 EFGH	 IJKL	 MNOP	 QRST	 UVWX	 YZAB	 CDEF	

Figure 2.4: Input Transformation from consecutive characters to sliding windows
of two characters.

to fetch values from W separate places in memory and pack them in a vector
register. The gather instruction can operate efficiently if the data to be fetched
can be found in cache [27], especially for architectures such as the Xeon Phi
platforms (see description of platforms later in Section 2.7.1). In the absence
of the gather instruction, the data can be fetched from memory using scalar
instruction, but at the cost of mixing scalar and vector instructions [26].

Algorithm 2.2 gives a high level summary of the filtering phase of V-PATCH.
The first step towards vectorizing the algorithm is loading the consecutive input
characters from memory and storing them in the appropriate vector registers.
Figure 2.4 shows the initial layout of the input and the desired transformation
to W elements, each holding a sliding window of two characters. The transfor-
mation is efficiently achieved with the use of the shuffle instruction, allowing to
manually reposition bytes in the vector registers (Algorithm 2.2, line 8). Note
that we read overlapping segments from the input and produce W sliding win-
dows from each segment, taking special care not to omit sliding windows that
span across two uses of the shuffle instruction (in the example of Figure 2.4, the
next use of shuffle will output IJ, JK, KL, etc.).

Once the vector registers are filled, the next step is to calculate the set of
indexes for the filters. Note that every 2-byte input value maps to a specific bit
in the filter, but the memory locations in the filter are addressable in bytes. A
standard technique used in the literature [20, 28] is to perform a bit-wise right
shift of the input value to the corresponding index in the filter. The remainder of
the shift indicates which bit to choose from the ones returned. Having computed
the indexes, we use them as arguments to the gather instruction that fetches the
filter values at those locations (Algorithm 2.2, lines 9 and 13).

The gather instruction can take indexes of either 32 or 64 bits each. In the
AVX2 instruction set, that supports up to 256 bit-long vector registers, using 32

56 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

Algorithm 2.2. Pseudocode for the V-PATCH filtering phase.

Data: D: input data to inspect
1 # W : the vector register length
2 # A short : temporary array for short patterns
3 # A long : temporary array for long patterns

4 #
Ð→
M1 : constant mask used to convert the input to 2 byte sliding window format

5 #
Ð→
M2 : constant mask used to convert the input to 4 byte sliding window format

6 for i=0, i <D.length, i += W do
7
Ð→
R = Fill register with raw input from D

8
ÐÐÐÐÐ→
Indexes = shuffle(

Ð→
R ,
Ð→
M1)

9
Ð→
V 1 = gather(filter1 address,

ÐÐÐÐÐ→
Indexes)

10 if at least one element in
Ð→
V 1 is set then

11 Store positions of matches in A short
12 end
13

Ð→
V 2 = gather(filter2 address,

ÐÐÐÐÐ→
Indexes)

14 if at least one element in
Ð→
V 2 is set then

15
ÐÐÐÐÐÐÐÐ→
NewIndexes = shuffle(

Ð→
R ,
Ð→
M2)

16
ÐÐÐ→
Keys = hash(

ÐÐÐÐÐÐÐÐ→
NewIndexes)

17
Ð→
V 3 = gather(filter3 address,

ÐÐÐ→
Keys)

18 if at least one element in
Ð→
V 3 is set then

19 Store positions of matches in A long
20 end
21 end
22 end

bit indexes will fetch us 8 different memory locations while using 64 bit indexes
will fetch 4 different locations. Since we want to have as much data parallelism
as possible, we use up to 32 bit indexes in V-PATCH, which is also the reason
why we use up to 4 bytes (32 bits) of input for filter 3.

As with the scalar algorithm, after a hit in the first or third filter we need
to store the position of the input where a potential match occurred. We store
the positions of the input that passed the filter from the set of W values in the
register (lines 11 and 19). Here, we postpone the actual verification to avoid a
potential costly mix of vectorized and scalar code, where the values from the
vector registers need to be written to the stack and from there read into the scalar
registers. Such a conversion can be costly and can negate any benefits we gain
from vectorization [27].

2.5. V-PATCH: VECTORIZED ALGORITHMIC DESIGN OF THE S-PATCH ALGORITHM 57

…	 H	 J	 U	 K	 G	 L	 …	 3	 1	 4	 4	 2	 6	 7	 1	

F1[3]	 F1[1]	 F1[4]	 F1[4]	 F1[2]	 F1[6]	 F1[7]	 F1[1]	

Input	 Vector	 Register:	 I	
Filter	 2	 in	 memory:	 F2	

O2 = gather(&F2, I)

F2[3]	 F2[1]	 F2[4]	 F2[4]	 F2[2]	 F2[6]	 F2[7]	 F2[1]	

O = gather(&F1-2, I)

…	 G	 D	 V	 A	 X	 K	 …	

O1 = gather(&F1, I)

Filter	 1	 in	 memory:	 F1	

3	 1	 4	 4	 2	 6	 7	 1	

Input	 Vector	 Register:	 I	

…	 G	 H	 D	 J	 V	 U	 A	 K	 X	 G	 K	 L	 …	

Merged	 Filters	 1	 and	 2	
in	 memory:	 F1-‐2	

F1[3]	 F2[3]	 F1[1]	 F2[1]	 F1[4]	 F2[4]	 F1[2]	 F2[2]	 …	

Figure 2.5: Figure describing the filter merging optimization. In the upper half,
lookups on two filters require two gather invocations. Once the filters are merged
in memory in the lower half, one gather brings information from both filters to
the registers.

2.5.2 Design choices and optimizations

Regarding the number of gather instructions used, to optimize in latency, note
that the first two filters (lines 9 and 13) are specifically designed to use the
same indexes for a given input value in gather but different base addresses
for the filters. Thus, with the filter merging optimization where the filters are
interleaved in memory (at the same base address), we can merge lines 9 and 13
into a single gather, to bring the information from both filters from memory
simultaneously. This optimization is not shown in the pseudo-code but depicted
in Figure 2.5, giving an example in which a single gather instruction fetches
information from both filters. Using bit-wise operations we can choose one filter
or the other, once the data is in the vector register.

If at least one of the W values has passed the second filter, they need to be
further processed through the third filter. Remember that the third filter uses a
window of four input characters as an index. Thus, we load a sliding window of
four input characters in each vector element in the register (line 15) and create
the hash values that we use as indexes in the third filter (lines 16-17).

Not all of the values in the vector register are useful; only the ones that passed

58 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

the second filter need to be processed further by the third filter. This is a common
challenge when vectorizing algorithms with conditional statements, since for
different input we need to run different instructions. There are approaches [28]
that manipulate the elements in the vector registers, so that they only operate
on useful elements. For this particular algorithm, experiments with preliminary
implementations showed that the cost of moving the elements in the registers
out-weighted the benefits. Thus, we choose to speculatively perform the filtering
on all the values and then mask out the ones that do not pass the second filter. In
our evaluation (see later Section 2.7.3 Figure 2.8b), we observe that operating
speculatively on all the elements is actually not a wasteful approach, especially
with a large number of patterns to match.

Furthermore, to fully exploit the available instruction-level parallelism, we
manually unroll the main loop of the algorithm by operating on two vectors (Rj)
of W values instead of one, a technique that has proven to be efficient especially
for SIMD code [28]. This has the benefit that, while the results of a gather on
one set of W values are fetched from memory (line 9), the pipeline can execute
computations on the other set of values in parallel.

2.5.3 Scaling across multiple threads
The description of V-PATCH so far focuses on how to utilize data parallelism
within each core using vector instructions, but we can easily extended them to use
multiple threads. With respect to that, we inherit the easily parallelizable property
from DFC. DFC (as well as S-PATCH and V-PATCH) can start processing from
any point in the input stream. Based on that, the algorithms presented in this
section can be parallelized by splitting the received input into equal chunks and
distributing it across the available threads. Then, each thread processes its own
chunk independently. The only corner case is when malicious patterns spawn
across two different chunks: to remedy this we allow each thread to continue
processing each neighbouring thread’s chunk, for as along as the longest pattern
in the pattern set. Usually, the size of the longest pattern is very small (323
bytes in our evaluation), compared to the size of the each chunk (several MB). In
Section 2.7.7 we show that our algorithms can scale with the number of threads.

2.5.4 Runtime complexity
Aho-Corasick, the standard algorithm in the literature, which we outlined in
Section 2.2.1 processes every byte of input once and performs one state transition
for each byte of input. Usually, the state of Aho-Corasick is stored in a 2-
D array and the state transition can be done in constant time. As a result,

2.6. PERFORMANCE MODEL 59

the runtime complexity of Aho-Corasick (when we only want to count the
number of matches) is O(n) where n is the size of the input to be scanned [22].
However, as described in Section 2.2.1, the drawback of Aho-Corasick is that
the state cannot typically fit in cache, so in practice we expect a large constant in
runtime complexity, because almost every memory access is a cache miss3. In
fact, understanding and predicting the performance of such an algorithm on a
real system with memory hierarchy is a challenging task and has given rise to
models that incorporate the effect of caches or virtual address translation into
the algorithm’s complexity [16]. For example, [16] report the running time of
random scan (which is similar to the random accesses in the state machine of the
Aho-Corasick algorithmic) to follow a O(n ∗ logn) trend rather than a O(n)
trend as expected.

Filter-based algorithms, such as DFC, have worst case complexity O(n∗m)
wherem is the size of the longest pattern. This worst case complexity can happen
when the longest pattern matches (or almost matches) at every position in the
input, so there is a hit in the filters in every input byte. However, for typical cases
of input text, the algorithm discards most of the input in the filtering phase, in
linear time with a small constant because filters are more likely to be in memory.
In fact, the whole design of such algorithms is focused around discarding most
of the text early on so that the worst case complexity can be avoided. S-PATCH
and V-PATCH have the same worst case complexity as DFC, but improve the
performance in the average case even further (S-PATCH through better filtering
and V-PATCH through vectorization). The performance in the average case is
hard to predict and depends heavily on the number of patterns. For this reason, in
the next section we introduce a performance model for S-PATCH and V-PATCH
that gives us better insights in their expected performance.

2.6 Performance model

In order to better understand the runtime performance of the filter design we
described above, in this section we introduce a simple model of the expected
performance of the algorithm with respect to the number of patterns taken into
account. We provide a model for both the scalar (S-PATCH) and the vectorized
version (V-PATCH).

3As already mentioned another drawback of Aho-Corasick is the high runtime complexity of
creating the state machine, which is much higher than creating the filters used by DFC and similar
algorithms [20].

60 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

2.6.1 Usefulness
Our performance model is a useful tool to design and evaluate alternative filter
architectures. As an example, for a given number of patterns, the model estimates
the expected hit rate of the filters and the expected cost associated with filtering.
Based on that, one can decide to add more filters in the design, or remove filters
if their filtering ratio is low compared to the cost of accessing them. The model
description that follows in this section refers to the filter design of S-PATCH and
V-PATCH and assumes three filters, organized in the way shown in Figure 2.2.
The same approach is applicable to other types of designs that use the same kind
of filters as building blocks.

2.6.2 Filter hit rates
We start by estimating the hit rate of the filters, then use these rates to derive the
overall performance model. We assume, for now, that both the input stream and
the patterns are random. Then, if x is the number of patterns that are added to a
filter, the probability that a bit in the filter is still zero is

p = (1 − 1

m
)x (2.1)

where m is the size of the filter in bits. Equation 2.1 can be used for any filter
size, but in the evaluation we use m = 64K for all filters, including filter 3. This
probability is derived by just considering the filter as a Bloom filter with a single
hash function. In turn, the expected hit rate of a filter in the scalar case, i.e. the
probability of accessing a single bit in the filter and finding it set to 1, is the
complementary probability:

h(x) = 1 − p = 1 − (1 − 1

m
)x (2.2)

Filter 1 in Figure 2.2 has a hit rate h1 = h(x1) where x1 is the number of
patterns that are less than 4 bytes long. Note that, because filter 1 uses the first 2
bytes of the pattern as index, single-byte patterns need to be extended to 2 bytes.
In order to do this, we create every possible combination of 2 byte characters
starting with that single-byte pattern. For example, given the strings BC and A,
we will set one bit at the index that corresponds to the position of BC and 256
bits on all indexes that start with A (AA, AB, AC etc.). As a result, x1 accounts
for all the patterns that are less than 4 bytes long and the number of extra patterns
generated due to the presence of single-byte patterns.

Similarly, filter 2 in Figure 2.2 has a hit rate h2 = h(x2), where x2 is the
number of patterns that are greater or equal to 4 bytes long. For filter 3, notice

2.6. PERFORMANCE MODEL 61

Figure 2.6: Expected hit rate for each filter in the scalar case (left) and the
vectorized case (right).

that: (i) it has the same size and number of patterns as filter 2, (ii) accessing
filter 3 requires a hit in filter 2 (see Figure 2.2) and (iii) it uses a different hash
function from filter 2, so a hit in filter 2 tells nothing about the probability of a
hit in filter 3. Based on that, the overall probability of having a hit in filter 3 is
h3 = (h2)2.

Turning to the vectorized case, remember that we have a hit in the filter if at
least one of the W elements in the register hits the filter. Thus, the hit rate h′ of
a filter in the vectorized case is:

h′ = 1 − (1 − h)W (2.3)

since (1 − h)W is the probability of having W consecutive misses.
Figure 2.6 shows the expected hit rates of the filters in the scalar and vector-

ized case for a varying number of random patterns. Here we assume that the size
of each pattern is uniformly distributed between 1 and 50 bytes.

2.6.3 Overall cost
Knowing the hit rates of the filters allows us to model the overall per-byte cost
of the algorithm. We model the filtering and the verification phases separately.

For each byte of input processed by S-PATCH, we identify the following
main operations that need to be performed in the filtering phase: (i) compute the

62 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

indexes to filters 1 and 2 and access them, (ii) if there is a hit in filter 1, store the
hit, (iii) if there is a hit in filter 2, compute the index for filter 3 and access it and
(iv) if there is a hit in filter 3, store the hit. Those operations are the main factors
in our model of the per-byte cost for the filtering phase of S-PATCH, which can
be broken down as follows:

cf = c1,2 + s1 ∗ h1 + c3 ∗ h2 + s3 ∗ h3 (2.4)

where c1,2 and c3 are the cost of computing the indexes and accessing for the first
two (c1,2) and the third filter (c3) and s1, s3 are the cost of storing the indexes
that produced a hit at filters 1 and 3, respectively. The cost of storing the hits is
relatively small and we will exclude it from the model (but we will return to it in
Section 2.7.4). Thus,

cf = c1,2 + c3 ∗ h2 (2.5)

That leaves us with two constants that need to be computed, c1,2 and c3. We
determine the value of these constants experimentally: we initialize use two sets
of patterns (two different x values) and measure the cost of processing traffic
data which were generated at random. As a result, we get with a system of two
equations and two unknowns (the constants) which we solve to find the values
for c1,2 and c3. These values are architecture dependent and are expected to
differ between different architectures. Once we have determined them for a
specific architecture, we use the same values to derive a single model that holds
for different sets of input data and numbers of patterns, as we show later in
Section 2.7.6. An alternative approach would be to derive the constants based on
the expected number of instructions that each constant represents and the cost of
each instruction on this architecture. However, this a complex and error-prone
procedure, because we would need to factor in a lot of the micro-architecture
details, e.g. the super-scalar pipeline and the out-of-order execution that the
processor supports.

Similarly, the filtering cost for the vectorized case is

c′f = c′1,2 + c′3 ∗ h′2 (2.6)

The cost of the verification phase is the same for both the scalar and the
vectorized case. Remember that the algorithm reaches the verification phase
when there is a hit on the first or the third filter. Verifying a hit involves a lookup
in a hash table, the cost of which can be considered constant. Thus, the per-byte
cost of verification can be modeled as follows:

cv = c′v = h1 ∗ Vsmall + h3 ∗ Vlarge (2.7)

2.7. EVALUATION 63

Table 2.1: Estimated values (in cycles) for the constants involved in the model,
for the Haswell platform, c.f. Section 2.7.

c1,2 c3 c′1,2 c′3 Vsmall Vlarge
Estimated value (cycles) 3.8 26.0 3.1 4.3 7.7 110.7

where Vsmall, Vlarge are the cost of the hash table lookups for verification
of small and large patterns, respectively. Again, we approximate these two
constants experimentally using a system of two equations, similar to the way
described above for the scalar algorithm.

In summary, the per-byte cost for S-PATCH is

c = cf + cv = c1,2 + c3 ∗ h2 + h1 ∗ Vsmall + h3 ∗ Vlarge (2.8)

and for V-PATCH:

c′ = c′f + c′v = c′1,2 + c′3 ∗ h′2 + h1 ∗ Vsmall + h3 ∗ Vlarge (2.9)

The values we use for the constants are given in Table 2.1 (measured for the
Haswell platform, c.f. Section 2.7). In Section 2.7 we evaluate the cost predicted
by the model and show that it is accurate with respect to the one observed in
practice.

2.7 Evaluation
In this section, we evaluate the benefits that our vectorization techniques bring to
pattern matching algorithms. Our evaluation criteria are the processing through-
put and the performance under varying number of patterns. We show the im-
provements of V-PATCH with both realistic and synthetic datasets, as well as
with changing number of patterns. For a comprehensive evaluation, we compare
the results from five different algorithms: the original Aho-Corasick ([14];
implementation directly taken from the Snort source code [23]), DFC (Choi
et al. [20], summarized in Section 2.2.2), Vector-DFC (a direct vectorization
of DFC done by us), S-PATCH (the scalar version of our algorithm, described
in Section 2.4, that facilitates vectorization and addresses properties of realis-
tic traffic that were not addressed before), and V-PATCH (the final vectorized
algorithm described in Section 2.5).

2.7.1 Experimental setup
Systems: For the evaluation we use both Intel Haswell and Xeon-Phi. More
specfically, the first system is an Intel Xeon E5-2695 (Haswell) CPU with 32KB

64 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

of L1 data cache, 256KB of L2 cache and 35MB of L3 cache. The platform has
14 cores on a single socket, with up to 2 threads per core, using hyperthread-
ing. We use the ICC compiler (version 16.0.3) with -O3 optimization under
the operating system CentOS. Unless otherwise noted, the experiments in this
section are run on this platform. The second system is the Intel Xeon-Phi 3120
co-processor platform. Xeon-Phi has 57 simple, in-order cores at 1.1 GHz each,
with 512-bit vector processing units. Each core supports up to 4 threads with
hyperthreading. The memory subsystem includes a L1 data cache and a L2
cache (32KB and 512KB respectively) private to each core, as well as a 6GB
GDDR5 memory, but no L3 cache. We compile with ICC -O3 (version 16.0.3)
under embedded Linux 2.6. We are only using Xeon-Phi in native mode as a
co-processor. The next versions of Xeon-Phi are standalone processors, so the
problem of processor-to-co-processor communication is alleviated. In the fol-
lowing experiments, we first focus on the speedup achieved by a single hardware
thread, through vectorization, then we discuss experiments with multiple threads.

Patterns: We use two sets of patterns: a smaller one, named S1, consisting of
approximately 2,500 patterns that comes with the standard distribution of Snort4

[29] – the de-facto standard for network intrusion detection systems – and a
larger one, named S2, with approximately 20,000 patterns, that is distributed
by emergingthreats.net. The patterns affect the performance of the
algorithm and this is analyzed in detail in Section 2.7.3.

Data sets: In our evaluation, we use both real-world traces and synthetic
data-sets. The real-world traces are the ICSX dataset [30,31] (created to evaluate
intrusion detection systems) and the DARPA intrusion detection dataset [32].
From ICSX, we randomly take 1GB of data from each of days 2 and 6 (thereafter
named ICSX day 2 and ICSX day 6, respectively) and we also use 300MB of
data from the DARPA 2000 capture. We are aware of the artifacts in the latter
set, and the discussions in the community about its suitability for measuring
the detection capability of intrusion detection systems [33]. In our experiments,
we use it only for the purpose of comparing throughput between algorithms,
allowing for future comparisons on a known dataset. The synthetic data set
consists of 1GB of randomly generated characters.

An important point, considering the evaluation validity, is that, typically, not
all the patterns are evaluated at the same time. In a Network Intrusion Detection
System such as Snort, patterns are organized in groups, depending on the type of
traffic they refer to. When traffic arrives in the system, the reassembled payload
is matched only against patterns that are relevant (e.g. if the stream has HTTP

4We used version 2.9.7 for our experiments.

emergingthreats.net

2.7. EVALUATION 65

traffic, it is checked against HTTP related patterns, as well as more general
patterns that do not refer to a specific protocol or service). To evaluate our
algorithm in a realistic setting, we also pair traffic with relevant patterns. Since,
in our datasets, most of the traffic is HTTP [30], we focus on HTTP traffic and
match it against the patterns that are applicable based on the rule definitions. A
similar approach can be used for other protocols (e.g. DNS, FTP), but we focus
on HTTP traffic as it typically dominates the traffic mix and many attacks use
HTTP as a vector of infection.

2.7.2 Overall throughput

In this section we compare the overall performance between the different algo-
rithms. Using the HTTP-related patterns of each set gives us 2K patterns from
pattern set S1 and 9K patterns from pattern set S2. All algorithms count the
number of matches. We use 10 independent runs of each experiment. We report
the average throughput values, as well as standard deviation as error bars.

Figure 2.7a shows the throughput of all algorithms under realistic traffic
traces and synthetic traces, when matched against the small pattern set (S1). In
Figure 2.7b we use the bigger pattern set (S2). The numbers above the bars
indicate the relative speedup compared to the original DFC algorithm.

We first discuss the results by only considering each pattern set and each
traffic set separately. For realistic traffic traces, our vectorized implementa-
tion consistently outperforms the DFC algorithm by up to 1.86x (left parts of
Figure 2.7), due to the parallelization we introduce in the filtering phase. The
direct vectorization of the original DFC algorithm (Vector-DFC) has limited
performance gain, because much of the running time of DFC is spent on verifi-
cation and not filtering. This is the main motivation for introducing a modified
version of DFC, in Section 2.4, focused on improving the filtering phase. By
treating small, frequently occurring patterns separately and by examining more
information in the case of long patterns, S-PATCH outperforms the original by
up to 1.47x. More importantly, it allows for much greater vectorization potential,
since the biggest portion of the algorithm’s running time is shifted to efficient
filtering of the input, and verification is done much more seldom.

Next, we evaluate the impact of the size of the ruleset on the overall through-
put (comparing Figure 2.7a with Figure 2.7b). The overall throughput of the
algorithms decreases, since the input is more likely to match and identifying
every match consumes extra cycles. The performance of Aho-Corasick, in par-
ticular, decreases by more than 40%, because the extra patterns greatly increase
the size of the state machine. The rest of the algorithms experience a 23-34%
drop in performance.

66 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

ISCX day2 ISCX day6 DARPA 2000
0.0

0.5

1.0

1.5

2.0

2.5

3.0
T
h
ro

u
g
h
p
u
t

(G
b
p
s)

0.99 0.90 0.77
1.00 1.00 1.001.23 1.03

1.12
1.31

1.25 1.17

1.84
1.68

1.36

Aho-Corasick DFC Vector-DFC S-PATCH V-PATCH

random
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

0.24

1.00

1.14

0.79

0.93

(a) Snort web traffic patterns (2K).

ISCX day2 ISCX day6 DARPA 2000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

0.79 0.81 0.62
1.00 1.00 1.001.14 1.06

1.081.33
1.47 1.25

1.78
1.86

1.44

random
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

0.14

1.00
1.12

0.76
0.83

(b) ET open 2.9.0 web traffic patterns (9K).

Figure 2.7: Performance comparison between the different algorithms for public
and random data sets, on the Xeon platform.

It is important to note that the performance gain of the algorithms (DFC
versus Aho-Corasick, V-PATCH versus DFC) is influenced by the input as
follows: when feeding the algorithms a data set that contains random strings,
DFC significantly outperforms AC (right part of Figure 2.7). In this case, we
do not expect to find many matches in the input and the filtering phase will
quickly filter out up to 95% of the input. This is also the reason why the modified
versions of the algorithm (S-PATCH and V-PATCH) perform less efficiently
compared to what they do in the different input scenarios; the design of the two
separate filters as described in Section 2.4 shows its benefits in more realistic
traffic mixes. In turn, this poses interesting questions for the future in how to
best design the filters based on the expected traffic mix. Still, the vectorized
versions provides speedups over the scalar ones.

2.7.3 The effects of the number of patterns

As shown in Section 2.7.2, it is important to account for the actual traffic mix
the algorithms are expected to run upon when designing the filtering stage, as it

2.7. EVALUATION 67

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of patterns

0

1

2

3

4

5

6

7

8
Th

ro
ug

hp
ut

 (G
bp

s)

S-PATCH
V-PATCH

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Sp
ee

du
p

fro
m

 v
ec

to
riz

at
io

n

Speedup

(a) Throughput as the number of patterns increases.

0 5000 10000 15000 20000
Number of patterns

30

40

50

60

70

80

90

fi
lt

e
ri

n
g
 t

im
e
/t

o
ta

l
ti

m
e
 (

%
)

20

30

40

50

60

70

80

u
se

fu
l
e
le

m
e
n
ts

 i
n
 v

e
ct

o
r

re
g
is

te
r

(%
)

(b) Filtering to verification ratio and vec-
torization efficiency.

0% 20% 40% 60% 80% 100%

Fraction of the input that matches

0

1

2

3

4

5

6
Th

ro
ug

hp
ut

 (G
bp

s)
S-PATCH
V-PATCH

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1.15
1.27 1.29

1.35 1.38

Speedup

(c) Speedup from vectorization, as the
numbers of matches in the input increases.

Figure 2.8: Figure a) compares the scalar and vectorized versions of our approach,
as the number of patterns increases. Figure b) shows the filtering-to-verification
ratio (left axis), as well as the average number of useful elements in the vector
registers after filter 2 (right axis), as the number of patterns increases. Figure c)
compares the scalar and vectorized approach, as the fraction of matches in the
input increases.

has a large impact on the performance. As new threats emerge, more malicious
patterns are introduced and the performance of the algorithm must adapt to that

68 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

change.
We measure the effects of the number of patterns on the two best performing

algorithms and summarize the results in Figure 2.8a, also including the overall
speedup of V-PATCH compared to S-PATCH. In this experiment, we randomly
select the number of patterns from the complete set S2 (20,000 patterns) in order
to test our algorithms with as many patterns as possible. V-PATCH consistently
performs better compared to S-PATCH, regardless of the number of patterns
considered. Observe that:

• As the number of patterns increases, so does the input fraction that passes
the filters. This causes the verification part, which is not vectorized, to
take up more of the running time, essentially reducing the parallel portion
and, by Amdahl’s law [34], the benefit of vectorization. The portion of
the running time spent in filtering, over the total running time is shown in
Figure 2.8b (blue line).

• As the number of patterns increases, the vectorization of the filtering
becomes more efficient. Remember that V-PATCH will proceed with the
third filter if at least one of the values in the vector register block passes
the second filter. With a small number of patterns, we will seldom pass
the second filter. When we do, it is likely we only have a single match,
meaning that the rest of the values in the register are disabled and any
computation performed for those values is wasteful work. Increasing the
number of patterns results in more potential matches in the second filter
and, as a consequence, less disabled values for the third filter and thus more
useful work. In Figure 2.8b (red line) we measure this effect and show the
average number of useful items inside the vector register every time we
reach the third filter. Clearly, with an increasing number of patterns, the
vectorization is performed mainly on useful data and therefore becomes
more efficient.

• The two trends essentially cancel each other out, keeping the overall
performance benefit of V-PATCH compared to S-PATCH constant after a
point (Figure 2.8a), even though the optimized filtering gradually becomes
a smaller part of the total running time. Eventually, the vector registers
will always be full and we will not benefit from having more patterns. At
this point the relative performance will stay constant. Our results indicate
that this point is far beyond the number of patterns that current intrusion
detection systems utilize.

• A similar effect is observed when we keep the number of patterns constant,
but increase the amount of matches in the dataset (Figure 2.8c). For this

2.7. EVALUATION 69

ISCX day2 ISCX day6 DARPA 2000
0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

1.00 1.00
1.00

1.84 1.81
1.692.15 2.14

1.97

S-PATCH-filtering V-PATCH-filtering+stores V-PATCH-filtering

(a) Snort web traffic patterns (2K).

ISCX day2 ISCX day6 DARPA 2000
0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

1.00 1.00 1.00

1.62 1.46
1.471.94 1.78

1.80

(b) ET open 2.9.0 web traffic patterns (9K).

ISCX day2 ISCX day6 DARPA 2000
0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

1.00 1.00 1.00

2.08 1.81 2.03

2.79 2.54 2.80

(c) Full pattern-set (20K).

Figure 2.9: Measuring the performance of the filtering part only. V-PATCH-
filtering+stores includes the cost of storing the results of the filtering phase to
temporary arrays.

experiment, we created a synthetic input that contains increasingly more
patterns, randomly selected from a ruleset of 2,000 patterns. As more
matching strings are inserted into the input, our vectorized portion of the
algorithm becomes more efficient and the relative speedup compared to
the scalar version slowly increases.

2.7.4 Filtering parallelism
In this section, in order to gain better insights about the benefits of vectorization,
we measure the speedup gained in the filtering part in isolation. Figure 2.9
compares the filtering throughput of the scalar S-PATCH and V-PATCH, for
pattern sets S1, S2, as well as the full pattern set (20K patterns). In the same
figure, we also report the performance of the vectorized filtering, where we
exclude the cost of storing the matches in the filtering phase in the temporary

70 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

ISCX day2 ISCX day6 DARPA 2000
0.0

0.1

0.2

0.3

0.4

0.5
T
h
ro

u
g
h
p
u
t

(G
b
p
s)

1.14 1.30 1.061.00 1.00 1.00

1.63 1.69 1.52

1.18 1.23 1.11

3.16
3.61

2.51

Aho-Corasick

DFC

Vector-DFC

S-PATCH

V-PATCH

random
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

0.49

1.00

1.43

0.89

3.48

(a) Snort web traffic patterns (2K).

ISCX day2 ISCX day6 DARPA 2000
0.0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

0.97 1.16 0.871.00 1.00 1.00
1.47 1.58 1.441.40 1.52 1.28

2.77
3.25

2.22

random
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

0.22

1.00
1.33

0.86

2.96

(b) ET open 2.9.0 web traffic patterns (9K).

Figure 2.10: Performance comparison between the different algorithms for
public and random data sets on the Xeon-Phi platform.

arrays. As we can see from the graph, the throughput of the filtering part is
increased by up to a factor of 1.84x, on the small pattern set. Storing the matches
of the filtering part in arrays comes with a cost; when it is removed, performance
increases up to 2.15x for small pattern sets and up to 2.80x for the full pattern
set. Even though there is a small decrease at the pattern set with 9K patterns
(Figure 2.9b), the relative speedups of vectorized filtering increase with the
number of patterns (Figure 2.9c).

2.7.5 Changing the vector length: results from Xeon-Phi

We have also evaluated the effectiveness of our approach on an architecture
with a wider vector processing pipeline. The Xeon-Phi [9] co-processor from
Intel supports vector instructions that operate on 512-bit registers, thus able to
perform two times more operations in parallel, in the filtering phase.

Figure 2.10 summarizes the results from Xeon Phi, where the experiments
are identical with those described in Section 2.7.2. Note that we report the
throughput of a single Xeon-Phi thread. V-PATCH takes advantage of the wider

2.7. EVALUATION 71

vector registers and outperforms the original scalar DFC algorithm, up to a factor
of 3.6x on real data and 3.5x on synthetic random data.

As Xeon-Phi threads have much slower clock (1.1 GHz) and the pipeline is
less sophisticated (e.g. there is no out-of-order execution), it is not surprising
that the absolute throughput sustained by a single Phi thread is smaller than
that of the single thread performance of the Xeon platform used in the previous
experiments. When dealing with multiple streams in parallel, due to the higher
degree of parallelism, the aggregated gain will naturally be higher, as indicated
later in Section 2.7.7.

An interesting observation is that the DFC algorithm is sometimes slightly
slower than AC on real data, where the number of matches in the input is
significantly higher. In the original DFC algorithm, the filters are small and can
easily fit L1 or L2 cache, and the hash tables containing the patterns are bigger,
but still expected to fit L3 cache. In Xeon-Phi there is no L3 cache, so accesses
to the hash tables in the verification phase are typically served by the device
memory, negating the benefits of cache locality that is part of the main idea of
the algorithm. Nonetheless, our improved filtering design reduces the number of
times we resort to verification and access the device memory, thus resulting in
1.1x-1.5x increased throughput on realistic traffic, compared to the original DFC
design.

2.7.6 Model evaluation

In this section, we evaluate the accuracy of our analytical model presented in
Section 2.6. In the following experiments, we randomly generate up to 40K
patterns and use different data sets, both real and synthetic. We show the
normalized execution time for S-PATCH and V-PATCH, along with the cost
predicted by the model.

Figures 2.11a and 2.11b show the cost of filtering for S-PATCH and V-
PATCH, respectively. The figures show both the cost predicted by the model
(given by Equations 2.5 and 2.6) as well as the cost measured using real and
synthetic data. As predicted by the model, the cost of filtering for both versions
is mostly affected by the hit rate of filter 2 (see also Figure 2.6). The cost of
S-PATCH increases with the number of patterns, while the cost of V-PATCH
flattens quickly (in this case, the hit rate of filter 2 is already close to 90% for
more than 20K patterns and the vector registers are filed with mostly useful
elements). Notice the different range in the vertical axis between S-PATCH and
V-PATCH and the fact that, as the model predicts, the filtering part of V-PATCH
is much faster than that of S-PATCH across any number of patterns.

Similar to the above, Figures 2.11c and 2.11d show the total cost (in terms of

72 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

1000

2000

3000

4000

5000

6000

7000
Ex

ec
ut

io
n

tim
e

(m
s)

model
random data
ISCX day 2
DARPA 2000

(a) S-PATCH filtering only.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

1000

1500

2000

2500

3000

3500

Ex
ec

ut
io

n
tim

e
(m

s)

model
random data
ISCX day 2
DARPA 2000

(b) V-PATCH filtering only

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

0

5000

10000

15000

20000

Ex
ec

ut
io

n
tim

e
(m

s)

model
random data
ISCX day 2
DARPA 2000

(c) S-PATCH filtering and verification.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

0
2000
4000
6000
8000

10000
12000
14000
16000

Ex
ec

ut
io

n
tim

e
(m

s)

model
random data
ISCX day 2
DARPA 2000

(d) V-PATCH filtering and verification

Figure 2.11: Real and predicted performance of S-PATCH and V-PATCH for
different number of patterns.

execution time), including the cost of verification. The total cost for both follows
an almost linear curve and is mostly dominated by the cost of verification, as
predicted by the model (given by Equations 2.8 and 2.9). Since the model is
fitted to random data, it predicts the cost of processing random data more closely
compared to using realistic data (ISCX and DARPA data sets) where the traffic
distribution is different. In this case of realistic data there is deviation from the
model at around ten thousands patterns for the case of S-PATCH. Surprisingly,
such deviation is not present for the case of V-PATCH. Also notice that, in most
cases, processing real traffic is slightly faster than what is predicted by the model,
most likely due to the different distribution of traffic.

Alternative filter designs: Having an accurate model to predict the overall
performance of our algorithms allows us to easily evaluate different filtering
architectures than the one we use for S-PATCH and V-PATCH (see Figure 2.2).
We alter the model from Section 2.6 to predict a series of alternative designs,
namely designs where we remove: (i) the filter for small patterns (Filter 1),
(ii) one of the filters for long patterns (e.g. Filter 3) or (iii) all filtering whatsoever.
By altering the model to cover these alternative designs, we can predict if, and at
what number of patterns, it is beneficial to change our filtering design.

In Figure 2.12 we include the expected total execution time for 1GB of
random data as predicted by the original model for S-PATCH, as well as the

2.7. EVALUATION 73

0 20000 40000 60000 80000 100000 120000 140000 160000
Number of patterns

0

10000

20000

30000

40000

50000

60000

Es
tim

at
ed

 e
xe

cu
tio

n
tim

e
(m

s)
no filters
no filter 1
no filter 3
S-PATCH

Figure 2.12: Prediction of the execution time of different filtering designs for
S-PATCH, including designs where one or several of the filters are removed.
Note the increased maximum number of patterns used in the horizontal axis.

predictions for the alternative filtering designs discussed above. Note that we
have extended the x-axis (number of patterns) to capture the trends at very
large numbers of patterns, much larger than what is typically used in NIDS.
Compared to our design (S-PATCH), removing Filter 1 has a small impact which
is noticeable when less than twenty thousand patterns are used. Removing Filter
3 has initially a negative effect on performance, but the model predicts that it
is a preferable choice when more than one hundred thousand patterns are used.
This is reasonable since, when using so many patterns, filters are likely to be
fully populated and have high hit-rates. In this case, the overhead of accessing
the filter is not compensated by reducing the times we reach verification. If we
remove all filters, we go to expensive verification for every input byte and the
cost is prohibitively high, expect for the case of using more than one hundred
and forty thousand patterns and all the filters are saturated. The trends also
indicate that, for the number of patterns that are typically used in NIDS (one to
ten thousand patterns) our original filtering design is a good choice, validating
the design choices explained in Section 2.4. The respective alternative designs
for V-PATCH follow trends similar to the ones in Figure 2.12.

2.7.7 Parallel execution

The experiments presented so far focus on the data parallelism achieved within
a single thread, i.e. using vectorization and data parallelism within each core.
In this section, we present experiments from a multi-threaded execution and
demonstrate the scalability of our approach. We use the pthreads library in both
of our shared memory architectures. As already mentioned in Section 2.5, we
can easily parallelize DFC, S-PATCH and V-PATCH by splitting the available
input in equal chunks. Nonetheless, it is important to evaluate the scalability
of algorithms using multiple threads to show the effect of the underlying ar-

74 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Threads

0

5

10

15

20

25

30

35

40
To

ta
l t

hr
ou

gh
pu

t (
Gb

ps
)

Aho-Corasick
DFC
S-PATCH
V-PATCH

(a) Parallel execution on the Haswell plat-
form.

1 20 40 60 80 100 120 140 160 180 200 220
Threads

0

10

20

30

40

50

To
ta

l t
hr

ou
gh

pu
t (

Gb
ps

)

Aho-Corasick
DFC
S-PATCH
V-PATCH

(b) Parallel execution on the Xeon-Phi plat-
form.

Figure 2.13: Parallel execution on the Haswell and Xeon-Phi platforms.

chitecture, e.g., resource sharing under hyper-threading. We also designed and
evaluated a parallel version of Aho-Corasick, based on [22, 35].

For the following experiments, we used the ISCX day 2 data set and the
S1 pattern set of 2K patterns. We split the input evenly across the available
threads and report the total achieved throughput. We experiment on both the
Haswell platform (14 cores, 28 threads) and the Xeon-Phi platform (57 cores,
228 threads). In all cases, our thread placement policy is to spread threads as
much as possible, i.e. we first place each thread in each own core, then start
placing up to two threads per core, etc.

Figures 2.13a and 2.13b show the results from the Haswell and the Xeon-Phi
platforms respectively. In both platforms, all algorithms scale linearly while there
is only one thread per core (up to 14 threads for Haswell and 57 threads for Xeon-
Phi). After that, the scaling factor decreases, since threads that reside on the same
core must share resources, such as parts of the execution units and the caches. For
the case of the Haswell platform, we have also included tests where we spawn
more software threads than the available hardware threads (over-subscription)
and validate that we cannot get any more performance benefit. Nonetheless,
all algorithms benefit from using the available thread-level parallelism in the
system.

The relative speedup of our algorithms compared to Aho-Corasick follows
roughly the speedup found in the single thread experiments, which also ex-
plains why Aho-Corasick is better than S-PATCH and DFC on the Xeon-Phi
platform, based on the discussion in Section 2.7.5. Nonetheless, our scalar
version (S-PATCH) is better than DFC in both platforms and our vectorized
algorithm (V-PATCH) outperforms all other versions (up to 2 times better than
Aho-Corasick), achieving up to 40 and 45 Gbps on the Haswell and Xeon-Phi
platforms respectively.

2.8. OTHER RELATED WORK 75

2.8 Other related work

2.8.1 Pattern matching algorithms

Pattern matching has been an active field of research for many years and there are
numerous proposed approaches. Aho-Corasick, explained before in Section 2.2.1
is one of the fundamental algorithms in the fields. There are variants of Aho-
Corasick that decrease the size of the state transition table (for example [36]) by
changing the way it is mapped in memory, but they come at an increased search
cost, compared to the standard version of Aho-Corasick used in our evaluation.
Other approaches apply heuristics that enable the algorithm to skip some of the
input bytes without examining them at all, such as Wu-Manber [37] where a
table is used to store information of how many bytes one can skip in the input.
The main issue with these approaches is that they perform poorly with short
patterns. For the problem domain investigated here, the patterns can be of any
length and the algorithm must handle all of them gracefully. Moreover, in both
Aho-Corasick and Wu-Manber algorithms, there is no data parallelism because
there are dependencies between different iterations of the main loop over the
input.

Recent algorithms [20,21] follow a different idea: Using small data structures
that hold information from the patterns (directly addressable bitmaps in the case
of [20], Bloom filters in the case of [21]), they quickly filter out the biggest
parts of the input that will not match any patterns and fallback to expensive
verification when there is an indication for a match. Our work is inspired by this
family of algorithms, showing how they can be modified to perform better under
realistic traffic and gain significant benefit from vectorization.

2.8.2 Regular expression matching

Apart from exact signature matching, intrusion detection systems also employ
regular expression matching to detect attacks, because they offer more flexibility
when describing the patterns. Regular expression matching usually utilizes finite
automata, either deterministic (DFA) or non-deterministic (NFA). DFA’s are fast,
because every byte of input leads to only one state and their search complexity
is O(n). However, the size of the state machine can grow exponentially with
the number of regular expressions [38]. NFA’s, on the other hand, construct a
significantly smaller state in memory, but the search time is increased, because
the state machine needs to evaluate several paths before finding a match. There
has been significant work trying to find a compromise between search time

76 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

and memory use (for example [39]). Because regular expression matching is
generally slow, Snort, a widely used NIDS, first applies exact pattern matching
on the sub-strings that a regular expression contains, so most of the regular
expressions do not have to be considered. The same approach is also followed in
many proposed algorithms that target antivirus systems [40]. Thus, by improving
the performance of exact pattern matching, we increase also the effectiveness of
regular expression matching.

2.8.3 SIMD approaches to pattern matching
Even though pattern matching algorithms are characterized by random access
patterns, SIMD approaches have been used before for pattern matching, espe-
cially in the field of regular expression matching. HyperScan [41] is a mature
pattern matching framework that heavily relies on vector instructions for regular
expression and fixed string pattern matching. Mytkowicz et al. [11] enumerate all
the possible state transitions for a given byte of input to break data dependencies
when traversing the DFA. Then they use the shuffle instruction to implement
gathers and to compute the next set of states in the DFA. The algorithm is applied
on the case where the input is matched against a single regular expression with a
few hundreds of states and does not scale for the case of multiple pattern match-
ing where we need to access thousands of states for every byte of input. Sitaridi
et al. [12] use the same hardware gathers as we do, but apply them on database
applications where the multiple, independent strings need to be matched against
a single regular expression. There have been approaches that use other SIMD
instructions for multiple exact pattern matching, but have constraints that make
them impractical for the case of Network Intrusion Detection. Faro et al. [42]
create fingerprints from patterns and hash them, but they require that the patterns
are long, which is not always true for the typical set of patterns found e.g. in
Snort.

