106 research outputs found

    Cross-intersecting non-empty uniform subfamilies of hereditary families

    Get PDF
    A set AA tt-intersects a set BB if AA and BB have at least tt common elements. A set of sets is called a family. Two families A\mathcal{A} and B\mathcal{B} are cross-tt-intersecting if each set in A\mathcal{A} tt-intersects each set in B\mathcal{B}. A family H\mathcal{H} is hereditary if for each set AA in H\mathcal{H}, all the subsets of AA are in H\mathcal{H}. The rrth level of H\mathcal{H}, denoted by H(r)\mathcal{H}^{(r)}, is the family of rr-element sets in H\mathcal{H}. A set BB in H\mathcal{H} is a base of H\mathcal{H} if for each set AA in H\mathcal{H}, BB is not a proper subset of AA. Let μ(H)\mu(\mathcal{H}) denote the size of a smallest base of H\mathcal{H}. We show that for any integers tt, rr, and ss with 1trs1 \leq t \leq r \leq s, there exists an integer c(r,s,t)c(r,s,t) such that the following holds for any hereditary family H\mathcal{H} with μ(H)c(r,s,t)\mu(\mathcal{H}) \geq c(