The current paper is an extended version of [43] that introduces S-PATCH
and V-PATCH. In this extended version, we also introduce and evaluate the
analytical model (Section 2.6) and extend the current approaches with multi-
thread parallelism (Section 2.7.7).

2.8.4 Other architectures
Outside the range of approaches that target commodity hardware, there is rich
literature on network intrusion detections systems that are customised for specific
hardware. For example, SIMD approaches that target DFA-based algorithms
have been applied on the Cell processor [44], as well as FPGAs [45–47]. Most

2.9. CONCLUSIONS 77

notably, Graphics Processing Units (GPUs) are a popular target platform for
pattern matching applications. GPUs are highly parallel architectures and are
typically a good match for algorithms that are easily parallelizable, such as
pattern matching. Lin et al. [48] present a parallelizable version of Aho-Corasick
that removes the failure transitions (transitions taken in the state machine when
a pattern is only partially matched). The algorithms begins the state-machine
traversal at every input byte, in parallel. Bellekens et al. [49] compress the size
of Aho-Corasick’s state machine to reduce the communication cost between the
CPU and the GPU. Aragon et al. [50] experiment with pattern matching on em-
bedded GPUs that share the same physical memory as the CPU. Kouzinopoulos
and Margaritis also experiment with pattern matching algorithms on GPUs and
apply them on genome sequence analysis [46].

There is also significant work on GPUs that addresses pattern matching as
part of a Network Intrusion Detection System. Vasiliadis et al. [45] build a
GPU-based intrusion detection system that uses Aho-Corasick as the core pattern
matching engine. Go et al. [51] use integrated GPUs and show that they are
successful platforms for packet processing and Network Intrusion Detection.
Jahmsed et al. [52] present Kargus, a custom NIDS that uses multiple GPUs and
CPU cores. Papadogiannaki et al. [53] present a similar system and enhance it
with a scheduler that dynamically decides the placement of packet processing
tasks.

GPU parallelization has many similarities with vectorization; in fact GPUs
offer more parallelism that can hide memory latencies. At the same time, it
introduces additional challenges e.g. long latencies when transferring data
between the host and the GPU. In this work we utilize vector pipelines that are
already part of modern commodity architectures. Moreover, vectorization with
CPUs requires careful algorithmic design that makes use of caches and advanced
SIMD instructions. A main part of our work is showing how this problem can
be tackled for the case of intrusion detection.

2.9 Conclusions

In this paper, we address the problem of multiple pattern matching and present
an efficient, hardware-aware algorithm that utilizes the architectural features of
commodity hardware to improve the processing throughput of Network Intrusion
Detection Systems or other similar applications that employ pattern matching,
e.g. antivirus systems. Specifically we introduce V-PATCH, a cache efficient
filtering design, coupled with modern vectorization techniques that allow data
parallelism within each processing core. We also provide an analytical model

78 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

for our algorithm that predicts the expected performance and can be used to
create and evaluate new designs on-the-fly. The model also gives insights on the
behaviour our algorithms that are difficult to capture without studying the effects
of the number of patterns in the selectivity of the filters.

We thoroughly evaluate V-PATCH and its algorithmic design with both
open data sets of real-world network traffic and synthetic ones in the context
of network intrusion detection. Our results on Haswell and Xeon-Phi show
a speedup of 1.8x and 3.6x, respectively compared to the state of the art and
a speedup of more than 2.3x over Aho-Corasick, a widely used algorithm in
today’s Intrusion Detection Systems. Through the design and deployment of a
series of multi-core parallel experiments, we also show that our approach can
scale across many cores. Our vectorized version achieves up to 40 and 45 Gbps
processing throughput on the Haswell and Xeon-Phi platforms, respectively
and outperforms other parallel algorithms, including Aho-Corasick and DFC.
Our experimental study provides fine-grained insights on different scenarios,
including stress-tests under malicious traffic and thousands of malicious patterns.
Finally, we show that our analytical model closely follows the experimental
results and can thus be used as a valuable tool to create new filtering designs.

Acknowledgements

The research leading to these results has been partially supported by the Swedish
Energy Agency under the program Energy, IT and Design, the Swedish Civil
Contingencies Agency (MSB) through the projects RICS and RIOT, by the
Swedish Foundation for Strategic Research (SSF) through the framework project
FiC and the project LoWi, by the Swedish Research Council (VR) through the
project ChaosNet, and from the European Community’s Horizon 2020 Frame-
work Programme under grant agreement 773717.

Bibliography
[1] Donald Knuth, James Morris, Jr., and Vaughan Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[2] Robert S. Boyer and J. Strother Moore, “A fast string searching algorithm,” Commun.
ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[3] Spyros Antonatos, Kostas G. Anagnostakis, and Evangelos P. Markatos, “Generating
realistic workloads for network intrusion detection systems,” SIGSOFT Softw. Eng.
Notes, vol. 29, no. 1, pp. 207–215, Jan. 2004.

BIBLIOGRAPHY 79

[4] João B. D. Cabrera, Jaykumar Gosar, Wenke Lee, and Raman K. Mehra, “On the
statistical distribution of processing times in network intrusion detection,” in 2004
43rd IEEE Conf. on Decision and Control (CDC), Dec 2004, vol. 1, pp. 75–80
Vol.1.

[5] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba, “Network function virtualization: State-of-the-art and research
challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262,
2015.

[6] Yong Li and Min Chen, “Software-defined network function virtualization: a
survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[7] James Kurose and Keith Ross, “Computer networks: A top down approach featuring
the internet,” Pearson Addison Wesley, 2016.

[8] “Intel vectorization tools,” https://software.intel.com/en-us/art
icles/intel-vectorization-tools, 2015, Accessed: 2019-07-18.

[9] “Intel Xeon Phi product family,” http://www.intel.com/content/www/
us/en/processors/xeon/xeon-phi-detail.html, 2016, Accessed:
2019-07-18.

[10] “The importance of vectorization for Intel Many Integrated Core Architecture
(Intel MIC architecture),” https://software.intel.com/en-us/art
icles/the-importance-of-vectorization-for-intel-many-
integrated-core-architecture-intel-mic, 2013, Accessed: 2019-
07-18.

[11] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte, “Data-parallel finite-
state machines,” in Proc. of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, New York, NY, USA,
2014, ASPLOS ’14, pp. 529–542, ACM.

[12] Evangelia Sitaridi, Orestis Polychroniou, and Kenneth A. Ross, “SIMD-accelerated
regular expression matching,” in Proc. of the 12th Int. Workshop on Data Manage-
ment on New Hardware. 2016, DaMoN ’16, pp. 8:1–8:7, ACM.

[13] Peng Jiang and Gagan Agrawal, “Combining SIMD and Many/Multi-core par-
allelism for finite state machines with enumerative speculation,” in Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, New York, NY, USA, 2017, PPoPP ’17, pp. 179–191, ACM.

[14] Alfred V. Aho and Margaret J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, June 1975.

[15] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran,
“Cache-oblivious algorithms,” ACM Transactions on Algorithms (TALG), vol. 8, no.
1, pp. 4, 2012.

[16] Tomasz Jurkiewicz and Kurt Mehlhorn, “On a model of virtual address translation,”
J. Exp. Algorithmics, vol. 19, pp. 1.9:1–1.9:28, Jan. 2015.

https://software.intel.com/en-us/articles/intel-vectorization-tools
https://software.intel.com/en-us/articles/intel-vectorization-tools
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic

80 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

[17] Gustavo Alonso, “How hardware evolution is driving software systems,” in
Proceedings of the 13th ACM International Conference on Distributed and Event-
based Systems, New York, NY, USA, 2019, DEBS ’19, pp. 1–1, ACM.

[18] Tyler Akidau, “Open problems in stream processing: A call to action,” in Proceed-
ings of the 13th ACM International Conference on Distributed and Event-based
Systems, New York, NY, USA, 2019, DEBS ’19, pp. 4–4, ACM.

[19] Hannaneh Najdataei, Yiannis Nikolakopoulos, Marina Papatriantafilou, Philippas
Tsigas, and Vincenzo Gulisano, “Stretch: Scalable and elastic deterministic stream-
ing analysis with virtual shared-nothing parallelism,” in Proceedings of the 13th
ACM International Conference on Distributed and Event-based Systems, New York,
NY, USA, 2019, DEBS ’19, pp. 7–18, ACM.

[20] Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo Park, and
Dongsu Han, “DFC: Accelerating string pattern matching for network applications,”
in 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), Santa Clara, CA, 2016, pp. 551–565, USENIX Association.

[21] Iulian Moraru and David G. Andersen, “Exact pattern matching with feed-forward
bloom filters,” J. Exp. Algorithmics, vol. 17, pp. 3.4:3.1–3.4:3.18, Sept. 2012.

[22] Charalampos S. Kouzinopoulos, Panagiotis D. Michailidis, and Konstantinos G.
Margaritis, “Multiple string matching on a GPU using cudas,” Scalable Computing:
Practice and Experience, vol. 16, no. 2, 2015.

[23] “Snort rules and IDS software download,” https://www.snort.org/down
loads, 2016, Accessed: 2019-07-18.

[24] “Scaling CloudFlare’s massive WAF,” https://www.scalescale.com/s
caling-cloudflares-massive-waf/, 2014, Accessed: 2019-07-18.

[25] “Gather Scatter operations,” http://insidehpc.com/2015/05/gather-
scatter-operations/, 2015, Accessed: 2019-07-18.

[26] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross, “Rethinking SIMD
vectorization for in-memory databases,” in Proc. of the 2015 ACM SIGMOD
Int. Conf. on Management of Data. 2015, SIGMOD ’15, pp. 1493–1508, ACM.

[27] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein, “Comparing
the performance of different x86 SIMD instruction sets for a medical imaging
application on modern multi- and manycore chips,” in Proc. of the 2014 Workshop
on Programming Models for SIMD/Vector Processing, New York, NY, USA, 2014,
WPMVP ’14, pp. 57–64, ACM.

[28] Orestis Polychroniou and Kenneth A. Ross, “Vectorized Bloom filters for advanced
SIMD processors,” in Proc. of the Tenth Int. Workshop on Data Management on
New Hardware, New York, NY, USA, 2014, DaMoN ’14, pp. 6:1–6:6, ACM.

[29] Martin Roesch, “Snort - lightweight intrusion detection for networks,” in Proc. of
the 13th USENIX Conf. on System Administration, Berkeley, CA, USA, 1999, LISA
’99, pp. 229–238, USENIX Association.

https://www.snort.org/downloads
https://www.snort.org/downloads
https://www.scalescale.com/scaling-cloudflares-massive-waf/
https://www.scalescale.com/scaling-cloudflares-massive-waf/
http://insidehpc.com/2015/05/gather-scatter-operations/
http://insidehpc.com/2015/05/gather-scatter-operations/

BIBLIOGRAPHY 81

[30] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for intrusion
detection,” Computers & Security, vol. 31, no. 3, pp. 357 – 374, 2012.

[31] “UNB ISCX intrusion detection evaluation dataset,” https://www.unb.ca/c
ic/datasets/ids.html, 2012, Accessed: 2019-07-18.

[32] “DARPA intrusion detection data sets,” https://www.ll.mit.edu/r-
d/datasets/2000-darpa-intrusion-detection-scenario-
specific-datasets, 2012, Accessed: 2019-07-18.

[33] Matthew V Mahoney and Philip K Chan, “An analysis of the 1999 DARPA/Lincoln
Laboratory evaluation data for network anomaly detection,” in Int. Workshop on
Recent Advances in Intrusion Detection. Springer, 2003, pp. 220–237.

[34] Gene M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proc. of the April 18-20, 1967, Spring Joint Computer
Conference, New York, NY, USA, 1967, AFIPS ’67 (Spring), pp. 483–485, ACM.

[35] Charalampos Stylianopoulos, Linus Johansson, Oskar Olsson, and Magnus Almgren,
“Clort: High throughput and low energy network intrusion detection on iot devices
with embedded gpus,” in Secure IT Systems, Nils Gruschka, Ed., Cham, 2018, pp.
187–202, Springer International Publishing.

[36] Marc Norton, “Optimizing pattern matching for intrusion detection,” Sourcefire,
Inc., Columbia, MD, 2004.

[37] Sun Wu and Udi Manber, “A fast algorithm for multi-pattern searching,” Tech. Rep.
TR-94-17, University of Arizona. Department of Computer Science, 1994.

[38] Gerard Berry and Ravi Sethi, “From regular expressions to deterministic automata,”
Theoretical computer science, vol. 48, pp. 117–126, 1986.

[39] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong, “Deflating the big bang:
fast and scalable deep packet inspection with extended finite automata,” in ACM
SIGCOMM Computer Communication Review. ACM, 2008, vol. 38, pp. 207–218.

[40] Sang K. Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and
David G. Andersen, “SplitScreen: Enabling efficient, distributed malware detection,”
Journal of Communications and Networks, vol. 13, no. 2, pp. 187–200, Apr. 2011.

[41] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Ji-
ayu Hu, and Heqing Zhu, “Hyperscan: A Fast Multi-pattern Regex Matcher for
Modern CPUs,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), Boston, MA, 2019, pp. 631–648, USENIX Association.

[42] Simone Faro and M. Oğuzhan Külekci, Fast Multiple String Matching Using
Streaming SIMD Extensions Technology, pp. 217–228, Springer, Berlin, Heidelberg,
2012.

[43] C. Stylianopoulos, M. Almgren, O. Landsiedel, and M. Papatriantafilou, “Multiple
pattern matching for network security applications: Acceleration through vectoriza-
tion,” in 2017 46th International Conference on Parallel Processing (ICPP), Aug
2017, pp. 472–482.

https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets

82 CHAPTER 2. MULTIPLE PATTERN MATCHING FOR NETWORK SECURITY APPLICATIONS

[44] Daniele Paolo Scarpazza, Oreste Villa, and Fabriozo Petrini, “Peak-performance
DFA-based string matching on the Cell processor,” in 2007 IEEE International
Parallel and Distributed Processing Symposium, March 2007, pp. 1–8.

[45] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P.
Markatos, and Sotiris Ioannidis, Gnort: High Performance Network Intrusion
Detection Using Graphics Processors, pp. 116–134, Springer, Berlin, Heidelberg,
2008.

[46] Charalampos S Kouzinopoulos and Konstantinos G Margaritis, “String matching on
a multicore GPU using CUDA,” in Informatics, PCI’09. 13th Panhellenic Con. on.
IEEE, 2009, pp. 14–18.

[47] Ioannis Sourdis and Dionisios Pnevmatikatos, “Pre-decoded CAMs for efficient
and high-speed nids pattern matching,” in Field-Programmable Custom Computing
Machines, FCCM 2004. 12th Annual IEEE Symposium on. IEEE, 2004, pp. 258–
267.

[48] Cheng-Hung Lin, Chen-Hsiung Liu, Lung-Sheng Chien, and Shih-Chieh Chang,
“Accelerating Pattern Matching Using a Novel Parallel Algorithm on GPUs,” IEEE
Transactions on Computers, vol. 62, no. 10, pp. 1906–1916, Oct 2013.

[49] Xavier JA Bellekens, Christos Tachtatzis, Robert C Atkinson, Craig Renfrew,
and Tony Kirkham, “A highly-efficient memory-compression scheme for gpu-
accelerated intrusion detection systems,” in Proceedings of the 7th International
Conference on Security of Information and Networks. ACM, 2014, p. 302, arXiv.

[50] Elena Aragon, Juan M. Jiménez, Arian Maghazeh, Jim Rasmusson, and Unmesh D.
Bordoloi, “Pattern matching in opencl: Gpu vs cpu energy consumption on two
mobile chipsets,” in Proceedings of the International Workshop on OpenCL 2013
& 2014, New York, NY, USA, 2014, IWOCL ’14, pp. 5:1–5:7, ACM.

[51] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho Hwang,
and KyoungSoo Park, “APUNet: Revitalizing GPU as Packet Processing Accelera-
tor,” in 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), Boston, MA, 2017, pp. 83–96, USENIX Association.

[52] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin
Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park, “Kargus: A Highly-scalable
Software-based Intrusion Detection System,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, New York, NY, USA, 2012,
CCS ’12, pp. 317–328, ACM.

[53] Eva Papadogiannaki, Lazaros Koromilas, Giorgos Vasiliadis, and Sotiris Ioannidis,
“Efficient software packet processing on heterogeneous and asymmetric hardware
architectures,” IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1593–
1606, June 2017.

PAPER II

Charalampos Stylianopoulos, Ivan Walulya, Magnus Almgren,
Olaf Landsiedel, Marina Papatriantafilou

Delegation sketch: a parallel design with support for
fast and accurate concurrent operations

Adapted version of the paper that appeared in the Proceedings of the 15th
European Conference on Computer Systems (EuroSys), Article 4, pp. 1–16,

ACM 2020.

3
Delegation Sketch: a Parallel Design

with Support for Fast and Accurate
Concurrent Operations

85

86 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

Abstract

Sketches are data structures designed to answer approximate queries by
trading memory overhead with accuracy guarantees. More specifically, sketches
efficiently summarize large, high-rate streams of data and quickly answer queries
on these summaries. In order to support such high throughput rates in modern
architectures, parallelization and support for fast queries play a central role,
especially when monitoring unpredictable data that can change rapidly as, e.g.,
in network monitoring for large-scale denial-of-service attacks. However, most
existing parallel sketch designs have focused either on high insertion rate or on
high query rate, and fail to support cases when these operations are concurrent.

In this work we examine the trade-off between query and insertion efficiency
and we propose Delegation Sketch, a parallelization design for sketch-based data
structures to efficiently support concurrent insertions and queries. Delegation
Sketch introduces a domain splitting scheme that uses multiple, parallel sketches
to ensure all occurrences of a key fall into the same sketch. We complement the
design by proposing synchronization mechanisms that facilitate delegation of
insertion and queries among threads, enabling it to process streams at higher
rates, even in the presence of high-rate concurrent queries. We thoroughly
evaluate Delegation Sketch across multiple dimensions (accuracy, scalability,
query rate and input skew) on two massively parallel platforms (including a
NUMA architecture) using both synthetic and real data. We show that Delegation
Sketch achieves from 2.5X to 4X higher throughput, depending on the rate of
concurrent queries, than the best performing alternative and has up to 2.25X
lower latency, while at the same time maintaining better accuracy at the same
memory cost.

3.1 Introduction

To process high-rate, high-volume data it is often necessary (in terms of space
and processing time) to perform analytics not on the data itself, but rather on a
succinct representation thereof. For this purpose, sketches have been proposed
as a way to maintain data streams’ state and answer queries on it (e.g. frequency
of elements in the input or top-k most common elements) using limited memory,
at the cost of giving approximate, rather than exact answers.

A representative example that shows the usefulness of sketches is network
traffic monitoring. As traffic flows into a big network at high rates, e.g., at the
ingress router of a university network, an administrator [10] or some system, e.g.,
a Network Intrusion Detection System or an SDN controller that does dynamic

3.1. INTRODUCTION 87

flow scheduling [33], might be interested to know at any point in time how many
packets a given IP address has sent. Giving the exact answer to such a query re-
quires storing all the incoming IP addresses and their counts, consuming memory
proportional to the number of unique addresses. If, instead, an approximate an-
swer is acceptable, a sketch can provide one with configurable error guarantees,
using only a fixed amount of memory, without storing the IP addresses.

The literature on sketch-based algorithms offers a variety of ingenious tech-
niques that mostly focus on the trade-off between memory consumption and
accuracy [3, 5, 42]. Orthogonal to the need for small and accurate sketches is
the need to process data at high rates. Thus, large research efforts focus on
accelerating operations on the sketch, e.g., by using filters that process frequently
found elements separately [32], which is important for many real-world input
streams that are often highly skewed. As a result, high-throughput sketches
are used in many applications, such as traffic monitoring [19, 24, 45] and data
stream management tasks [7]. They are also used for communication reduction
in distributed monitoring algorithms [13] and help with dimensionality reduction
in machine learning algorithms [21].

Over the last few years, there has been a significant interest in parallel ar-
chitectures to achieve sufficient high-speed processing. Multi-core platforms
are adopted in many settings, from high-end servers [20] to low-end embedded
devices [2] on the edge. Sketches can benefit from parallelism: e.g., regarding
network traffic monitoring, state-of-the-art single-thread approaches [25, 32]
achieve several millions of operations per seconds, which is enough to process
traffic from 10Gbps links, but as link capacities increase to more than 100Gps,
the need for multi-core processing becomes apparent. However, most of the
work proposed on sketches focuses on the single-thread case and not on parallel
settings. For existing parallel designs, we identify that there are conflicting
requirements when considering both insertions and queries: parallel designs that
perform efficiently when there are only insertions fail to scale when there are
concurrent queries, while designs that favor queries cannot handle concurrent
insertions efficiently. With the exception of very recent work [30] which we dis-
cuss in the related work section, most papers do not address concurrency between
insertions and queries. This research gap is important, as many applications have
need of both operations concurrently, including the IP-frequency-counting exam-
ple above and other monitoring applications. In cases such as intrusion detection,
applications must be able to handle high-rate traffic and support frequent queries,
since the traffic characteristics might change abruptly and unpredictably [24].

In this paper, we identify and provide means to balance trade-offs involved in
parallelizing sketches with respect to the number of threads, the rate of concurrent
queries and the input distribution. We propose Delegation Sketch, a generic

88 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

parallelization scheme for sketches, that is able to process high input rates and
scale efficiently even in the presence of high-rate concurrent queries, while at the
same time achieving high accuracy with the same or lower memory requirements
compared to existing schemes. Delegation Sketch can be applied on various
sketches that support insertions and point queries [3,39,44,47] and aligns with the
regular consistency specifications [22, 23, 29]. We make use of multiple parallel
sketches and use hashing to ensure that the same key from different threads will
end-up in the same sketch, allowing us to perform queries efficiently and more
accurately. We also suggest a synchronization mechanism to delegate operations
between threads, inspired by its uses in other concurrent data structure designs,
e.g. in flat combining [17]. Our design: (i) allows threads to work on local
data as much as possible, through the use of our proposed Delegation Filters, by
aggregating multiple insertions on the same key locally without modifying any
of the sketches; and (ii) combines multiple queries on the same key and serves
them quickly. In particular, we make the following contributions:

• We study trade-offs in parallelizing sketches, with respect to concurrent inser-
tions and queries and show the gap in existing designs. We demonstrate that
the choice of parallelization does not affect only throughput and scalability,
but also the accuracy of the result.

• We propose a generic parallelization design, Delegation Sketch, that scales
with the number of threads, handles millions of insertions per second and is
able to gracefully support concurrent queries.

• We provide a synchronization scheme that minimizes communication between
Delegation Sketch threads and efficiently delegates operations on the sketch to
other threads. We also leverage this synchronization mechanism to combine
operations on the sketch to significantly improve performance and scalability.

• We provide an extensive experimental evaluation of Delegation Sketch and
study it in connection to known parallelization designs on two massively
parallel platforms with up to 72 and 288 threads, using both synthetic and real
data. We show that Delegation Sketch supports up to 4X higher processing
throughput and performs queries with up to 2.25X lower latency than the next
best performing alternative. At the same time, Delegation Sketch has the same
accuracy as the most accurate alternative, using the same amount of memory.

The rest of the paper is organized as follows: Section 3.2 gives the required
background on sketches and describes the system model we target in this work.
In Section 3.3 we analyze existing parallelization designs and motivate the need
for Delegation Sketch, whose overview is given in Section 3.4. In Sections 3.5

3.2. PRELIMINARIES 89

and 3.6 we describe our design in detail. In Section 3.7 we present and analyze
the results of our experimental evaluation. We discuss related work in Section 3.8
and conclude in Section 3.9.

3.2 Preliminaries
In this section, we describe the Count-Min sketch, a simple and efficient sketch,
widely applicable in practice. We also describe a known extension to it, the
Augmented Sketch, which includes techniques that we also adopt in our design.
We finish this section by describing our system model.

3.2.1 The Count-Min and Augmented Sketch

The Count-Min Sketch [5] is a series of counters arranged in a 2-D array, with w
columns and d rows. Every row is associated with one of d pairwise-independent
hash functions h1, h2, ..., hd, with hi mapping keys from an input universe U to
one of the w counters in row i. The sketch supports two operations: insert1 and
point-query. To insert a keyK in the sketch, we increment the counter at position
hi(K) at row i, for each one of the d rows. To perform a point-query on a keyK,
we hash the key with the same hash functions and select the counter at position
hi(K) at row i, for each one of the d rows. The answer to the query is simply
the minimum value among the selected counters, since that counter is closest
to the true frequency of K, i.e. contains less “noise” from colliding keys. The
answer to point-queries on any key K is always equal or higher than K’s true
frequency f(K) and is lower than f(K) + e

w
N with probability 1 − 1

ed
, where

N is the number of keys in the sketch [5]. Thus, one can configure the number
of rows and columns to achieve error guarantees appropriate to the application.

In Augmented Sketch [32], Roy et al. couple a sketch with a filter to increase
insertion throughput, especially when the input is highly skewed. The purpose of
the filter is to efficiently keep track of a small number of keys that are frequently
found in the input. When a new key needs to be inserted, if it is in the filter, then
its frequency is updated there, without involving the sketch. Similarly, when
performing a query on a key, if we find it in the filter then we report its frequency
without querying the sketch for that key. Performing an operation on the filter
is much faster than performing it on the underlying sketch, e.g. compared to the
Count-Min Sketch that requires hashing a key multiple times.

1Aka update in the literature. We use the term insert throughout the paper.

90 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

3.2.2 System Model

Here we introduce the assumptions and requirements we make on the hardware
platform, the application requirements and the consistency requirements.

Hardware Requirements: We assume a multi-core system with a finite
set of threads t1, ..., tT where T can be larger than the number of physical
processors, along with a typical memory hierarchy, i.e. a L1 cache per thread,
L2 and L3 caches shared between threads and main memory (either uniform on
non-uniform). We consider an asynchronous shared memory system supported
by a coherent caching model, through which a thread can access a shared variable
not in the memory of the core where the thread is running. We also consider that
no thread will arbitrarily fail or stop making progress.

We adopt the cache-register stream processing model [12], where input keys
are continuously processed as they arrive and their frequency is continuously
updated in the sketch. We assume that each thread has its own input sub-stream
of keys. These sub-streams can originate from different sources or may have been
extracted from a single stream in a previous part of the processing pipeline, either
in software or in hardware, e.g., considering processing of packets coming from
the network, many networks cards distribute the stream of packets to different
CPUs [15, 16].

Application Requirements: At any point in time, the application might
query the frequency of a specific key in the total stream, i.e. across all sub-
streams. We assume that queries are much less frequent than the rate at which
keys enter the system, but a query must be served even as new keys are being
inserted and not at a later point in time when there are no more keys to insert.
We also assume that each thread is serving one operation at a time: either an
insertion of a new key from the stream, or a query.

Consistency Requirements: A query for the frequency of a key, performed
by any thread, returns an approximation of the true frequency of the key, within
the bounds provided by the underlying sketch. In the case of the Count-Min
Sketch this includes the invariant that the answer is an over-approximation of the
true frequency. The result must take into account all previous insertions of a key,
across all sub-streams, but might or might not include insertions that overlap
with the query, i.e., those that take place after the query has been issued and
before it returns the result. This is a common assumption for concurrent data
structures and it aligns with similar consistency specifications in literature, e.g.
the regularity consistency specification [22, 23, 29]. In the case of sketches, the
effects of not counting overlapping insertions are overshadowed by the fact that
the answer is already an approximation of the true frequency.

3.3. PROBLEM ANALYSIS 91

3.3 Problem analysis
In this section, we summarize the existing parallelization designs that serve as
baselines and we analyze their tradeoffs, in terms of the processing throughput
of insertions and queries, the accuracy of the queries (i.e. the approximation
error compared to the true frequency of a key) and the overall scalability of
the design with the number of threads. We show that the existing designs have
individual strengths but cannot efficiently handle the case of both insertions and
queries, thus there is need for new parallelization designs.

3.3.1 Thread-local sketches

In the literature of sketch algorithms, most results focus on single thread perfor-
mance and accuracy. When it comes to parallelization, most works [1, 32, 43]
suggest the “thread-local design”, where we have multiple sketches, one for
each thread. Each thread inserts keys into its own sketch. To query a key, a
thread queries every sketch and sums the results.

This design leads to very good scaling when there are only insertions, since
each thread will work only on its own cache (sketches are usually small enough
to fit L1 or L2 cache). However, the performance degrades significantly as soon
as there are concurrent queries, since a querying thread needs to perform reads on
all the sketches. The degradation worsens with the number of threads (since there
are more sketches to read from) and becomes a major drawback in the highly
parallel architectures we target in this work. Moreover, as shown in Section 3.5.1,
this design leads to lower accuracy relative to its memory requirements, as each
sub-query on a sketch introduces approximation errors that are then summed
together.

3.3.2 Single-shared sketch

In work favoring queries over insertions [8, 37, 38] a single sketch is shared
among all threads, a design henceforth referred to as the “single-shared design”.
Insert operations are slow, since threads require synchronization mechanisms,
e.g. locks or (in the case of the Count-Min Sketch) atomic instructions and
content on the memory of the sketch. Because of these reasons, in highly parallel
environments targeted in this work, this design is not expected to scale with the
number of threads when the input stream is inserted at high rates. However,
queries are fast and accurate, since they can be answered immediately from the
corresponding entries in the shared sketch and do not involve collecting results
from multiple sketches.

92 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

Design name Insertion Support Scalability AccuracyRate for Queries

Thread-local high low high low
Single-shared low high low high
Delegation Sketch high medium/high high high

Table 3.1: Comparison of parallelization designs.

3.3.3 The need for a new design
Based on the discussion above, it is evident that the existing parallelization
designs focus on two extreme, opposing targets: they are effective either for
applications that are only inserting keys at high rates with no queries (thread-
local), or applications that will summarize a stream of keys once, and then only
perform queries (single-shared).

In practice, many applications need to handle queries concurrently with
insertions. Even though insertions are the most common operation for most
applications (e.g., packet processing at high traffic rates), queries need to be
handled concurrently as new keys are being inserted (e.g. IP counts must be
queried at any time in traffic monitoring and flow scheduling). Moreover, support
for high frequency queries, (e.g. one query every 1,000 insertions might mean
one query every millisecond, depending on the input stream rate) is important
for applications that need to react quickly to unpredictable changes [28, 36] or
important events [24].

In order to serve such applications, we propose a new design, Delegation
Sketch, that acts as a hybrid of the two designs mentioned earlier. We use multiple
parallel sketches to allow our design to scale and perform insertions in parallel,
but contrary to the thread-local design, a query needs to search for a key in only
one of these sketches.

Table 3.1 summarizes the existing parallelization designs in comparison with
Delegation Sketch. In the next section, we describe the main ideas and give an
overview of our design.

3.4 Overview of Delegation Sketch
Our design bases on two techniques: Domain Splitting and Operation Delegation.
We outline both here and detail in the subsequent sections.

3.4.1 Domain Splitting
To make queries faster, the number of sketches that a query has to search must be
limited. To this end, we logically distribute the input domain of possible keys to

3.4. OVERVIEW OF DELEGATION SKETCH 93

…

…
…

Sketch i

Fi,j

1

j

T

DF:

Linked List:

PQ

… …

Tj

Si

+

queries

Thread Ti

insertions

T1 TT…
S1

ST

…
…

1

2

3

4

Figure 3.1: Outline of our design. DF stands for Delegation Filters and PQ
stands for Pending Queries.

the T available sketches where each sketch is responsible for a set of keys. For
every possible key K that can be found in the input stream of any thread t, we
define as Owner(K) the thread that is responsible for K. Finding the owner of
a key can be as simple as Owner(K) =K modulo T . Every thread that wants
to insert K will insert it into the sketch owned by Owner(K). In this way, the
same key (even if it is part of the input stream of different threads) will end up
in a single sketch, making a query on that key a relatively cheap operation. In
addition to making queries faster, splitting the domain of keys implies benefits on
insertion speed, as well as on accuracy, for reasons we describe in Section 3.5.1.

3.4.2 Operation Delegation

As domain splitting requires a thread to insert into or query from an arbitrary
sketch, we propose the use of filters (which we call Delegation Filters) that
achieve this efficiently, minimizing inter-thread communication. An outline of
our design, showing the series of Delegation Filters associated with Sketch i
is shown in Figure 3.1. We give an overview of the purpose of filters here and
explain the design and use of filters during insertion and query operations in
detail in Section 3.6.

For every sketch, we keep a series of Delegation Filters, one for each thread.

94 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

The first purpose of Delegation Filters is to allow each thread to combine multiple
insertions of the same key together, using only local updates without inter-thread
communication. Instead of modifying the sketch every time there is an insertion
operation on a key, threads aggregate the occurrence of the same keys in their
stream (arrow 1 in Figure 3.1) and modify the sketch only when a sufficient
number of keys have been aggregated. This is especially useful if the input is
highly skewed: threads are doing insertions on the filters reserved for them most
of the time, instead of modifying one of the sketches and causing contention.

The second purpose of Delegation Filters is to provide a unit of synchroniza-
tion between a thread j that wants to insert keys to the sketch of thread i. The
keys and their counts that thread j has aggregated in its filter will be inserted
into a linked list of ready filters (arrow 2 in Figure 3.1) and eventually into the
sketch by thread i (arrow 3).

Upon queries, a thread j will delegate a query operation on a key K and
have it handled by another thread i = Owner(K) (arrow 4). This design allows
to optimize the number of times we have to search for the frequency of K in the
sketch, by aggregating or “squashing” multiple pending queries on the same key
to a single query operation on the sketch.

The use of delegation and the query “squashing” optimization are inspired by
techniques used in concurrent data structures such as flat combining [17], where
operations on a data structure are delegated for another thread that combines
and performs them. Our design uses the Augmented Sketch (which we apply
on top of the Count-Min sketch) as the underlying sketch, but different sketches
that have the same interface (i.e. support insertions and point queries) can be
used as well [3, 39, 44, 47]. In this work, we focus on point queries for frequency
estimation, that are the basic type of queries supported by the Count-Min sketch.
In the following section we detail the domain splitting technique and analyze its
benefits, then describe the way we delegate operations.

3.5 Domain Splitting and benefits

The idea of splitting the domain of keys has been proposed for different scenarios
and goals; e.g. Dobra et al. [9] apply it for join-size estimation and leverage
approximate knowledge of the stream distribution, Thomas et al. [39] use it to
handle architecture-specific constraints of the Cell processor. Here we utilize it
in order to handle queries accurately and efficiently, as explained in the following
subsections. The algorithmic implementation and the synchronization of the
Delegation Sketch operations are described in Section 3.6.

3.5. DOMAIN SPLITTING AND BENEFITS 95

3.5.1 Influence on the overestimation error
Here we study the accuracy of the different designs. We show that Delegation
Sketch is: (i) more accurate than the fastest parallelization design (thread-local)
(i) as accurate as the most accurate (albeit slower) parallelization design, while
using the same amount of memory as those designs.

Due to the probabilistic nature of sketches, the result of querying for a key
includes an amount of error. A query using the thread-local design involves
querying all the sketches and summing the results. The intuition behind why
domain splitting implies better accuracy than the thread-local design is that, by
having all occurrences of the same key in a single sketch, it avoids aggregating
the error from multiple sketches.
Reference sketch (single thread): Assume f(i) is the frequency of key i,
across the sub-streams of all threads. Based on [5], for a Count-Min sketch with
w buckets and d rows, the estimate f̂(i) of key i is

f(i) ≤ f̂(i) ≤ f(i) + εN (3.1)

with probability 1 − δ, where w = e
ε
, d = ln(1/δ) and N = ∑j∈U f(j) where U

is the universe of keys.
Thread-local: This design uses T sketches of size w ∗ d each and the estimate
when querying each sketch t is

ft(i) ≤ f̂t(i) ≤ ft(i) + εNt (3.2)

with probability 1 − δ, where ft denotes the frequencies of keys that are in
the sub-stream of thread t, Nt = ∑j∈U ft(j) and ∑1≤T ft(i) = f(i). The total
estimate f̂(i) is the sum of estimates from all the sketches so,

∑
1≤T

ft(i) ≤ f̂(i) ≤ ∑
1≤T

ft(i) + ε∑
1≤T

Nt (3.3)

or equivalently (by substitution)

f(i) ≤ f̂(i) ≤ f(i) + εN (3.4)

with probability at least (1 − δ)T .
This means that using the thread-local design (that uses T sketches with w

buckets and d rows each) results to a similar bound as having one sketch with
w buckets and d rows from Equation 3.1 and inserting all the elements in it.2

2In practice it is slightly better than that, because in the thread-local design we take the estimate
(i.e. the minimum count) from each sketch and sum them, rather than summing the individual cells
in a single sketch and then taking the estimate.

96 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

For that reason, the thread-local design is far from optimal, in terms of the ratio
between accuracy and memory consumption it achieves.
Single-shared: Using the same total memory as in the thread-local design (by
using a single sketch with d rows and T ∗w buckets), for the single-shared sketch
we have:

f(i) ≤ f̂(i) ≤ f(i) + ε

T
N (3.5)

with probability 1 − δ.
Domain splitting: In our design, by splitting the domain based on the number
of threads, we have

f(i) ≤ f̂(i) ≤ f(i) + εN ′ (3.6)

with probability 1 − δ, where N ′ is the total count of keys that hash to the same
sketch as i. E.g. for a uniform distribution of keys, N ′ = N

T
and the bound is the

same as in the single-shared design3.
The aforementioned bounds for Delegation Sketch and thread-local design

are in expectation and depend heavily on the input distribution. For this reason,
we also examine the accuracy of those designs from an empirical point-of-view.
In Figure 3.2 we show the difference in query error (in terms of the average
relative error, also used in [32]) between the two approaches, using data from a
uniform distribution (Figure 3.2a), as well as the Zipf distribution (Figure 3.2b).
We have also included the “single-shared” sketch that uses a single sketch with
the same total memory as the local-threads and domain-splitting designs, as well
as the “reference” sketch that uses a single sketch with w buckets and d rows.
For these experiments we used 600K keys taken from a universe of 100K distinct
keys, then queried every key in that universe once. The memory footprint of
each designs is shown in the table of Figure 3.2.

The results from Figure 3.2 align with the arguments above. The thread-local
design has only slightly less error than the reference sketch, even though it uses
T times more memory. Using domain splitting, the error decreases quickly based
on the number of threads (equivalently, the number of sketches) in the system
and its error is as low as that of a single-shared sketch that uses the same amount
of memory.

3Later in Section 3.6 we introduce filters and their use in our design. We refine the bound of
Equation 3.6 due to effects of filters in Section 3.6.3.

3.5. DOMAIN SPLITTING AND BENEFITS 97

2 4 6 8 10
Threads

50

100

150

200

250

300

350
Av

er
ag

e
Re

la
tiv

e
Er

ro
r

Reference
Thread-local
Single-Shared
Delegation Sketch

(a) Uniform distribution.

2 4 6 8 10
Threads

25

50

75

100

125

150

175

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

Reference
Thread-local
Single-Shared
Delegation Sketch

(b) Zipf distribution (skew=1).

Parallelization Design Memory
Reference (single thread) w ∗ d
Thread-local w ∗ d ∗ T
Single-shared w ∗ d ∗ T
Domain splitting (Delegation Sketch) w ∗ d ∗ T

(c) Memory consumption of the different parallelization designs we
consider in the analysis. w and d are constant.

Figure 3.2: Average relative error as the number of threads increases. We also
include the memory consumption for each design. The single-shared version has
the same average relative error as the domain-splitting one.

3.5.2 Influence on query efficiency
Recall that in domain splitting, to perform a query on K, a thread will only have
to query the sketch of Owner(K), since all occurrences of K will have been
inserted into that one (we explain how we perform query operations in detail in
Section 3.6.2). For this reason, domain splitting leads to more efficient queries
compared to the thread-local design where, as described earlier in Section 3.3, a
querying thread will have to search for a key in multiple sketches. We support
this claim experimentally in Section 3.7.4 where we present the latency of queries
across different parallelization designs.

3.5.3 Influence on filter efficiency
Because with domain splitting the range of different keys that will be inserted
in each sketch is smaller than U , the stream of keys that end-up on a sketch

98 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

appears more skewed, which increases the effectiveness of any filters that may
be used by the underlying sketch (e.g. the Augmented Sketch), both in terms
of throughput and accuracy. This effect on accuracy is studied in detail in the
experimental evaluation, Section 3.7.2.

3.6 Operation Delegation and synchronization
The aforementioned benefits of domain splitting come with two challenges:
(i) the fact that a thread will have to insert keys to another thread’s sketch implies
synchronization between threads, which needs to be done carefully in order to
avoid bottlenecks and (ii) if the input is highly skewed, some keys will be much
more common than others, which, in turn, implies that some threads’ sketches
will be more busy handling a large part of the input keys. In this section we
describe how we use filters, which we call Delegation Filters to address both of
these challenges.

Delegation Filters: For every sketch, we keep a series of Delegation Filters,
one for each thread. We want searching for a key and incrementing its count to
be as fast as possible, so we choose to implement them in a very simple manner:
a filter is a pair of two arrays of fixed, small size. The first array holds the keys
and the second one holds the count of that key, at the same index. By keeping
the filters small we can search the whole filter for a key using only a few SIMD
instructions, similar to [32].

We now explain in detail the way we use these filters, along with the descrip-
tion of the algorithmic implementations of the Insert and Query operations. We
finish this section with a discussion on the memory consumption and overesti-
mation error of Delegation Sketch.

3.6.1 Delegate insertions

For a thread j to perform the Insert operation on a key K, it first tries to insert
it in the Delegation Filter Fi,j , reserved for thread j at the sketch owned by
i = Owner(K). To do this, it first searches Filter Fi,j for keyK. If it is found, it
increments the count at that location, otherwise it adds K to an empty slot in the
filter and sets the count there to one (lines 4-9 in Algorithm 3.1). If the filter is
full, thread j adds a pointer to the filter in a multiple-producer single-consumer
concurrent linked list maintained for filters that are ready to be inserted in the
sketch of thread i (line 11). Thread j will then wait until the filter is consumed
(i.e. until the keys in the filter and their respective counts have been flushed
into the sketch by thread i). Note that, until the filter becomes full, i.e. the

3.6. OPERATION DELEGATION AND SYNCHRONIZATION 99

Algorithm 3.1. Insert operation by thread j

1 Function Insert(key K):
2 i← Owner(K)

3 Filteri,j ← Sketches[i].DelegationF ilters[j]
4 // Filteri,j is reserved exclusively for thread j
5 if K ∈ Filteri,j then
6 Increment count of K
7 else
8 Add K in Filteri,j
9 Set count ofK to 1

10 end
11 if Filter.size =MAX SIZE then
12 Sketches[i].LinkedList.push(pointer to F ilteri,j)
13 while Filter.size =MAX SIZE do
14 process pending inserts(j)
15 end
16 end

number of distinct keys in the filter is equal to the size of the filter, thread j
can keep updating the filter without any communication with any other thread.
This is because, every thread j has its own reserved filter associated with the
sketch of thread i, thus alleviating the need for synchronization. The high-level
pseudo-code of Insert is shown in Algorithm 3.1.

Periodically, threads check the linked list of full filters associated with their
own sketch. This check can be performed at different points, e.g. after a cer-
tain timeout, after a successful completion of an insert or query operation, or
while the thread is waiting for another thread to consume its filter (line 12 of
Algorithm 3.1). E.g., thread j checks its own list of filters, in parallel while
waiting for its filter to be consumed at line 14 of Algorithm 3.1. A high level
pseudo-code of how threads process pending inserts is shown in Algorithm 3.2.
Thread i traverses the list of pointers to filters that are ready to be inserted into
its sketch. For every such filter, the thread iterates over the keys in the filter and
adds their counts to the sketch (line 4-6 of Algorithm 3.2), using the semantics
of the underlying sketch. Then, the thread removes any keys and their counts
from the filter and marks it as empty (lines 7-8).

Claim 3.1. All keys and their counts inserted in Delegation Filter j of thread i
will be eventually inserted in the sketch of thread i, assuming threads continue
to make progress.

This is ensured by requiring thread i to have exclusive access on the filter
while it is in the process of consuming the filter and inserting its contents in

100 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

Algorithm 3.2. Processing pending inserts by thread i

1 Function process pending inserts(thread i):
2 while Sketches[i].LinkedList is not empty do
3 Filter ← Sketches[i].LinkedList.pop()
4 for each K in Filter do
5 Insert K to Sketches[i] (see Sec. 3.2)
6 end
7 Flush Filter
8 Filter.size← 0

9 end

the sketch. We achieve this in the following ways: (i) for thread i to be able to
consume a filter, it must first find it in its concurrent link-list of ready filters;
thread j only adds it in the list when it is full, at which point it stops inserting
items in it; and (ii) thread j will not start inserting keys in the filter unless it is
marked as empty by thread i (line 8 of Algorithm 3.2).

3.6.2 Delegate queries

Similarly to Insert, for a thread j to query the frequency of key K, it first finds
the thread i = Owner(K). In order to accurately answer the query, the thread
must count all occurrences of K, that can be found in: (i) the sketch owned by i
and (ii) any of the T Delegation Filters associated with the sketch owned by i.

One option to achieve this is to have thread j search the sketch owned by i
and its Delegation Filters. However, this would require synchronization between
thread j and any of the T threads that might be concurrently accessing those
Delegation Filters, as well as thread i that is inserting keys from the Delegation
Filters into its sketch. Note that, allowing thread i to simply do this without any
synchronization, might cause thread j to incorrectly “double count” occurrences
of K: after thread j has counted X occurrences of K in a Delegation Filter, that
filter might become full and get inserted into the sketch before thread j searches
for K in the sketch, thus including X twice in the final answer.

Instead, we chose to delegate the query to thread i. Along with every sketch,
we keep an array called PendingQueries of size T . Every item in the array
holds a key, a counter (initially at zero) and a flag. Thread j adds key K at
PendingQueries[j] and sets the flag there, to indicate that there is a pending
query on key K (lines 4-6 of Algorithm 3.3). Thread j will then wait (checking
its own list of filter and pending queries in the meantime at lines 8 and 9 of
Algorithm 3.3) until the flag is set back to zero by thread i and read the answer
to the query from the counter.

3.6. OPERATION DELEGATION AND SYNCHRONIZATION 101

Algorithm 3.3. Query operation by thread j and processing of pending
queries by thread p

1 Function Query(key K):
2 i← Owner(K)

3 PQ← Sketches[i].P endingQueries
4 PQ[j].key ←K
5 PQ[j].count← 0
6 PQ[j].f lag ← 1
7 while PQ[j].f lag = 1 do
8 process pending inserts(j)
9 process pending queries(j)

10 end
11 return PQ[j].count

12

13

14 Function process pending queries(thread p):
15 PQ← Sketches[p].P endingQueries
16 for t = 0; t < T ; t + + do
17 if PQ[t].f lag = 1 then
18 res← 0
19 K ← PQ[t].key
20 for k = 0; k < T ; k + + do
21 Fp,k ← Sketches[p].DelegationF ilters[k]
22 res← res + (count of K in Fp,k)

23 end
24 res← res + Sketches[p].get estimate(K)

25 PQ[t].count← res
26 PQ[t].f lag ← 0

27 end
28 end

Threads periodically loop over their PendingQueries array and check if there
is a pending query in each item of the array. For every pending query, threads get
the key from the array, search all Delegation Filters (line 20-22) and the sketch
for this key (using the semantics of the underlying sketch), report the result at
the counter for that key and set the flag to 0. Note that searching T Delegation
Filters and one sketch, even though it becomes a costly operation as the number
of threads increases, is faster than searching T sketches, which is required in the
thread-local parallelization design.

High level pseudo-code for Query, as well as the process of serving pending
queries is shown in Algorithm 3.3.

102 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

Claim 3.2. The query operation of Delegation Sketch takes into account all
previous, non-overlapping insertions by any thread.

This is because the query operation takes into account all possible loca-
tions where a key K can be, i.e., both the sketch of thread Owner(K), and
the Delegation Filters associated with that sketch. This includes Delegation
Filters that are not yet full. In this case, the query operations might miss some
overlapping insertions of K that are happening concurrently at a filter, but will
include completed insertions. If the occurrence of a key has been inserted in
the filter, all later queries will take that occurrence into account, either when
reading it from the filter, or from the sketch if it has been moved there. Due
to the domain splitting technique described in Section 3.5, the query operation
does not need to search for the key in any of the other sketches or filters.

Claim 3.3. The query operation of Delegation Sketch does not “double-count”
the occurrences of any key.

This is ensured by the fact that only one thread is responsible for searching
for a key in the filters and the sketch. During this time no other thread can insert
keys in the sketch, which would result in “double-counting”.

Query optimization: query squashing

We now describe a simple optimization (not shown in Algorithm 3.3) that
increases the performance of queries significantly, especially under conditions
of high parallelism and input skew. When a thread i is done serving a delegated
query on behalf of thread j, i.e. it has searched for key K in its sketch and the
Delegation Filters associated with it, instead of just reporting the result to thread
j, it iterates the array of pending queries to find other threads that have a pending
query on the same key. Then, it reports the same result to those threads, without
performing the actual search operations additional times, thus “squashing” the
workload of multiple queries into one.

Note that this optimization does not report “stale” results for the point of
view of the the thread that performs the actual query: the thread will only copy
the same result to queries that are also pending, meaning that they are concurrent
with the query of thread j. New queries that come after will trigger thread i to
perform a new search of the sketch and the filters. However, the query squashing
optimization might cause a query to not take into account a previous insertion,
if that query gets “squashed” with another (overlapping) query that overlaps
with the insertion. Let SQ be the set of queries on the same key that overlap
with query Q (including Q itself). Then, as an effect of the query squashing
optimization, Claim 3.2 is adjusted to:

3.6. OPERATION DELEGATION AND SYNCHRONIZATION 103

Claim 3.4. The query operation Q of Delegation Sketch with the query squash-
ing optimization takes into account all previous, non overlapping insertions with
SQ, by any thread.

In practice, however, this effect has only a small impact on query accuracy,
since it is limited to queries on the same key that overlap with each other, and is
overshadowed by the accuracy loss that is intrinsic to sketches.

This optimization is made possible due to our design choice to delegate
queries to other threads. In the next section, we evaluate its effects separately
and show that it significantly increases the processing throughput, especially
under highly skewed input.

3.6.3 Discussion on memory consumption and overestimation
error

Since our delegation design needs memory for filters, and in order to make a
fair comparison with other designs possible, we reduce the memory available
to sketch accordingly, i.e., by using a smaller sketch, so that the total memory
consumed is the same as the other designs we compare against. Similarly to [32],
we achieve this by reducing the number of buckets at each row. Keeping the
number of rows constant allows us to: (i) have the same δ probability bound for
the estimate across all designs and (ii) keep the number of hashes used (hence
the cost of insertions/queries on the underlying sketches) the same across all
designs.

The use of filters, together with the fact that we adjust the size of the under-
lying sketch to make room for the filters, affects the existing error bound derived
for domain splitting (Equation 3.6) in two opposing ways. We now quantify that
effect and update the bound of Equation 3.6 here, following the analysis of [32]
adapted to Delegation Sketch.

First, the underlying sketches are smaller, since we compensate for the
memory of the filters by reducing the number of buckets at each row, as explained
above. For a Delegation Sketch with w buckets, d rows, a filter size of f
and T threads, we subtract ⌈Tf

d
⌉ buckets from the sketch. This increases the

overestimation error of queries, but the effect is low for reasonably sized sketches
and filters, as we show experimentally in Section 3.7.2.

Second, when querying the frequency of a key, some occurrences of the key
will be found in the filters. The filters hold the exact number of occurrences and
not an approximation, contrary to the query result found in the sketch for that key.
That means that: (i) the overestimation error of a query decreases because parts
of the answer will be given by the filters that hold exact counts and (ii) fewer

104 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

items will be inserted in the sketch, which reduces the approximation error due
to collisions.

Overall, the error bound from Equation 3.6, due to the use of filter is now

f(i) ≤ f̂(i) ≤ f(i) + ε̃(N ′ − Ñ) (3.7)

where
ε̃ = e

w − Tf
d

= ε 1

1 − Tf
wd

> ε (3.8)

and N ′, ε are the same as in Equation 3.6. Ñ is the number of the items held in
the filters of sketch i and depends on the skewness of the distribution and the
size of the filters.

3.7 Evaluation
We present a detailed evaluation of the performance of Delegation Sketch with re-
spect to accuracy and processing throughput. First, we describe our experimental
setup, followed by the experimental results.

3.7.1 Experiment setup
Platform descriptions: We used two hardware platforms to evaluate our Del-
egation Sketch. Platform A is a dual socket NUMA server with 36 cores in total
and 2-way hyper-threading at each core running at 2.1GHz, with 32KB L1 data
cache, 256KB L2 cache and a 45MB shared L3 cache. It runs Ubuntu 16.04 and
gcc v. 5.4. Platform B is a single socket, massively parallel Intel Xeon-Phi server
with 72 cores, 4-way hyper-threading at each core running at 1.5GHz, using
32KB L1 data cache and 1MB L2 cache. It runs CentOS 7.4 and gcc v. 4.8.

Data sets: We used three sources of input data: a) synthetic data where the
occurrence frequency of keys in the data set follow the Zipf distribution with a
varying skew parameter. The Zipf distribution is widely used in the literature of
sketch-based algorithms, as it captures the distribution of data related to many
real world applications, such as packet counts, word count in a corpus of text,
etc. b) two real world data sets taken from the CAIDA Anonymized Internet
Traces 2018 Dataset [34]. From this trace, we use 22M packets that correspond
to one minute of captured traffic from a high speed monitor. We extract the
source IPs and source ports from the packet trace and use them as keys. This
results in two input sets with very different characteristics: the frequencies at
which IPs occur in the data set of IPs resemble a Zipf distribution with low skew,

3.7. EVALUATION 105

1 5 10 15 20
Sorted key index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
fre

qu
en

cy
CAIDA (low skew)

1 5 10 15 20
Sorted key index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
fre

qu
en

cy

CAIDA (high skew)

Figure 3.3: Normalized frequency of the 20 most frequent keys in the real world
data sets used in the evaluation.

while the frequencies of ports in the data set of ports resemble a Zipf distribution
with high skew. In Figure 3.3, we plot the normalized frequencies of the 20 most
frequent keys for the two real world data sets.

As in [32], when we perform queries, we use the same distribution to deter-
mine on which keys we will perform them, i.e., we are more likely to perform
queries for keys that are frequently found in the input stream.

Metrics: Our evaluation focuses on three metrics that are commonly used to
characterize the performance of sketches: accuracy, throughput and latency. In
Section 3.5, we already used the average relative error to evaluate the accuracy
of different design choices. In this section, we additionally use the absolute
error per key to indicate the over-approximation between the true frequency of a
key in the stream and the frequency reported by the query. We report throughput
as the number of operations (insertions or queries) per unit of time.

Parameters: In our experiments, we evaluate the effect of three main param-
eters: the number of threads in the system, the skewness of the input distribution
and the ratio of insertions vs queries that each thread performs. Note that the
memory consumption of each sketch is another important parameter that affects
the performance of sketches in terms of accuracy and throughput. In order to
have a fair comparison, we make sure that, for a given number of threads, all
versions use the same amount of memory. This includes all additional data
structures involved, e.g., filters. For Delegation Sketch, this is achieved as ex-
plained in Section 3.6.3. For the case of the single-shared sketch, we increase
the number of buckets as we add more threads, in order to have the same total
size in memory as the other designs that use multiple sketches.

Baselines: We study the performance of Delegation Sketch in connection
to the single-shared and thread-local sketches, described in Section 3.3. As
described above, we keep the total amount of memory constant between different

106 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

designs to ensure a fair comparison. We also include the Augmented Sketch using
the thread-local design, i.e. we have one sketch and one filter per thread. In [32],
the authors experiment with different filter sizes and evaluate the effectiveness
of the filter. Based on that analysis, we use a filter size of 16 keys (and 16
counters) for all filters, including our Delegation Filters. In order to have a
meaningful comparison with Augmented Sketch, we use Augmented sketch as
the underlying sketch of Delegation Sketch i.e. every sketch in Delegation Sketch
includes an additional 16 element filter. We also note that in our throughput
evaluation (see later Section 3.7.3) we treat the Augmented Sketch baseline
favourably: i.e., we do not attempt to enforce synchronization by making the
filters thread-safe, i.e. the filters of Augmented Sketch can be accessed by any
thread during queries. Delegation Sketch does not need special attention w.r.t.
this, due to the synchronization mechanisms we describe in Section 3.6.

3.7.2 Comparing the accuracy of queries

In Section 3.5, we have already compared the accuracy of the different paral-
lelization designs, in terms of Average Relative Error (ARE) and we have shown
that, for the same total memory consumption, Delegation Sketch has very low
ARE compared to the thread-local design. Moreover, Delegation Sketch is as
accurate as the single-sketch design. We also showed that its accuracy increases
with the number of threads.

Here we take a closer look at the accuracy of queries at each one of the
input keys in our stream. For this experiment, we use a sketch with d = 256 and
w = 8, use 4 threads and draw the input keys from the Zipf distribution with
skew parameter 1. In Figure 3.4, we plot the error in the result of a query at
every single key, using all the parallelization designs. For better presentation we
have sorted the input keys based on their true frequency in descending order (e.g.
the first 47K points in the x-axis correspond to the most frequent key, which has
been seen 47K times in the input stream) and we plot the running mean of 1,000
keys.

Augmented Sketch and Delegation Sketch introduce no error on some of the
most frequent keys in the stream, because of the filter used in the underlying
sketch of both of those versions. Frequent keys are expected to be inserted in the
filter and stay there most of the time. As a result, a query on those keys is more
likely to report the true frequency of a key directly from the filter, rather than
an approximation of it from the sketch. Note that this effect holds for more keys
when using Delegation Sketch rather than Augmented Sketch. This is an effect of
the domain splitting technique that reduces the range of keys that end-up at each
sketch, thus making better use of the filter of the underlying sketch. Delegation

3.7. EVALUATION 107

0 100000 200000 300000 400000 500000 600000
Index of each input key, sorted by their frequency in descending order

0

200

400

600

800

1000

1200

1400
Ab

so
lu

te
 e

rro
r f

or
 e

ac
h

ke
y

Single-shared
Thread-local
Augmented Sketch
Delegation Sketch

Figure 3.4: Error introduced for each key in the stream. The x-axis holds the
indexes of each key in the stream, sorted by their frequency (descending order).
The y-axis shows the absolute error added when performing a query on each key.

Sketch, as expected according to the argumentation in Section 3.5.1, continues
to be one of the most accurate ones even for low frequency keys, despite the fact
that it uses a smaller sketch to accommodate space for the Delegation Filters.

3.7.3 Processing throughput
Here we evaluate the throughput of Delegation Sketch and compare it with the
baselines, across the three following dimensions: (i) scalability with the number
of threads, (ii) query rate and (iii) input skew. Finally, we evaluate the effect of
the Query Squashing method (Section 3.6).

(A) Overall scalability

Figure 3.5 shows the overall scalability of the different baselines for Platform
A. For this experiment, we use input keys coming from the Zipf distribution
with skew parameter 1.5. We gradually increase the number of threads, as
well as the ratio of queries vs insertions. We report the average number of
operations per second, out of 10 runs. We omitted standard deviation because it
was insignificant in most cases.

108 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

10 20 30 40 50 60 70
Threads

0

500

1000

1500

2000

2500
Th

ro
ug

hp
ut

 (M
op

s/
se

c)
Single-shared-0%
Thread-local-0%
Augmented Sketch-0%
Delegation Sketch-0%

(a) 0% queries.

10 20 30 40 50 60 70
Threads

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Single-shared-0.1%
Thread-local-0.1%
Augmented Sketch-0.1%
Delegation Sketch-0.1%

(b) 0.1% queries.

10 20 30 40 50 60 70
Threads

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Single-shared-0.3%
Thread-local-0.3%
Augmented Sketch-0.3%
Delegation Sketch-0.3%

(c) 0.3% queries.

Figure 3.5: Platform A: Throughput and scalability comparison of all designs,
using data from the Zipf distribution (skew=1.5).

50 100 150 200 250 300
Threads

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Single-shared-0%
Thread-local-0%
Augmented Sketch-0%
Delegation Sketch-0%

(a) 0% queries.

50 100 150 200 250 300
Threads

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Single-shared-0.1%
Thread-local-0.1%
Augmented Sketch-0.1%
Delegation Sketch-0.1%

(b) 0.1% queries.

50 100 150 200 250 300
Threads

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Single-shared-0.3%
Thread-local-0.3%
Augmented Sketch-0.3%
Delegation Sketch-0.3%

(c) 0.3% queries.

Figure 3.6: Platform B: Throughput and scalability comparison of all designs,
using data from the Zipf distribution (skew=1.5).

In Figure 3.5a, we present the results from the execution of a workload that
contains only insertions. We see that the single-shared parallelization design
cannot scale with the number of threads, while the thread-local designs (in-
cluding parallel Augmented Sketch), as well as Delegation Sketch benefit from
paralellization. This is in accordance with the tradeoff analysis of Section 3.3.
Even in the absence of queries, Delegation Sketch is up to 2X better than the
next best baseline (Augmented Sketch), especially with more than 10 threads.

The introduction of even a small percentage of queries (Figures 3.5b and 3.5c)
has a significant effect on processing throughput and scaling. With the excep-
tion of the single-shared design, the absolute throughput of all other designs
is reduced. The thread-local design and the parallel Augmented Sketch stop
scaling after approximately 40 threads in the case of the 0.3% query workload
(Figure 3.5c) and actually perform worse with more threads. This is because in-
creasing the number of threads introduces more sketches to search when serving
a query. On the contrary, Delegation Sketch continues to benefit from paral-
lelization, achieving up to 4 times higher throughput than the best performing
baseline (Augmented Sketch). Also note that, on this platform, Delegation
Sketch continuous to scale even under the effect of hyper-threading (that starts at

3.7. EVALUATION 109

0.0 0.2 0.4 0.6
Query rate (%)

0

500

1000

1500

2000
Th

ro
ug

hp
ut

 (M
op

s/
se

c)
Single-shared
Thread-local
Augmented Sketch
Delegation Sketch

(a) Platform A.

0.0 0.2 0.4 0.6
Query rate (%)

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Single-shared
Thread-local
Augmented Sketch
Delegation Sketch

(b) Platform B.

Figure 3.7: The effect of queries on the performance of the different paralleliza-
tion designs, across two platforms. Both sets of experiments use data from the
Zipf distribution with a skew parameter of 1.5.

36 threads).

The same performance trend continues to hold on Platform B (Figure 3.6).
The raw throughput achieved by each version is different, since this architecture
has different characteristics (e.g. lower clock speed), but Delegation Sketch
continues to outperform the baselines in all cases, especially with workloads that
involve queries. While the performance of Delegation Sketch stops increasing
when adding more than 150 threads in the 0.3% query workload, it is still more
than 2 times faster compared to the baselines.

(B) Evaluating the effects of query rates

We now turn our attention to query rates and evaluate how they affect perfor-
mance. In this experiment, we use all the available parallelism on each platform
and plot the achieved throughput in Figure 3.7. For both platforms, increasing
the rate of queries in the workload has no effect on the relatively low throughput
of the single-shared design. Contrary, all other parallelization designs suffer
a performance hit, even at a low query rate (0.1%). In the case of Delegation
Sketch, this is because increasing the number of threads increases the number of
filters that must be searched during a query. However, Delegation Sketch sustains
an overall higher throughput than the baselines, because it avoids searching
multiple sketches.

110 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

0 1 2 3 4
Skew parameter

0

1000

2000

3000

4000
Th

ro
uh

pu
t (

M
op

s/
se

c)

Single-shared
Thread-local

Augmented Sketch
Delegation Sketch

(a) 0% queries.

CAIDA
(low skew)

CAIDA
(high skew)

0

250

500

750

1000

1250

1500

1750 Single-shared
Thread-local
Augmented Sketch
Delegation Sketch

(b) 0.0% queries, real
world data.

0 1 2 3 4
Skew parameter

0

500

1000

1500

2000

Th
ro

uh
pu

t (
M

op
s/

se
c)

(c) 0.1% queries.

CAIDA
(low skew)

CAIDA
(high skew)

0

200

400

600

800

1000

1200

(d) 0.1% queries, real
world data.

0 1 2 3 4
Skew parameter

0

250

500

750

1000

1250

1500

Th
ro

uh
pu

t (
M

op
s/

se
c)

(e) 0.3% queries.

CAIDA
(low skew)

CAIDA
(high skew)

0

200

400

600

800

1000

(f) 0.3% queries, real
world data.

Figure 3.8: Platform A: Throughput comparison for different input skew and
real data, using all the available threads (72). Note the different y-axis scale.

3.7. EVALUATION 111

(C) Evaluating the effects of input skew

We now evaluate the effects of input skew on the performance of Delegation
Sketch. In Figure 3.8, we present the throughput of all parallelization designs
as we gradually increase the skew parameter of the distribution that generates
the input keys, using three different query workloads. In the same figure, we
also include the throughput achieved when using the two real world data sets we
introduce in Section 3.7.1. We show the results of the execution in platform A
and omit the results from platform B because they are equivalent.

In general, Augmented Sketch and Delegation Sketch gain a dramatic in-
crease in throughput when the skew parameter is more than 1.0. This is because
both versions rely heavily on filters, that accelerate the processing of keys that
are frequently found in the input. This result is in accordance with the experi-
mental evaluation of [32]. At low skew (parameter values 0-1) the thread-local
design that does not use filters outperforms all others, since in this case the
filters only add overhead. For medium skew (parameter values 1-2), Delegation
Sketch outperforms Augmented Sketch even if there are no queries. This is
due to: (i) the use of more filters (T delegation Filters per sketch) and (ii) the
domain splitting technique that reduces the range of keys that end up at each
filter, making the input on that filter appear more skewed. At higher skew levels,
most of the input stream is dominated by a few frequent elements. At this point,
throughput stops increasing and Augmented Sketch outperforms Delegation
Sketch. This is because, under such a high skewness, the per-key processing is
so small that even the added overhead of computing Owner(K) for Delegation
Sketch becomes relatively significant. As expected, when we introduce queries
in the workload, Delegation Sketch quickly outperforms the Augmented Sketch,
even under high input skew (Figures 3.8c and 3.8e).

The same relative trends also hold with real-world data sets (Figures 3.8b, 3.8d
and 3.8f). With the IP data set that exhibits low skew, the thread-local design
outperforms the filter based ones in most cases, but Delegation Sketch performs
better when using real-world data with high skew, especially at 0.3% query rates
where it is more than 2 times faster than Augmented sketch and roughly 9 times
faster than thread-local.

(D) Evaluating the effects of query squashing

We now evaluate the effect of Query Squashing separately. We compare the
performance of Delegation Sketch to a modified version that does not include
the optimization.

Figure 3.9a shows the scalability of both versions, in the same setting as
the one used for Figure 3.5c. We see that, without the optimization, throughput

112 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

10 20 30 40 50 60 70
Threads

200

400

600

800
Th

ro
ug

hp
ut

 (M
op

s/
se

c)

with query
optimization
w/o query
optimization

(a) Scalability.

0 2 4
Skew parameter

250

500

750

1000

1250

1500

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

(b) Effect of input skew.

Figure 3.9: The effect of Query Squashing, compared to a modified version that
does not include it. Left: scaling with the number of threads for fixed input skew.
Right: the effects of input skew, using 72 threads. In both cases the workload
contains 0.3% queries.
starts to drop after 20 threads and cannot scale to more than 36 threads. This is
because, after that point, a large number of threads attempt to perform queries
and as a result the query operation becomes a bottleneck, especially on the thread
that is responsible for the most frequent key in the stream. At 72 threads, our
optimization brings roughly 1.8X speedup in throughput.

The same effect holds when we increase the input skew of the stream. Since
the keys we perform queries on come from the same distribution as the keys
we insert (see Section 3.7.1), when skew is high, most threads try to query the
same key K and have to wait for the thread i = Owner(K) to handle them. Our
optimization manages to overcome that bottleneck: by “squashing” all those
queries into one operation, thread i is able to handle them all without repeatedly
searching the filters and the sketch for the same key. At high skew (parameter
value of 3.0), Query Squashing brings up to 4.5 times speedup in throughput,
without introducing any overhead when the skew is low.

3.7.4 Query latency
So far, we evaluated performance based on the throughput of operations. We
now take a closer look at the latency of queries across different versions.

In Figure 3.10a, we present the average latency of query operations depend-
ing on the number of threads, using data taken from the Zipf distribution with
skew parameter 1.2. Overall, the single-shared sketch has extremely low query
latency, less than 2.5 µsec, which only rises slightly at more than 36 threads. As
expected, queries in the single-shared approach are very efficient since they only
need to search for the key in a single sketch, albeit at the cost of low insertion

3.7. EVALUATION 113

10 20 30 40 50 60 70
Threads

0

10

20

30

40

50
La

te
nc

y
(

se
c)

Single-shared
Thread-local
Augmented Sketch
Delegation Sketch

(a) Latency of queries as the number of
threads increases.

0 1 2 3 4
Skew parameter

0

10

20

30

40

50

60

70

La
te

nc
y

(
se

c)

(b) Latency of queries for different input
skew.

Figure 3.10: Platform A: Latency of query operations as the number of threads
and the input skew increase.

rate, as shown in Figure 3.5a. The latency of the thread-local design increases
quickly with the number of threads, since the number of sketches that need
to be searched increases. Augmented sketch has lower latency compared to
the thread-local design, since some of the keys will be found in filters instead
of sketches, but the overall latency remains high. Delegation Sketch manages
to retain a lower latency than thread-local and Augmented Sketch under high
parallelism (up to 2.25X and 3.18X times lower than the Augmented Sketch and
thread-local respectively), since we search for a key in multiple filters but in at
most one sketch.

Next, we fix the number of threads to 72 and vary the input skew. Again, the
query latency of the single-shared approach is very low, but increases slightly
under high skew, since the parts of the sketch where the common keys hash into
become contention points. When the skew is low, the query latency of Delegation
Sketch is up to 3X lower than that of Augmented Sketch and thread-local, since
we avoid searching in multiple sketches. As the skew increases, the latency of
approaches that use filters (Augmented Sketch and Delegation Sketch) is reduced,
but Delegation Sketch manages to outperform Augmented Sketch, through the
use of our Query Squashing optimization.

In the above comparisons, also note the following: a) Queries in Delegation
Sketch occasionally perform extra work before they are completed e.g. helping
insertions by flushing filters into sketches. That extra work is still taken into
account in the query latency. b) As already mentioned in Section 3.7.1, the
queries of Augmented Sketch are treated favorably since we do not introduce
any synchronization.

114 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

3.7.5 Summary of the evaluation
In summary, we study how Delegation Sketch fares with respect to the following
dimensions: accuracy, scalability, support for concurrent queries and skewed
input. We showed that Delegation Sketch is as accurate (and often better) than
the most accurate baseline with the same amount of memory, due to the Domain
Splitting technique. At the same time, Delegation Sketch is highly scalable on
both a NUMA multi-core and a massively parallel architecture.

The benefits of Delegation Sketch are more pronounced in the presence of
concurrent queries, where Delegation Sketch achieves a higher relative speedup
than the best performing baseline (up to 4X) and continue to hold the presence
of highly skewed input distributions.

3.8 Related work
In this section, we present related work on sketches, the parallelization of
sketches, and on systems that use them.

Sketches: The literature contains numerous sketch designs. Cormode [4, 6]
present an overview of synopsis and sketch base approaches. We summarize
the most relevant here. Apart from the Count-Min Sketch (summarized in
Section 3.2), there are more sketches that follow similar techniques. The Count-
Sketch [3] uses the median (rather than the minimum) of the hashed coun-
ters to provide an unbiased approximation (rather than an over-approximation).
FCM [39] dynamically adjusts the number of counters that are incremented to
reduce the approximation error on low frequency items. HeavyGuardian [42]
separates the counter for high frequency items, while instead ColdFilter [48] uses
a filter to count the frequencies of low-frequency items. The aforementioned
sketches provide ingenious designs to optimize the space-accuracy-performance
trade-off. Delegation Sketch is a generic parallelization design that is orthogonal
to the underlying sketch, so it can be used to improve the parallel performance
of the above mentioned sketches.

Parallelization: As already mentioned, most work in sketches focuses on the
single thread scenario. The few papers that discuss parallelization of sketches sug-
gest either a single-shared sketch or a thread-local approach. ElasticSketch [43]
proposes a new sketch that is parallelized for multi-cores using a thread-local de-
sign. Alipourfard et al. [1] evaluate different measurement algorithms and show
that the thread-local design has lower latency compared to the single-shared one.
In contrast to our work, both of these do not consider continuous concurrent
queries. Mandal et al. [27] use multiple copies that can be periodically merged
into a single sketch, which improves the accuracy but requires a lot of commu-

3.9. CONCLUSIONS AND FUTURE WORK 115

nication between threads. FCM [39] uses multiple copies and splits the domain
of keys to buckets of threads, similar to our Delegation Sketch, but their design
is specific to the Cell processor that has a single centralized unit that distributes
the stream to several co-processors.

Tangwongsan et al. [37] follow a single-shared sketch design and include
algorithms for many query types, however their work lacks an experimental
evaluation and comparison of their results. Das et al. [8] also keep a single shared
summary and combine multiple operations, similar to our design. However, their
approach is specific to the Space-Saving summary. Taşyaran et al. [38] use a
single sketch but parallelize the hash computations among threads, at the cost
of requiring frequent synchronization points. Roy et al. [32] propose a form of
pipeline parallelism between two threads, where one thread is responsible for the
filter while another handles the underlying sketch. Rinberg et al. [30,31] is, to our
knowledge, the only other work that considers concurrent queries and insertions.
They reduce the need for synchronization by introducing more relaxed semantics
for sketches and rigorously prove correctness and linearizability with respect
to those semantics. As they also explain, this relaxation comes at the cost of
accuracy. Observing that our evaluation here shows that Delegation Sketch is
as accurate as the best performing alternative, while maintaining scalability, it
is worthwhile to note the interest in cross-studying further concurrency-aware
consistency formulations.

Applications and Systems: Sketches have found uses in many applications,
especially in traffic monitoring. These have often lead to the creation of mon-
itoring systems that use sketch designs tailored for such applications, e.g., in
software or hardware switches. UniMov [26] and HashPipe [33] are imple-
mented for smart network cards and heavily rely on sketches. NitroSketch [25]
builds on top of a fast packet I/O framework in the user-plane (DPDK) and
supports high insertion speeds that reach line rate on 40Gbps links. Apart from
traffic monitoring, Garofalakis et al. [13] use sketches to reduce state transfer in
distributed monitoring system. However, none of those those systems discuss
the trade-offs related to concurrent queries when parallelizing sketches.

3.9 Conclusions and future work

In this paper, we introduce Delegation Sketch, a generic parallelization design
for sketches achieving high processing rates and accuracy in the presence of
concurrent queries. We analyze existing parallelization designs and find they
cannot support both insertions and queries efficiently and have to prioritize one
or the other. Contrary to this, Delegation Sketch reduces the cost of queries

116 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

while at the same time maintains a high insertion rate through: (i) maintaining
multiple parallel sketches, (ii) splitting the domain of keys to different sketches
and ensuring that all occurrences of the same key end-up in the same sketch, thus
making queries faster and (iii) using multiple filters that aggregate occurrences
of the same key locally. By combining multiple concurrent queries of the same
key, Delegation Sketch significantly reduces the cost of queries under high input
skew.

We thoroughly evaluate Delegation Sketch across multiple dimensions,
namely: accuracy, scalability, query rate and input skew. We use two mas-
sively parallel platforms and experiment with both real and synthetic data. Our
evaluation shows that Delegation Sketch is able to scale up to more than 72
threads, especially in the presence of concurrent queries, achieving from 2.5X
to 4X higher throughput than the best performing baseline, while being as ac-
curate as the most accurate baseline. These results contribute to efficient and
accurate stream processing, especially for applications that require frequent,
responsive queries to dynamically changing data streams, e.g., software switches
that schedule traffic dynamically or spatio-temporal monitoring applications
and more [11, 14, 35, 46]. Extending the design with support for more types
of queries, for even higher impact on such applications is an interesting future
direction. It is also interesting to consider a co-design of Delegation Sketch
together with efficient concurrent implementations of the underlying sketches
(e.g. using concurrent counters [18, 40, 41]), as well as a distributed deployment
across multiple nodes. The source code of Delegation Sketch is available online:
https://github.com/mpastyl/DelegationSketch.

Acknowledgements

We would like to thank the anonymous EuroSys reviewers and our shepherd
Aleksandar Prokopec for their valuable feedback that helped improve the paper.
The research leading to these results has been partially supported by the Swedish
Civil Contingencies Agency (MSB) through the projects RICS and RIOT, by the
Swedish Foundation for Strategic Research (SSF) through the framework project
FiC, by the Swedish Research Council (VR) through the project ChaosNet
and the project AgreeOnIT, the Vinnova-funded project “KIDSAM”, and from
the European Community’s Horizon 2020 Framework Programme under grant
agreement 773717.

https://github.com/mpastyl/DelegationSketch

BIBLIOGRAPHY 117

Bibliography
[1] Omid Alipourfard, Masoud Moshref, Yang Zhou, Tong Yang, and Minlan Yu. A

comparison of performance and accuracy of measurement algorithms in software.
In Proceedings of the Symposium on SDN Research, SOSR ’18, pages 18:1–18:14,
New York, NY, USA, 2018. ACM.

[2] Arm. ODROID-XU3. https://developer.arm.com/graphics/dev
elopment-platforms/odroid-xu3. Accessed: 2019-11-04.

[3] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. In Proceedings of the 29th International Colloquium on Automata,
Languages and Programming, ICALP ’02, pages 693–703, Berlin, Heidelberg,
2002. Springer-Verlag.

[4] Graham Cormode. Sketch techniques for approximate query processing. Founda-
tions and Trends in Databases. NOW publishers, 2011.

[5] Graham Cormode. Count-Min Sketch, pages 464–468. Springer New York, New
York, NY, 2016.

[6] Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. Synopses
for massive data: Samples, histograms, wavelets, sketches. Foundations and
Trends® in Databases, 4(1–3):1–294, 2011.

[7] Graham Cormode, Theodore Johnson, Flip Korn, S. Muthukrishnan, Oliver
Spatscheck, and Divesh Srivastava. Holistic UDAFs at streaming speeds. In
Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’04, pages 35–46, New York, NY, USA, 2004. ACM.

[8] Sudipto Das, Shyam Antony, Divyakant Agrawal, and Amr El Abbadi. Thread
cooperation in multicore architectures for frequency counting over multiple data
streams. Proc. VLDB Endow., 2(1):217–228, August 2009.

[9] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Processing
complex aggregate queries over data streams. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’02, pages
61–72, New York, NY, USA, 2002. ACM.

[10] Romaric Duvignau, Marina Papatriantafilou, Konstantinos Peratinos, Eric Nord-
ström, and Patrik Nyman. Continuous distributed monitoring in the evolved packet
core. In Proceedings of the 13th ACM International Conference on Distributed and
Event-based Systems, pages 187–192, 2019.

[11] Zhang Fu, Magnus Almgren, Olaf Landsiedel, and Marina Papatriantafilou. Online
temporal-spatial analysis for detection of critical events in cyber-physical systems.
In 2014 IEEE International Conference on Big Data (Big Data), pages 129–134.
IEEE, 2014.

[12] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream Man-
agement: A Brave New World, pages 1–9. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

https://developer.arm.com/graphics/development-platforms/odroid-xu3
https://developer.arm.com/graphics/development-platforms/odroid-xu3

118 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

[13] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based geometric
monitoring of distributed stream queries. Proc. VLDB Endow., 6(10):937–948,
August 2013.

[14] Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatriantafilou,
and Philippas Tsigas. Deterministic real-time analytics of geospatial data streams
through scalegate objects. In Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems, pages 316–317, 2015.

[15] Red Hat. Receive Packet Steering (RPS). https://access.redhat.com/
documentation/en-us/red hat enterprise linux/6/html/pe
rformance tuning guide/network-rps, 2019. Accessed: 2019-10-22.

[16] Red Hat. Receive-Side Scaling (RSS). https://access.redhat.com/do
cumentation/en-us/red hat enterprise linux/6/html/perf
ormance tuning guide/network-rss, 2019. Accessed: 2019-10-22.

[17] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, page
355–364, New York, NY, USA, 2010. Association for Computing Machinery.

[18] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. Scalable concurrent counting.
ACM Transactions on Computer Systems (TOCS), 13(4):343–364, 1995.

[19] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. Sketchvisor: Robust network measurement for software packet
processing. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, pages 113–126, New York, NY, USA, 2017.
ACM.

[20] Intel. Knights Landing. https://ark.intel.com/content/www/us
/en/ark/products/codename/48999/knights-landing.html.
Accessed: 2019-10-30.

[21] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. Sketchml: Accelerating
distributed machine learning with data sketches. In Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD ’18, pages 1269–1284,
New York, NY, USA, 2018. ACM.

[22] Leslie Lamport. On interprocess communication. part i: Basic formalism. Dis-
tributed Computing, 1(2):77, 1985.

[23] Leslie Lamport. On interprocess communication, part ii: Algorithms. Distributed
Computing, 1:86–101, 1986.

[24] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better netflow
for data centers. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 311–324, Santa Clara, CA, March 2016. USENIX
Association.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rps
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rps
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rps
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rss
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rss
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rss
https://ark.intel.com/content/www/us/en/ark/products/codename/48999/knights-landing.html
https://ark.intel.com/content/www/us/en/ark/products/codename/48999/knights-landing.html

BIBLIOGRAPHY 119

[25] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM ’19, pages 334–350, New York, NY, USA,
2019. ACM.

[26] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. One sketch to rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM
’16, pages 101–114, New York, NY, USA, 2016. ACM.

[27] Ankush Mandal, He Jiang, Anshumali Shrivastava, and Vivek Sarkar. Topkapi:
Parallel and fast sketches for finding top-k frequent elements. In Proceedings of
the 32Nd International Conference on Neural Information Processing Systems,
NIPS’18, pages 10921–10931, USA, 2018. Curran Associates Inc.

[28] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
AGILE: Elastic distributed resource scaling for infrastructure-as-a-service. In Pro-
ceedings of the 10th International Conference on Autonomic Computing ({ICAC}

13), pages 69–82, 2013.

[29] Yiannis Nikolakopoulos, Anders Gidenstam, Marina Papatriantafilou, and Philippas
Tsigas. A consistency framework for iteration operations in concurrent data struc-
tures. In 2015 IEEE International Parallel and Distributed Processing Symposium,
pages 239–248. IEEE, 2015.

[30] Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel, Idit Keidar,
Lee Rhodes, and Hadar Serviansky. Fast concurrent data sketches. In Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’20, page 117–129, New York, NY, USA, 2020. Association
for Computing Machinery.

[31] Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel, Idit Keidar,
and Hadar Serviansky. Fast concurrent data sketches. CoRR, abs/1902.10995, 2019.

[32] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and more
accurate stream processing. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, pages 1449–1463, New York, NY, USA,
2016. ACM.

[33] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan,
and Jennifer Rexford. Heavy-hitter detection entirely in the data plane. In Proceed-
ings of the Symposium on SDN Research, SOSR ’17, pages 164–176, New York,
NY, USA, 2017. ACM.

[34] The CAIDA UCSD anonymized internet traces - 2018. http://www.caida.or
g/data/passive/passive dataset.xml, 2019. Accessed: 2019-11-03.

[35] Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, and Marina
Papatriantafilou. Continuous monitoring meets synchronous transmissions and

http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml

120 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

in-network aggregation. In 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 157–166. IEEE, 2019.

[36] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani, and
Deepak Rajan. Prepare: Predictive performance anomaly prevention for virtual-
ized cloud systems. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pages 285–294. IEEE, 2012.

[37] Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Parallel streaming
frequency-based aggregates. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’14, pages 236–245, New York,
NY, USA, 2014. ACM.

[38] Fatih Tasyaran, Kerem Yildirir, Kamer Kaya, and Mustafa Kemal Tas. One table to
count them all: Parallel frequency estimation on single-board computers. CoRR,
abs/1903.00729, 2019.

[39] Dina Thomas, Rajesh Bordawekar, Charu C. Aggarwal, and Philip S. Yu. On
efficient query processing of stream counts on the Cell processor. In 2009 IEEE
25th International Conference on Data Engineering, pages 748–759, March 2009.

[40] Junchang Wang, Tao Li, and Xiong Fu. Accurate counting algorithm for high-speed
parallel applications. Concurrency and Computation: Practice and Experience,
31(13):e5090, 2019.

[41] Roger Wattenhofer and Peter Widmayer. The counting pyramid: an adaptive
distributed counting scheme. Journal of Parallel and Distributed Computing,
64(4):449–460, 2004.

[42] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li.
Heavyguardian: Separate and guard hot items in data streams. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’18, pages 2584–2593, New York, NY, USA, 2018. ACM.

[43] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, pages 561–575, New York, NY,
USA, 2018. ACM.

[44] Tong Yang, Lingtong Liu, Yibo Yan, Muhammad Shahzad, Yulong Shen, Xiaoming
Li, Bin Cui, and Gaogang Xie. Sf-sketch: A fast, accurate, and memory efficient
data structure to store frequencies of data items. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pages 103–106, April 2017.

[45] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with
opensketch. In Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 29–42, Lombard, IL, 2013.
USENIX.

BIBLIOGRAPHY 121

[46] Nikos Zacheilas, Vana Kalogeraki, Yiannis Nikolakopoulos, Vincenzo Gulisano,
Marina Papatriantafilou, and Philippas Tsigas. Maximizing determinism in stream
processing under latency constraints. In Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems, pages 112–123, 2017.

[47] Yang Zhou, Peng Liu, Hao Jin, Tong Yang, Shoujiang Dang, and Xiaoming Li. One
memory access sketch: A more accurate and faster sketch for per-flow measurement.
In GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages 1–6,
Dec 2017.

[48] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve
Uhlig. Cold filter: A meta-framework for faster and more accurate stream processing.
In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pages 741–756, New York, NY, USA, 2018. ACM.

122 CHAPTER 3. DELEGATION SKETCH: A PARALLEL DESIGN FOR SKETCHES

Part III

Fast and Energy-Efficient
Processing on Embedded

Accelerators

PAPER III

Charalampos Stylianopoulos, Linus Johansson,
Oskar Olsson, Magnus Almgren

CLort: High Throughput and Low Energy Network
Intrusion Detection on IoT Devices with Embedded

GPUs

Adapted version of the paper that appeared in the Proceedings of the 23rd
Nordic Conference on Secure IT Systems (NordSec), Secure IT Systems, pp.

87–202, LNCS vol. 11252, Springer 2018.

4
CLort: High Throughput and Low

Energy Network Intrusion Detection
on IoT Devices with Embedded GPUs

127

128 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

Abstract

While IoT is becoming widespread, cyber security of its devices is still a
limiting factor where recent attacks (e.g., the Mirai bot-net) underline the need
for countermeasures. One commonly-used security mechanism is a Network
Intrusion Detection System (NIDS), but the processing need of NIDS has been
a significant bottleneck for large dedicated machines, and a show-stopper for
resource-constrained IoT devices. However, the topologies of IoT are evolving,
adding intermediate nodes between the weak devices on the edges and the
powerful cloud in the center. Also, the hardware of the devices is maturing,
with new CPU instruction sets, caches as well as co-processors. As an example,
modern single board computers, such as the Odroid XU4, come with integrated
Graphics Processing Units (GPUs) that support general purpose computing.
Even though using all available hardware efficiently is still an open issue, it has
the promise to run NIDS more efficiently.

In this work we introduce CLort, an extension to the well-known NIDS Snort
that i) is designed for IoT devices ii) alleviates the burden of pattern matching
for intrusion detection by offloading it to the GPU. We thoroughly explain how
our design is used on top of Snort and suggest various optimizations to enable
processing on the GPU. We evaluate CLort in regards to throughput, packet drops
in Snort, and power consumption using publicly available traffic traces. CLort
achieves up to 52% faster processing throughput than its CPU counterpart. CLort
can also analyze up to 12% more packets than its CPU counterpart when sniffing
a network. Finally, the experimental evaluation shows that CLort consumes up
to 32% less energy than the CPU counterpart, an important consideration for IoT
devices.

4.1 Introduction
Even though Internet of Things (IoT) technologies have become widespread and
mature, cyber security is still a problem. Several attacks, across very different
environments, demonstrate in painstaking detail that the community needs to
build security mechanisms suitable for IoT, or else deployment may slow down.
A recent example is the series of attacks against the electricity network in both
the distribution and transmission grid in Ukraine by controlling the devices found
in substations.

Challenges to improve security in IoT stem from different factors. For a
long time, an IoT system was designed with very limited edge devices that

4.2. BACKGROUND 129

communicated with a powerful cloud. Even though the cloud could handle many
security mechanisms, the attacks happen at the edges of the network, targeting
devices that need to be cheap, conserve power and are too limited to run their
own security mechanisms. Fortunately, modern IoT systems have become more
heterogeneous with different types of devices. The previously limited edge is
becoming slightly more powerful with new processors and architectures, and the
powerful cloud has been complemented by a range of devices, the so-called fog
in-between the edge and the cloud, with devices that offer more computational
power and, for some applications, a much faster response rate than sending the
data to the cloud. These intermediate IoT devices promise to also improve the
security of the system as a whole.

In this paper, we take advantage of the recent maturity of IoT devices and
investigate how a network intrusion detection system, one of the cornerstones of
regular IT security, can run efficiently in the IoT. More specifically, as recently
released devices come with integrated co-processors or graphics processing units,
we investigate how to use the full hardware of a dedicated “security node” to
improve the speed (throughput) of the analysis, while using less energy to do
so. Moreover, as one challenge of IoT is the distributed nature of the system,
it may not be possible to define a single choke point for network analysis. As
we demonstrate that our solution processes packets faster, it may be possible to
run the intrusion detection system on existing nodes in the network while still
leaving enough CPU cycles for the nodes’ primary function.

The outline of the paper is the following. In Section 4.2, we outline back-
ground concepts related to this work, namely Snort, the Aho-Corasick algorithm
and a high-level description of general purpose computing on GPUs. In Sec-
tion 4.3, we explain the design of our system followed by the evaluation in
Section 4.4. Section 4.5 describes related work and we conclude the paper in
Section 4.6.

4.2 Background

Given the prominence of Snort as a network intrusion detection system, we start
with an introduction to such systems in general and Snort in particular. We then
describe the pattern matching algorithm in Snort (Aho-Corasick). Finally, we
give a brief background on general purpose computing on GPU devices.

130 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

4.2.1 Network Intrusion Detection Systems and Snort

The purpose of a Network Intrusion Detection System (NIDS) is to inspect all
incoming and outgoing network traffic and alert for any malicious behaviour.
Many NIDS are signature-based, meaning that they rely on a set of patterns that
are part of known attacks or vulnerabilities. One of the benefits of NIDS, over
for example a firewall, is that they inspect not only the packet headers but also
the packet payload (a.k.a. deep packet inspection) in order to detect a wide range
of malicious attacks.

Nowadays, Snort is one of the most commonly deployed signature-based
NIDS. Originally developed in the late 90s, Snort has been in active development
ever since and has become the de facto NIDS. Its most recent version (Snort 3,
in alpha version when this paper is written), offers many new features, such as a
modular architecture, cross-platform support and multi-threaded processing of
traffic from different interfaces.

Snort relies on rules that determine what kind of malicious behaviour it
should look for in a packet. Rules usually contain a fixed string pattern, as well
as other options that need to be true to flag a packet as malicious (e.g., traffic
towards specific ports). A very brief outline of Snort’s processing pipeline is the
following: (i) Snort captures packets from a network interface or a capture file,
(ii) a decode module creates common metadata for this packet, such as source
and destination ports and encapsulated protocols, (iii) packets that belong to a
TCP stream are reassembled, (iv) a search engine performs pattern matching on
the packets, where the payload data are compared against the malicious patterns,
and (v) if a match is found, a validation step is invoked to ensure that the rest
of the rule options are also true for the packet containing the match. Finally,
(vi) Snort outputs a verdict for the packet (whether or not it is malicious).

The pattern matching in step (iv) is an expensive bottleneck and therefore
the focus of this paper. Snort uses the Aho-Corasick pattern matching algorithm,
as described below.

4.2.2 The Aho-Corasick patten matching algorithm

The Aho-Corasick algorithm [1]1 is a popular, state machine based algorithm
that allows Snort to match the payload against multiple patterns at the same
time. The first step of Aho-Corasick is to build a state machine out of all the
patterns, where the individual characters in the patterns become the transitions

1For short it will be simply called Aho-Corasick in the following sections.

4.3. DESIGN OF CLORT 131

to new states. The state machine is usually implemented as a two-dimensional
state transition array, with a row for each state and a column for every possible
transition from that state to the next one. An extra bit in the array is reserved for
final states, i.e. states that indicate that a full pattern has been matched.

After building the state machine at setup time, performing pattern matching
on the packet payload is relatively straightforward: starting from the initial state,
the algorithm examines one character and uses it to determine the next state. The
algorithm keeps jumping from state to state, based on the information found in
the state transition array. If the execution reaches one of the final states, a pattern
has been found in the payload and Snort will then check other parameters of the
full rule before sending out an alert.

We have chosen to use Aho-Corasick as a cornerstone for the work in this
paper because: (i) it is what Snort actually uses and (ii) it can be parallelized,
making it a good match for the GPU.

4.2.3 General Purpose GPU Computing

Originally designed for graphics processing tasks, in the last decade GPUs have
been proven increasingly successful for offloading computation from the CPU [5].
Hence, General Purpose Computing on the GPU (GPGPU computing) is a term
used for the use of GPUs to perform tasks that would be usually performed on
the CPU.

The internal architecture of GPUs involves thousands of threads (orders of
magnitudes more than on a standard CPU) that have a very simple pipeline
and generally operate on a lower frequency. As such, the GPU is an appealing
platform for computing tasks that benefit from a high degree of parallelization.

There are two main frameworks that make general purpose computing pos-
sible on GPUs: CUDA [10], developed by NVIDIA and OpenCL [8], an open-
source library developed by the Khronos Group. Although high-end desktop
GPUs have been extensively used for various projects using these two frame-
works, embedded GPUs, such as the one we use in this project, have only recently
gained support for GPGPU computing. The platform used in this work offers
OpenCL 1.2 support, so we use this framework in this paper.

4.3 Design of CLort

As one of the most expensive operations of the NIDS for the CPU is the pattern
matching engine, we describe the design of CLort and the way it extends Snort by
offloading the pattern matching to the GPU. We start with the general, high level

132 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

Prepare and
transfer data

to GPU

Fetch and
check results

Prepare
pattern

matching

Summarize
results

Launch
search on

filled buffer

Prepare data
for second

buffer

Prepare
pattern

matching

Search

Fetch and
check results

C
P
U

G
P
U

Buffer incoming packets

Payload,
Length

Results Summarize
results

Output results

Search

Results

Waiting for
results from

GPU

Search next buffer

Buffer incoming packets

Payload,
Length

C
P
U

G
P
U

Figure 4.1: The left part shows the high level design of CLort, with the different
steps involved in offloading the pattern matching of Snort to the GPU. The right
part depicts an optimization with double buffering to increase the utilization of
the CPU.

design of CLort. Then, we discuss issues related to several steps of this design,
namely the transferring of data to and from the GPU and the parallelization of
pattern matching on the GPU. Finally, we show how optimizations, such as the
double buffering technique, are incorporated into our design to get the most
speedup.

4.3.1 CLort’s general design

The general design of CLort is described in the left part of Figure 4.1 (where the
right part is described later in Section 4.3.4). Incoming packets enter CLort’s
pipeline after being processed by the first, pre-processing stages of Snort (see
Section 4.2.1). The payload of each packet is sent to the GPU, to be checked
against the state machine created by the patterns that are relevant to that packet.
After that, the GPU executes the kernel that implements the Aho-Corasick
pattern-matching algorithm. The CPU waits until the execution of the GPU is
finished and the results are available. After that, execution continues with the rest
of Snort’s pipeline that includes validating the matches and logging the verdict
for the packet (i.e. logging whether it is malicious).

4.3. DESIGN OF CLORT 133

4.3.2 Data transfers between the CPU and the GPU

Performing the pattern matching on the GPU requires that relevant data is
transferred to the memory of the GPU, and then that the result is transferred back
to the CPU. In general, data transfers to and from the GPU’s device memory
can be a significant bottleneck. However, for our hardware (further described in
Section 4.4.1), the particular characteristics of the GPU offer an interesting way
to alleviate that bottleneck. The Mali GPU of the Odroid XU4 does not have a
separate device memory but shares the physical memory with the CPU. Thus,
we can avoid unnecessary data transfers by mapping the memory region (using
OpenCL’s interface) of the data that we should send. The memory region is then
directly accessible to the GPU. To allow the CPU to read the results, we map the
region back to the CPU address space.

Related to data transfers, it is worth mentioning some details on the data
structures that are transferred (or, in our case, mapped) to the GPU, specifically
the state machine of Aho-Corasick (described in Section 4.2.1). Originally, the
state machine is a two-dimensional array, with a row for each state and a column
for each possible transition from that state to a next one. Here we note that:
(i) in order to be mapped to the GPU, the state machines need to be serialized
as a one-dimensional array (a simple transformation). The serialization and
the corresponding mapping of the memory only happen once per state machine
during setup, as the state machines are read-only data structures known at the start
of Snort. (ii) Snort creates multiple state machines based on traffic characteristics
(protocols, ports, etc.) and packets are matched against a state machine that is
relevant to their traffic which also our implementation respects: when a packet
is mapped to the GPU for processing, the correct state machine is used as an
argument to the kernel that will process that packet.

4.3.3 Search on the GPU: Parallel Aho-Corasick

When state machines and the packet payloads are available to the GPU, pattern
matching is performed using the Aho-Corasick algorithm (Section 4.2.2).

We parallelize Aho-Corasick in the following way: we split the payload
data into a number of chunks, equal to the number of available GPU threads.
Each thread is able to process its own chunk, in parallel, without the need for
inter-thread communication. The input is divided evenly, so that every thread
has equal amount of work to do, compared to the other threads. This avoids the
problem of some threads terminating early and stalling, which exists in other
parallelization methods for Aho-Corasick [9].

However, splitting the payload into chunks might result in a malicious pattern

134 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

being split across more than one chunk, with no single thread being able to detect
the full pattern in “their” part. In order to detect such patterns, we let each thread
process a fixed number of characters also from the chunk of the next thread
(equal to the length of the longest pattern). This way, every malicious pattern
will be detected by at least one thread. The disadvantage, however, is that short
patterns that exist at the beginning of the chunks will be reported by two threads.
We compensate by keeping an auxiliary data structure that holds the length of
every pattern that is associated with a final state (a state indicating that a full
pattern has been found). When we have a match in a thread, we use this data
structure to determine the starting position of the match. If the start is within the
chunk of the thread that found the match, it will be reported otherwise it will be
ignored (as the next thread “owning” that chunk will find the same pattern and
report it).

4.3.4 Packet Buffering: the double-buffering technique

As mentioned in other work [7, 18], launching a kernel for every single packet is
not efficient for two main reasons. Firstly, there is significant overhead associated
with launching a GPU kernel and it is good to amortize this cost over several
packets. Secondly, with a single packet, especially if the packet is small, there
might not be enough parallelism to fully exploit the GPU. There will not be
enough data to distribute to all available GPU threads or each thread will only
process a very small amount of data before exiting. For that reason, we buffer
packets on the CPU to submit in batches to the GPU. When a new packet arrives
in the Snort pipeline, it will be copied into a buffer. The processing of that
packet is postponed at this point and Snort can continue acquiring new packets.
When the buffer is full, we launch the GPU kernel to process all packets at once.
Having more data to process allows us to make the most of the parallelism the
GPU has to offer. Even though we introduce a small amount of latency before a
packet is being processed, it is not a problem on regular networks as the buffer
is significantly smaller than the traffic received during a short period of time.
However, as we describe later in Section 4.4, our current implementation that
uses buffers cannot make use of the final parts of Snort’s pipeline (validation and
verdict).

We have investigated two different designs in our work (Figure 4.1). In the
basic design (to the left in the figure), when a kernel is being executed on the
GPU, the CPU waits until the end of the execution to get the results. While this
is a straightforward design, it does not optimize throughput for a node dedicated
for monitoring the network but may work well if there are other tasks needing
cycles on the CPU.

4.4. EVALUATION 135

In the double buffering design (shown to the right), both the CPU and the
GPU perform work in parallel and, as will be shown in our evaluations, this
increases the utilization of the CPU. In short, in the double buffering technique,
as proposed by [19], two buffers are used to store packets on the CPU. When
the first buffer is full and the GPU starts processing packets, the CPU can keep
buffering packets in the second buffer. When the second buffer is also full, the
CPU will first collect the results from the GPU execution, before launching
another kernel to process data in the second buffer. Thus, the double buffering
technique helps hide the latency of executing the kernel by pipelining that
execution with the buffer generation and result collection.

In Section 4.4.2 we measure the effect of the double buffering technique and
show that it successfully reduces the overall processing time.

4.4 Evaluation

We implemented CLort using the OpenCL framework. This section presents
the results from the experimental evaluation of CLort, using a wide range of
experiments to measure and evaluate the benefits that CLort brings in intrusion
detection for IoT. The experiments are performed on four versions of Snort: Snort
original, Snort modified (CPU), CLort single buffer (GPU), and CLort double
buffer (GPU). The Snort modified (CPU) is included to make the comparisons
as fair as possible. This version of Snort behaves just like CLort (buffers packets
and does not perform the validation and verdict steps from Section 4.2.1), but
runs the search on the CPU. All comparisons and relative speedups reported use
Snort modified (CPU) as a baseline.

4.4.1 Experimental methodology

Hardware: We use the Odroid XU4 platform [12], a single board computer
with a big.LITTLE architecture (ARM Cortex-A15 and ARM Cortex-A7). The
reason for choosing this hardware platform is that it supports an integrated GPU
(ARM Mali-T628, 6 shader cores) that is compatible with OpenCL 1.2, allowing
us to perform General Purpose Computing on its GPU. The GPU offers many
interesting differences compared to standard high-end GPUs, such as individual
program counters for each thread, the lack of local memory, as well as a shared
device memory between the GPU and CPU (2GB). The device also supports a
high speed Ethernet port, making it a good candidate for a high speed NIDS. For
a subset of the experiments (c.f. Section 4.4.4) an almost identical platform is
used (Odroid XU3), that, contrary to the XU4, is equipped with energy sensors

136 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

Name Details
SmallFlows Appneta sample, 9.4 MB data, 1209 flows over a

5 minute duration.
BigFlows Appneta sample, 368 MB data, 40686 flows over a

5 minute duration.
ISCX12 131 The first 1 million packets from ISCX2012 on 13 of June,

634 MB of data from a data set that includes activity
from network infiltration.

ISCX12 121 The first 1.5 million packets from ISCX2012 on 12 of
June, 1.01 GB of data from a data set without malicious
activity.

ISCX12 12 Full The entire file from ISCX2012 on 12 of June, 4.22 GB
of data from a data set without malicious activity.

Table 4.1: The data sets used throughout the evaluation section.

but with a slower network card.
The Odroid would most likely be counted as quite powerful for consumer

IoT in the home, but its cost could be motivated for professional settings for
industrial IoT, especially if the node can run several functions for the network.
Moreover, accounting for the recent trends of development of the hardware
(i.e. Raspberry Pie 3), it is likely that these devices will also be common in the
consumer space.
Realistic Traffic Traces: We use publicly available data sets that capture a
realistic behaviour of network traffic for the experiments in this paper. Five
different capture files are used, as shown in Table 4.1. The first two traffic
traces (hereby named SmallFlows and BigFlows) come from Appneta [2], the
current developers of Tcpreplay. SmallFlows is a synthetic capture representing
a combination of different applications and BigFlows is a capture of real traffic
from a busy private network.

The other capture files come from ISCXIDS2012 [15, 16]. These data sets
are specifically designed to simulate real traffic in order to test and evaluate IDSs.
These capture files are larger, ranging from just a few up to several gigabytes.
As all capture files are publicly available, they form a repeatable baseline.
Rule sets: Unless otherwise stated, we use the 829 rules (each rule containing at
least one pattern) that are enabled by default in Snort’s community distribution.
In Section 4.4.2, we experiment with bigger sets of rules.
Metrics: First, we measure the throughput: how much traffic is processed
per unit of time (Section 4.4.2). We then measure the percentage of received
packets that are analyzed by the NIDS (either Snort or CLort), when capturing
live traffic from the network interface (Section 4.4.3). We also measure the

4.4. EVALUATION 137

smallFlows bigFlows ISCX12 131 ISCX12 121 ISCX12 121-full
Data sets

0

50

100

150

200

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(a) The overall throughput of CLort, across different data sets.

Default (829) Intermediate (2000) Full (3370)
Number of rules

0

50

100

150

200

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

(b) The overall throughput of CLort, for different numbers of rules

Figure 4.2: Throughput evaluation of CLort across different (a) data sets and
(b) number of rules.

power consumption (important consideration for IoT devices): what is the power
consumption of different hardware components when processing incoming traffic
(Section 4.4.4).

4.4.2 Evaluating throughput
The first set of experiments focus on throughput, by varying the traffic to be
analyzed as well as the number of rules in Snort.

(A) Overall throughput:

Figure 4.2a presents the processing throughput across different data sets, where
we measure the complete execution of Snort (Section 4.2.1) by reading the

138 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

pcap files from disk. In these experiments, we use the default number of rules
(829 rules). The experiments were repeated 5 times and we report the average
and the standard deviation of the measured throughput across all 5 runs.

First, both CLort versions that use the GPU consistently outperform the
CPU versions across all data sets in our experiments, suggesting that the GPU
is capable of accelerating the task of pattern matching. We achieve up to 52%
higher throughput compared to the CPU (modified) version of Snort, which is
significant, considering that: (i) we only offload pattern matching (step iv) from
Section 4.2.1, while the other steps of Snort’s processing (steps i-iii) are still part
of the measured time and (ii) we achieve it using resources (the embedded GPU)
that are already available on the platform.

Second, in almost all cases, the double buffering technique provides a perfor-
mance boost (up to 20%) compared to the single buffer approach. This means
that the double buffer optimization successfully overlaps the CPU and GPU
execution, keeping both processing units busy with useful work.

(B) Varying the number of rules:

By changing the number of rules, we can determine how it affects the Snort run-
time performance for scenarios with more rules than the default community rule
set (baseline, 829 rules). We enable all available rules that contain fixed string
patterns (3370 rules) and also create an intermediate set with 2000 randomly
chosen rules.

We run the experiments with several pcap files from Table 4.1, but only
include the ISCX12 121 data set as the results were similar across all runs. In
Figure 4.2b, both CLort versions that utilize the GPU continue to outperform the
CPU versions of Snort. Increasing the number rules reduces the raw throughput
of all versions as expected since the state machines grow larger and there is extra
processing work for the rest of Snort’s pipeline. In the case of the full rule set,
we see that the relative speedup achieved by CLort is smaller. This is because
many of the extra rules introduce processing that is not related to the search
engine that we parallelize (e.g. many of the rules involve regular expression
matching).

4.4.3 Sniffing the network

The experiments in Section 4.4.2 show that CLort has a higher processing
throughput when reading packets from a capture file. In this section, we test the
performance of CLort in a setting much closer to the way a NIDS is deployed in
practice by capturing traffic directly from the network.

4.4. EVALUATION 139

0 100 200 300 400 500 600
Produced traffic rate (Mbps)

65

70

75

80

85

90

95

100
Pe

rc
. o

f r
ec

ei
ve

d
pa

ck
et

s a
na

ly
ze

d
(%

)
Snort original
Snort modified (CPU)
CLort single buffer (GPU)
CLort double buffer (GPU)

Figure 4.3: Percentage of the received packets that CLort managed to analyze,
as we increase the rate at which we replay traffic.

The experimental setup is the following. We connect the Odroid XU4,
running CLort, to the span port of a switch (HP V1910-24G). As such, it sees
all traffic on the network segment handled by the switch. We then use a laptop
(MacBook Pro ’14) to replay the pcap files from the ISCX12 131 data set using
tcpreplay at different speeds. Also, versions of Snort and CLort use the default
set of 829 rules. The network segment also contains a dhcp server, so there is
spurious minimal traffic in addition to the traffic being replayed by the laptop.

There are several potential bottlenecks in the system: the hardware replaying
the pcap file, the switch handling the span port, the network card of the Odroid in
promiscuous mode, the kernel processing before handing the packets to the NIDS,
and finally the NIDS’s pipeline. To exclude problems beyond our improvements
of Snort, we measure the ratio between the packets that are received by the NIDS
and the ones that the NIDS successfully analyzes.

Figure 4.3 shows the percentage of the received packets that CLort and
Snort manage to analyze at various traffic rates. After approximately 70Mbps,
all versions start dropping packets. However, both versions of CLort are able
to process a larger portion of the received packets, up to 12% more than the
modified CPU version of Snort. These results show that the throughput gained
from using the GPU translates to CLort being able to handle more packets than
its CPU counterpart.

4.4.4 Evaluating energy consumption

The final part of the evaluation studies the energy consumption. The ODROID-
XU4 is unfortunately not equipped with power measuring sensors. For this

140 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

0 10 20 30 40 50 60 70 80 90
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)
Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(a) Power consumption on GPU

0 10 20 30 40 50 60 70 80 90
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
o
w

e
r

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(b) Power consumption on CPU(a15)

0 10 20 30 40 50 60 70 80 90
Time (s)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
o
w

e
r

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(c) Power consumption on RAM

0 10 20 30 40 50 60 70 80 90
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
o
w

e
r

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(d) Total power consumption

Figure 4.4: Power consumption measurements of the CPUs, GPU and RAM.

reason, we use an older version (ODROID-XU3 [11]) for the energy consump-
tion experiments. The ODROID-XU3 is equipped with the same processor setup
as well as the same GPU and CPU as the ODROID-XU4. The only significant
difference (for the power consumption tests) between these two hardware sys-
tems is that the network card is slower for the XU3 (100 Mbps instead of 1Gbps),
but the RAM speed and the memory bandwidth is faster. The RAM speed of
the ODROID-XU3 is 933Mhz and the memory bandwidth is 14.9GB/s, whereas
the RAM speed of the ODROID-XU4 is 750Mhz and the memory bandwidth is
12GB/s.

We measured the power consumption of the following three components:
CPU (A15), GPU and RAM memory with a sample rate of 100 samples/second
running the ISC12 121 data set using the default number of rules. Figure 4.4
summarizes the results, with one graph each for the CPU, GPU, RAM, along
with the total power consumption. Note that each sub-figure uses its own scale
on the y-axis.

As expected, looking at Figure 4.4a (the power consumption of the GPU
in isolation), we can see that only the GPU versions consume any power on

4.4. EVALUATION 141

Version Average Power (W) Total Energy
Consumed (Joule)

CLort GPU (double) 2.87 145.7
CLort GPU (single) 2.63 159.4
Snort CPU (modified) 2.91 215.6
Snort CPU (original) 2.83 217.5

Table 4.2: Average power draw and total energy consumed for each version.

the GPU, while the CPU versions consume little to no power on the GPU. The
double buffer version of CLort consumes slightly more power than the single
buffer, but for a shorter period of time.

The power consumption of the CPU (A15) in Figure 4.4b shows that the
CPU versions are almost equal in their execution time and they consume the
most power. The GPU versions utilize the CPU less; since the pattern matching
has been offloaded to the GPU, it leads to lower power consumption on the CPU.
The single buffer version consumes the least CPU power on average between
the different versions (close to 2 Watt) but runs longer than the double buffer
version.

Figure 4.4c shows the power consumed by the memory, where the range
on the y-axis is very small compared to the other components. In general, the
memory is responsible for only a small part of the power draw in all versions,
never more than 0.08 W. Notice that the original version of Snort consumes the
least amount of power on average. This is because all other versions include
extra memory operations to read and write packet data to the buffers.

Figure 4.4d shows the total, aggregated power consumption from the different
components. Overall, the CPU versions of Snort and the double buffer version
of CLort have almost the same average power draw, though the double buffer
version has a much shorter execution time. The single buffer GPU version
consumes the least amount of power (2.63 Watt on average).

Table 4.2 summarizes the average power consumption, along with the total
energy consumed during the execution time of each version. The single buffer
version of CLort consumes 9.8% less power on average than the CPU version
making it a better fit for scenarios where the power envelope is limited. On
the contrary, the double buffer version of CLort consumes less energy in total
(32.4% less than the CPU), since it is able to process traffic faster. This, and in
conjunction with the results from Section 4.4.3 makes it an appealing alternative
for scenarios where the traffic load is high and the total consumed energy must
be minimized.

142 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

4.5 Related work

Below we discuss related work, divided into two lines of work: NIDS on high-
end systems with GPUs and then NIDS on devices typical of IoT.

4.5.1 NIDS on GPUs

Over the years, significant efforts have focused on accelerating the functions of
a NIDS using high-end, desktop GPUs. The seminal work by Jacob et al. [6]
was the first to offload the pattern matching on the GPU. Due to the lack of
general-purpose GPU programming APIs at the time, they used graphics libraries
(OpenGL). Their prototype, PixelSnort, achieved at best a 40% increase in perfor-
mance when the CPU was under high load, but with no noticeable performance
gain under normal load. Moreover, their pattern matching algorithm is based
on the Boyer-Moore algorithm [3], which evaluates each pattern individually,
making it hard to scale for a large number of patterns.

More recent work takes advantage of the ease of programming and perfor-
mance offered by general purpose APIs such as OpenCL and CUDA. Vasiliadis
et al. [18] use CUDA and implement the Aho-Corasick algorithm to offload
pattern matching and Xie et al. [20] use OpenCL to implement a modified ver-
sion of Aho-Corasick (PFAC [9]). Apart from differences with our design, both
of these works target high-end GPUs, while we focus on resource-constrained,
embedded GPUs that share resources with the CPU (memory).

Another, interesting line of work focuses on how to make efficient use of
all the computing devices in the system and orchestrate the processing between
the CPU and the GPU. Vasiliadis et al. [19] present Midea, a system based
on Snort that makes use of highly parallel CPUs, multiple GPU devices and
networks cards. They also describe different optimization techniques to allevi-
ate bottlenecks, due to data transfers and synchronization. Jamshed et al. [7]
present Kargus, a similar, highly parallel system based on their own, custom
IDS. Recently, Papadogiannaki et al. [13] presented a scheduler that dynamically
distributes the packet processing workload across a system with heterogeneous
hardware resources (including both discrete and integrated GPUs). Finally, Go
et al. [4] also show that integrated GPUs are a cost-effective alternative for
packet processing. All the above-mentioned work achieve very high processing
throughput using high-end CPUs and GPUs and target large-scale networks or
even backbone traffic. Contrary, we focus on resource-constrained devices that
better fit the area of IoT networks.

4.6. CONCLUSIONS 143

4.5.2 NIDS on IoT related devices
Security for IoT and resource-constrained devices is an active research topic.
A project that examines the feasibility of using Snort for resource-constrained
devices, similar to the spirit of this work, is RPiDS by Sforzin et al. [14]. In this
work, a Raspberry Pi 2 running Snort to function as a portable IDS was thor-
oughly tested to evaluate the capacity of modern single-board-computers. The
measurements showed that the Raspberry Pi could run Snort without ever filling
its entire memory capacity. These results strengthen the argument that single-
board-computers are a reasonable choice for security in future IoT networks,
especially since it is expected that hardware improves with time. However,
when the authors experimented with live traffic they reported that there are
packet losses, even at low rates, which we also confirm in our experiments
(Section 4.4.3). This raises interesting questions on the bottlenecks involved in
the system that cause these losses. In this work, we take one step further and
show how more hardware feature available at these devices (e.g. the GPU) can
be used to improve the feasibility of a NIDS on resource-constrained devices
and reduce the above-mentioned packet losses.

Moving to even more low-end devices and cyber-physical systems, a large
body of work focuses on custom IDS that are tailored to the functionality of
such devices. One such example is Tabrizi et al. [17] that present a software
tool, which produces a customized IDS based on the memory capacity of the
targeted device. Given the user-defined security coverage functions, the security
properties of the system and memory requirements, the tool can produce an IDS
customized to operate on the specified system. The authors were able to produce
an IDS, tailored for an electrical smart meter, that operated on 4MB of memory.
However, different from this work, they propose an anomaly-based IDS and their
main focus is on minimizing memory consumption for low-end devices.

4.6 Conclusions
In this paper, we consider the security of the Internet-of-Things and address
the processing challenges that are part of Network Intrusion Detection Systems.
Specifically, we propose CLort, a system based on the latest release of Snort
(version 3.0) that is designed to tackle the processing needs of NIDS for high-end
IoT devices by offloading pattern matching to a GPU. We describe the system
design and the effects of various optimizations, such as a double-buffering
technique.

We thoroughly evaluate the performance of CLort under realistic traffic and
show that by using the GPU: (i) CLort achieves up to 52% faster processing

144 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

throughput than Snort (ii) is able to process up to 12% more packets from the
network interface under high load and, (iii) achieves the above while consuming
32% less energy than its CPU counterpart.

The work in this paper suggests a hardware-aware design that uses the GPU
capabilities offered by modern, high-end IoT devices is an appealing alternative
that strengthen security by alleviating the processing bottlenecks of security
countermeasures, such as network intrusion detection. The source code of CLort
is available at https://github.com/Arklights/Master

Acknowledgements
The research leading to these results has been partially supported by the Swedish
Civil Contingencies Agency (MSB) through the project “RICS” and by the Eu-
ropean Community Horizon 2020 Framework Programme through the UNITED-
GRID project under grant agreement 773717. We also thank Simon Kindström
for his help with the energy measurements.

Bibliography
[1] Alfred V. Aho and Margaret J. Corasick. Efficient String Matching: An Aid to

Bibliographic Search. Commun. ACM, 18(6):333–340, June 1975.

[2] Appneta. Sample captures. http://tcpreplay.appneta.com/wiki/c
aptures.html/ [Accessed: 2018-09-18].

[3] Robert S. Boyer and J. Strother Moore. A Fast String Searching Algorithm. Commun.
ACM, 20(10):762–772, October 1977.

[4] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho Hwang,
and KyoungSoo Park. Apunet: Revitalizing GPU as packet processing accelerator.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 83–96, Boston, MA, 2017. USENIX Association.

[5] GPGPU. General-Purpose Computation on Graphics Hardware. http://gpgpu.
org [Accessed: 2018-07-19].

[6] Nigel Jacob and Carla Brodley. Offloading IDS Computation to the GPU. In 22nd
Annual Computer Security Applications Conference (ACSAC’06), pages 371–380,
Dec 2006.

[7] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin
Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: A Highly-scalable
Software-based Intrusion Detection System. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 317–328,
New York, NY, USA, 2012. ACM.

https://github.com/Arklights/Master
http://tcpreplay.appneta.com/wiki/captures.html/
http://tcpreplay.appneta.com/wiki/captures.html/
http://gpgpu.org
http://gpgpu.org

BIBLIOGRAPHY 145

[8] Khronos group. OpenCL Overview. https://www.khronos.org/opencl/
[Accessed: 2018-07-19].

[9] Cheng-Hung Lin, Chen-Hsiung Liu, Lung-Sheng Chien, and Shih-Chieh Chang.
Accelerating Pattern Matching Using a Novel Parallel Algorithm on GPUs. IEEE
Transactions on Computers, 62(10):1906–1916, Oct 2013.

[10] NVIDIA. About CUDA. https://developer.nvidia.com/about-
cuda [Accessed: 2018-07-19].

[11] ODROID-XU3. ODROID-XU3. http://www.hardkernel.com/mai
n/products/prdt info.php?g code=g140448267127 [Accessed:
2018-06-08].

[12] ODROID-XU4. ODROID-XU4 User Manual. https://magazine.odr
oid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
[Accessed: 2018-03-28].

[13] Eva Papadogiannaki, Lazaros Koromilas, Giorgos Vasiliadis, and Sotiris Ioannidis.
Efficient software packet processing on heterogeneous and asymmetric hardware
architectures. IEEE/ACM Transactions on Networking, 25(3):1593–1606, June
2017.

[14] Alessandro Sforzin, Félix Gómez Mármol, Mauro Conti, and Jens-Matthias
Bohli. RPiDS: Raspberry Pi IDS - A Fruitful Intrusion Detection System for
IoT. In 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, July 18-21,
2016, pages 440–448, 2016.

[15] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Intrusion
detection evaluation dataset (ISCXIDS2012). http://www.unb.ca/cic/d
atasets/ids.html [Accessed: 2018-05-08].

[16] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion detection.
Computers & Security, 31(3):pp. 357–374, 2012.

[17] Farid Molazem Tabrizi and Karthik Pattabiraman. Flexible Intrusion Detection
Systems for Memory-Constrained Embedded Systems. In 2015 11th European
Dependable Computing Conference (EDCC), pages 1–12. IEEE, Sept 2015.

[18] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P.
Markatos, and Sotiris Ioannidis. Gnort: High Performance Network Intrusion
Detection Using Graphics Processors. In Recent Advances in Intrusion Detection:
11th International Symposium, RAID 2008, Cambridge, MA, USA, September 15-
17, 2008. Proceedings, pages 116–134, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

https://www.khronos.org/opencl/
https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
http://www.unb.ca/cic/datasets/ids.html
http://www.unb.ca/cic/datasets/ids.html

146 CHAPTER 4. CLORT: NETWORK INTRUSION DETECTION WITH EMBEDDED GPUS

[19] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. Midea: A multi-
parallel intrusion detection architecture. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, New York, NY, USA, 2011.
ACM.

[20] Hongying Xie, Yangxia Xiang, and Caisen Chen. Parallel Design and Performance
Optimization based on OpenCL Snort. In Proceedings of the 2017 2nd Joint
International Information Technology, Mechanical and Electronic Engineering
Conference, JIMEC, 2017.

PAPER IV

Charalampos Stylianopoulos, Simon Kindström, Magnus Almgren,
Olaf Landsiedel, Marina Papatriantafilou

Co-Evaluation of Pattern Matching Algorithms on IoT
Devices with Embedded GPUs

Adapted version of the paper that appeared in the Proceedings of the 35th
Annual Computer Security Applications Conference (ACSAC), pp. 17–27, ACM

2019.

5
Co-Evaluation of Pattern Matching

Algorithms on IoT Devices with
Embedded GPUs

149

150 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

Abstract

Pattern matching is an important building block for many security applica-
tions, including Network Intrusion Detection Systems (NIDS). As NIDS grow
in functionality and complexity, the time overhead and energy consumption of
pattern matching become a significant consideration that limits the deployabil-
ity of such systems, especially on resource-constrained devices. On the other
hand, the emergence of new computing platforms, such as embedded devices
with integrated, general-purpose Graphics Processing Units (GPUs), brings new,
interesting challenges and opportunities for algorithm design in this setting: how
to make use of new architectural features and how to evaluate their effect on
algorithm performance. Up to now, work that focuses on pattern matching for
such platforms has been limited to specific algorithms in isolation.

In this work, we present a systematic and comprehensive benchmark that
allows us to co-evaluate both existing and new pattern matching algorithms on
heterogeneous devices equipped with embedded GPUs, suitable for medium-
to high-level IoT deployments. We evaluate the algorithms on such a heteroge-
neous device, in close connection with the architectural features of the platform
and provide insights on how these features affect the algorithms’ behavior. We
find that, in our target embedded platform, GPU-based pattern matching algo-
rithms have competitive performance compared to the CPU and consume half
as much energy as the CPU-based variants. Based on these insights, we also
propose HYBRID, a new pattern matching approach that efficiently combines
techniques from existing approaches and outperforms them by 1.4x, across a
range of realistic and synthetic data sets. Our benchmark details the effect of
various optimizations, thus providing a path forward to make existing security
mechanisms such as NIDS deployable on IoT devices.

5.1 Introduction

With the widespread adoption of Internet of Things (IoT) technologies, an in-
creasing number of devices are equipped with the ability to communicate and
connect to the Internet. While promising increased efficiency and flexibility,
connected devices are vulnerable, as shown by recent attacks that specifically
targeted IoT devices such as connected cameras and thermostats [31, 42]. Pro-
tecting such devices with well-established security mechanisms such as network
intrusion detection systems (NIDS) is necessary. Yet, such mechanisms are
hard to deploy on these devices, because their core function depends on pattern
matching, a bottleneck that needs significant resources (more than 70% of the

5.1. INTRODUCTION 151

running time of the system may be spent on pattern matching [2]).
In the context of NIDS, pattern matching algorithms scan the packet payload

(Deep Packet Inspection) and detect any occurrence of malicious string signatures
(known in advance) in the stream of packets. Pattern matching algorithms
are often studied in close relation with the hardware platforms, because the
characteristics of the target platform play an important role on performance.
This is evident by the number of algorithms in the literature that target specific
platforms or build on optimizations that utilize specific characteristics, e.g., CPU
caches [10], vector instructions [37], FPGAs [36] or hardware accelerators [21].

In IoT deployments, one can find significant hardware diversity from the
edge to the core of the network. For example, the introduction of new computing
approaches with new hardware diversity in the fog increases the design space
for pattern matching algorithms and offers new capabilities for improvements of
performance. This is leveraged in recent research [32] with algorithms tailored
to medium-ranged embedded platforms, such as Raspberry Pi or Odroid [6]. The
latter platform offers an interesting combination of an IoT board equipped with an
embedded, programmable Graphics Processor Unit (GPU). Such medium/high
range IoT devices can take the role of NIDS boxes, protecting a network of
resource-constrained devices closer to the edge of that network.

However, challenges remain and the feasibility of such platforms for NIDS is
not established yet, especially with respect to performance, since their hardware
characteristics are different from the well-studied high-end platforms. First,
significant effort is required to take an algorithm for a particular hardware and
change it to run well on another type of hardware. Given the development effort,
it would be favorable to better understand what algorithms to port and how.
Secondly, it is not clear how different optimizations translate across hardware.
For example, the design of many pattern matching algorithms (e.g. [10, 37, 41])
is driven by specific features of the target architecture, such as cache sizes and
vector execution units, so it is unclear how they perform on a different system.
Thirdly, most work is documented in isolation, with specific data, and within a
specific framework.

As such, a common methodology for benchmarking algorithms tailored
for fog-layer devices is needed, to understand possibilities and limitations of
the hardware itself, as well as the effects of algorithm engineering and, most
importantly, the interplay of the algorithm and the hardware features.

Contributions: In this work we present a co-evaluation of various pattern
matching algorithms on a heterogeneous computing platform. We target a
medium range embedded device (an Odroid XU3) that is equipped with a pro-
grammable GPU, i.e., a GPU that can support general-purpose computing.

• We design a benchmark that facilitates a systematic comparison between

152 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

different pattern matching algorithms, using realistic data sets that capture
real NIDS workloads.

• We co-evaluate well-known CPU and GPU based algorithms, including
our own GPU adaptation of a state of the art CPU based algorithm (DFC).

• We evaluate the effect of different platform-specific optimizations and
parameters in the performance of the algorithms, both in terms of execution
time as well as energy consumption, to guide the community in future
research.

• Based on our methodology, we were also able to create a new algorithm,
HYBRID, that effectively combines the benefits of existing approaches
and achieves up to 1.4x speedup in pattern matching compared to the best
GPU baseline.

The remainder of the paper is organized as follows: in Section 5.2 we
discuss the general aim and design considerations of the benchmark. Section 5.3
summarizes the algorithms included in our benchmark, both existing as well
as new ones. Section 5.4 provides details on the target hardware and discusses
relevant optimizations. In Section 5.5 we present and discuss the benchmark
results. We present related work in Section 5.6 and conclude in Section 5.7.

5.2 Benchmarking aim and considerations
This section discusses the high-level design considerations for our benchmark
and serves as a guideline for the general methodology followed in our work. We
motivate the aim of the benchmark, the choice of algorithms and the steps we
consider towards a fair and useful comparison between them.

Utilization of the target platform. The aim of this benchmark is to analyze
the performance of pattern matching algorithms on a specific set of newly
introduced hardware platforms: embedded devices with integrated GPUs that
support General Purpose GPU computing (GPGPU). Originally designed for
processing graphics, in the last decade, GPUs have been proven particularly
successful in accelerating general-purpose workloads as well, mostly due to
their highly parallel architecture. Their popularity increased further with the
introduction of libraries that simplify the writing of GPU programs, namely
CUDA [28] and OpenCL [16]. We focus on algorithms that are written or can
be ported to OpenCL, since it is the library that the hardware supports (c.f.
Section 5.4).

5.2. BENCHMARKING AIM AND CONSIDERATIONS 153

Choice of algorithms. Each pattern matching algorithm follows a different
approach, but most of them fall into two main categories: state machine based
approaches and filtering based ones. The first category involves variants of the
Aho-Corasick algorithm (c.f. next section), where a state machine is created
out of the patterns and traversed based on the input. On the contrary, filtering
based approaches try to quickly isolate parts of the input that do not contain any
matches and spend more resources on the parts that might potentially match with
one of the patterns.

In the benefit of covering a wide spectrum of approaches and gaining insights
from how different algorithms perform on the device we target in this work, we
pick representative algorithms from both families. The description of the chosen
algorithms follows in the next section.

General and platform-specific parameters and characteristics. The de-
sign and performance of the algorithms mentioned above are greatly affected
by the system parameters and the characteristics of the target architecture. Each
family of algorithms is affected by those characteristics to a different extent.
Thus, it is important to examine the effect of a variety of parameters on al-
gorithms from different families, especially when targeting architectures with
unique characteristics such as the one we use in our work. In Section 5.4 we
discuss the architecture characteristics and the parameters that are relevant to
examine.

Use of realistic data sets and patterns. The performance of pattern match-
ing algorithms for NIDS is often highly data-dependent and fluctuates based on
i) the number and size of patterns used, and ii) the type of traffic that is monitored,
e.g., randomly generated data versus captured traffic from actual deployments.
Knowing the type of traffic and how the performance of each algorithm will be
affected beforehand is hard. However, it is important to experiment with sets of
traffic and patterns that are as close to the ones found in real life as possible. We
use publicly available data sets that simulate traffic from real deployments, as
well as patterns taken directly from the official pattern distributors for Snort [35],
the de-facto NIDS. We refer to Section 5.5 for more information on the choice
of data sets and patterns.

Identical functionality. Putting different algorithms together under the
same fair and meaningful framework is not trivial. Often, algorithms are de-
signed with different requirements in mind, e.g., reporting all the matches and
their positions in the input, versus just reporting how many matching patterns
the input contains. It is hard to judge which functionality to implement, since
different applications of those pattern matching algorithms might have different
requirements. However, it is important to ensure that we keep the same function-
ality for the algorithms we compare in this benchmark. For this reason, we have

154 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

manually inspected the compared versions and rewritten parts of them to ensure
that the different implementations have identical functionality.

In later sections we will return to the considerations mentioned above and
discuss some of their implementation details.

5.3 Considered algorithms & novel designs
Since this benchmark focuses on NIDS applications of pattern matching, we
consider algorithms that have been designed or used in NIDS workloads. As
previously mentioned, we cover algorithms from the two main pattern matching
algorithm families: state machine based and filter based.

The algorithms chosen from the literature are representative of methods that
can benefit from different architectural features of the computing platform, such
as the high parallelism/latency hiding of the GPU as well as cache memories.
Based on insights from the existing approaches and their properties in hetero-
geneous computing platforms, we also introduce a new method, which we call
HYBRID, that aims to combine the benefits of the two. This algorithm will also
be part of our benchmark. The algorithms are summarized in Table 5.1, where
we also specify the code repository (if applicable) as well as the effort to adapt
the code to the evaluation.

5.3.1 State machine based algorithms: Aho-Corasick and Par-
allel Failure-less Aho-Corasick

One of the most well-known algorithms for pattern matching is Aho-Corasick
(AC) [1]. Aho-Corasick has a preprocessing stage where it builds a Finite State
Automaton (FSA), in other words a state machine, with all patterns. However
the FSA differs from a normal FSA as failure transitions are also added. These
failure transitions occur when there is a mismatch between the input and the
state machine, and point to the state sharing the longest common prefix with the
current state. During processing, one character at a time is read from the input
and used to determine the next state, using a state transition table that represents
the state machine. An example of Aho-Corasick’s state machine is shown in
Figure 5.1. The arrows between each branch indicate failure transitions.

Aho-Corasick is a simple way of performing multiple pattern matching that
requires a small number of operations per byte. However, storing all the states
and their transitions requires significant memory [26, 27]. Because of the large
memory requirements, many cache misses occur during state transitions [26].
Nonetheless, AC is often used in practice and a variant of AC is used in NIDS

5.3. CONSIDERED ALGORITHMS & NOVEL DESIGNS 155

Acronym Algorithm Family Code
Programming

Comment
Effort

AC
(CPU)

Aho-
Corasick [1]

state ma-
chine

Snort
repo [34]

low CPU baseline,
used in Snort

DFC
(CPU)

Direct Fil-
ter Classifi-
cation [10]

filter [10,37] low CPU baseline
(filter-based)

PFAC
(GPU)

Parallel
Failureless
AC [21]

state ma-
chine

[4] medium code required
some work
to adapt to
benchmark

DFC
(GPU)

Direct Fil-
ter Classifi-
cation [37]

filter [37] high our own
algorithm
implementa-
tion (the first
implementa-
tion of DFC
for the GPU)
based on [37]

HYBRID
(GPU)

Mix of
DFC and
PFAC

mixed this pa-
per

high our own de-
sign: a hy-
brid combin-
ing DFC and
PFAC, target-
ing the GPU

Table 5.1: A summary of the evaluated algorithms and their acronyms.

such as Snort [35]. We include Aho-Corasick as a CPU-based baseline in our
benchmark, due to its widespread use.

Parallel Failure-less AC (PFAC) is a parallel implementation of Aho-Corasick
with a focus on GPUs [21]. In PFAC, every GPU thread starts from a single
character and follows the state transitions until a match is detected or the state
machine has returned to the original state, indicating there was not a match
starting from that character. The state machine in PFAC is simplified compared
to that of Aho-Corasick in that the failure transitions are removed and each
pattern is an individual branch in the state machine. PFAC spawns many threads
(up to one thread per input character) but most of them will quickly detect no
matches and exit. Algorithm 5.1 shows a highly simplified pseudo-code version
of PFAC.

One reason that makes PFAC an interesting algorithm to include in this
benchmark is the fact that it has been evaluated on resource-constrained em-

156 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

Figure 5.1: Aho-Corasick state machine for the patterns AC, ACFE, CF and
FKL.

bedded GPUs, similar to the ones we target in this paper. Aragon et al. [4]
implement PFAC in OpenCL and evaluate it on an ARM Mali GPU, considering
various optimizations. In this work, we build upon this evaluation and extend it
with more algorithms and insights.

5.3.2 Filter based algorithms: DFC and V-Patch

The motivation behind filter based algorithms is to create small filters that
can quickly determine and discard parts of the input that do not contain any
matches, in a quick and cache-efficient way, contrary to the cache-inefficient
data structures of state machine based algorithms.

Direct Filter Classification (DFC) is a state of the art, memory and cache
efficient pattern matching algorithm implemented on CPUs, using Direct Filters
(DFs) [10]. A Direct Filter is a bitmap that summarizes some consecutive bytes
from the pattern, and is small enough to be cache resident. A 2 byte DF will use
2 consecutive bytes from a pattern, e.g., the first or last two bytes, to index a bit
in the bitmap.

DFC performs matching in multiple phases: filtering and verification. In the
filtering phase, a window of two bytes is slid over the input, summarized and
matched to the filter. If the window matches, additional DFs requiring more bytes

5.3. CONSIDERED ALGORITHMS & NOVEL DESIGNS 157

Algorithm 5.1. High level pseudo-code of PFAC.

1 for each character C in input stream do
2 find the first state based on character C
3 while no patterns found AND state not reset to 0 do
4 read next character
5 traverse the state machine
6 end
7 end

Algorithm 5.2. High level pseudo-code of DFC.

1 for each character C in input stream do
2 feed C (and neighbouring character) through a series of filters
3 if there is a hit in the filters then
4 do verification
5 end
6 end

for indexing may be used to check that it really is a match. The verification phase
performs exact matching using a compact hash table with efficient indexing.
Unlike other filter based algorithms (e.g. FFBF [26]), DFC works with patterns
of any length and avoids expensive hash computations for indexing the filters.
Algorithm 5.2 shows a highly simplified pseudo-code version of DFC.

Since its inception, DFC has been the basis for further improvements on
its filter design and its ability to utilize features of the architecture, such as
vectorization. Stylianopoulos et al. [37] re-design the filter architecture of DFC
(S-Patch) to better fit realistic traffic scenarios and allow for a vectorizable design
(V-Patch), which leads to an increased throughput of up to 3.6x compared to the
original DFC algorithm.

In this work, we implemented our own GPU version of DFC. We based
our filter design on the CPU filtering design of S-Patch [37]. Such a GPU
implementation is not straight-forward and involves re-factoring the CPU version
and orchestrating the communication between the CPU and the GPU. We briefly
mention here that the data structures that hold the series of hash tables used
in the verification version of DFC need to be serialized so that they can be
transferred to the GPU. Moreover, the results of the pattern matching kernel on
the GPU are stored in a buffer that indicates whether or not there was a match,
for each character in the input. Those results are later transferred to the CPU and
processed there.

158 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

Algorithm 5.3. High level pseudo-code of HYBRID.

1 for each character C in input stream do
2 feed C (and neighbouring character) through a series of filters
3 if there is a hit in the filters then
4 find the first state based on character C
5 while no patterns found AND state not reset to 0 do
6 read next character
7 traverse the state machine
8 end
9 end

10 end

We include in our experiments both the CPU version of DFC, as a baseline,
as well as our own GPU algorithm implementation. Upon these implementations,
we evaluate and discuss the effect of different optimizations and algorithm
engineering methods.

5.3.3 A hybrid approach

In addition to algorithms from the two different families described above, in this
work we also introduce a new approach, HYBRID, that borrows the benefits of
both families.

The new, albeit simple idea behind this approach is to filter the input using
one filter, similar to the ones used in DFC and then perform PFAC-based pattern
matching only on the parts of the input that cause a hit in the filters. The
motivation behind this scheme is that it combines: (i) the good cache locality
of filter based approaches, allowing us to quickly filter out most of the input
(c.f. Section 5.5.5) and (ii) the ability to avoid the costly verification part of
DFC by falling back to PFAC which uses only a minimum number of operations
(jumps from one state to the other). The fact that, in PFAC, we can traverse
the automaton starting from any individual character in the input (contrary to,
e.g., Aho-Corasick), makes it possible to pipeline the execution of PFAC with
that of DFC, by starting an automaton traversal only where there is a hit in the
filter. Algorithm 5.3 shows a highly simplified pseudo-code version of HYBRID.
The HYBRID algorithm is a result of the insights gained from the benchmark
described in this paper.

5.4. HARDWARE-ORIENTED ALGORITHM OPTIMIZATIONS 159

5.4 Hardware-oriented algorithm optimizations

In this section, we provide details on the architecture of the target platform and
discuss relevant algorithm engineering methods that make use of the architectural
features.

5.4.1 Overview of the target platform

We use the ODROID-XU3 [6] to execute all tests. The XU3 uses the Exynos 5
Octa (5422) chip that has a quad-core ARM Cortex-A15 and quad-core ARM
Cortex-A7, along with 2GB of RAM. The Exynos 5422 is used in one variant
of the Samsung Galaxy S5, showing that the XU3 is a reasonable choice for a
more powerful embedded device today. It also suggests that hardware and the
pattern matching algorithms considered in this paper could also be used, e.g.,
in scanning malicious mobile applications. The most important reason as to
why we use the XU3 is because it possesses a GPU that allows General-Purpose
computing on Graphics Processing Units (GPGPU). Further reasons are that it
has a high-speed Ethernet port, allowing for high-speed network sniffing. We
chose the Odroid XU3 over the newer XU4 model (that has the same CPU and
GPU) because the former has on-board energy sensors that allow us to easily
measure the energy consumed.

The XU3’s variant of the GPU is a Mali-T628 MP6 [5] that has 6 cores
(much less than the typical high-end discrete GPUs). These shader cores may be
programmed using OpenCL. The GPU does not have a separate device memory
but share the same physical memory as the CPU [7]. Moreover, any shared or
local memory on the GPU is actually mapped in the global memory instead.
Each core has L1 and L2 memory caches to remedy the cost of always accessing
the global memory. These caches have a 64-byte cache line. There are two
16KB L1 caches for each core, one used for generic memory accesses and one
for texture memory. Another unique feature of the Mali GPU is that there is
Single Instruction Multiple Data (SIMD) parallelism supported within each GPU
thread. Finally, each GPU thread has a separate instruction counter, meaning
that divergent execution is not a problem on the Mali-GPU [7]. Architectures
with similar features (e.g. shared memory between the CPU and the GPU) are
also available from NVIDIA [29] and we expect similar performance trends.

Based on the above the description, the Odroid XU3 platform is a relatively
powerful single board computer that belongs to the medium/high range of IoT
devices. Although the architecture and the capabilities of the device are far
different from those of the typical end-point, resource-constrained sensors (that
are usually powered by ARM Cortex-M or similar processors), medium/high

160 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

Configurations

Acronym Description Effort Comment
MAP The use (or not) of memory map-

ping to avoid data transfers.
low Done through the OpenCL

API
THR Thread granularity. low Done through the OpenCL

API
MEM Type of memory used to

store the filters of DFC
(GLOBAL/LOCAL/TEXTURE).

high Using texture memory re-
quires data structure re-
arrangement

VEC The use (or not) of vectorization
in the GPU kernel.

high Vectorization requires
code refactoring

WG Work group size. low Done through the OpenCL
API

Table 5.2: A list of optimizations and their acronyms used throughout the
evaluation.

range devices have a central role in the IoT context, as they can play the role
of cluster-heads or gateways to a network of less powerful end-nodes. Also,
platforms like the Odroid XU3 fit in the fog computing [11] context, as an
intermediate layer between the cloud and the edge network.

5.4.2 Relevant algorithm optimizations
In this section, we discuss optimizations that are relevant to explore and relate to
(i) features of the architecture and (ii) possibilities for the evaluated algorithms
to make good use of those features. A similar discussion on some of these
parameters can also be found in the work by Aragon et al. [4]. We extend their
discussion with more parameters to also consider the use of texture memory for
storing the relevant data structures, as well as the use of vectorization, as it has
shown promise for CPU-based algorithms [37]. In Section 5.5.2 we evaluate the
effect of each of the optimizations described in detail in the following sections.
They are also summarized in Table 5.2, with a comment on how they were
realized and the corresponding effort.

Reducing memory transfers (MAP): Memory transfers between an OpenCL
host (CPU) and OpenCL device (GPU) is often the bottleneck in GPGPU appli-
cations [13]. In most cases, memory transfers include a copy of data from the
physical memory of the host to that of the GPU. The platform we target here
offers an interesting way to alleviate this problem. The GPU shares the same
physical address spaces as the CPU, making memory copies redundant. A naive
use of the OpenCL API would still force the driver to perform memory copies

5.5. EVALUATION 161

of the data to be transferred. Instead, it is possible to map a memory region
(through the OpenCL API) to make it accessible from the GPU and then map it
back to the CPU to read the results.

Increasing work per thread (THR): An issue with having each thread
handle a single character, is that many threads are spawned. This is not a free
operation, costing time and energy. By having each thread process multiple
characters, fewer threads are needed.

Utilizing local memory (MEM LOCAL/GLOBAL): The GPU local mem-
ory is shared between each work-item in a workgroup and is often faster to access
than the global memory. As described earlier, the target platform does not have
dedicated local memory and references to local memory are served by the global
memory instead. Nonetheless, we experiment with local memory to show how
optimizations that would be beneficial on high-end GPUs can actually have a
negative impact on embedded platforms like ours.

Utilizing texture memory (MEM TEXTURE): An additional optimization
strategy used in this work is to utilize the texture memory, an on-chip memory
designed to quickly serve addresses that have spatial locality. As there is a
separate L1 cache for textures (16KB) in the XU3, one may increase the cache
hits further by storing one or more DF as a texture. It is worth noting that storing
the filters in texture memory results in the need for some additional registers
and computations to retrieve the one bit of interest, potentially reducing the gain
from better cache locality.

Vectorized execution (VEC): As mentioned earlier, each GPU thread can
operate on multiple elements at a time in a SIMD fashion. In this work we
implement and evaluate a vectorizable version of DFC, based on V-Patch [37],
and HYBRID. In this version, the filtering is done on multiple (in this case eight)
elements at the same time. Notice however that some parts of the filtering are
still done in scalar code, due to the lack of special vector instructions such as the
gather instruction [25], which is important for the implementation of V-Patch.

Altering OpenCL workgroup size (WG): Another variable is the size of
the OpenCL workgroup [7]. Fewer workgroups should result in a lower overhead
for maintaining them, but more results in better latency hiding. The size of a
workgroup is usually a maximum of 256, as is the case on the ODROID-XU3.

5.5 Evaluation

In this section we co-evaluate the algorithms presented in Section 5.3 under the
same benchmark. We start by describing the methodology followed throughout
the experiments. Then we focus on DFC (which has not been previously studied

162 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

in a GPU context) and study the effects of different optimizations. We then
report and discuss the overall performance comparison between the different
versions, as well as how the performance changes across different data sets and
number of patterns. Finally, we discuss some insights from the execution of
HYBRID.

5.5.1 Evaluation methodology
In our study we use the Odroid XU3, presented in Section 5.4, to run all experi-
ments. We test the algorithms using the three following publicly available data
sets that represent realistic traffic traces:1

• 162MB of HTTP traffic from the DARPA 2000 data set [20] (unless
otherwise stated, this data set is used)

• 100MB of traffic from the ISCX 2012 data set [12, 33], and

• 100MB of traffic from the BigFlows data set [3].

We also test against 100MB of randomly generated data. In all cases the algo-
rithms read the data from a file in chunks of 25MB each and the cost of reading
the data is included in the measurements.

The set of malicious patterns to be matched are taken directly from Snort v2.9:
we use a set of 2183 HTTP-related patterns from the default Snort distribution,
as well as 5000 randomly chosen patterns from emergingthreats.net.
Unless otherwise stated, the set of 2183 patterns is used for experiments.

Due to restrictions in OpenCL, statically allocating enough space to fit the
longest possible pattern would be wasting memory resources. For this reason,
we use no pattern longer than sixty-four (64) characters and remove any instance
longer than this threshold. This choice is motivated by the distribution of pattern
lengths in the first and second pattern data set, which is shown in Figures 5.2a
and 5.2b respectively. In the case of the patterns from emergingthreats.ne
t, the longest pattern is 513 characters, while most are much much shorter than
that. Removing any pattern longer than 64 characters removes approximately 80
and 500 from the first and second pattern data set respectively. This decision to
remove excessively long patterns is similar to what happens in systems such as

1We are aware of the artifacts in the DARPA 2000 set, and the discussions in the community
about its suitability for measuring the detection capability of intrusion detection systems [23, 24].
In our experiments, we use it only for the purpose of comparing execution time and energy usage
between algorithms, allowing for future comparisons on a known and easily-available dataset.

emergingthreats.net
emergingthreats.net
emergingthreats.net

5.5. EVALUATION 163

0 50 100 150 200 250 300
Pattern length

0

20

40

60

80

100

120

140

160
Pa

tte
rn

 c
ou

nt

(a) Snort HTTP patterns

0 100 200 300 400 500
Pattern length

0

200

400

600

800

1000

Pa
tte

rn
 c

ou
nt

(b) All patterns from emergingthreats.net

Figure 5.2: Distribution of pattern lengths. Red line signifies 64 characters. Both
pattern sets consist mostly of short patterns, less than 64 characters long.

emergingthreats.net

164 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

Snort, where long patterns are truncated and only shorter versions of them are
used in the pattern matching engine.

In order to ensure a fair comparison between the algorithms based on the
considerations mentioned in Section 5.2, we have ensured that all versions have
identical functionality, i.e., they all count the number of patterns that are matched
in the input.

Finally, our main performance criterion used to compare the different ver-
sions is the execution time of the algorithm as a whole, which includes: reading
data from a file, performing pattern matching, counting the number of matches
and, for the GPU versions, mapping memory between the CPU and the GPU.
We do not include the cost of pre-processing, e.g., building the state machines of
PFAC or the filters of DFC, since this happens offline before deployment. When
measuring energy consumption, we gather measurements, using the on-board
energy sensors of the device, at a rate of 100Hz.

5.5.2 Deciding parameters for DFC

It is important to understand how the characteristics of the target platform affect
the performance of the algorithms and allow for different optimizations. This
analysis has been done already for PFAC by Aragon et al. [4], but not for DFC
since we are the first to implement a GPU version of it. Therefore, we follow
the approach of Aragon et al. and we present, in Table 5.3, the effects of the
optimizations discussed in Section 5.4 on DFC’s performance.

In order to limit the number of different configurations that need to be ex-
amined, we follow a greedy approach: we change one parameter until we find
the value for which we get the best performance, i.e., the smallest TOTAL ex-
ecution time, then keep that value and move on with the next parameter. The
configurations and their effect in Table 5.3 are described below. In the results
section of the table we report the time it takes to write/read data to/from the
device (WRITE/READ), the execution time of the kernel (KERNEL) that imple-
ments pattern matching on the GPU, and the total measured time (TOTAL), as
well as the energy consumed (ENERGY). Yellow boxes indicate configurations
that improve the overall performance (TOTAL time) compared to the previous
configuration, while red boxes indicate changes in configuration that do not have
a positive effect on performance.

Reducing Memory transfers (MAP): The MAP configuration option is
binary (yes/no) reflecting whether we use map to reduce memory copies. Overall,
mapping memory instead of copying it has the most significant effect, seen from
the reduction in the time it takes to read/write data to/from the device. This is
expected since, as previously mentioned, the CPU and the GPU share the same

5.5. EVALUATION 165

C
on

fig
ur

at
io

ns
R

es
ul

ts
Im

pr
ov

em
en

t

M
A

P
T

H
R

M
E

M
V

E
C

W
G

W
R

IT
E

R
E

A
D

K
E

R
N

E
L

TO
TA

L
E

N
E

R
G

Y
E

X
E

E
N

E
(m

s)
(m

s)
(m

s)
(m

s)
(J

)

N
O

1
G

L
O

B
N

O
12

8
43

1
48

70
25

96
11

17
0

28
67

1
1

Y
E

S
1

G
L

O
B

N
O

12
8

19
8

94
5

26
61

67
87

18
06

1.
65

1.
59

Y
E

S
8

G
L

O
B

N
O

12
8

19
5

67
8

18
29

41
18

99
1

2.
71

2.
89

Y
E

S
16

G
L

O
B

N
O

12
8

19
5

65
4

15
99

37
90

92
3

2.
95

3.
11

Y
E

S
24

G
L

O
B

N
O

12
8

19
6

65
3

14
88

36
70

87
5

3.
04

3.
28

Y
E

S
32

G
L

O
B

N
O

12
8

19
4

64
4

14
27

34
51

85
4

3.
24

3.
36

Y
E

S
40

G
L

O
B

N
O

12
8

19
6

64
8

14
06

34
40

84
5

3.
25

3.
39

Y
E

S
48

G
L

O
B

N
O

12
8

19
6

64
7

14
12

34
64

84
5

3.
22

3.
39

Y
E

S
40

L
O

C
N

O
12

8
19

4
64

3
62

67
84

11
22

38
1.

33
1.

28
Y

E
S

40
T

E
X

N
O

12
8

19
7

64
6

17
77

38
97

99
6

2.
87

2.
88

Y
E

S
40

G
L

O
B

Y
E

S
12

8
19

1
63

7
20

65
41

72
10

95
2.

68
2.

62
Y

E
S

40
G

L
O

B
N

O
64

19
6

64
5

16
74

37
84

90
5

2.
95

3.
17

Y
E

S
40

G
L

O
B

N
O

25
6

19
6

64
5

14
35

35
01

87
0

3.
19

3.
29

Table 5.3: Summarized configuration impact for GPU version of DFC, similar
to the evaluation methodology followed in [4]. Changes in configuration that
result in reduction in execution time are marked with green, whereas changes
that increase execution time are marked in red.

166 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

physical memory which makes memory copies redundant.
Increasing work per thread (THR): The THR configuration option con-

trols the thread-granularity, i.e., how many characters each GPU thread processes.
It is varied from 1 character per thread to 48. Increasing the thread granularity
to more than one character per thread resulted in a great decrease in the kernel
execution time, since there is now more work for each thread to do, instead of
exiting early. However, at a certain point there are too few threads to keep the
hardware pipeline busy and performance decreases.

Utilizing global, local or texture memory (MEM): The MEM configura-
tion option has three cases, reflecting the type of memory where the filters are
stored, i.e. global, local, or texture memory. As expected, using local memory to
store the filters had a negative effect on performance, because the local memory
in the Mali GPU is simulated by global memory. Moreover, this simulation
seems to come at a cost in that the local memory is more expensive than the
global memory with the same overall settings (which was also observed by
Aragon et al. [4]). Surprisingly, using texture memory did not have a beneficial
effect on performance either. This is likely due to the extra instructions needed
to access and isolate the relevant bits from the filter when it is stored as a texture.

Vectorized execution (VEC): The VEC configuration option controls whether
the kernel is vectorized. In related work [37] for the CPU, vectorization played
a large role in improving the performance. However, vectorizing the kernel
in our setting did not have a beneficial effect, likely due to the lack of proper
gather operations, which means that we incur a penalty when switching between
vectorized and scalar code. However, future architectural support for vectorized
operations would likely bring improvements similar to what is seen in [37] for
the CPU.

Altering OpenCL workgroup size (WG): Finally, the WG configuration
option varies the workgroup size. The best configuration for the work-group size
is 128 work-items per work-group.

5.5.3 Overall comparison

After establishing a set of parameters that works best for DFC (the best configura-
tions from Section 5.5.2), in addition to the parameters that work best for PFAC
from Aragon et al. [4], we put all algorithms to the test in this section. Figure 5.3
shows the execution time of all algorithms when processing the DARPA data
set with the default set of 2183 patterns. We run each experiment five times and
report the average execution time. In Figure 5.3 we have broken down the cost
to its individual components. Post-processing refers to counting the number of
matches, based on the results read from the GPU. Even though the main focus is

5.5. EVALUATION 167

AC
(CPU)

DFC
(CPU)

PFAC
(GPU)

DFC
(GPU)

DFC Vect
(GPU)

HYBRID
(GPU)

HYBRID
Vect (GPU)

Versions

0

1000

2000

3000

Ex
ec

ut
io

n
tim

e
(m

s)
Read from file
Write to device
Pattern matching execution

Read from device
Post-procesing

Figure 5.3: Execution time (broken down to its different components) of the
different versions.

the execution time of pattern matching itself (light blue bars), we still present
the additional costs for completeness.

When comparing results between the performance of the CPU baseline and
the GPU, keep in mind that a direct comparison is not always straightforward.
Here, we compare against the performance of parallel algorithms that have
been transformed to operate on the GPU, against single-threaded algorithms
that operate on the CPU. Using all the available threads in the CPU is likely
to improve CPU performance, assuming there is an efficient way to parallelize
the algorithms on the CPU and taking into account bottlenecks involved in
CPU parallelization. Still, our comparison allows us to express the performance
of the GPU in terms of something easily understood: the performance of a
single CPU thread. Moreover, note that the GPU and CPU can complement
each other: it is possible to have both the GPU and the CPU threads working
simultaneously, either on disjoint parts of the input data, or on different tasks
(e.g. the post-processing can be done in parallel by the CPU).

CPU vs GPU: First, comparing the CPU (the first two bars in Figure 5.3) and
the GPU versions (the rest) shows that all GPU versions perform significantly
better than the CPU versions, up to 2X less total execution time when comparing
Aho-Corasick with HYBRID. That result supports the claim that embedded
accelerators such as the Mali GPU can effectively offload pattern matching for
Network Intrusion Detection applications, regardless of the family of algorithms
used. Particularly, we notice that the execution cost of the pattern matching part

168 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

alone (light blue bars) is greatly reduced on the GPU by up to 7X, suggesting
that pattern matching kernels make great use of the high degree of parallelism
offered by the GPU. However, notice that the extra costs of data transfers and
post-processing of the results are significant and offset, to some extent, the total
benefit of offloading pattern matching on the GPU. Even though data copies are
avoided, the overhead of mapping/unmapping the memory region every time the
buffer is full is still significant in this application. As such, a new design that
would minimize this effect further, e.g., by overlapping the CPU and the GPU
execution, would be interesting to explore.

We now focus on the GPU versions and compare them with each other.
PFAC vs DFC (GPU): Comparing PFAC with DFC (GPU), we find the

pattern matching part of PFAC is 1.62x faster than DFC (Figure 5.3). This is
likely due to two reasons. First, the cost of verification in DFC is high, because it
includes accesses to hash tables containing the patterns as well as exact matching.
Second, DFC was originally designed to have an increased instruction count
compared to Aho-Corasick (more instructions needed to access filters and hash
tables) but a better cache utilization. In GPUs, the benefit from high cache
utilization is not as important as in CPUs, due to the large number of threads
spawned and the device’s ability to switch between threads quickly and hide
the high memory latency incurred when there is a cache-miss. As a result, the
benefits of cache utilization are offset from the cost of the extra instructions and
the costly verification phase.

Interestingly, the vectorized version of DFC (DFC Vect (GPU)) fails to bring
any speedup. As mentioned in Section 5.5.2, vectorizing the kernel for each GPU
thread is not efficient for this workload, due to the lack of gather operations.

The HYBRID approach: Among the GPU versions, HYBRID manages to
execute the pattern matching part faster than both PFAC and DFC (1.3X faster
than PFAC and 2.2X faster than DFC). Contrary to DFC, HYBRID avoids the
costly verification by switching to PFAC when there is a hit in the filters, while
still keeping the benefits of using filters to quickly filter out parts of the input
that cannot contain a match. As in DFC though, the vectorized version (HYBRID
Vect (GPU)) does not bring a speedup.

Energy Comparison: Finally, in Figure 5.4 we report the total consumed
energy for the same experiment, across the different versions. Overall, we see
that the reduction in execution time from the previous figure translates, in almost
all cases, directly to reduction in consumed energy, with the best GPU version
(HYBRID) consuming 2X less energy than Aho-Corasick. In this figure we
also show separately the energy consumed by the CPU (A15) and the GPU.
Notice that the GPU versions still consume significant CPU energy, mostly due
to post-processing and idly waiting for the GPU execution to finish.

5.5. EVALUATION 169

AC
(CPU)

DFC
(CPU)

PFAC
(GPU)

DFC
(GPU)

DFC Vect
(GPU)

HYBRID
(GPU)

HYBRID
Vect (GPU)

Versions

0

200

400

600

800

1000
En

er
gy

 (J
ou

le
)

CPU energy GPU energy

Figure 5.4: The CPU and GPU energy consumed by the different versions.

5.5.4 Varying the data sets and the number of patterns

In this section, we evaluate the behavior of the different algorithms across
different data sets and number of patterns. Insights about this behavior are
important when considering real packet processing deployments where the
characteristics of the incoming traffic might change or new malicious patterns
might be added in the database.

Varying the data sets: Figure 5.5a shows the overall cost (including reading
from file, data transfers etc.) for different real and synthetic data sets, when using
the default set of patterns. Here, we have omitted the vectorized versions since
they do not bring a significant change in performance. In all cases, the GPU
versions outperform the CPU, with HYBRID having the smallest total execution
time in almost all cases.

An interesting observation is that, when using randomly generated data, the
CPU version of DFC performs significantly better than with real traffic. This
is because randomly generated characters are very unlikely to cause hits in the
filters, reducing the need for verification and most of the memory accesses are
now served by the CPU cache [10]. This stresses the need to use realistic data
sets when comparing algorithms in a benchmark.

Increasing the number of patterns: In Figure 5.5b, we increase the number
of malicious patterns to 5000. Overall, we see that the execution time of all
versions increases (notice the different range on the y-axis between Figures 5.5a
and 5.5b). Aho-Corasick nearly doubles in execution time, mostly due to the
fact that the state machine grows and does not fit the CPU cache.

Interestingly, GPU versions that also use a state machine, i.e., PFAC and

170 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

 DARPA ISCX BigFlows Random
Data sets

0
500

1000
1500
2000
2500
3000
3500

Ex
ec

ut
io

n
tim

e
(m

s)

AC (CPU)
DFC (CPU)

PFAC (GPU)
DFC (GPU)

HYBRID (GPU)

(a) 2183 patterns

 DARPA ISCX BigFlows Random
Data sets

0
1000
2000
3000
4000
5000
6000
7000
8000

Ex
ec

ut
io

n
tim

e
(m

s)

(b) 5000 patterns

Figure 5.5: Execution time across different data sets when using a) the default
set of 2183 patterns and b) 5000 randomly chosen patterns.

HYBRID, do not get affected to such a great extent. This is, again, due to the fact
that GPU cache misses are not detrimental if the GPU is able to hide the latency
of accessing the main memory, by switching between many active threads. We
also notice that both DFC versions increase significantly in execution time, likely
due to the exact matching part of the verification step of DFC, which is costly
and happens more often when the number of patterns increases.

5.5.5 Deciding a filter size for HYBRID

In this section, we take a closer look at the HYBRID approach and specifically
at the effect of the filter size on the performance of the algorithm. Intuitively, a
larger filter will be more sparsely populated, meaning that we expect fewer hits
(therefore fewer times that we need to resort to the state machine of PFAC) when
filtering the input. On the other hand, a small filter can fit in the GPU cache

5.5. EVALUATION 171

0.5 1 2 4 8 16 32 64
Filter size (KB)

250
300
350
400
450
500
550
600
650
700

Ex
ec

ut
io

n
tim

e
(m

s)
Total execution cost
Filtering cost

5

10

15

20

25

Hi
t r

at
io

 (%
)

Hit ratio

Figure 5.6: Cost of filtering and total GPU execution time of the HYBRID
approach (left y-axis), as well as the effectiveness of the filtering (hit ratio, right
y-axis), as we increase the filter size.

(16KB per shader core), making it easier to access.
In the following experiment, we use the first three characters from each

pattern to populate the filter, after hashing them with a simple multiplicative
hash function. We vary the effective size of the filter by masking the hash value
appropriately, effectively bounding the size of the filter. In Figure 5.6 we report:
(i) the cost of only accessing the filter (green line, left y-axis) (ii) the hit ratio
of the filter, i.e., the number of hits in the filter compared to the total number
of input characters (red line, right y-axis) and (iii) the total cost of the HYBRID
execution on the GPU, i.e., the cost of both filtering and traversing the state
machine of PFAC when there is a hit in the filter (blue line, left y-axis).

As expected, the hit ratio decreases as the filter becomes larger, ranging
from 25% hit rate for a half-KB filter to 5% hit rate for a 64KB filter. The
cost of accessing the filter remains small while the filter is smaller than the size
of the cache (16KB) and increases rapidly afterwards. The best performing
configuration is when the filter size is much less than the size of the cache,
because we still need to save space for the state machine for when there is a
match.

5.5.6 Summary of the results

In this section, we presented the results of our benchmark where multiple pattern
matching algorithms are brought to the test on a medium/high range IoT device
with an embedded GPU. Experiments using real data sets and patterns showed
that: (i) the GPU is a viable alternative for pattern matching on these devices, both

172 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

in terms of execution time and energy consumption and (ii) there were significant
differences in performance between the GPU based algorithms, uncovering the
strength and weaknesses of each approach. Stemming from this analysis, it
was possible to identify new meaningful combinations (HYBRID) that combine
techniques from existing work and outperform them. The co-evaluation of
CPU and GPU algorithms also uncovered how different algorithms utilize the
hardware’s resources differently: in the CPU, having good cache locality proved
important, whereas it mattered less in the GPU. Finally, using both synthetic
and real data sets showed that most pattern matching algorithms are highly
data-dependent, raising interesting future directions about the feasibility to adapt
to the distribution of the data.

5.6 Related work

Pattern matching has been an active field of research for decades and the literature
offers numerous algorithms for a variety of different settings. On single string
pattern matching, Boyer-Moore [9] and Knuth-Morris-Pratt [18] are two well-
known algorithms that skip over parts of the input and perform pattern matching
in sub-linear time. However, such algorithms do not work well in the context
of pattern matching for intrusion detection where there are many patterns to
search for simultaneously. An important multiple string matching algorithm,
other than the Aho-Corasick [1] we already summarised in Section 5.3, is the
Wu-Manber [43] algorithm that keeps a table to store information on how many
bytes we can skip from the input. Hyperscan [41] is an open source regular-
expression library that also includes many optimizations for fixed string pattern
matching. However, these optimizations are built around Intel’s high-end vector
instruction set extensions and are not available in the ARM-based platform we
use in this work.

Apart from the pattern matching algorithms included in this work (and sum-
marized in Section 5.3), there are others that target GPU platforms. FFBF [26]
is a filter based approach by Moraru and Andersen that uses Bloom filters to find
a subset of the input and the patterns that should be matched together. However,
FFBF imposes restrictions on the pattern size and requires long patterns in order
to work effectively. On the contrary, the approaches we consider are flexible
with respect to the number of patterns. Kouzinopoulos et al. [19] also experiment
with pattern matching algorithms on GPUs, using the CUDA framework. In [8],
Bellekens et al. present a compressed Aho-Corasick algorithm that improves
the bandwidth of data transfers on both NIDS and DNA sequencing workloads.
All of the above-mentioned work targets high-end, desktop GPUs. In this work,

5.7. CONCLUSIONS 173

we focus on embedded GPUs that have a significantly different architecture, as
described in Section 5.4.

On the topic of embedded GPUs, as already mentioned, Aragon et al. [4]
implement PFAC in OpenCL and report its performance on two embedded GPUs
that have almost the same architecture as the one used in this paper. In [22],
Maghazeh et al. benchmark various GPGPU applications on an embedded GPU,
concluding that the high energy efficiency of such devices makes them a promis-
ing choice for a wide range of workloads such as genetic algorithms and vector
similarity (referred to as pattern matching in their work). In [14], Grasso et
al. present optimizations techniques for the Mali GPU that allow them to gain
significant speedups (both in terms of execution time, as well as energy) for
various benchmarks.

Even though this work focuses on the pattern matching algorithms them-
selves, it is important to mention work that considers the role of GPUs in the
NIDS as a whole. Vasiliadis et al. [38] use Aho-Corasick to build a GPU based
NIDS. In [39], they also integrate more network processing workloads into a
general GPU framework, including flow state management and TCP stream
reconstruction. Go et al. [13] experiment with integrated GPUs and show that
they provide an appealing alternative for packet processing workloads, including
pattern matching. There is also work that considers both the CPU and the GPU
and how they can coordinate to better serve the needs of the NIDS. Kim et
al. [17] propose NBA, a framework that abstracts the GPU offloading from the
programmer and includes load balancing and batching. Their NIDS implemen-
tation is also based on Aho-Corasick. Vasiliadis et al. [40] present a system
based on Snort that uses all CPU threads and multiple GPU devices. Jamshed
et al. [15] present Kargus, a similar parallel design that is based on their own
custom NIDS. Papadogiannaki et al. [30] extend the existing work in the field
with a scheduler that decides the placement of the different computing tasks of
the NIDS, across a heterogeneous platform.

5.7 Conclusions

In this paper, we introduce a fair and thorough co-evaluation of pattern matching
algorithms for network intrusion detection on embedded devices with GPUs with
the aim to methodologically investigate the algorithm behavior in conjunction
with the architectural features available on medium to high-level devices used
in deployments for the Internet of Things. We present results from existing
approaches, in-house implementations of state of the art algorithms, as well as a
new algorithm, HYBRID, that combines the benefits from existing designs.

174 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

We conclude that GPUs on embedded devices are an attractive alternative to
CPUs when it comes to pattern matching for intrusion detection, since the GPU-
based algorithms in our benchmarks managed to reduce the overall execution
time and energy consumption of pattern matching workloads by up to 2 times.
We investigate how algorithm engineering approaches that are based on the
platform’s architectural features, e.g., shared GPU and CPU memory, affect
the performance of various algorithms. Finally, we show that HYBRID is a
good fit for the GPU, achieving up to 1.4x speedup compared to the best GPU-
based baseline, suggesting that hardware awareness in the design of security
applications leads to significant performance improvements. This investigation
provides a baseline for the community to further develop algorithms and make
standard security tool deployable in IoT devices. Implementations used in the
benchmark are available online2.

Acknowledgements
The research leading to these results has been partially supported by the Swedish
Civil Contingencies Agency (MSB) through the projects RICS and RIOT, by the
Swedish Foundation for Strategic Research (SSF) through the framework project
FiC, by the Swedish Research Council (VR) through the project ChaosNet
and the project AgreeOnIT, the Vinnova-funded project “KIDSAM”, and from
the European Community’s Horizon 2020 Framework Programme under grant
agreement 773717.

Bibliography
[1] Alfred V. Aho and Margaret J. Corasick. Efficient String Matching: An Aid to

Bibliographic Search. Commun. ACM, 18(6):333–340, June 1975.

[2] Spyros Antonatos, Kostas G. Anagnostakis, and Evangelos P. Markatos. Generating
realistic workloads for network intrusion detection systems. SIGSOFT Softw. Eng.
Notes, 29, 2004.

[3] Appneta. Sample captures. http://tcpreplay.appneta.com/wiki/c
aptures.html/ [Accessed: 2018-09-18].

[4] Elena Aragon, Juan M. Jiménez, Arian Maghazeh, Jim Rasmusson, and Unmesh D.
Bordoloi. Pattern matching in opencl: Gpu vs cpu energy consumption on two

2https://bitbucket.org/mpastyl/acsac pattern matching benchmark o
pencl/src/master/

http://tcpreplay.appneta.com/wiki/captures.html/
http://tcpreplay.appneta.com/wiki/captures.html/
https://bitbucket.org/mpastyl/acsac_pattern_matching_benchmark_opencl/src/master/
https://bitbucket.org/mpastyl/acsac_pattern_matching_benchmark_opencl/src/master/

BIBLIOGRAPHY 175

mobile chipsets. In Proceedings of the International Workshop on OpenCL 2013
& 2014, IWOCL ’14, pages 5:1–5:7, New York, NY, USA, 2014. ACM.

[5] ARM. ARM Mali-T628 product page. https://www.arm.com/products
/multimedia/mali-cost-efficient-graphics/mali-t628.php.
Accessed: 2018-03-14.

[6] Arm. ODROID-XU3. https://developer.arm.com/graphics/dev
elopment-platforms/odroid-xu3. Accessed: 2018-05-25.

[7] ARM. ARM Mali GPU OpenCL, Version 3.0, Developer Guide. https://stat
ic.docs.arm.com/100614/0300/arm mali gpu opencl develop
er guide 100614 0300 00 en.pdf, 2018. Accessed: 2018-03-14.

[8] Xavier JA Bellekens, Christos Tachtatzis, Robert C Atkinson, Craig Renfrew, and
Tony Kirkham. A highly-efficient memory-compression scheme for gpu-accelerated
intrusion detection systems. In Proceedings of the 7th International Conference on
Security of Information and Networks, page 302. ACM, 2014.

[9] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, October 1977.

[10] Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo Park, and
Dongsu Han. DFC: Accelerating string pattern matching for network applications.
In 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 551–565, Santa Clara, CA, 2016. USENIX Association.

[11] Cisco. Fog Computing and the Internet of Things: Extend the Cloud to Where
the Things Are. White Paper https://www.cisco.com/c/dam/en us/
solutions/trends/iot/docs/computing-overview.pdf, 2015.
Accessed: 2018-05-07.

[12] Canadian Institute for Cybersecurity. UNB ISCX intrusion detection evaluation
dataset. http://www.unb.ca/research/iscx/dataset/iscx-IDS-
dataset.html, 2012. Accessed: 2016-12-10.

[13] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho Hwang,
and KyoungSoo Park. APUNet: Revitalizing GPU as Packet Processing Accelerator.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 83–96, Boston, MA, 2017. USENIX Association.

[14] Ivan Grasso, Petar Radojkovic, Nikola Rajovic, Isaac Gelado, and Alex Ramirez.
Energy efficient hpc on embedded socs: Optimization techniques for mali gpu.
In 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pages 123–132, May 2014.

[15] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin
Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: A Highly-scalable
Software-based Intrusion Detection System. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 317–328,
New York, NY, USA, 2012. ACM.

https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://developer.arm.com/graphics/development-platforms/odroid-xu3
https://developer.arm.com/graphics/development-platforms/odroid-xu3
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html
http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html

176 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

[16] Khronos Group. OpenCL Overview. https://www.khronos.org/opencl
/. Accessed: 2018-03-11.

[17] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and Sue
Moon. Nba (network balancing act): A high-performance packet processing frame-
work for heterogeneous processors. In Proceedings of the Tenth European Confer-
ence on Computer Systems, EuroSys ’15, pages 22:1–22:14, New York, NY, USA,
2015. ACM.

[18] Donald Knuth, James Morris, Jr., and Vaughan Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[19] Charalampos S Kouzinopoulos and Konstantinos G Margaritis. String matching on
a multicore GPU using CUDA. In Informatics, PCI’09. 13th Panhellenic Con. on.
IEEE, 2009.

[20] Lincoln Laboratory. DARPA intrusion detection data sets. https://www.ll
.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-
scenario-specific-data-sets, 2000. Accessed: 2018-09-20.

[21] Cheng-Hung Lin, Chen-Hsiung Liu, Lung-Sheng Chien, and Shih-Chieh Chang.
Accelerating Pattern Matching Using a Novel Parallel Algorithm on GPUs. IEEE
Transactions on Computers, 62(10):1906–1916, Oct 2013.

[22] Arian Maghazeh, Unmesh D. Bordoloi, Petru Eles, and Zebo Peng. General
purpose computing on low-power embedded gpus: Has it come of age? In 2013
International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), pages 1–10, July 2013.

[23] Matthew V Mahoney and Philip K Chan. An analysis of the 1999 DARPA/Lincoln
Laboratory evaluation data for network anomaly detection. In Int. Workshop on
Recent Advances in Intrusion Detection. Springer, 2003.

[24] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by lincoln laboratory.
ACM Tran. on Information and System Security (TISSEC), 3(4):262–294, 2000.

[25] MichaelS. Gather Scatter operations. http://insidehpc.com/2015/05/
gather-scatter-operations/, 2015. Accessed: 2016-12-10.

[26] Iulian Moraru and David G. Andersen. Exact Pattern Matching with Feed-forward
Bloom Filters. J. Exp. Algorithmics, 17:3.4:3.1–3.4:3.18, September 2012.

[27] Marc Norton. White paper: Optimizing pattern matching for intrusion detection.
Technical report, Snort, 2004.

[28] Nvidia. About CUDA. https://developer.nvidia.com/about-cuda.
Accessed: 2018-03-11.

[29] NVIDIA. Jetson Nano Brings AI Computing to Everyone. https://devblogs
.nvidia.com/jetson-nano-ai-computing/. Accessed: 2019-04-17.

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
http://insidehpc.com/2015/05/gather-scatter-operations/
http://insidehpc.com/2015/05/gather-scatter-operations/
https://developer.nvidia.com/about-cuda
https://devblogs.nvidia.com/jetson-nano-ai-computing/
https://devblogs.nvidia.com/jetson-nano-ai-computing/

BIBLIOGRAPHY 177

[30] Eva Papadogiannaki, Lazaros Koromilas, Giorgos Vasiliadis, and Sotiris Ioannidis.
Efficient software packet processing on heterogeneous and asymmetric hardware
architectures. IEEE/ACM Transactions on Networking, 25(3):1593–1606, June
2017.

[31] David E. Sanger and Nicole Perlroth. A New Era of Internet Attacks Powered by
Everyday Devices.
https://nytimes.com/2016/10/23/us/politics/a-new-era-
of-internet-attacks-powered-by-everyday-devices.html,
2016. Accessed: 2018-03-04.

[32] Alessandro Sforzin, Félix Gómez Mármol, Mauro Conti, and Jens-Matthias Bohli.
RPiDS: Raspberry Pi IDS - A Fruitful Intrusion Detection System for IoT. In
UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, Toulouse, France, July 18-21, 2016,
pages 440–448, 2016.

[33] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion detection.
Computers & Security, 31(3), 2012.

[34] Snort. Snort++. https://github.com/snort3/snort3. Accessed:
2018-12-21.

[35] Snort Network Intrusion Detection and Prevention System. https://www.sn
ort.org. Accessed: 2018-09-21.

[36] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, large-scale string match for
a 10gbps fpga-based network intrusion detection system. In Peter Y. K. Cheung
and George A. Constantinides, editors, Field Programmable Logic and Application,
pages 880–889, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[37] Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, and Marina Pap-
atriantafilou. Multiple pattern matching for network security applications: Accel-
eration through vectorization. In 2017 46th International Conference on Parallel
Processing (ICPP), pages 472–482, Aug 2017.

[38] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P.
Markatos, and Sotiris Ioannidis. Gnort: High performance network intrusion
detection using graphics processors. In Richard Lippmann, Engin Kirda, and Ari
Trachtenberg, editors, Recent Advances in Intrusion Detection, pages 116–134,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[39] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris Ioan-
nidis. GASPP: A gpu-accelerated stateful packet processing framework. In 2014
USENIX Annual Technical Conference (USENIX ATC 14), pages 321–332, Philadel-
phia, PA, 2014. USENIX Association.

[40] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. Midea: A multi-
parallel intrusion detection architecture. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, New York, NY, USA, 2011.
ACM.

https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://github.com/snort3/snort3
https://www.snort.org
https://www.snort.org

178 CHAPTER 5. CO-EVALUATION OF PATTERN MATCHING ALGORITHMS ON EMBEDDED GPUS

[41] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu,
and Heqing Zhu. Hyperscan: A fast multi-pattern regex matcher for modern cpus.
In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 631–648, Boston, MA, 2019. USENIX Association.

[42] Wang Wei. Casino gets hacked through its internet-connected fish tank thermometer.
https://thehackernews.com/2018/04/iot-hacking-thermome
ter.html, 2018. Accessed: 2019-01-16.

[43] Sun Wu and Udi Manber. A fast algorithm for multi-pattern searching. Technical
Report TR-94-17, University of Arizona. Department of Computer Science, 1994.

https://thehackernews.com/2018/04/iot-hacking-thermometer.html
https://thehackernews.com/2018/04/iot-hacking-thermometer.html

Part IV

Distributed Processing on
Resource-Constrained

Devices

PAPER V

Charalampos Stylianopoulos, Magnus Almgren,
Olaf Landsiedel, Marina Papatriantafilou

Geometric Monitoring in Action: a Systems
Perspective for the Internet of Things

Adapted and expanded version of the paper that appeared in the Proceedings of
the IEEE 43rd Conference on Local Computer Networks (LCN), pp. 433-436,

IEEE 2018.

6
Geometric Monitoring in Action: a

Systems Perspective for the Internet
of Things

183

184 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

Abstract

Many applications in the Internet of Things (IoT) continuously monitor
sensor values and react when their network-wide aggregate exceeds a threshold.
Geometric monitoring (GM) is a methodology that promises a several-fold
reduction in terms of communication and coordination between the sensors for
such applications. Previous work on GM has been limited to analytic or high-
level simulation results and does not consider critical system aspects such as the
communication protocol, involving parameters such as the radio duty-cycle and
packet losses.

In this paper, we devise, realize and evaluate a system design for GM, en-
abling deployment possibilities on resource-constrained IoT devices and network
stacks. In particular we provide (i) an algorithmic implementation for commodity
IoT hardware (ii) a study and insights regarding duty cycle reduction and energy
savings on actual IoT nodes, in connection with existing analytic and high-level
simulation results about GM, as well as (iii) a study and insights on the influence
of packet losses on the effectiveness of the method, in terms of accuracy and
responsiveness. Our results, both from full-system simulations and a publicly
available testbed, show that GM indeed provides several-fold energy savings
in communication; e.g., we see up to 3x and 11x reduction in duty-cycle when
monitoring the variance and average temperature of a real-world data set, respec-
tively but the results fall short of the analytic predictions on the expected savings
in the number of exchanged messages (4.3x and 44x, respectively). Hence, we
investigate the energy overhead imposed by the network stack as well as the
effects of packet losses on the accuracy and responsiveness of the algorithm.
Through the above insights, we offer guidelines for the adaption of GM and
similar algorithms in IoT settings.

6.1 Introduction

Monitoring system-state or the environment-conditions are fundamental uses for
Wireless Sensor Networks (WSNs). Given a set of sensor nodes n1, ..., nN with
readings v⃗1, ..., v⃗N that vary over time, we want to continuously track whether
a function f , defined over the network-wide weighted average of the readings,
is larger than a threshold T . Keeping track of such a function serves as a basis
for many applications, e.g. detecting outliers [2], hot-spots [25] or denial-of-
service attacks [7] [8, 12]. The challenge is to let all nodes accurately determine
whether the function is above or below the threshold locally, without having to
share every reading with the others. For simple, linear functions (average), local

6.1. INTRODUCTION 185

constraints can be derived to minimize communication, while for non-linear
functions (variance), deriving such constraints is challenging.

Distributed monitoring has received high interest, with many proposed so-
lutions. Sharfman et al. [24] proposed a general method, called geometric
monitoring (GM), that can monitor any function, linear or not, computed over
network-wide aggregates and can keep track of its value with respect to a
threshold. The method suppresses unnecessary communication by deriving
local constraints that individual nodes can check without communication. The
effectiveness of the method has been thoroughly studied showing impressive
communication reduction results. Variations of GM have been enhanced with
sketches [10] and prediction models [11] and have been applied on outlier de-
tection [2] and data stream queries [9]. The above mentioned extensions are
orthogonal to the original GM algorithm. In this paper we focus on the basic
principles of GM and tackle the challenges described next.
Research Challenges: Even though GM and similar threshold monitoring algo-
rithms are designed with sensor networks in mind, there is lack of insights from
full-system perspective. Existing work on GM has focused on the algorithmic
part, backed up with numerical, high level simulations where communication is
assumed instant and reliable. However, the reality is different: packet losses are
frequent, nodes have severe constraints on processing power and lifetime, and
message propagation is costly, both in terms of energy as well as latency. Recent
work on data aggregation [23] has shown that properties such as the radio duty
cycle greatly influence the lifetime savings that can be achieved in practice.

Thus, the feasibility of GM for WSNs and the impact of the system’s prop-
erties raise questions, such as: (i) What are the actual battery lifetime savings
that we can achieve on real nodes? (ii) What is the effect of packet losses on the
accuracy and responsiveness of the algorithm? (iii) How can such methods be
implemented on commodity IoT hardware?

To address the aforementioned questions, we take a step beyond the existing
analysis and consider the whole system stack, through (i) extensive, cycle-
accurate, full-system simulations and (ii) validation from a real deployment. We
are thus able to evaluate up to what degree and condition, emerging results on
distributed continuous monitoring can benefit real WSN deployments.

Contributions:

• We bridge the gap between high level numerical simulation results on
threshold monitoring and real IoT environments. We study the algorithmic
implementation and the actual performance on a real deployment, using
real data sets and offer new insights.

• As the computational complexity of GM is a serious challenge for CPU-

186 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

constrained devices, we suggest an efficient approximation.1

• We show that the practical energy lifetime improvements may vary signifi-
cantly and are often far from the savings estimated analytically. Specifi-
cally, we find that the overhead of idle listening is a dominant factor that
can sometimes limit the effectiveness of GM.

• Communication patterns under GM vary greatly over time, with periods
of no activity and bursts of concurrent updates. This presents a challenge
to the underlying networking protocol.

• We study message losses and identify that they cause the nodes to de-
synchronize, with cascading effects, reducing the accuracy and respon-
siveness of the algorithm.

The remainder of this paper is organized as follows. Section 6.2 summarizes
GM and introduces its challenges in wireless sensor networks. Section 6.3
outlines system design challenges and our solutions as well as tunable parameters
of the network stack that will influence properties of the system implementation.
We evaluate our full-system implementation of GM in Section 6.5, through the
experimental methodology presented in Section 6.4. We discuss related work in
Section 6.6 and conclude in Section 6.7.

6.2 Overview of the problem
Here we summarize GM as a general method for distributed threshold monitoring.
We then outline background related to wireless sensor networks and the system
model.

6.2.1 The Geometric Monitoring Method (GM)
In their seminal work [24], Sharfman et al. present a general distributed method
able to monitor (with respect to a threshold) arbitrary functions defined over
network-wide aggregates. Instead of having nodes broadcast at every epoch
(sensor sampling period), each node uses only information from the last available

1A short version of the paper presented in this chapter was published in the proceedings of the
IEEE 43rd Conference on Local Computer Networks (LCN). In this chapter, we include the extended
version of the paper. Due to that, there is some overlap between this chapter and Chapter 7 when it
comes to the approximation method that reduced the computational complexity of GM.

6.2. OVERVIEW OF THE PROBLEM 187

broadcast and its current (up-to-date) sensor reading, to calculate a region of the
input domain where the true value of the network-wide aggregate can be. As
long as this region remains fully on one side of the threshold, communication
is avoided; Otherwise, broadcasts are needed to see whether the local change
is offset by changes at other nodes (false alarm) or if the function has actually
crossed the threshold. The key points of the method are briefly explained here,
but the interested reader is referred to [24] for a full explanation with proofs.

In GM, the set of sensor readings v⃗1, ..., v⃗N are called local statistics vectors.
These vectors are only known locally, but sporadically a node ni will broadcast
its v⃗i to every other node. The last broadcasted value from ni is denoted as v⃗′i.
The weighted average2 of the local vectors (eq 6.1) is called the global statistics
vector.

v⃗ =
N

∑
i=1
wi ∗ v⃗i (6.1)

Similarly, the weighted average of the last broadcasted values is called the
estimate vector (e⃗); it is known to all nodes and is an estimate of the global
statistics vector.

When a node measures a new set of sensor readings, its local statistics vector
will drift (∆⃗vi = v⃗i− v⃗′i). The drift vector u⃗i is defined as the displacement of the
estimate vector because of the new drift, i.e. u⃗i = e⃗ + ∆⃗vi and can be computed
locally without communication. Figure 6.1 shows an example of the method,
also depicting the values defined above.

The convex hull of the drift vectors (yellow area) is defined as the set of all
the convex combinations of u⃗i (∑ θiu⃗i).3 As such, it is clear that the weighted
average of the drift vectors (defined similar to eq 6.1) would be part of this set.
With simple substitution, one can also see that the global estimate is equal to the
weighted average of the drift vectors and thus it must also lie in the convex hull
of the drift vectors. Thus, as long as the convex hull does not cross the threshold
(i.e. lies in the white area), also v⃗ is guaranteed to not have crossed the threshold.
However, nodes cannot locally determine the convex hull, as that would require
knowing all u⃗1, ..., u⃗N .

This is where the final part of the method comes into play. Let each node
create a sphere locally, centered at e⃗+u⃗i

2
with a radius of e⃗−u⃗i

2
. This is possible

since u⃗i is known to ni and e⃗ is the same across all nodes at a given time.
Sharfman et al. [24] prove that the union of those spheres strictly covers the

2W.l.o.g., we assume 0 ≤ wi ≤ 1 and that the weights sum to one.
3E.g.https://www.maa.org/sites/default/files/pdf/upload library

/22/Ford/VictorKlee.pdf

E.g. https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/VictorKlee.pdf
E.g. https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/VictorKlee.pdf

188 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

ssss

Estimate	Vector	e

u
𝜐

u

u

u

u

v e

Figure 6.1: An example illustrating the GM method. The method keeps track of
whether the actual value (green dot) is over or under the threshold (red line), by
monitoring the circles formed by the drift vectors (gray circles).

convex hull. Therefore, a node only needs to track whether its locally computed
sphere crosses the threshold. If yes, it will send its local vector to everyone,
subsequently updating the estimate vector; else, it can remain quiet.

6.2.2 In the context of wireless sensor networks (WSNs)

Deploying an algorithm over WSNs can be challenging. WSNs are multi-hop,
as the radios have a limited range. The communication is commonly over noisy,
unreliable links. As such, the performance of an algorithm can be influenced by
parameters and network properties, in ways that are hard to account for in an
analytic study.

Regarding energy, the radio is the most consuming component. Consequently,
the goal of most communication protocols is radio duty cycling (RDC), i.e.
ensuring the radio is kept off as much as possible. In its simplest form, the RDC
layer ensures that nodes turn their radio on a fixed number of times per second
(called the channel check rate (CCR), aka wake-up time). On transmission,
nodes keep transmitting the same packet for at least 1/CCR seconds, as in
that time all neighbors have listened. High CCR suits frequent communication:
broadcasts are shorter and nodes wake up more often to receive them; low CCR
might be a better choice when communication happens rarely, so nodes do not
have to check the medium often.

6.3. APPLIED GM AND ALGORITHMIC IMPLEMENTATION ON WIRELESS IOT SENSORS 189

6.3 Applied GM and algorithmic implementation
on Wireless IoT Sensors

For GM-based continuous threshold monitoring in IoT environments, we argue
that focal points are: (i) Design challenges from the application’s point of view
and (ii) System properties and parameters affecting the design.

6.3.1 Addressing system challenges: processing and commu-
nication

Multi-hop, all-to-all communication:

In traditional WSN communication scenarios, either all nodes send to a single,
fixed node (data collection) or all traffic is disseminated from a single, fixed
node to all the others (data dissemination). With GM’s communication require-
ments, every node can potentially be a source of information that needs to be
disseminated to all other nodes (all-to-all communication) and even concurrently
with other nodes (as shown in Section 6.5). In addition, sensor networks are
commonly multi-hop, so an individual update generated by a single node needs
to be propagated in a reliable manner to all nodes.

We consider mesh, unstructured networks that follow a simple approach for
multi-hop propagation: every node that receives a packet with new information,
will broadcast it further on. Obviously, this leads to an increased amount of
broadcasts for every update. This is a commonly considered baseline, motivated
by its inherent property that the update will eventually propagate throughout the
network with a high degree of reliability, without the need to maintain a routing
topology. As the goal of GM is to reduce the number of updates that need to be
propagated, we expect that network-wide flooding of updates will not happen
often. We evaluate this further in Section 6.5.

Recovery from losses.

The related literature on GM and similar methods does not typically consider
packet losses but assumes reliable message delivery. In WSNs, losses are
common and an important consideration for application design.

If an update from node A fails to reach B, node B will have stale information
about A and the estimate vector will be out of sync (with respect to A), until
the next update from A. An out of sync node has an inaccurate view of the
network-wide aggregate being monitored and might miss a threshold violation
or report a non-existing one.

190 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

We allow updates to get lost and rely on the application layer to eventually
converge to the correct estimate vector. We evaluate the effect of losses on the
accuracy of the algorithm and the time that a node might be out of sync in
Section 6.5.

Threshold checking complexity.

As explained in Section 6.2, GM relies on computing a sphere, based on the
estimate vector and the local drift and checking whether that sphere crosses
a threshold surface. This can be computationally challenging, even in low
dimensions, considering that the threshold surface might have an arbitrary shape.
Even if there is a closed-form solution that accurately solves this problem, it
can be computationally expensive. This calculation needs to be performed for
every new sampled local reading and every new received update. The problem is
particularly hard for sensor nodes, where the computational resources are scarce:
there is often not any native-floating point support and the nodes need to go to
sleep as soon as possible, to save energy.

We address this by approximating the GM-spheres (Section 6.2) with a
simpler shape that makes the computations significantly simpler, while ensuring
that we do not introduce false negatives. As an example in 2D, the spheres
(circles for the 2D case) that are part of the GM method can be replaced with
squares containing the former, which results in simpler boundary conditions
(as it is simpler to check whether the sides of a square, rather than points on a
circle, cross a surface). Obviously, there will be cases where the square check
will report a violation even though the circles do not actually cross the threshold,
hence sacrificing accuracy for communication reduction. However, a similar
trade-off is already inherent in GM as there will be cases when spheres cross
the threshold even though the full convex hull (cf. Section 6.2) would not. This
relaxation might not cope with high dimensions, but in many cases of monitoring
statistics such as variance or correlations between nodes, it provides a simple and
efficient solution. In Section 6.6 we discuss other alternative, shape-sensitive
extensions to GM that reduce the computational cost of threshold checking by
approximating the threshold surface. Contrary to those methods, we simplify
the threshold checking with an approximation that is particularly useful for the
important case of tracking two variables (e.g. when monitoring the variance, the
computation time decreases from 20ms to just 2ms).

6.3. APPLIED GM AND ALGORITHMIC IMPLEMENTATION ON WIRELESS IOT SENSORS 191

Experiment
label

Duration
per exper.

Platform Parameters Metrics of inter-
est

A: Full system
simulations

20 hours Cooja CCR DC, Comm. re-
duction, Lifetime
impr., Loss rate,
Latency

B: Testbed val-
idation exper.

2 x 3 hours Flocklab Data set
section

DC, Comm. re-
duction, Lifetime
impr., Loss rate,
Latency

C: Runtime in-
sights

20 hours Cooja Elapsed
time

DC, Number of
updates

D: Accuracy
& Responsive-
ness

10
hours / 1
hour

Cooja Artificial
loss rate

Average time out
of sync, Respon-
siveness

Table 6.1: Summary of the experiments presented in this section.

6.3.2 Tunable system-parameters

Since a node might, at any time, propagate an update, we use a network stack
based on asynchronous transmissions and RDC to save energy. In this setting,
the main parameter of interest is the channel check rate (CCR).

As mentioned before, CCR affects: (i) how often nodes wake up to check
the medium for possible transmissions and (ii) for how long a broadcasting node
should keep re-transmitting a packet to make sure that all nodes receive it.

As the main goal of GM is to reduce the number of inter-node updates, one
would generally expect GM to benefit from lower CCR values, compared to
a naive approach that shares every sensor reading. On the other hand, GM’s
communication behaviour is highly data-dependent and unpredictable. There
are periods with high activity and low activity, depending on the value that is
being monitored and how close it is to the threshold. In addition, when an
update is received by a node, the resulting recalculated global estimate (u⃗) might
also cause a violation, forcing the node to broadcast its readings immediately,
creating periods of burst traffic.

Based on the above, it is clear that: (i) CCR is a system parameter that will
affect the expected energy savings of the method, and (ii) it is hard to come up
with a value for CCR that can match the communication of GM at all times. We
evaluate this further in Section 6.5.

192 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

6.4 Experimental methodology

We implemented geometric monitoring in Contiki [5], a well-known operating
system for IoT applications. We targeted the TelosB platform and used a main-
stream stack that relies on ContikiMac [4] for RDC. In this section, we assess
the performance of GM in practice over a real network stack.

Experiment Setup: We run our experiments in two settings: (i) A full-
system evaluation on the Flocklab [18] testbed, a deployment of TelosB nodes
on a university building with 26 nodes on a four hop topology. Flocklab has
realistic interference due to the presence of people and Wi-Fi signals and allows
us to evaluate the system in a realistic environment. (ii) A full-system simulation
on Cooja [22], a cycle-accurate simulator where the whole network stack is
simulated in software at every node. Cooja simulates a real deployment as
accurately as possible and we use it to run long experiments (up to 20 hours per
configuration) that would not be possible in the testbed due to usage restrictions.
The simulation platform also allows for repeatable experiments and fine-grained
control over network properties (notably packet loss) to stress-test the algorithm.
The topology here is similar to the testbed (26 nodes, 4 hops). We use the
accurate and extensive simulations in Cooja to reproducibly uncover trends and
insights, which we then validate from the real deployment in Flocklab.

Data set: As our source of data values, we use the Intel Lab data set [1],
commonly used in the WSN literature. It contains temperature, light, humidity
and voltage readings from 54 sensors, placed inside an indoor lab, over a period
of 36 days. Nodes take a new reading every 31 seconds.

We select 26 nodes (the ones with IDs 22-47) that have good quality of
readings and use their temperature values. The temperature values follow a
periodic cycle with the temperature rising during the day and falling moderately
during the night, partly controlled by the heating and ventilation system. Out of
the 36 days, we use the first day of readings for the experiments on Flocklab and
in Cooja (20 hours). In our experiments, we replay the temperature values from
the data set at each node, using the same sampling frequency.

Monitoring functions: We experiment with both linear and non-linear
monitoring functions, namely the global average and variance of the sensor
readings. The latter is of practical use in many different scenarios, e.g. to detect
the presence of an area with irregularly high temperatures i.e. a hot-spot. The
former is a simple case that can be solved even without the need for geometric
monitoring but we include it for completeness. For the average we choose a
threshold of T = 20○C and for the variance a threshold of T = 2○C2. which is
crossed twice during the daily cycle. Similar to Sharfman et al. [25], we track
the variance of readings in the GM framework, by having nodes tracking a local

6.5. EVALUATION FROM A HOLISTIC SYSTEM PERSPECTIVE 193

statistics vector v⃗ = (t, t2) where t is the current temperature reading. Unless
stated otherwise in the description of the experiment, the variance will be used.

Experiments: Table 6.1 summarizes the different experiments presented in
this section. As a comparison, we adopt the baseline method (also used in [24])
where nodes broadcast at every epoch, i.e. every sensor reading, as soon as they
get it. We choose this baseline since: (i) there is no other method but GM that
solves the problem of threshold monitoring for the general case (apart from its
variants, discussed in Section 6.6) and (ii) it allows us to directly compare the
theoretical savings with the ones achieved in practice (c.f. Section 6.5.1).

Metrics: For each of the experiments mentioned above, we are interested in
the following metrics:
(i) Communication reduction achieved by GM, measuring the number of updates
propagated; it is a measure of the efficiency of GM, purely from the application
point of view.
(ii) Duty cycle (DC) i.e. the fraction of total time that a node has its radio turned
on, computed using Contiki’s power profiler [6]. We also define the lifetime
improvement achieved through GM, as the reduction in duty cycle achieved
through the execution of GM, compared to the baseline.
(iii) Loss rate measured as the number of individual destinations of a packet that
fail to receive it (e.g. if a node sends an update and only 24 out of the other 25
nodes receive it, the loss rate is 1/25).
(iv) Communication Latency is the average time that a packet originating from
node A needs to reach another node B.
(v) Accuracy and Responsiveness where the later relates to the latency of de-
tecting an actual threshold violation. See respective definitions later in Section
6.5.4.

6.5 Evaluation from a holistic system perspective

6.5.1 Full-system simulations

In the full system simulation (Table 6.1, A), 20 hours of data are used for each
configuration. We collect results both for the geometric method and for the base-
line. In every configuration, the GM method achieves 4.31 times communication
reduction when monitoring the variance (Table 6.2, col 9) i.e. only 23.2% of the
sensor readings are actually propagated.

We start by discussing the impact of the channel check rate (CCR). Table 6.2
summarizes the results for a channel check rate ranging from 8 to 64 Hz, averaged
across all 26 nodes.

194 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

IntelL
ab

D
ataset(20

hours),M
onitored

Functions:Variance
(T

hreshold
T

=2)and
Average

(T
hreshold

T
=20)

C
hannel

B
aseline

(variance/average)
G

M
,Function:variance

G
M

,Function:average
C

heck
D

uty
Loss

Latency
D

uty
Loss

Latency
L

ifet.
C

om
m

.
D

uty
Loss

Latency
L

ifet.
C

om
m

.
R

ate
cycle

rate
(m

s)
cycle

rate
(m

s)
Im

pr.
R

ed.
cycle

rate
(m

s)
Im

pr.
R

ed.
(C

C
R

)
(%

)
(%

)
(%

)
in

H
z

8
8,44

9,98
18348

2,68
1,19

3862
3,15x

4,31x

0,76
0,46

3716
11,04x

44x

12
7,73

0,59
760

2,57
0,22

590
3,01x

1,03
0,41

2465
7,50x

16
7,28

0,18
314

2,70
0,11

336
2,69x

1,37
0,02

2078
5,31x

24
6,88

0,07
189

3,11
0,07

212
2,21x

1,96
0,20

1078
3,51x

32
7,26

0,04
162

3,70
0,04

190
1,96x

2,68
0,97

906
2,71x

48
7,81

0,12
139

4,88
0,12

151
1,60x

3,85
0,45

581
2,03x

64
9,11

0,14
134

6,18
0,12

157
1,47x

5,31
1,01

703
1,71x

Table
6.2:Fullsystem

sim
ulations:D

uty
cycle,loss

rate
and

latency
forthe

G
M

m
ethod

vs
the

baseline,w
ith

varying
C

C
R

.T
he

baseline
m

ethod
behaves

the
sam

e
w

ay,regardless
ofthe

function.

6.5. EVALUATION FROM A HOLISTIC SYSTEM PERSPECTIVE 195

Fl
oc

kl
ab

Te
st

be
d,

M
on

ito
re

d
Fu

nc
tio

n:
Va

ri
an

ce
D

ut
y

C
yc

le
(%

)
C

om
m

.R
ed

uc
tio

n
L

if
et

.I
m

pr
ov

.
L

os
s

ra
te

(%
)

L
at

en
cy

(m
s)

C
C

R
D

at
as

et
se

ct
io

n
G

M
B

as
el

in
e

G
M

B
as

el
in

e
G

M
B

as
el

in
e

12
lo

w
co

m
m

.
(0

:0
0

-0
3:

00
)

1,
33

6,
98

45
,7

4x
5,

26
x

0,
45

5,
43

90
8

17
04

hi
gh

co
m

m
.

(8
:0

0
-1

2:
00

)
4,

28
2x

1,
63

x
0,

88
63

4

24
lo

w
co

m
m

.
(0

:0
0

-0
3:

00
)

2,
05

6,
42

45
,7

4x
3,

13
x

0,
91

0,
84

22
3

26
8

hi
gh

co
m

m
.

(8
:0

0
-1

2:
00

)
5,

50
2x

1,
17

x
0,

49
26

2

Ta
bl

e
6.

3:
Te

st
be

d
ex

pe
ri

m
en

ts
:R

es
ul

ts
fr

om
th

e
Fl

oc
kl

ab
te

st
be

d,
on

tw
o

3
ho

ur
pe

ri
od

s
fr

om
th

e
da

ta
se

t.

196 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

8 12 16 24 32 48 64
Channel Check Rate (Hz)

0

2

4

6

8

Du
ty

 C
yc

le
 %

GM-listening
Baseline-listening

GM-transmitting
Baseline-transmitting

Idle Listening

Figure 6.2: Full system simulations: The duty cycle, broken down to sending
and listening, as well as the cost of idle listening.

Loss rate & Latency: It is useful to mention here that as GM reduces the
amount of data sent, it also reduces the possibility of losses. GM has slightly
higher latency at CCR values higher than 16 Hz; this is due to the extra, small
amount of processing that is added at every hop. Reducing the processing
cost (using our approximation) from 20ms to 2ms is important here for two
reasons:(i) the overall latency decreases (ii) there is enough time for processing
between packet receptions (for CCR value of 64 Hz, nodes wake up to receive
every 16ms).

Duty cycle: We next turn our attention to duty cycle, the metric that is
directly related to a node’s effective lifetime. GM results in significant reduction
in duty cycle. As an example (Table 6.2, col 5, CCR=12 Hz), using GM reduces
the duty cycle from 7.73% to just 2.57%, a three-fold improvement. However,
this improvement diminishes as the CCR increases. The lifetime improvement
between the best configurations is 2.8x (compare duty cycles between 12 Hz for
GM and 24 Hz for the baseline), which is far from the 4.31x communication
reduction achieved by the method.

A brief look at the respective results from monitoring the average (Ta-
ble 6.2, col 10), shows that the effects mentioned above for the variance are even
more pronounced now. In this case, GM manages to reduce communication by
44 times, keeping nodes mostly quiet throughout the execution. In terms of duty
cycle, GM reduces it by an impressive amount (up to 11 times for a CCR value
of 8 Hz), but still, 4 times less than the achieved reduction in communication.

Duty cycle decomposition: A detailed look on the duty cycle explains
the aforementioned differences. Figure 6.2 shows the duty cycle for GM and
the baseline method (when tracking the variance), as well as its individual
components. First, the percentage of the duty cycle that is spent on sending is

6.5. EVALUATION FROM A HOLISTIC SYSTEM PERSPECTIVE 197

greatly reduced using the GM method, directly matching the communication
reduction ratio achieved by the algorithm. Subsequently, the GM version spends
less time receiving data at each node. Also, notice that the time spent on
transmitting decreases as the channel check rate grows. This is simply because
broadcasts are shorter when the CCR is high. In this figure, we have also included
the cost of idle listening, i.e. the cost of turning on the ratio periodically to check
for traffic, even though there is nothing to receive. This cost is the same for
both methods and is computed from the CCR value. It is evident that this cost
dominates the duty cycle when the channel check rate increases. Even for small
CCRs, the idle cost represents a significant overhead, that reduces the potential
lifetime savings of the algorithm.

6.5.2 Validation through testbed experiments

We use the testbed experiments of this section as a way to validate the insights
and trends gained from the full-system simulations that we presented above.

Experiment settings: In this section, we present the results from the exe-
cution on the Flocklab testbed (Table 6.1, B). Due to usage restrictions on the
testbed, we do not replay full day measurements from the dataset. Instead we
focus on sections of particular interest. We select two sections from the data
set, 3 hours each (midnight and morning) where, as we detail further in the next
experiment series, the communication pattern of the GM method is expected to
be very different. For these experiments, we have picked a channel rate of 12 Hz,
where the GM method had the lowest duty cycle on the simulations, as well as a
rate of 24 Hz for comparison.

Results: Table 6.3 shows the overall results for the two sections of the
dataset.4 The topology of the testbed is slightly different than the one used in the
simulation (more sparse), so the absolute values are different than Table 6.2, but
we expect the general trends to hold. On the morning section (08:00 to 12:00),
GM communicates 2 times less than the baseline. The lifetime improvement
follows closely, and the duty cycle is reduced by 1.63 times. For the midnight
section (00:00 to 03:00), GM achieves remarkable communication savings,
reducing the number of readings that need to be propagated by 46 times, but the
associated lifetime improvement is more modest (5.26 times). This indicates that,
during this section (and unlike the previous one), even a check rate of 12 Hz is
excessively high, and most of the energy is spent on idle listening. Similar results

4The baseline version has the same communication behaviour (every reading gets propagated)
regardless of the data section, so we evaluate it only on the midnight section.

198 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

0 2 4 6 8 10 12 14 16 18 20
Elapsed time (h)

0.0

0.5

1.0

1.5

2.0

2.5

Te
m

pe
ra

tu
re

 v
ar

ia
nc

e
(

C2)

(a) Variance of the temperature between nodes.

0 2 4 6 8 10 12 14 16 18
Elapsed time (h)

0

5

10

15

20

25

Nu
m

be
r o

f u
pd

at
es

Regular updates (GM)
Triggered updates (GM)
Updates (baseline)

(b) Number of updates per epoch.

0 2 4 6 8 10 12 14 16 18
Elapsed time (h)

0

1

2

3

4

5

6

7

Du
ty

 c
yc

le
 (%

)

Listening
(incl. iddle listening)
Transmitting

(c) The average duty cycle across nodes, during the execution.

Figure 6.3: Runtime insights from the execution of GM over a period of 20
hours.

6.5. EVALUATION FROM A HOLISTIC SYSTEM PERSPECTIVE 199

0 5 10 15 20 25
#Regular updates in the same epoch

0

10

20

30
%

 o
f e

po
ch

s

(a) Regular updates.

0 5 10 15 20 25
#Triggerd updates in the same epoch

0

20

40

60

80

%
 o

f e
po

ch
s

(b) Triggered updates only.

Figure 6.4: Runtime insights: Percentage of epochs with concurrent updates
(regular on left figure and triggered on the right)

can be seen when CCR is set to 24 Hz. Here, the lifetime improvements decrease
for both data set sections, especially for the period with low communication
(3,13x lifetime improvement).

6.5.3 Runtime insights: a closer look

We now take a closer look into a single experiment and provide insights for
the communication behaviour of the algorithm (Table 6.1, C). We set the CCR
to 12 Hz (that resulted in the best duty cycle for the GM case) and elaborate
on detailed observations from GM, in order to distill deeper insights about the
interplay between GM and the communication stack.

Monitored value: Figure 6.3a shows the actual value that is being monitored:
the variance of the temperature readings. Due to variation in the temperature
between different rooms during working hours, the data set exhibits a period of
approximately 7 hours where readings between nodes have increased variance,
up to 2.8 ○C2.

Update decomposition: Next, we count the number of updates that nodes
propagate at every epoch of the execution. Recall that the epoch is defined as the
sampling at which nodes take new measurements (for the Intel Lab data set this
period is 31 seconds) and that the baseline method broadcasts all of them. For
the GM method, we distinguish between two kinds of updates. Regular updates
happen when a node gets a new sensor reading, detects a threshold violation
and therefore decides to propagate this reading to all the other nodes. Triggered
updates happen when a threshold violation is not caused by a new reading, but by
an update received from a neighbour. Triggered updates are interesting from the
communication protocol point of view, because they cause traffic bursts where

200 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

nodes want to concurrently share information across the network.
Temporal variation in comm. reduction: In Figure 6.3b we show the

number of updates per epoch, for the GM method as well as the baseline,
computed over a 1.5 minute sliding window and averaged across all nodes.
Note that the x-axis has been translated to reflect the elapsed time in hours, in
order to match Figure 6.3a. The baseline induces the same number of updates
per epoch, equal to the number of nodes. On the contrary, the GM method
significantly reduces the number of sensor readings that need to be updated per
epoch. Especially during the periods when variance is small and away from
the threshold, almost all communication is suppressed. As the variance comes
closer to the specified threshold, nodes start detecting frequent violations and
update more of their readings. We can also see a period close to the threshold
where these updates trigger violations on other nodes, as well as a peak in the
number of updates when the actual value of the variance is close to the threshold
of 2 ○C2.

Figure 6.4 presents a different view of the same results. Here, we count
the percentage of epochs with concurrent updates, both regular and triggered.
Figure 6.4a shows that a significant amount of epochs (34%) do not contain
any regular updates, but the majority of epochs contain concurrent updates.
Also, a noticeable percentage of epochs contain many concurrent updates (15-
26 concurrent updates). Triggered updates occur very rarely in this data set
(Figure 6.4b): 91% of epochs do not have any triggered updates. However, there
are epochs where several updates are triggered concurrently.

Temporal variation in duty cycle: In Figure 6.3c we take another look at
the duty cycle and monitor how it changes during the execution. Here, the duty
cycle is computed at every epoch and averaged across all nodes. The duty cycle
follows the same trend as the number of updates in Figure 6.3b: at periods where
communication is high, the radio needs to stay on longer in order to send or
receive the extra traffic. From Figure 6.3c, it is also evident that the idle listening
cost is a dominant factor that affects the duty cycle and limits the potential of
the GM method: even during periods with no activity, nodes waste a constant
amount of time to check the radio for transitions.

6.5.4 Accuracy/Responsiveness: the effect of packet losses

In the following, we will state that a node A is “out of sync” with respect to
node B, when its global estimate is different from node B, either: (i) because an
update from node B is still “in flight” or (ii) because an update from node B was
lost. In the first case, node A will stay out of sync until the “in flight” update
arrives. In the second case node A will stay out of sync until a later update from

6.5. EVALUATION FROM A HOLISTIC SYSTEM PERSPECTIVE 201

0 1 2 3 4
Artificial Loss rate (%)

0

2500

5000

7500

10000

12500

15000
Av

er
ag

e
tim

e
ou

t o
f s

yn
c

(m
s)

GM
Baseline

(a) Average time (in ms) that nodes are out
of sync

0 1 2 3 4
Artificial Loss Rate (%)

500

1000

1500

2000

2500

3000

3500

Av
g.

 ti
m

e
to

 d

et
ec

t v
io

la
tio

n
(m

s)

GM
Baseline

(b) Average time (in ms) to detect that the
threshold was crossed.

Figure 6.5: Accuracy/Responsiveness of the algorithm, measured as we intro-
duce packet losses.

B successfully arrives.
Define as accuracy the average time a node is out of sync with respect to any

other node. Define also the responsiveness of the algorithm as the average time
elapsed from the moment the value of the monitored function has crossed the
predefined threshold, until the moment a node actually detects this. Note that
accuracy is just a measure of the time nodes have stale information with respect
to each other, which might not necessarily be an issue if the network aggregate is
not close to the threshold. On the contrary, responsiveness captures the critical
time during which the threshold has been actually crossed and the node has not
yet detected it.

We next evaluate both metrics (cf. Table 6.1, D). We run simulations where
we intentionally introduce packet losses, with a controlled rate, at each node and
report the resulting loss rate. The CCR value is set to 16 Hz.

Figure 6.5a reports the average duration that a node is out of sync, for
increasing loss rates. For small loss rates (0.1% approximately) nodes are out of
sync mostly until “in flight” packets arrive (400 ms). Overall, both methods stay
out of sync longer as we introduce packet losses, since more and more nodes
will miss updates and will have to wait for at least one full epoch to get back in
sync. GM is affected to a much greater degree, simply because some nodes will
suppress their transmissions, keeping others out of sync for longer.

Figure 6.5b shows how the responsiveness of the two methods changes as
we introduce losses. On low loss rates (0.1%) nodes in both version quickly

202 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

detect the threshold violations, within approximately 300 ms. The time to detect
the violation increases rapidly for both versions as more losses are introduced.
Even with a little over 1% loss rate, it takes 1 second on average to detect the
violation, for both versions. On higher loss rate values, GM seems to take longer
to detect the violation, since more and more nodes are out of sync and have
stale information. Note that the gap between GM and the baseline is not as
large for responsiveness as for accuracy. This is because, close to when the
threshold violation happens, nodes in GM detect local violations frequently, so
the behaviour becomes similar to the baseline, for a short time interval, until the
threshold is exceeded.

Overall summary of results: The results show how GM is of practical use
in IoT environments. The presented extensive simulations and testbed runs’
outcomes suggest that GM can indeed bring several fold reduction to duty cycle.
However, the full system perspective reveals that the benefits achieved in practice
can be far from the expected ones, due to the overhead of idle listening. Also
shown in the evaluation is the insight that to avoid that cost is hard in GM, due
to changes in the communication pattern: during its execution, GM has periods
of little to no activity that would benefit from a low CCR, as well as periods with
high traffic that need a higher CCR value. This opens interesting questions as
to whether approaches that dynamically choose CCR values [20, 21] would be
efficient in managing the data-dependant communication pattern of GM. Finally,
we show that packet loss has a direct impact on the accuracy and responsiveness
of the algorithm, suggesting that the network stack should be tuned to ensure a
low loss rate at all times, especially during the critical periods where the global
estimate crosses the threshold. This also suggests that, for applications with no
strict requirements on responsiveness, it might be beneficial to sacrifice some
responsiveness in favor of a lower duty cycle (e.g. by relaxing the “eagerness”
of the propagation protocol).

6.6 Other related work

Geometric Monitoring (GM): In [10], the authors orthogonally augment GM
with sketches, that further reduce the communication cost by keeping track of an
approximation on the network-wide aggregate. Giatrakos et al. [11] combine the
communication reduction of GM with prediction models that track the temporal
evolution of sensor readings and only report when the model needs to be updated.
A summary of the use of GM for query tracking in distributed streaming systems
can also be found in [9]. This interest has been motivating also for the work in
our paper.

6.6. OTHER RELATED WORK 203

In [15], the authors introduce shape sensitive geometric monitoring, that takes
into account properties of the monitored function. Lazerson et al. [17] propose
a variant of GM that addresses the computational complexity of checking for
violations. They introduce a method of approximating the monitored function
to convex/concave components, so that it can be checked for violations fast,
without the need to construct the respective spheres. The approximation we
propose in our work is orthogonal, in the sense that we leave the function intact
and instead bind the local area that nodes have to keep track of for violations.

GM has been studied in the general context of WSN from a high level
perspective [2, 25]. In [25] the authors present an adaption of GM that is
designed for clustered topologies. In [2] GM is used for detecting outliers in the
readings of wireless sensor nodes. In both of these lines of work, the network is
only considered as a communication abstraction and practical systems aspects
are not considered. Differently, we take a full system perspective and consider
practical aspects such as the effect of the RDC protocol and packet loss.

Data prediction and aggregation for WSNs: For data aggregation in
WSNs, usually the goal is to collect at a single, sink node, the sensor read-
ings from every other node in the network. A significant amount of research
effort has been put on reducing communication by aggregating data along the
way from sources to a destination [13, 16, 19].

Data prediction extends this design space by building models that approxi-
mate (within some error guarantees) the sensed values at every node. An update
is only sent to the sink when a node’s value deviates from the ones predicted by
the model [3]. For example, Raza et al. [23] propose a data prediction method
and are the first to evaluate it on real sensor nodes. Similar to the spirit of our
work and through a full system evaluation, they find that the sleeping interval
of the MAC protocol and the cost of maintaining a topology have significant
effects on the practical lifetime of the nodes. Istomin et al. [14] extend these
findings and propose Crystal, a protocol based on synchronous transmissions
that is tailored for the communication requirements of data prediction.

Differently from data prediction, in GM there is no need to model the physical
quantities sensed at the nodes, which is often challenging and requires expert
knowledge. Moreover, in data prediction, nodes model their stream of readings
locally without dependencies on neighbouring nodes, whereas the threshold
monitoring problem that GM addresses is inherently distributed, hence the work
in [23] and [14] is not readily applicable to distributed threshold monitoring.

204 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

6.7 Conclusions and future work
Inspired by important results on the problem of continuous monitoring, we take
a full-system approach on the applicability of Geometric Monitoring (GM) on
real IoT environments. In particular, we focus on processing and communication,
as well as a cross-layer perspectives. We provide a method that simplifies the
threshold checking for resource-constrained IoT devices, with an approximation
that is particularly useful for many common cases. We also study the GM-
communication interplay: we confirm several-fold reduction in communication
which in turn leads to battery lifetime improvements on the nodes. We observe
however that the resulting improvement falls short of the theoretical savings,
which, as our results underline, is due to the baseline energy overhead of the
network stack. Moreover, we show that packet losses have a magnified effect
on the accuracy and responsiveness of the algorithm. Both the above motivate
cross-layer approaches for practical purposes. We expect that these insights will
enable the design of custom protocols and cross-layer optimization techniques
that will unlock the full potential of GM threshold monitoring applications for
IoT systems.

Bibliography
[1] Peter Bodik, Wei Hong, Carlos Guestrin, Sam Madden, Mark Paskin, and Romain

Thibaux. Intel Lab Data, 2004.

[2] Sabbas Burdakis and Antonios Deligiannakis. Detecting Outliers in Sensor Net-
works Using the Geometric Approach. In IEEE International Conference on Data
Engineering, 2012.

[3] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein, and
Wei Hong. Model-driven data acquisition in sensor networks. In 30th Int’l Conf. on
Very Large Data Bases, VLDB ’04, 2004.

[4] Adam Dunkels. The ContikiMac radio duty cycling protocol. Technical report,
Swedish Institute of Computer Science, 2011.

[5] Adam Dunkels, Björn Gronvall, and Thiemo Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In 29th IEEE Int’l Conf. on
Local Computer Networks, 2004.

[6] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He. Software-
based on-line energy estimation for sensor nodes. In 4th Workshop on Embedded
Networked Sensors, EmNets. ACM, 2007.

[7] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell Kindred.
Statistical approaches to DDoS attack detection and response. In Proc. DARPA
Information Survivability Conference and Exposition, 2003.

BIBLIOGRAPHY 205

[8] Zhang Fu, Magnus Almgren, Olaf Landsiedel, and Marina Papatriantafilou. Online
temporal-spatial analysis for detection of critical events in cyber-physical systems.
In IEEE Int’l Conf. on Big Data, pages 129–134. IEEE, 2014.

[9] Minos Garofalakis. Approximate geometric query tracking over distributed streams.
IEEE Data Eng. Bull., 2015.

[10] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based Geometric
Monitoring of Distributed Stream Queries. Proc. VLDB Endow., 2013.

[11] Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Izchak Sharfman,
and Assaf Schuster. Prediction-based geometric monitoring over distributed data
streams. In ACM SIGMOD International Conference on Management of Data,
2012.

[12] Vincenzo Gulisano, Magnus Almgren, and Marina Papatriantafilou. Metis: a two-
tier intrusion detection system for ami. In Int’l Conf. on Security and Privacy in
Comm. Sys., pages 51–68. Springer, 2014.

[13] Vincenzo Gulisano, Magnus Almgren, and Marina Papatriantafilou. When smart
cities meet big data. Smart Cities, page 40, 2014.

[14] Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, and Usman Raza. Data Pre-
diction + Synchronous Transmissions = Ultra-low Power Wireless Sensor Networks.
In Proc. of the ACM Conf. on Embedded Network Sensor Sys., SenSys, 2016.

[15] Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. Shape Sensitive
Geometric Monitoring. IEEE Trans. Knowledge and Data Eng., 2012.

[16] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. The impact of data
aggregation in wireless sensor networks. In W’shops 22nd Int’l Conf. on Distr.
Computing Sys., 2002.

[17] Arnon Lazerson, Daniel Keren, and Assaf Schuster. Lightweight monitoring of
distributed streams. In ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining, 2016.

[18] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Som-
mer, and Jan Beutel. Flocklab: A testbed for distributed, synchronized tracing
and profiling of wireless embedded systems. In 2013 ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2013.

[19] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tag:
A tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
December 2002.

[20] Christophe J. Merlin and Wendi B. Heinzelman. Duty cycle control for low-power-
listening mac protocols. In 5th IEEE Int’l Conf. on Mobile Ad Hoc and Sensor
Systems, 2008.

[21] Xu Ning and Christos G. Cassandras. Optimal dynamic sleep time control in
wireless sensor networks. In 2008 47th IEEE Conf. on Decision and Control, 2008.

206 CHAPTER 6. GEOMETRIC MONITORING: A SYSTEMS PERSPECTIVE FOR THE IOT

[22] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. Cross-level sensor network simulation with cooja. In 31st IEEE Conf. on
Local Computer Networks, 2006.

[23] Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Palpanas, and
Gian Pitero Picco. Practical Data Prediction for Real-World Wireless Sensor
Networks. IEEE Trans. on Knowledge and Data Eng., 2015.

[24] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to
monitoring threshold functions over distributed data streams. In ACM SIGMOD
Int’l Conf. on Management of Data, 2006.

[25] Izchak Sharfman, Assaf Schuster, and Daniel Keren. Aggregate threshold queries
in sensor networks. In IEEE Int’l Parallel and Distributed Processing Symp., 2007.

PAPER VI

Charalampos Stylianopoulos, Magnus Almgren,
Olaf Landsiedel, Marina Papatriantafilou

Continuous Monitoring meets Synchronous
Transmissions and In-Network Aggregation

An adapted version of the paper that appeared in the Proceedings of the 15th
International Conference on Distributed Computing in Sensor Systems

(DCOSS), pp. 157-166, IEEE 2019.

7
Continuous Monitoring meets

Synchronous Transmissions and
In-Network Aggregation

209

210 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

Abstract

Continuously monitoring sensor readings is an important building block for
many IoT applications. The literature offers resourceful methods that minimize
the amount of communication required for continuous monitoring, where Geo-
metric Monitoring (GM) is one of the most generally applicable ones. However,
GM has unique communication requirements that require specialized network
protocols to unlock the full potential of the algorithm.

In this work, we show how application and protocol co-design can improve
the real-life performance of GM, making it an application of practical value
for real IoT deployments. We orchestrate the communication of GM to utilize
the properties of a state-of-the-art wireless protocol (Crystal) that relies on
synchronous transmissions and is designed for aperiodic traffic, as needed by
GM. We bridge the existing gap between the capabilities of the protocol and the
requirements of GM, especially in the case of periods of heavy communication.
We do so by introducing an in-network aggregation technique relying on latent
opportunities for aggregation that we exploit in Crystal’s design, allowing us to
reliably monitor a wide spectrum of aggregate functions, including duplicate-
sensitive ones, such as sum, average or variance. Our results from testbed
experiments with a publicly available dataset show that the combination of
GM and Crystal results in a very small duty-cycle, a 2.2x - 3.2x improvement
compared to the baseline and up to 10x compared to previous work that uses
a mainstream network stack. We also show that our in-network aggregation
technique reduces the duty-cycle by up to 1.38x.

7.1 Introduction

The problem of monitoring a network-wide system state has fundamental uses in
Wireless Sensor Networks (WSN). Whether we are monitoring the temperature in
a room to detect outliers [3] and hot-spots [28] or machinery operation statistics
in a factory to detect malfunctions [21], we are often interested in keeping track
of a function calculated over all the network’s readings. More specifically, given
a set of sensor nodes n1, ..., nN with readings v⃗1, ..., v⃗N that vary over time,
we want to continuously track whether the value of a function f , defined over
the network-wide weighted average of the readings, is higher (or lower) than a
predefined threshold T .

One of the most generally applicable solutions that addresses the communi-
cation complexity of the problem is Geometric Monitoring (GM) by Sharfman
et al. [27]. GM is a method that can monitor any function, linear or not, with

7.1. INTRODUCTION 211

respect to a threshold and can suppress most of the readings without having to
communicate. Since its introduction, GM has been extended with sketches [10]
and prediction models [11], showing that it is extensible and applicable in many
scenarios.

When considering the applicability of GM for IoT deployments, there are
aspects to consider that go beyond the algorithm itself. The communication
pattern of GM is highly data-dependent and varies significantly during run-time.
This implies a challenge for most network protocols as they are usually optimized
for periodic communication. Moreover, the actual energy savings on the nodes
depend on the underlying communication stack and the way it interacts with GM.
Previous work [29] studied the performance of GM in an applied IoT context
and showed that the energy overhead of mainstream network stacks limits the
effectiveness of the algorithm in practice. Thus, it is interesting to study how to
close the gap between the requirements of GM and appropriate protocols that
can support them.

Crystal [13, 14] is a recently introduced wireless protocol based on syn-
chronous transmissions that is specifically designed to favor aperiodic communi-
cation patterns: it efficiently handles communication when there is little to send
within an epoch, but can also accommodate epochs with heavy communication.
However, Crystal was originally designed with applications featuring aperiodic
data collection from multiple senders to a single sink node. Contrary, GM re-
quires that any node should be able to broadcast updates to every other node in
the network. Moreover, even though Crystal gracefully handles the case of low
communication load, it misses opportunities to save energy in cases of high load
that can benefit, e.g., from in-network aggregation.

In this work, we bridge this gap between the requirements of GM as an
application and Crystal as a state-of-the-art wireless protocol that relies on
synchronous transmissions. By doing so, we provide a practical realization
of a system that continuously monitors sensor values with a high degree of
communication suppression (due to properties of GM) and operates at low
duty-cycle with high reliability (due to properties of Crystal). We also propose
Arctium, adding in-network aggregation to synchronous transmission protocols
for aperiodic communication; this orthogonal design allows any application
that monitors aggregated values from sensors to get additional reduction in
communication on top of the existing design of Crystal. Hence, we show how
to: (i) make algorithms such as GM practical for real IoT deployments, in
combination with modern protocols such as Crystal and (ii) reduce the energy
consumption of such algorithms even further by adding in-network aggregation.

In particular, we make the following contributions:

212 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

• We orchestrate and deploy Geometric Monitoring on top of a state-of-the-
art wireless network protocol that relies on synchronous transmissions.

• We introduce Arctium,1 a novel method for in-network aggregation that
relies on latent opportunities for aggregation in Crystal’s design and reli-
ably tracks aggregates, including duplicate-sensitives ones, using fewer
transmissions than Crystal.

• We evaluate the effects of application and protocol co-design on real
IoT nodes, using publicly available data-sets and show a reduction in
energy consumption of up to 10x compared to previous work that uses
a mainstream network stack, and how in-network aggregation further
reduces it by 1.13-1.38x.

The paper is organized as follows. Section 7.2 summarizes GM and Crystal.
In Section 7.3, we present our GM and Crystal co-design and describe Arctium,
our aggregation scheme. In Section 7.4, we show the results from our evaluation.
We present related work in Section 7.5 and conclude in Section 7.6.

7.2 Preliminaries

7.2.1 The Geometric Monitoring Method (GM)

In their seminal work [27], Sharfman et al. present a general method able to
monitor (with respect to a threshold) arbitrary functions defined over network-
wide aggregates. Instead of having nodes communicate for every new reading,
each node uses local information to decide whether to send an update. We now
give a summary of the Geometric Monitoring method. A more detailed analysis,
as well as the proofs can be found in the original publication by Sharfman et
al. [27].

Assume a network of N nodes, with sensor readings v⃗1, ..., v⃗N , called local
statistics vectors. Those vectors consist of one or more variables that each node
monitors and vary over time. These vectors are only known locally, but sporadi-
cally a node ni will broadcast its v⃗i to every other node. The last broadcasted
value from ni is denoted as v⃗′i. The weighted average of the local vectors is
called the global statistics vector.

1Arctium is a genus of plants, notable for their velcro-like heads that tend to stick and aggregate
on other materials.

7.2. PRELIMINARIES 213

ssss

Estimate	Vector	e

u
𝜐

u

u

u

u

v e

Figure 7.1: An example illustrating the GM method. The method keeps track of
whether the actual value (green dot) is over or under the threshold (red line), by
monitoring the circles formed by the drift vectors (gray circles).

v⃗ =
N

∑
i=1
wi ∗ v⃗i (7.1)

Similarly, the weighted average of the last broadcasted values is called the
estimate vector (e⃗) and it is known to all nodes. Given a function f and a
threshold T , we want to continuously monitor whether or not the value f(v⃗) is
under the threshold. Equivalently, we want to always know whether or not v⃗ lies
in an are where the function takes values below the threshold.

When a node measures a new set of sensor readings, its local statistics vector
will drift (∆⃗vi = v⃗i − v⃗′i). The drift vector u⃗i, defined as the displacement of the
estimate vector because of the new drift, i.e. u⃗i = e⃗ + ∆⃗vi, can be computed
locally without communication. Figure 7.1 shows an example of the method,
also depicting the values defined above.

The convex hull of the drift vectors (yellow area) is defined as the set of all
the convex combinations of u⃗i (∑ θiu⃗i). As such, it is clear that the weighted
average of the drift vectors (defined similarly to Equation 7.1) would be part
of this set. With simple substitution, one can also see that the global statistics
vector is equal to the weighted average of the drift vectors and thus it must also

214 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

lie in the convex hull of the drift vectors. Thus, as long as the convex hull does
not cross the threshold (i.e. lies in the white area), v⃗ is also guaranteed to not
have crossed the threshold. However, nodes cannot locally determine the convex
hull, as that would require knowing all u⃗1, ..., u⃗N .

This is where the final part of the method comes into play. Let each node
create a sphere locally, centered at e⃗+u⃗i

2
with a radius of e⃗−u⃗i

2
. This is possible

since u⃗i is known to ni and e⃗ is the same across all nodes at a given time.
Sharfman et al. [27] prove that the union of those spheres strictly covers the
convex hull. Therefore, a node only needs to track whether its locally computed
sphere crosses the threshold. If yes, it will send its local vector to everyone,
subsequently updating the estimate vector; else, it can remain quiet.

What is relevant for this work, from a communication behavior point of view,
is that the method results in nodes communicating aperiodically: there are inter-
vals when most nodes suppress their readings with almost no communication,
while at other times multiple nodes need to broadcast their values so that all
nodes in the network can update their global estimate. Such a dynamic commu-
nication pattern makes GM a challenging application for many state-of-the-art
low-power wireless protocols.

7.2.2 Crystal

Crystal [13, 14] is a protocol for low power and highly reliable aperiodic col-
lection of data from multiple nodes to a single sink. Crystal has epochs and is
designed to be particularly useful for applications where the number of nodes
that have data to be collected at each epoch varies, but is typically low. In its
core, Crystal relies on Glossy [7], the seminal work of Ferrari et al. By tight
(sub-microsecond) scheduling of transmissions, Glossy makes use of the capture
effect [22] and constructive interference [7] to achieve network-wide flooding
with extremely small latency.

Crystal, in turn, builds a schedule on top of Glossy that consists of a series
of phases that form an epoch. Figure 7.2 shows an example of a single Crystal
epoch for a network with three nodes about to send their values to the sink.
In this example, the epoch takes nine phases until completion. VX indicates
the value that node X is trying to send to the sink. First, during the S-phase,
the sink floods a synchronization message to ensure all nodes have a common
reference point. Then, during the T-phases (phases 2, 4, 6 and 8), any node
that has data to be collected initiates its own Glossy transmission. With high
probability, one of the transmissions reaches the sink, which acknowledges the
transmission in the following A-phase. In this example, the value from Node C
reached the sink at phase 4 and was acknowledged at phase 5. Nodes that did

7.3. GM, CRYSTAL AND ARCTIUM CO-DESIGN 215

Recv
sync

Recv
Ack

Sink

Node	A

Node	B

Node	C

Recv
sync

Recv
sync

Send	
sync

Send	
VC

Send	
VA

Send	
VB

Recv
VA

Ack
VA
Recv
Ack

Recv
Ack

Recv
Ack

Send	
VB

Send	
VC

Recv
VC

Recv
VC

Ack
VC

Recv
Ack

Recv
Ack

Recv
Ack

Recv
VB

Recv
VB

Send	
VB

Recv
VB

Ack
VB

Recv
Ack

Recv
Ack

S T T TA A A
Phases	of	a	single	epoch

Send	
Nack

Recv
Nack

Recv
Nack

Recv
Nack

T A

1 2 3 4 5 6 7 8 9
time

Figure 7.2: A direct adaptation from [14], showing the different phases of Crystal,
for a network with three nodes and one sink. Each box indicates a (possibly
multi-hop) Glossy flood.

not get their transmissions acknowledged transmit again during the next T-phase,
until one (or more, for safety) T-phases are empty. In this case, the sink issues a
negative acknowledgment (phase 9) and the network can go back to sleep until
the beginning of the next epoch.

7.3 GM, Crystal and Arctium co-design

7.3.1 Overview
The first idea is to use GM on top of the existing communication schedule
followed by Crystal (see Figure 7.2), with benefits from both worlds: (i) commu-
nication reduction from using GM as an application, and (ii) efficient handling
of the aperiodic communication pattern using Crystal as the underlying protocol.
This can be achieved by using the T-phase to send updates from nodes who
detected threshold violations and the A-phases to trickle down the changes to the
global estimate. All nodes perform the computation required by GM (threshold
checking) between the T-A pairs to decide whether to transmit or just forward
packets.

The second idea is to gracefully handle the (so far overlooked) cases of
multiple concurrent transmitters. We propose Arctium to extend the design of
Crystal in a novel way by introducing in-network aggregation inside Crystal’s

216 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

schedule. We do so by extending the role of the T-phases: during these phases,
nodes do not only forward messages towards the sink, but they also have the
opportunity to overhear neighbouring transmissions and combine these with their
own. As a result, Arctium requires fewer messages to complete the epoch and is
more energy efficient than Crystal. Arctium is orthogonal to GM and works for
any application that is monitoring aggregates, such as min, max, sum, average
and variance.

In the rest of this section, we first describe how we design GM in coordination
with Crystal. Then we introduce Arctium and outline how it enables aggregation
on top of Crystal.

7.3.2 Orchestrating GM communication with synchronous
transmissions

Crystal was originally designed for data collection: sensor values from any node
must be collected at a single, fixed sink. The original requirements of GM are
however different:2 when a node detects a local threshold violation and transmits
its update, all other nodes must receive it to recompute the global estimate. In
order to bridge the gap between the two models and fit the requirements of GM
on top of the existing Crystal schedule, we make use of the Glossy transmission
during the A-phase. That transmission not only acknowledges the reception of a
node’s value by the sink, but it also lets every node in the network know the new,
updated value of the global estimate.

Overall, in our system, nodes first collect new sensor readings and perform
threshold checking (see Section 7.2.1) at the beginning of the epoch. If they
cross the threshold, they send their update during the T-phase. If an update
reaches the sink, the sink updates the global estimate. The new global estimate
will then trickle-down to the other nodes during the A-phase, piggybacked on the
acknowledgment of the previous T-phase transmission. When nodes receive the
new global estimate, they have until the next T-phase to perform the threshold
checking again (based on the new global estimate) and decide whether they need
to transmit their update. This continues until there are no further transmissions
(2-3 empty T-phases) and the epoch ends. Note that, on rare cases, a packet loss
during the A-phase might go undetected resulting in some nodes momentarily
having an outdated global estimate. This is corrected in the next A-phase when

2There are models of GM that consider a single, coordinating node that is able to query values
from specific nodes (using e.g. a unicast) and resolve threshold violations. However, since unicast is
not part of Crystal’s schedule, we do not consider such models in this work.

7.3. GM, CRYSTAL AND ARCTIUM CO-DESIGN 217

the sink disseminates the new global estimate.
Efficient threshold checking: As mentioned in Section 7.2.1, nodes need

to perform the threshold checking required by GM between the T-A pairs in the
protocol, which can be computationally challenging for IoT devices with very
limited computing and energy resources as the threshold surface might have an
arbitrary shape.

We address this by approximating the GM-spheres with a simpler shape
that makes the computations significantly faster while ensuring that we do not
introduce false negatives. As an example in 2D, the original spheres (now circles,
similar to the example Figure 7.2 in Section 7.2.1) can be replaced with squares
containing the former, which results in simpler boundary conditions (as it is
simpler to check whether the sides of a square, rather than points on a circle,
cross a surface). Naturally, there will be cases where the square check will
report a violation even though the circle inside it does not actually cross the
threshold, hence sacrificing communication reduction for ease of computation.
This relaxation might not cope with high dimensions, but in many cases of
monitoring statistics such as variance or correlations between nodes, it provides
a simple and efficient solution which we have also experimentally verified (e.g.
when monitoring the variance, the computation time decreases from 20ms to just
7ms on the TelosB platform, see Section 7.4). In Section 7.5 we discuss other
alternatives in existing literature [20].

7.3.3 Arctium: enhancing Crystal with in-network aggrega-
tion

Motivation: Crystal is designed to efficiently handle the case where only a few
nodes have data to transmit within the epoch. However, for many applications
including GM, there are epochs where many or all the nodes in the network have
data to transmit. For example, for GM this happens when the monitored value is
close to the threshold. Hence, there is potential for improvement on a protocol
level, which we exploit by proposing Arctium.

The following two observations have guided our work of Arctium. (i) In
applications such as GM, the individual values by themselves are not interesting
but rather only the aggregate (e.g. GM needs to keep track of the average of the
values to compute the global estimate). (ii) During each T-phase of Crystal, only
one value from one node reaches the sink, while the other concurrent senders
fail.

The goal is to allow nodes that did not manage to reach the sink to aggregate
their own values with the values of neighbouring nodes. Subsequently, these
nodes try to send their aggregated values. If they reach the sink, the sink

218 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

Recv
sync

Recv
Nack

Sink

Node	A

Node	B

Node	C

Values	added	to	aggr.	vector packet	with	aggregated	values

Recv
sync

Recv
sync

Send	
sync

Send	
VC

Send	
VA
Recv
VC

Recv
VA

Ack VA

Recv
Ack

Recv
Ack

Recv
Ack

Send	
VB,VC

Send	
VC

Recv
VC

Recv
VB,VC

Ack
VB,VC

Recv
Ack

Recv
Ack

Recv
Ack

Send	
Nack

Recv
Nack

Recv
Nack

S T T TA A A
Phases	of	a	single	epoch

time
1 2 3 4 5 6 7

Figure 7.3: Example of an epoch with three nodes with values to send and one
sink, using Arctium. During phase 2, node B overhears a transmission from
node C and combines C’s value with is own. Compared to Crystal in Figure 7.2,
Arctium requires one less T-A pair to complete the epoch.

acknowledges multiple values in a single phase and the total number of phases
in the epoch is reduced.

Fitting aggregation into Crystal: Figure 7.3 shows an example epoch using
Arctium. Our aggregation scheme leverages the T and A communication phases
of Crystal. If, during a T-phase, a node does not try to transmit a value of
its own (Node B, phase 2), it can overhear a neighbouring transmission and
propagate it. At the end of the T-phase, the value that was overheard is stored in
a vector. The node then aggregates that value with its own or other, previously
aggregated values and tries to send the aggregate to the sink. The sink in our
system acknowledges the aggregated information during a single A-phase, in
response to receiving an aggregated message (phase 5). As a result, the total
number of phases in an epoch is reduced. In this case, two phases less than the
Crystal example in Figure 7.2.

Keeping track of values from multiple nodes: To track which nodes’ val-
ues we have aggregated, packets in Arctium hold, apart from the value, a small
vector with the IDs of the nodes whose values are taken into account in the
aggregate. The size of this vector determines the maximum number of nodes
whose values we can aggregate in a single message. Even though this vector
increases the size of the packet and adds overhead, we show in Section 7.4 that

7.3. GM, CRYSTAL AND ARCTIUM CO-DESIGN 219

even with a small vector (two or three IDs) we have good opportunities for
aggregation without adding excessive overhead. A node also keeps a local vector
with the IDs and values that are part of the aggregate. Keeping track of that
vector allows nodes to add or remove values from the aggregate, based on the
design choices described next.

Increasing the chances to aggregate: In order to give the opportunity for
nodes that have values to transmit to overhear neighbouring transmissions and
to combine them with their own, we introduce a random back-off during the
T-phases. If a node has values to transmit, it will do so with a given probability
p. Otherwise, the node will still be part of the T-phase but will only overhear
and forward packets. Note that introducing such a back-off is not wasting
opportunities for communication: only one node’s value will reach the sink
anyhow, so unless all nodes with data to send back-off simultaneously, there will
be a successful reception at the sink.

Aggregation design choices: We now outline and motivate important design
choices for the logic of when and how to aggregate. In the following, we denote
with VX the value that node X is trying to send to the sink.

Point 1: If node A overhears during a T-phase that its value VA has been ag-
gregated by node B, node A stops transmitting VA and allows node B to
send it instead. This helps to reduce the number of concurrent transmitters
within each T-phase and reduces the size of the epoch.

Point 2: If node A, which has aggregated (VA, VB , VC), hears an acknowledg-
ment from the sink that contains (either standalone or part of an aggregated
packet) the ID of B, A removes VB from its vector and continues with
the aggregated values of A and C. This allows us to keep the rest of the
values that have been aggregated so far and only remove the ones that
were acknowledged by the sink.

Point 3: Nodes do not combine one set of aggregated values with another. E.g.,
if node A with aggregated values (VA, VB , VC), overhears a transmission
from node D which has aggregated (VD, VB , VE), node A will not attempt
to combine the aggregates. This serves two purposes: (i) it avoids duplicate
values (in the example above VB would be counted twice) and (ii) it makes
enforcing Point 2 above possible, because a node knows the individual
contributions of the values that it is aggregating.

Point 4: If an aggregating node A overhears that node B is aggregating some
similar IDs and B is a more successful aggregator (has a larger vector
of aggregated values), node A will remove those common IDs from its
own vector and allow B to take care of them. This helps to decrease the

220 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

probability of cases where two nodes each have aggregated values which
they cannot combine, due to Point 3.

Algorithm 7.1 summarizes the pseudo-code of the aggregation logic, in
correlation with the points described above.

Properties of Arctium: We now argue about the following three claims
regarding the behavior of Arctium. For readability, we first present them consid-
ering absence of packet losses and then we discuss the implications incurred by
packet losses.

Claim 7.1. If Crystal delivers a value VX to the sink, Arctium delivers it as well
in the same epoch. In other words, Arctium guarantees delivery of all values.

Arctium makes sure no values are dropped in the following way. Consider a
node A trying to send a value VA to the sink. First, node A will not stop trying
to send VA until it is acknowledged by the sink or picked up for aggregation
by another node B (see point 1). Second, if a node B has aggregated the value
VA of node A, node B will not remove it from its aggregation vector until it is
acknowledged by the sink (see point 2) or it is picked up by a more successful
aggregator (see point 4). In any case, until the value VA is acknowledged by the
sink, there is at least one node (either the originator of that value or the node(s)
that aggregated it) that is responsible for that value and keeps trying to send it to
the sink.

Claim 7.2. Arctium guarantees no duplicates to the sink.

This is because: (i) nodes remove the values that are acknowledged by the
sink from their aggregation vector (see point 2) so that they are not sent to the
sink again and (ii) we disallow combining one set of aggregated values with
another (see point 3), as this could cause the values in the union of those sets to
be aggregated twice.

Corollary 7.1. Arctium correctly monitors distributive and algebraic aggregate
functions on the network.

From Claims 1 and 2, since every value will be delivered exactly once,
Arctium can track distributive aggregates (such as sum and count) as well as
algebraic ones (such as average and variance). Holistic aggregates [18] (such
as median or top-k) are not covered by the method. Arctium can also track any
function that fits into the GM framework (since GM aggregates the values from
different nodes using the average).

Claim 7.3. With high probability, epochs in Arctium are not longer than the
ones in Crystal.

7.3. GM, CRYSTAL AND ARCTIUM CO-DESIGN 221

Algorithm 7.1. Packet structure and packet handlers at node U .

// The application payload
1 struct {
2 Data: value
3 Vector: idBuffer
4 } Packet;
5

// Local variables
6 U.idBuffer : a local vector of node IDs who’s values have been aggregated
7 U.valueBuffer : a local vector of values that have been aggregated
8 U.aggregate : the current sum of all aggregated values
9 U.nodeId : current node’s ID

10

11 Function upon reception of packet P during the A-Phase
// Implements Point 2 (§ 7.3.3)

12 foreach id ∈ P.idBuffer do
13 if id ∈ U.idBuffer then
14 remove id and its value from U.idBuffer and U.valueBuffer
15 U.aggregate = Sum (U.valueBuffer)
16 end
17 end
18 With probability p, back-off in the next T-Phase
19

20

21 Function upon reception of packet P during the T-Phase
// Implements Point 3 (§ 7.3.3)

22 if P.idBuffer.size ==1 and idBuffer.notFull then
23 add P.idBuffer in U.idBuffer
24 add P.value in U.valueBuffer
25 U.aggregate = Sum of values in U.valueBuffer
26 end
27

// Implements Point 4 (§ 7.3.3)
28 if (U has aggregated values) and (P.idBuffer.size ≥ U.idBuffer.size) then
29 foreach id ∈ P.idBuffer do
30 if id ∈ U.idBbuffer then
31 remove id and its value from U.idBuffer and U.valueBuffer
32 U.aggregate = Sum (U.valueBuffer)
33 end
34 end
35 end
36

// Implements Point 1 (§ 7.3.3)
37 if (U has not aggregated any value) and (U.nodeId ∈ P.idBuffer) then
38 stop trying to transmit
39 end

222 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

In the absence of packet losses, at the end of every T-A pair, exactly one
node’s packet will reach the sink. In Arctium packets contain the aggregated
values from at least one node, hence fewer or equal packets are required (less
T-A pairs) for all nodes’ values to reach the sink. Also, only the nodes that
have values to transmit in this epoch participate in aggregation, i.e. we do not
introduce new messages on the nodes that would otherwise not have values
to send in this epoch. The only case where Arctium might introduce extra
T-A pairs is when, during a T-phase, all nodes with values to send decide to
back-off simultaneously. If N is the number of nodes with values to send in
an epoch and p is the back-off probability, the total number of extra T-A pairs
introduced this way in an epoch follows a Poisson binomial distribution with
success probabilities pN , pN−1, ..., p2, p. For example, for p = 0.5 and N = 26
the expected number of extra T-A pairs is close to 1, and the probability of
having more than e.g. 4 extra pairs is less than 1.7% (by using Chernoff’s
bound [12]). Moreover, even if extra T-A pairs exist in an epoch, the reduction
in T-A pairs by the use of aggregation is likely to counter their effect as can be
seen experimentally in Section 7.4.3.

Now let’s also consider packet losses for the cases discussed above. Claim 1
only holds with high probability as there is an unlikely scenario with loss of
values if all of the following four conditions hold: (i) a node A has aggregated at
least one value VB from another node B, (ii) node B has delegated that value to
A and stopped trying to send it to the sink, (iii) no other node has aggregated
VB and (iv) node A repeatedly fails to reach the sink. This scenario is extremely
unlikely, given that all these four conditions must hold simultaneously and, as
shown in [14] and later in Section 7.4.2, Crystal achieves high reliability, i.e.
packet losses are very rare. Even then, node A can deliver the value at the next
epoch, as a last resort.

Claim 2 can still hold in the presence of losses with a simple remedy. Du-
plicates might arise when a node that holds value V sends it to the sink but
fails to receive the acknowledgment for that value, due to packet losses. In this
case, value V might reach the sink more than once. This can be remedied if the
sink keeps track of the values it has received. If it detects a duplicate value, it
can resend the potentially lost acknowledgement. Claim 3 still holds with high
probability in the presence of packet losses.

7.4 Evaluation

We implemented Geometric Monitoring and Arctium in Contiki [5], a well-
known operating system for IoT applications. We targeted the TelosB platform

7.4. EVALUATION 223

that supports protocols such as Crystal that rely on synchronous transmissions.
In this section, we assess the performance of our design based on its duty-cycle
as well as with other metrics defined below.

7.4.1 Experimental methodology

Experiment setup: We run our experiments in two settings, similar to the
setup used in [29]: (i) A full-system evaluation on the Flocklab [23] testbed.
Flocklab consists of 26 TelosB nodes deployed with a four hop topology. Using
Flocklab, it is possible to test our design on a real deployment with realistic
interference due to the presence of people and Wi-Fi signals. Moreover, Flocklab
is, at the moment, the only publicly available testbed that still includes the
TelosB nodes that support protocols such as Crystal. (ii) A full-system simulation
on Cooja [25], a cycle-accurate simulator where the whole network stack is
simulated in software at every node. We use Cooja to reproducibly uncover
trends and insights, which we then validate with deployment in Flocklab. The
default topology here is similar to the testbed. We also use Cooja to test larger
topologies than the one available in Flocklab (see Section 7.4.3).

Data set and monitoring functions: We use the commonly-used Intel Lab
data set [2]. We use the first day of temperature readings from 26 nodes as
sources of data for the nodes in the testbed. In the original dataset, nodes take a
new reading every 31 seconds. In our experiments, we simulate the same period,
i.e. we scale the duty-cycle results to correspond to a period of 31 seconds.

We experiment with two monitoring functions: the variance (also used
in [28]) and the average of the temperature readings and use different values for
the threshold we want to monitor (see Section 7.4.2). Unless otherwise noted,
we will use the variance and a threshold T = 2○C2.

Configuring Crystal: Crystal has many knobs that allow the protocol to
operate on different topologies and network conditions, e.g. one-hop vs multi-
hop networks, noisy vs interference-free networks. Those knobs also offer a
configurable trade-off between the performance requirements, i.e. allow the user
to favor energy efficiency in place of reliability and vice versa. We refer to the
original publications of Crystal [13,14] where the authors explain the significance
and the methodology of choosing correct values for Crystal’s parameters. In this
work, we simply choose the set of parameter values presented in Table 7.1 that
allows Crystal to operate in a reliable manner.

Metrics of interest: A key evaluation criterion is duty-cycle (DC), i.e. the
fraction of the total time that the radio is turned on. In some experiments we
also report the lifetime improvement, i.e. the reduction in duty-cycle achieved
through GM. Related to GM, we also report the communication reduction of GM

224 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

Parameter Explanation (X is S, T or A) Value
NX number of Glossy transmissions in

phase X
4

WX the maximum duration of phase X 12 (ms)

R
number of consecutive empty T-A
pairs before the epoch is finished

3

Table 7.1: Crystal’s parameter values used in experiments.

Method Comm. DC (%) Lifet. Loss
Reduction Impr. Rate (%)

Baseline 1X 1.22 1X 0.34
GM (variance / T=0.5) 3.2X 0.54 2.26 0.03
GM (variance / T=1) 4.1X 0.46 2.65 0.00
GM (variance / T=2) 4.3X 0.44 2.77 0.00
GM (variance / T=3) 5.5X 0.38 3.21 0.10
GM (average / T=25) 87x 0.18 6.78 0.00

Table 7.2: Full system evaluation on the Flocklab testbed, using GM on top of
Crystal, for different monitoring functions and threshold values.

in terms of the number of updates suppressed by the algorithm; it is a measure
of the efficiency of GM, purely from the application point of view. Finally, we
also measure the loss rate, in terms of the percentage of updates from individual
nodes that fail to reach the sink.

Summary of the experiments: The rest of the evaluation section is orga-
nized as follows: in Section 7.4.2 we present testbed and simulation experiments
that summarize the performance of our Crystal and GM co-design, without using
aggregation. In Section 7.4.3 we focus on our aggregation scheme, Arctium, and
show, through testbed and simulation experiments, how it manages to reduce the
average duty-cycle.

7.4.2 Combining GM and Crystal: overall performance
We start with a real-life deployment on the Flocklab testbed, where we monitor
the variance and the average of the temperature readings using different threshold
values. We compare the performance against a baseline (same as in [27,29]) that
does not run GM and instead sends all measurements to the sink. However, in
our case, the baseline uses Crystal as the underlying protocol.

Testbed experiments: Table 7.2 shows the results from the Flocklab de-

7.4. EVALUATION 225

0 500 1000 1500 2000 2500
Epochs

0
1
2
3
4
5
6
7
8

Av
er

ag
e

du
ty

 c
yc

le
 (%

)
GM+Crystal GM+ContikiMac

Figure 7.4: Duty-cycle during runtime when monitoring the variance with T = 2.
The figure also includes results of using GM with ContikiMAC taken from [29].

ployment. The choice of monitoring function and threshold value plays an
important role on the effectiveness of the GM and the communication reduction
it achieves. When monitoring the variance, GM manages to suppress most of the
nodes’ values and communicates 3.2 to 5.5 times less than the baseline. What is
important in this work though, is that, with the combination of GM and Crystal,
that communication reduction is translated as lifetime improvement on the nodes.
Our experiments report very low duty-cycle, down to 0.38%. This results in an
up to 3.2 times lifetime improvement compared to the baseline, which is using
Crystal without GM, an already very energy-efficient protocol. We also note that
the system remains fairly reliable, with less than 0.34% loss rate. In the case of
the average, GM suppresses most of the communication and the system has a
duty-cycle of 0.18%.

Runtime behaviour: We now take a closer look at the dynamic behaviour
of the above experiments and the evolution of the average duty-cycle during
runtime. We have simulated one of the above experiments in Cooja (we chose
the one with T = 2) and continuously report the average duty-cycle in Figure 7.4.
To highlight the benefits of using GM with Crystal, compared to other network
stacks, the figure also includes the equivalent results from [29] where GM is
applied on top of ContikiMac [4], a mainstream network stack. The figure
shows that, regardless of the protocol stack, GM exhibits a highly dynamic
behavior, with periods of low activity where most of the communication is
suppressed and periods of high activity (usually when the monitored value is
close to the threshold) where GM communicates more. However, the choice
of communication protocol has a major effect on the average duty-cycle. Our
design that combines GM and Crystal has an order of magnitude smaller duty-
cycle and consumes a bare minimum amount of power when communication is

226 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

15

20

25

30

35

Av
er

. #
 o

f T
-A

 p
ai

rs
 p

er
 e

po
ch

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

DC
 (%

) p
er

 e
po

ch

0

5

10

15

20

DC
 o

ve
rh

ea
d

(%
)

0 1 2 3 4 5 6 7
ID buffer size (aggregation factor)

Figure 7.5: Collection of trends illustrating the effect of the aggregation factor
(x-axis): (i) the per-packet DC overhead (blue trend), (ii) the average number of
T-A pairs per epoch (green trend) and (iii) the average DC per epoch (red trend).

low. On the contrary, mainstream networks stacks have a significant overhead
which they have to pay even under low communication [29].

7.4.3 Arctium: in-network aggregation under heavy commu-
nication

In this section, we focus on our aggregation scheme Arctium and show that aggre-
gation is an effective technique to reduce the already low duty-cycle presented
in the previous section, even further. In all the experiments of this section, the
back-off probability p was set to 0.5.

Effects of the aggregation factor: We start by presenting simulation results
that illustrate the effects of the size of the aggregation buffer. As mentioned
earlier in Section 7.3, Arctium uses a node-ID buffer that is a placeholder for
the IDs of the nodes whose values might be aggregated in a single packet. The
size of the buffer is a parameter of our design and it affects the effectiveness of
the aggregation. In the following experiment, every node in the network tries
to send data to the sink (i.e. we adopt the baseline behavior, without the GM
algorithm) to illustrate the effect of aggregation. Figure 7.5 shows the evolution
of different trends as the size of the ID buffer (aggregation factor) increases in
the x-axis. We now explain the significance of each trend.

The blue trend shows the added, per-packet overhead that comes from in-
creasing the buffer size, compared to not having a buffer (aggregation factor 0).
Since each packet has to statically reserve space for each entry in the buffer, the
size of the packet increases linearly with the size of the buffer. This results in
a linear increase in duty-cycle overhead in order to receive and transmit those

7.4. EVALUATION 227

Aggregation factor (size of the buffer)
0 1 2 4

Method DC DC Impr. DC Impr. DC Impr.
baseline 1.24% 0.97% 1.27x 0.90% 1.38x 0.93% 1.33x(+ Arctium)
GM 0.54% 0.49% 1.10x 0.48% 1.13x 0.50% 1.08x(+ Arctium)

Table 7.3: Full system evaluation on the Flocklab testbed, for different aggre-
gation factor values.

packets. Each added slot in the buffer adds approximately 3% extra overhead.
The green trend illustrates the benefits that come from aggregating values in

a single packet: it reports the average number of T-A pairs required to complete
an epoch. As the aggregation factor increases, the number of T-A pairs quickly
drops, since a bigger buffer allows a packet to carry more information and deliver
more values to the sink. Most noticeably, even using a single-slot ID buffer, i.e.
going from aggregation factor 0 to 1, is enough to reduce the number of T-A pairs
by 23%. The benefit saturates after an aggregation factor of 3 which indicates
that, for this given topology, there are not many opportunities to aggregate more
than 3 values before the sink receives every node’s value.

The red trend reports the average duty-cycle per epoch. This metric factors in
both the increasing overhead per packet (blue trend) and the decreasing number
of T-A pairs per epoch (green trend). As a result, the average duty-cycle initially
decreases and has a minimum when the aggregation factor is 2. At this point,
using Arctium results in 23% smaller duty-cycle. After that point, the increasing
packet overhead dominates and the duty-cycle increases slowly.

Testbed experiments: We support the above simulation results regarding
Arctium with results from real deployments in the Flocklab testbed. Table 7.3
summarizes the duty-cycle reported for the baseline and GM, as we change the
aggregation factor. In the GM experiments, we monitor the variance with a
threshold of T = 0.5. We also report the improvement in duty-cyle, due to aggre-
gation. For the baseline, the results validate the previous claims: aggregation
further reduces the duty-cycle by a varying amount, up to 1.38x. Arctium also has
a positive effect for the case of GM, where the already low duty-cycle (0.54%)
is further decreased by up to 1.13x. Naturally, since GM communicates far less
than the baseline, there are fewer messages to send to the sink and fewer chances
to aggregate values. Still, the results show that Arctium brings improvement even
in applications with aperiodic communication patterns.

Testing larger networks: Finally, we experiment with larger and busier

228 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

0 1 2 3 4 5 6
ID buffer size (aggregation factor)

100

150

200

250

300

350

Av
er

ag
e

DC
 (%

) p
er

 e
po

ch

20 nodes
30 nodes

40 nodes
50 nodes

Figure 7.6: The average duty-cycle per epoch for different topologies, as the
aggregation factor changes.

topologies in the Cooja simulator. Figure 7.6 reports the average duty-cycle for
topologies that range between 20 and 50 nodes. In each topology, every node
is trying to send values to the sink. Overall, Arctium manages to reduce the
duty-cycle at each topology. The reduction ranges from 21% with 20 nodes
where there are few packets to aggregate in the network, up to 33% with 50
nodes where there are more opportunities for aggregation.

7.5 Related work
Geometric Monitoring (GM): Since its original publication, GM has been
extended in many ways, orthogonal to the design we consider in this work. It has
been combined with sketches [10] and prediction models [11] that effectively
track aggregates such as join and self-join sizes, while also taking the temporal
evolution of the monitored values into account. A summary of the use of GM for
query tracking in distributed streaming systems can also be found in [9]. This
interest has been motivating also for the work in our paper.

In [16], the authors introduce shape sensitive geometric monitoring, that takes
into account properties of the monitored function. Lazerson et al. [20] propose a
method to approximate the monitored function to convex/concave components,
so that it can be easily checked for violations, providing a good alternative to
tackle the complexity of threshold checking we discuss in Section 7.3.2. They
also experiment with a high-end embedded platform and show that the method
is lightweight. The approximation we propose in our work is orthogonal, in the
sense that we leave the function intact and instead bind the local area that nodes
have to keep track of.

GM has been studied in the general context of WSN from a high-level
perspective. In [28], the authors present an adaption of GM that is designed for

7.6. CONCLUSIONS 229

clustered topologies. In [3], GM is used for detecting outliers in the readings
of wireless sensor nodes. In both of these lines of work, the network is only
considered as a communication abstraction and practical system aspects are
not studied. Differently, we take a full system perspective and consider a real
network stack. The only work that considers deployment of GM on top of real
networks stacks is in [29], which we compare against in Section 7.4.2.

Wireless protocols: Crystal is not the only modern network stack that relies
on synchronous transmissions. Ferrari et al. [6] present a protocol that uses
synchronous transmissions to support many communication patterns. Landsiedel
et al. [19] also use synchronous transmissions and augment them with in-network
aggregation to achieve low power and excellent reliability. However, their
approach focuses on duplicate-insensitive aggregates (e.g. min or max) and does
not work out of the box for duplicate-sensitive aggregates (e.g. sum or average).
Al Nahas et al. [1] extend the protocol with duplicate-sensitive aggregates.
However, all previously mentioned protocols are not designed for cases where
traffic is sparse and aperiodic. That is the main motivation why we chose Crystal
to build our design upon.

Aggregation: In-network aggregation has been an active topic of research for
many years. A large body of work studies aggregation as an application of gossip-
based protocols. Friedman et al. [8] discuss different gossiping protocols. Jelasity
et al. [15] present a decentralized aggregation protocol based on gossiping.
Koldehofe [17] shows the effect of the buffer size in the performance of gossip-
based protocols. Kuhn et at. [18] prove bounds and provide algorithms for
holistic aggregates, specifically for distributed selection.

In the context of wireless sensor networks, Rajagopala et al. [26] survey
different ways aggregation is used in WSNs, mostly by utilizing the network’s
architecture. Nath et al. [24] show how to approximately track duplicate-sensitive
aggregates in WSNs. In this work, we present an approach that builds on top
of a modern network protocol that has not been studied before in the context of
in-network aggregation.

7.6 Conclusions

We show how a general threshold monitoring framework (GM) can be co-
designed together with a state-of-the-art wireless protocol (Crystal), for the
problem of continuous threshold monitoring. Detailed results from testbed
deployments show that the two approaches complement each other and are able
to achieve a very low duty-cycle, up to 10x less than a mainstream network stack,
which was the limiting factor in previous work. In particular, we present the

230 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

way we orchestrate the communication of GM using the existing schedule of
Crystal. We also introduce an efficient approximation for threshold checking
that makes this co-design possible. Moreover, we extend our design to also
exploit latent opportunities for aggregation in Crystal and improve the lifetime
of applications that are monitoring network aggregates. Our aggregation scheme,
called Arctium, allows nodes to overhear and correctly aggregate neighbouring
node’s values and manages to further improve the lifetime of the nodes by
up to 1.13-1.38x. Our results show that network-stack awareness can bring
practical value in applications such as GM for real IoT deployments, especially
when coupled with modern network protocols. Our code is available online:
https://github.com/mpastyl/Arctium.

Acknowledgements
The research leading to these results has been partially supported by the Swedish
Civil Contingencies Agency (MSB) through the projects RICS and RIOT, by
the Swedish Foundation for Strategic Research (SSF) through the framework
project FiC and the project LoWi, by the Swedish Research Council (VR)
through the project ChaosNet, and from the European Community’s Horizon
2020 Framework Programme under grant agreement 773717.

Bibliography
[1] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. Network-wide consensus

utilizing the capture effect in low-power wireless networks. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Systems, SenSys, 2017.

[2] Peter Bodik, Wei Hong, Carlos Guestrin, Sam Madden, Mark Paskin, and Romain
Thibaux. Intel Lab Data, 2004.

[3] Sabbas Burdakis and Antonios Deligiannakis. Detecting Outliers in Sensor Net-
works Using the Geometric Approach. In IEEE International Conference on Data
Engineering, 2012.

[4] Adam Dunkels. The ContikiMac radio duty cycling protocol. Technical report,
Swedish Institute of Computer Science, 2011.

[5] Adam Dunkels, Björn Gronvall, and Thiemo Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In 29th IEEE Int’l Conf. on
Local Computer Networks, 2004.

[6] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Low-power
wireless bus. In Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, SenSys, 2012.

https://github.com/mpastyl/Arctium

BIBLIOGRAPHY 231

[7] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Efficient
network flooding and time synchronization with Glossy. In Proceedings of the
10th ACM/IEEE International Conference on Information Processing in Sensor
Networks, April 2011.

[8] Roy Friedman, Daniela Gavidia, Luis Rodrigues, Aline Carneiro Viana, and Spyros
Voulgaris. Gossiping on manets: The beauty and the beast. SIGOPS Oper. Syst.
Rev., 41(5), October 2007.

[9] Minos Garofalakis. Approximate geometric query tracking over distributed streams.
IEEE Data Eng. Bull., 2015.

[10] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based Geometric
Monitoring of Distributed Stream Queries. Proc. VLDB Endow., 2013.

[11] Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Izchak Sharfman,
and Assaf Schuster. Prediction-based geometric monitoring over distributed data
streams. In ACM SIGMOD International Conference on Management of Data,
2012.

[12] Torben Hagerup and Christine Rüb. A guided tour of chernoff bounds. Information
Processing Letters, 33(6):305 – 308, 1990.

[13] Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, and Usman Raza. Data
prediction + synchronous transmissions = ultra-low power wireless sensor networks.
In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems,
SenSys, 2016.

[14] Timofei Istomin, Matteo Trobinger, Amy L. Murphy, and Gian Pietro Picco.
Interference-resilient ultra-low power aperiodic data collection. In Proceedings of
the 17th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN, 2018.

[15] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation
in large dynamic networks. ACM Trans. Comput. Syst., 23(3), August 2005.

[16] Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. Shape Sensitive
Geometric Monitoring. IEEE Trans. Knowledge and Data Eng., 2012.

[17] Boris Koldehofe. Buffer management in probabilistic peer-to-peer communication
protocols. In 22nd International Symposium on Reliable Distributed Systems, 2003.
Proceedings., Oct 2003.

[18] Fabian Kuhn, Thomas Locher, and Roger Wattenhofer. Distributed selection: A
missing piece of data aggregation. Commun. ACM, 51(9), September 2008.

[19] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale. In Proceedings of
the 11th ACM Conference on Embedded Networked Sensor Systems, SenSys, 2013.

[20] Arnon Lazerson, Daniel Keren, and Assaf Schuster. Lightweight monitoring of
distributed streams. ACM Trans. Database Syst., 43, July 2018.

232 CHAPTER 7. GM WITH SYNCHRONOUS TRANSMISSIONS AND AGGREGATION

[21] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems architecture
for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 2015.

[22] Krijn Leentvaar and Jan Flint. The capture effect in fm receivers. IEEE Transactions
on Communications, 24(5), 1976.

[23] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Som-
mer, and Jan Beutel. Flocklab: A testbed for distributed, synchronized tracing
and profiling of wireless embedded systems. In 2013 ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2013.

[24] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson.
Synopsis diffusion for robust aggregation in sensor networks. In Proceedings of the
2Nd International Conference on Embedded Networked Sensor Systems, SenSys,
2004.

[25] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. Cross-level sensor network simulation with cooja. In 31st IEEE Conf. on
Local Computer Networks, 2006.

[26] Ramesh Rajagopalan and Pramod K. Varshney. Data-aggregation techniques in
sensor networks: A survey. IEEE Communications Surveys Tutorials, 8, Fourth
2006.

[27] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to
monitoring threshold functions over distributed data streams. In ACM SIGMOD
Int’l Conf. on Management of Data, 2006.

[28] Izchak Sharfman, Assaf Schuster, and Daniel Keren. Aggregate threshold queries
in sensor networks. In IEEE Int’l Parallel & Distr. Process. Symp., 2007.

[29] Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, and Marina Papa-
triantafilou. Geometric monitoring in action: a systems perspective for the internet
of things. In 2018 IEEE 43rd Conference on Local Computer Networks (LCN),
2018.

Part V

Appendix

Charalampos Stylianopoulos, Magnus Almgren,
Olaf Landsiedel, Marina Papatriantafilou,

Trevor Neish, Linus Gillander,
Bengt Johansson, Staffan Bonnier

Industry Paper: On the Performance of Commodity
Hardware for Low Latency and Low Jitter Packet

Processing

An adapted version of the paper that appeared in the Proceedings of the 14th
ACM International Conference on Distributed and Event-based Systems (DEBS),

ACM 2020.

A
Industry Paper: On the Performance

of Commodity Hardware for Low
Latency and Low Jitter Packet

Processing

237

238 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

Abstract

With the introduction of Virtual Network Functions (VNF), network process-
ing is no longer done solely on special purpose hardware. Instead, deploying
network functions on commodity servers increases flexibility and has been
proven effective for many network applications. However, new industrial ap-
plications and the Internet of Things (IoT) call for event-based systems and
midleware that can deliver ultra-low and predictable latency, which present a
challenge for the packet processing infrastructure they are deployed on.

In this industry experience paper, we take a hands-on look on the perfor-
mance of network functions on commodity servers to determine the feasibility of
using them in existing and future latency-critical event-based applications. We
identify sources of significant latency (delays in packet processing and forward-
ing) and jitter (variation in latency) and we propose application- and system-level
improvements for removing or keeping them within required limits. Our results
show that network functions that are highly optimized for throughput perform
sub-optimally under the very different requirements set by latency-critical ap-
plications, compared to latency-optimized versions that have up to 9.8X lower
latency. We also show that hardware-aware, system-level configurations, such as
disabling frequency scaling technologies, greatly reduce jitter by up 2.4X and
lead to more predictable latency.

A.1 Introduction

High-speed networks are a key part of today’s connected world. As the number
of connected devices increases [7] and new event-based applications with strict
performance requirements (e.g., those related to Industry 4.0 [10] that combines
factory automation with communication technologies) become common, next-
generation networks face new challenges with respect to scaling and meeting
those requirements. In particular, in network architectures, the user-plane1 [13]
i.e. the component that is responsible for carrying and processing network traffic,
needs to support reliable connectivity with minimum added delays (latency).

Over the last years, network technologies have shifted from specialized hard-
ware platforms to a user-plane that can be deployed on commodity, off-the-shelf
hardware, either natively or using virtualization and container technologies [19].

1The term data-plane is also used in the literature, we use the term user-plane throughout the
paper.

A.1. INTRODUCTION 239

This shift allows flexibility in the design and deployment of network functions
to support a variety of event-driven applications, reduces deployment cost and
enables horizontal scaling. It also allows the deployment of Virtual Network
Functions (VNF) where packet processing such as switching, firewalls and in-
trusion detection systems, is decoupled from the hardware that it is deployed
on.

While the aforementioned shift to commodity hardware and VNF has been
proven successful, e.g., for mobile broadband applications, such network tech-
nologies have not yet been put to use in more demanding applications such
as Industry 4.0. In particular, one of the requirements of such applications is
low latency. In upcoming event-based industrial applications, such as factory
automation, machine-to-machine communication and autonomous driving, the
network infrastructure is required to deliver low end-to-end latency (less than
10ms in some cases). Another, often overlooked requirement is that variation in
latency (jitter) must be kept to a minimum. High jitter might lead to interruptions
in service, e.g., in an automated production line where co-operating machinery
might experience differences in latency and desynchronize.

The challenge to meet these requirements is particularly pressing for mobile
networks that will play a central role in future Industry 4.0 deployments. In par-
ticular, the evolution of the core packet processing network, i.e. Evolved Packet
Core (EPC) [17], needs to enable future mobile networks to meet the required
performance.The packet processing involved in the user-plane of EPC involves
many event-based network functions such as Deep Packet Inspection [22] and
firewalls, but the bare minimum functionality is packet switching, which we
focus on in this paper.

When considering software-based packet processing in general purpose
servers, there are several factors that can contribute to high latency. They range
from operating system interrupts or scheduling and timesharing with other tasks.
Moreover, the packet processing application itself needs to be optimized to
make best use of the underlying hardware [23] and focus on delivering low
latency. Hence, the performance and feasibility of using commodity hardware
for latency-critical event-based applications is still an open issue.

In this industrial experience report, we establish a baseline for the latency and
jitter performance of software-based packet processing on commodity hardware.
Our goal is to determine the feasibility of using software-based packet process-
ing on commodity hardware for challenging and latency-critical event-based
applications in Industry 4.0. As a starting point, we focus on the bare minimum
functionality that the user-plane performs, namely packet forwarding. We design
and perform experiments to identify sources of unnecessary latency and jitter
and we propose ways to remove them, through optimizations in the application

240 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

itself and at system level. Specifically, our evaluation shows that:

• In order to come close to the reliable and low latency network requirements
of event-based applications, packet processing must be optimized to avoid
buffering packets as much as possible, even if that comes at the cost of a
reduced sustained throughput.

• System-level, hardware-aware configurations, such as disabling frequency
scaling, can have a noticeable effect on latency and jitter.

The rest of the paper is organized as follows. Section A.2 gives the re-
quired background on low-latency packet processing. In Section A.3 we identify
sources of latency and jitter and show how to mitigate them. We present our
experimental methodology in Section A.4 and the results from the experiments
in Section A.5. We discuss those results in connection with application require-
ments in Section A.6. We present related work in Section A.7 and conclude in
Section A.8.

A.2 Preliminaries
In this section, we summarize relevant information on the requirements of
Industry 4.0 applications, the packet processing involved in the packet core, as
well as a brief background on user-space networking.

A.2.1 Ultra Reliable Low Latency Communication Require-
ments

Ultra Reliable Low Latency Communication (URLLC) is a collection of services
supported by the upcoming fifth generation networks (5G), designed to address
the needs of latency-critical event-based applications, mainly related to machine-
to-machine communication and industrial applications [20].

The basic requirements and characteristics of URLLC services that relate
to the network infrastructure they are deployed on are the following: (a) Low
latency. While there is a plethora of studies mentioning different latency require-
ments for the same application, typical latency requirements range from 1 msec
to 50 msec end-to-end latency. Note that this requirement is about the maximum
guaranteed latency and not the average. (b) High reliability. Most use cases
require a highly reliable network infrastructure that must deliver packets with
99.99% to 99.999% reliability. (c) Low jitter. On many industrial applications,
jitter (variations in latency) can cause disruptions in service, even if the latency

A.3. LATENCY AND JITTER 241

itself remains within the acceptable bounds. (d) Low traffic rates. Fortunately,
in most cases, the traffic generated by industrial event-based applications is not
both latency- and throughput-critical. Typical use cases generate roughly 50
Mbps or less, which is a very low traffic rate for modern networks.

A.2.2 The Evolved Packet Core
The Evolved Packet Core (EPC) is the core network of Long Term Evolution
(LTE) that supports mobile broadband in current mobile telecommunication
standards (4G) [17]. It consists of different network functions, such as mobility
management, quality of service and lookup of subscription information [4]. The
user-plane of EPC is responsible for processing packets between the nodes of the
EPC and for connecting them with external networks. The user-plane includes
many functions such as firewalls and deep packet inspection, but it is primarily
responsible for packet forwarding (switching) [13]. That is the network function
that we focus on in this paper.

A.2.3 User-space packet processing
Traditionally, software-based packet processing uses the kernel’s network stack
to send and receive packets. However, relying on the kernel for packet I/O
involves issuing an interrupt every time there is a new packet to be received
from the network card, which introduces overheads. Even though newer kernel
versions reduce the number of interrupts generated [21], kernel-based networking
cannot match the processing speed needed by high performance networks.

In the last few years, user-space solutions for packet processing have become
popular, with the Data Plane Development Kit (DPDK) being the most common
packet I/O framework [2]. In DPDK, packets that are received from the network
card are sent directly to memory that is mapped to user-space. DPDK’s driver
keeps polling the memory for new packets, instead of waiting for an interrupt
to be issued. Additionally, DPDK’s library includes support for fast packet
processing across many cores and heavily relies on batching multiple packets to
amortize the per-packet processing cost, making it the de-facto choice for high
speed networks.

A.3 Latency and Jitter
In this section, we identify sources of latency and jitter in the context of packet
processing on commodity hardware and propose methods to mitigate their ef-
fects.

242 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

Commodity hardware platforms are generally not designed for low latency
and real-time processing. As a result, there are many sources of latency, stem-
ming from, e.g., the scheduler, the operating system or packet processing appli-
cation itself. While there are many suggestions on how to improve the real-time
characteristics of commodity systems [16], we focus on specific parts and mea-
sure their effects. Specifically, we target latency and jitter due to: (a) the packet
I/O framework and forwarding application and (b) the operating system and the
hardware platform itself.

A.3.1 Packet I/O and forwarding application

Choice of Packet I/O: As previously mentioned in Section A.2, kernel-based
packet processing introduces overheads. For this reason we use a user-space
packet I/O framework (DPDK) and its own simple packet switching application
(Layer 2 packet forwarding). We compare its performance with the traditional
kernel-based packet I/O (NAPI [21]) using Linux bridge [24] for packet switch-
ing.

Note that DPDK is designed with high throughput as the primary goal.
While the vast majority of that increased throughput comes from reducing the
per-packet processing latency, DPDK’s design is not necessarily oriented towards
maintaining a low per-packet maximum latency. In fact, as we discuss next and
experimentally show in Section A.5, the per-packet latency can be high under
low load, due to buffering.

Low Traffic Rate + Buffering = High Latency: For the DPDK version, as
a staring point, we use the Layer 2 forwarding example application provided
by DPDK’s library, that simply forwards packets from one port to another.
By default, the Layer 2 forwarding application will receive and buffer up to
32 packets before sending them to the outgoing port as a single batch. This
reduces the number of times the application communicates with the network
card and helps sustain a high processing rate when the incoming packet rate is
high. However, buffering can severely impact latency at low traffic rates. Recall
from Section A.2 that URLLC applications usually have low traffic rates, so
maintaining low latency under such conditions is critical. When the input rate
is low, there is a significant delay until the buffer is full of packets and can be
sent to the network card which causes: (a) high latency on the first packet that
is buffered, since it has to wait for 31 more packets to arrive and be processed
and (b) high variation in latency, due to the difference in waiting time between
the first packet that gets buffered and the last one before the buffer is flushed.
This effect on DPDK’s Layer 2 forwarding application has been reported by
Kawashima et al. [11].

A.4. EXPERIMENTAL METHODOLOGY 243

Since our target applications require very low latency at low traffic rates,
we mitigate the effects of buffering and sacrifice the performance at high traffic
rates for low and consistent latency at low rates (in Section A.6 we quantify
experimentally how much throughput gets sacrificed). We set the size of the
buffer to one packet to send every received packet to the outgoing port as soon
as it is received. An alternative approach would be to set a timer that will flush
the packet buffer at fixed intervals. We choose to disable buffering in order to
come as close as possible to the lowest possible latency that we can achieve. We
study the effect that disabling buffer has in latency and jitter in Section A.5.

A.3.2 Operating system and hardware platform
We next identify and tackle sources of latency and jitter that come from the
operating system and its interaction with the hardware platform. The goal is to
ensure (to the extent that it is possible) that the user-space application handling
the packet processing does not get any interruptions in its service.

Nadathur et al. [16] suggest multiple kernel options that can contribute to
lower and more stable latency, including real-time kernel patches specifically for
this purpose. We follow several of these considerations and introduce additional
ones. Specifically:

• Thread isolation: We isolate the cores that are used by DPDK from the kernel
scheduler, to ensure that no other task will timeshare or use resources from
those cores.

• Disable interrupt balancing: We disable the daemon that dynamically dis-
tributes interrupts to cores, to avoid handling unrelated interrupts by the cores
running DPDK.

• Disable turbo-boost: Turbo-boost is a technology used in Intel CPUs that
allows scaling the frequency of a core dynamically during peak loads, even
beyond the nominal values, if the power and temperature budget allows [9]. We
find (and experimentally show in Section A.5) that on some platforms, enabling
turbo boost causes high variation in packet processing latency, possibly due to
interruptions in processing involved when the CPU frequency changes.

A.4 Experimental methodology
In this section, we present our experimental methodology. We describe the
hardware platform used in our experiments, the network topology and the way

244 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

Software
Switch

Server A

Server B

Hardware
Switch=

= Network
Card

MoonGen Packet
Generator

Figure A.1: The experimental setup.

test traffic is generated. We also present the metrics that are relevant in our
evaluation.

Hardware Platform: We use servers and network infrastructure from Cloud-
Lab [3], a platform that allows bare metal access to a wide range of hardware
devices. A summary of our experimental setup is shown in Figure A.1. Each
of the two servers is a 20-core NUMA platform with Xeon E5 at 2.26 Ghz
that supports 2-way hyperthreading. Each server has two Intel 82599ES 10 Gb
Ethernet network cards, connected to each other as shown in Figure A.1, through
an internal network of hardware switches. Each server also has 1Gb Ethernet
card connected to the external network for control over the servers (not shown in
Figure A.1).

While it is currently not possible to connect the servers directly, we performed
a loop-back test to establish a baseline on the latency introduced by the hardware
switches. Our measurements showed an average latency of 1.1 µsec and 0.1
µsec difference between maximum and minimum latency per switch (these
measurements include any overhead added from the packet generation software,
which we describe next).

Traffic Characteristics and Generation: We use the MoonGen packet
generator [5] to send traffic and measure latency and jitter. MoonGen uses
DPDK to send and receive traffic and supports measurements with 100 nsec
precision. Unless otherwise noted, we generate a low, constant load of 64 byte

A.4. EXPERIMENTAL METHODOLOGY 245

0 20 40 60 80 100 120

Latency (µsec)

0

5000

10000

15000

20000

25000

N
um

be
ro

fp
ac

ke
ts

Linux bridge
DPDK’s L2 forwarding
DPDK’s L2 forwarding (w/o buffering)

(a) Histogram of latency measurements using different packet process-
ing versions. The spike at 5.7 µsec corresponds to the version that
does not use buffering and has too low variation in latency to be clearly
visible.

Linux DPDK DPDK
bridge (w/o buffering)

Average 16.8 56.1 5.7latency (µsec)
Minimum 7.8 6.2 5.5latency (µsec)
Maximum 45.0 117.0 17.8latency (µsec)
Deviation 3.1 28.5 0.6(µsec)

(b) Latency statistics for different packet processing versions.

Figure A.2: Histogram and latency statistics for packet processing of different
versions. Different versions have significant differences in both the average and
the general distribution of latency.

UDP packets at 100 Kpackets/sec and we measure latency every 1ms. We
generate traffic in platform A, send it to platform B where the software switch
application forwards it to a different port that is connected back to platform A.
Latency is measured using hardware timestamps generated at the network cards.

Metrics: We use latency, reported as the round-trip-time of packets from
the moment they leave the network card at server A until they return. We report
jitter as the absolute difference in latency between two successive measurement
samples [18]. Finally, we also report throughput as the rate at which we send

246 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

traffic to the network at server A.

A.5 Empirical study

In this section, we present the results from our experiments and show the effect
of our mitigation techniques on latency and jitter.

A.5.1 Packet I/O framework

We start by studying the effect that the choice of the packet I/O framework
has on latency. In Figure A.2a we show the latency when using kernel-based
packet processing (linux-bridge) versus user-space packet processing (DPDK).
We include the latency statistics in the table of Figure A.2 for completeness. The
latency samples for the linux bridge are spread around an average of 16.8 µsec,
with a minimum and maximum latency of 7.8 and 45 µsec respectively. On the
other hand, the latency measurements of DPDK’s original layer 2 forwarding
application are evenly spread between 6.2 and 117 µsec, with an average of
65 µsec. This even spread is clearly an effect of buffering, where the latency
of a packet depends greatly on how early or late it was placed on the buffer.
As a result, we see that the original DPDK version of packet forwarding is not
designed to perform well with respect to latency at low traffic rates.

In summary: Using a high-performance, user-space I/O framework does not,
on its own, guarantee low latency at low traffic rates. Next, we show the effect
of buffer-removal on latency.

A.5.2 Application layer optimizations

We now present the latency measurements of a modified version of DPDK’s L2
forwarding application where packets are sent directly to the outgoing interface
after they are received. We include those results in Figure A.2a to compare
against the other versions, especially against the version that uses buffering. By
disabling packet buffering, the latency of most packets is concentrated at around
5.7 µsec, which is 9.8X lower than than the original version that buffers packets.
However, the maximum reported latency was 17.8 µsec, which means that there
are still sources of spurious latency spikes, that originate from the underlying
hardware and operating system. We discuss their effect and mitigation next.

In summary: Disabling packet buffering in packet forwarding applications is
necessary to achieve low latency when the traffic rate is low.

A.5. EMPIRICAL STUDY 247

(a) Latency samples before system level con-
figurations.

(b) Latency samples after system level con-
figurations.

Before change After changes
Average jitter (µsec) 0.17 0.07
Maximum jitter (µsec) 12.52 4.80
Deviation (µsec) 0.88 0.10

(c) Jitter statistics before and after system level configurations.

Figure A.3: The effects of system level optimizations on latency. The system
level configurations lead to more predictable latency that is concentrated around
the average values and has less deviation than before applying the changes.

A.5.3 System layer configurations
After optimizing the application for low latency, we now focus on the system
level configurations and their effect on latency. Figure A.3a shows a different
representation of the latency of DPDK’s L2 forwarding version that does not
use any buffering, where we plot all the latency samples gathered during our
experiments. We see that the vast majority of samples have latency around the
average of 5.7 µsec, but there are spurious increases in latency that range up to
18 µsec, indicating that latency increases unpredictably during the execution of
our experiments. We also report jitter in the table of Figure A.3. The average
jitter is 0.17 µsec with a maximum reported jitter of 12.52 µsec.

In Figure A.3b, we show the net effect of applying the system configurations
presented in Section A.3. The effect of those configurations is immediately
noticeable in this representation, where the vast majority of spurious increases
in latency have been mitigated. The average reported jitter is 0.07 µsec, which is
2.4X lower than before applying the system level configurations. Performing
longer runs, we find that the maximum latency is not affected (our maximum
reported latency was 20 µsec), but latency is much more predictable and concen-
trated around the average.

248 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

In summary: System layer configurations such as thread isolation and dis-
abling turbo boost significantly reduce jitter.

A.5.4 Latency vs throughput

The mitigation techniques we introduced in Section A.3 and evaluated so far
focus on minimizing latency at low traffic rates. However, they come at a cost:
the maximum sustained packet processing rate is reduced.

In Figure A.4 we report the average and maximum latency of both the
original (throughput-optimized) and the latency-optimized packet forwarding
DPDK application as we increase the rate at which we generate traffic. When
the traffic rate is low, the original version that focuses on throughput has high
average and maximum latency, since it takes long for the packet buffer to fill. As
the traffic rate increases, the effect of buffering on latency decreases and this
version maintains a low latency at high rates. In fact, the original DPDK L2
forwarding application can easily support the maximum available bandwidth at
the link (10 Gbps). The version that does not do any buffering has low latency at
low traffic rates, which gradually increases with the traffic rates, until roughly
4.3 Gbps. After that point, this version cannot process packets at the same rate
as they arrive. As a result the packet queues start to fill, latency increases and we
start to see packets being dropped. However, as we discuss in Section A.2.1, it
is the low-throughput end (often less than 50Mbps) that is relevant for URLLC
applications. At those low rates, our latency mitigation techniques manage to
keep the latency an order of magnitude lower than what it originally was.

A.6 Discussion

The requirements of the URLLC on latency and jitter presented in Section A.2,
relate to the end-to-end application requirements and include the overhead of
many components of the network, including wireless communication with the
base station. As such, for an application with e.g. a 10ms latency requirement
budget, only a small part of that budget can be allocated to the user-plane of the
packet core and specifically to packet switching. However, it is hard to judge
exactly how much the target latency for packet switching alone would be. In our
experiments, the maximum reported latency was 20 µsec, which is likely to be
sufficiently low for most industrial applications. However, since we examine
only a small part of the network stack involved, it is hard to form a clear picture
of the feasibility of deploying a network stack on commodity hardware for
latency critical applications. Moreover, as we demonstrated in Section A.5.4, our

A.7. RELATED WORK 249

0 1000 2000 3000 4000 5000

Throughput (Mbps)

0

20

40

60

80

100

120

La
te

nc
y

(µ
se

c)

Latency optimized (average)
Latency optimized (max)
Throughput optimized (average)
Throughput optimized (max)

Figure A.4: Average and maximum latency at different packet transmission rates.
The latency-optimized version cannot sustain the incoming packets rates after
roughly 4.3 Gbps.

latency reduction techniques come at the cost of lower sustainable throughput at
high rates, but are a good fit for URLLC applications that have low traffic rates.

A.7 Related work
In this section, we present related work on the topic of evaluating the packet
processing performance of commodity hardware.

Emmerich et al. [6] perform extensive benchmarks using different packet
I/O frameworks and identify performance bottlenecks in hardware and software.
Gallenmüller et al. [8] focus on the performance of I/O frameworks and present
an analytical model to predict their performance. They also experiment with
packet buffering and show its effect on latency, but only at high traffic rates.
Kawashima et al. [11] evaluate the performance of packet forwarding applica-
tions across many packet I/O frameworks and execution environments, focusing
on both throughput and latency. They also identify that the original DPDK L2
forwarding application uses buffering which negatively affects latency at low
traffic rates.

A large body of research evaluates commodity hardware in the context of
NFV. Anderson et al. [1] evaluate packet I/O frameworks in different environ-

250 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

ments, including virtual machines and containers. They provide results on
latency and jitter, but do not use fast, user-space I/O frameworks such as DPDK.
Kourtis et al. [12] evaluate the processing throughput of deep packet inspection
applications with DPDK on both bare-metal and virtualized environments.

Focusing on mobile broadband networks, Lange et al. [14] evaluate the
performance a Serving Gateway that involves both the user-plane and control
plane events, and show that user-space networking based on DPDK can greatly
improve the per-packet processing time. Mao et al. [15] study the performance
of a software-based Radio Access Network under strict latency requirements and
show that light-weight virtualization with containers, together with frameworks
like DPDK can lead to worst-case latency that is within the required bounds
of latency-critical applications. Contrary to those approaches, in this paper we
show the trade-off between latency and throughput, study the sources of latency
and jitter and show system and applications configurations that can reduce them.

A.8 Conclusions

In this paper, we consider the performance of packet processing deployed on
commodity hardware with respect to latency and jitter and propose a baseline
on the feasibility of such platforms for the packet processing needs of Industry
4.0 applications. We identify sources of latency and jitter in the packet pro-
cessing application as well as the underlying system and show ways to mitigate
them. Specifically, we show that optimizing applications for latency rather than
throughput (e.g. by disabling buffering of packets), greatly reduces average
latency by up to 9.8X, at low traffic rates, which is important for event-based
URLLC that usually have low volumes of traffic but are sensitive to latency.
Moreover, we show that system level configurations, such as disabling dynamic
frequency scaling makes latency more predictable and reduces jitter.

Acknowledgements

The research leading to these results has been partially supported by the Swedish
Civil Contingencies Agency (MSB) through the projects RICS and RIOT, by the
Swedish Foundation for Strategic Research (SSF) through the framework project
FiC, by the Swedish Research Council (VR) through the project ChaosNet
and the project AgreeOnIT, the Vinnova-funded project “KIDSAM”, and from
the European Community’s Horizon 2020 Framework Programme under grant
agreement 773717.

BIBLIOGRAPHY 251

Bibliography
[1] Jason Anderson, Hongxin Hu, Udit Agarwal, Craig Lowery, Hongda Li, and Amy

Apon. Performance considerations of network functions virtualization using con-
tainers. In 2016 International Conference on Computing, Networking and Commu-
nications (ICNC), pages 1–7, Feb 2016.

[2] DPDK. Data plane development kit. https://www.dpdk.org, 2019.

[3] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,
Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Em-
manuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and operation
of CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC),
pages 1–14, July 2019.

[4] Romaric Duvignau, Marina Papatriantafilou, Konstantinos Peratinos, Eric Nord-
ström, and Patrik Nyman. Continuous distributed monitoring in the evolved packet
core. In Proceedings of the 13th ACM International Conference on Distributed and
Event-based Systems, pages 187–192, 2019.

[5] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. MoonGen: A Scriptable High-Speed Packet Generator. In Internet
Measurement Conference 2015 (IMC’15), Tokyo, Japan, October 2015.

[6] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. Assessing
soft-and hardware bottlenecks in pc-based packet forwarding systems. ICN 2015,
page 90, 2015.

[7] Ericsson. Internet of things forecast. https://www.ericsson.com/en/mo
bility-report/internet-of-things-forecast, 2016. Accessed:
2019-01-15.

[8] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. Comparison of frameworks for high-performance packet io. In
2015 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), pages 29–38. IEEE, 2015.

[9] Intel. Higher performance when you need it most. https://www.intel.co
m/content/www/us/en/architecture-and-technology/turbo-
boost/turbo-boost-technology.html, 2019.

[10] Nasser Jazdi. Cyber physical systems in the context of Industry 4.0. In 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics, pages 1–4,
May 2014.

[11] Ryota Kawashima, Hiroki Nakayama, Tsunemasa Hayashi, and Hiroshi Matsuo.
Evaluation of forwarding efficiency in nfv-nodes toward predictable service chain
performance. IEEE Transactions on Network and Service Management, 14(4):920–
933, Dec 2017.

https://www.dpdk.org
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

252 CHAPTER A. COMMODITY HARDWARE FOR LOW LATENCY/JITTER PACKET PROCESSING

[12] Michail Kourtis, George Xilouris, Vincenzo Riccobene, Michael Mcgrath, Giuseppe
Petralia, Harilaos Koumaras, Georgios Gardikis, and Fidel Liberal. Enhancing vnf
performance by exploiting sr-iov and dpdk packet processing acceleration. 11 2015.

[13] James Kurose and Keith Ross. Computer networks and the internet. Computer
networking: A Top-down approach. London: Pearson, 2016.

[14] Stanislav Lange, Anh Nguyen-Ngoc, Steffen Gebert, Thomas Zinner, Michael
Jarschel, Andreas Köpsel, Marc Sune, Daniel Raumer, Sebastian Gallenmüller,
Georg Carle, and Phuoc Tran-Gia. Performance benchmarking of a software-based
lte sgw. In 2015 11th International Conference on Network and Service Management
(CNSM), pages 378–383, Nov 2015.

[15] Chen-Nien Mao, Mu-Han Huang, Satyajit Padhy, Shu-Ting Wang, Wu-Chun Chung,
Yeh-Ching Chung, and Cheng-Hsin Hsu. Minimizing latency of real-time container
cloud for software radio access networks. In 2015 IEEE 7th International Confer-
ence on Cloud Computing Technology and Science (CloudCom), pages 611–616,
Nov 2015.

[16] Sundar Nadathur and Jiming Sun. Nfv-i host configuration for low latency. https:
//01.org/packet-processing/blogs/nsundar/2018/nfv-i-
host-configuration-low-latency, 2018.

[17] Magnus Olsson, Catherine Mulligan, Shabnam Sultana, Stefan Rommer, and Lars
Frid. EPC and 4G packet networks: driving the mobile broadband revolution.
Academic Press, 2013.

[18] S Poretsky, J Perser, S Erramilli, and S Khurana. RFC 4689–terminology for
benchmarking network-layer traffic control mechanisms. IETF, October, 2006.

[19] Ericsson Technology Review. Cloud-native application design in the telecom
domain. https://www.ericsson.com/en/ericsson-technology-
review/archive/2019/cloud-native-application-design-
in-the-telecom-domain, 2019.

[20] Joachim Sachs, Gustav Wikstrom, Torsten Dudda, Robert Baldemair, and Kittipong
Kittichokechai. 5g radio network design for ultra-reliable low-latency communica-
tion. IEEE network, 32(2):24–31, 2018.

[21] Jamal Hadi Salim. When NAPI comes to town. In Linux 2005 Conf, 2005.

[22] Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, and Marina Pap-
atriantafilou. Multiple pattern matching for network security applications: Accel-
eration through vectorization. In 2017 46th International Conference on Parallel
ProceWsing (ICPP), pages 472–482, Aug 2017.

[23] Charalampos Stylianopoulos, Simon Kindström, Magnus Almgren, Olaf Landsiedel,
and Marina Papatriantafilou. Co-evaluation of pattern matching algorithms on iot
devices with embedded gpus. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, page 17–27, New York, NY, USA, 2019.
Association for Computing Machinery.

https://01.org/packet-processing/blogs/nsundar/2018/nfv-i-host-configuration-low-latency
https://01.org/packet-processing/blogs/nsundar/2018/nfv-i-host-configuration-low-latency
https://01.org/packet-processing/blogs/nsundar/2018/nfv-i-host-configuration-low-latency
https://www.ericsson.com/en/ericsson-technology-review/archive/2019/cloud-native-application-design-in-the-telecom-domain
https://www.ericsson.com/en/ericsson-technology-review/archive/2019/cloud-native-application-design-in-the-telecom-domain
https://www.ericsson.com/en/ericsson-technology-review/archive/2019/cloud-native-application-design-in-the-telecom-domain

BIBLIOGRAPHY 253

[24] Nuutti Varis. Anatomy of a linux bridge. In Proceedings of Seminar on Network
Protocols in Operating Systems, page 58, 2012.

	List of Publications
	Personal Contribution
	Acknowledgements
	I Introduction
	Thesis Overview
	Motivation
	Hardware and Algorithm Diversity
	Background
	Parallelism and Vectorization
	General Purpose Computing in GPUs
	Wireless Sensor Networks
	Representative Problems
	Network Intrusion Detection and Pattern Matching
	Network Monitoring and Sketches
	Distributed Continuous Monitoring and IoT

	Related Work
	Hardware-aware algorithm design
	Pattern Matching and Hardware Characteristics
	Sketches and Parallelism
	Continuous Monitoring and IoT
	Research Questions
	Thesis Contributions
	Parallel Data Processing on High-End Servers
	Fast and Energy-Efficient Processing on Embedded Accelerators
	Distributed Processing on Resource-Constrained Devices

	Conclusions and Emerging Future Directions
	Bibliography

	II Parallel Data Processing on Massively Parallel Servers
	Multiple Pattern Matching for Network Security Applications
	Introduction
	Background
	Traditional approach to multiple-pattern matching
	Filtering approaches and cache locality in multiple pattern matching
	Vectorization

	System model
	S-PATCH: a vectorizable version of the DFC algorithm
	Overview
	Filtering
	Verification

	V-PATCH: Vectorized algorithmic design of the S-PATCH algorithm
	General design
	Design choices and optimizations
	Scaling across multiple threads
	Runtime complexity

	Performance model
	Usefulness
	Filter hit rates
	Overall cost

	Evaluation
	Experimental setup
	Overall throughput
	The effects of the number of patterns
	Filtering parallelism
	Changing the vector length: results from Xeon-Phi
	Model evaluation
	Parallel execution

	Other related work
	Pattern matching algorithms
	Regular expression matching
	SIMD approaches to pattern matching
	Other architectures

	Conclusions
	Bibliography

	Delegation Sketch: a Parallel Design for Sketches
	Introduction
	Preliminaries
	The Count-Min and Augmented Sketch
	System Model

	Problem analysis
	Thread-local sketches
	Single-shared sketch
	The need for a new design

	Overview of Delegation Sketch
	Domain Splitting
	Operation Delegation

	Domain Splitting and benefits
	Influence on the overestimation error
	Influence on query efficiency
	Influence on filter efficiency

	Operation Delegation and synchronization
	Delegate insertions
	Delegate queries
	Discussion on memory consumption and overestimation error

	Evaluation
	Experiment setup
	Comparing the accuracy of queries
	Processing throughput
	Query latency
	Summary of the evaluation

	Related work
	Conclusions and future work
	Bibliography

	III Fast and Energy-Efficient Processing on Embedded Accelerators
	CLort: Network Intrusion Detection with Embedded GPUs
	Introduction
	Background
	Network Intrusion Detection Systems and Snort
	The Aho-Corasick patten matching algorithm
	General Purpose GPU Computing

	Design of CLort
	CLort's general design
	Data transfers between the CPU and the GPU
	Search on the GPU: Parallel Aho-Corasick
	Packet Buffering: the double-buffering technique

	Evaluation
	Experimental methodology
	Evaluating throughput
	Sniffing the network
	Evaluating energy consumption

	Related work
	NIDS on GPUs
	NIDS on IoT related devices

	Conclusions
	Bibliography

	Co-Evaluation of Pattern Matching Algorithms on Embedded GPUs
	Introduction
	Benchmarking aim and considerations
	Considered algorithms & novel designs
	State machine based algorithms: Aho-Corasick and Parallel Failure-less Aho-Corasick
	Filter based algorithms: DFC and V-Patch
	A hybrid approach

	Hardware-oriented algorithm optimizations
	Overview of the target platform
	Relevant algorithm optimizations

	Evaluation
	Evaluation methodology
	Deciding parameters for DFC
	Overall comparison
	Varying the data sets and the number of patterns
	Deciding a filter size for HYBRID
	Summary of the results

	Related work
	Conclusions
	Bibliography

	IV Distributed Processing on Resource-Constrained Devices
	Geometric Monitoring: a Systems Perspective for the IoT
	Introduction
	Overview of the problem
	The Geometric Monitoring Method (GM)
	In the context of wireless sensor networks (WSNs)

	Applied GM and algorithmic implementation on Wireless IoT Sensors
	Addressing system challenges: processing and communication
	Tunable system-parameters

	Experimental methodology
	Evaluation from a holistic system perspective
	Full-system simulations
	Validation through testbed experiments
	Runtime insights: a closer look
	Accuracy/Responsiveness: the effect of packet losses

	Other related work
	Conclusions and future work
	Bibliography

	GM with Synchronous Transmissions and Aggregation
	Introduction
	Preliminaries
	The Geometric Monitoring Method (GM)
	Crystal

	GM, Crystal and Arctium co-design
	Overview
	Orchestrating GM communication with synchronous transmissions
	Arctium: enhancing Crystal with in-network aggregation

	Evaluation
	Experimental methodology
	Combining GM and Crystal: overall performance
	Arctium: in-network aggregation under heavy communication

	Related work
	Conclusions
	Bibliography

	V Appendix
	Commodity Hardware for Low Latency/Jitter Packet Processing
	Introduction
	Preliminaries
	Ultra Reliable Low Latency Communication Requirements
	The Evolved Packet Core
	User-space packet processing

	Latency and Jitter
	Packet I/O and forwarding application
	Operating system and hardware platform
	Experimental methodology
	Empirical study
	Packet I/O framework
	Application layer optimizations
	System layer configurations
	Latency vs throughput
	Discussion
	Related work
	Conclusions
	Bibliography

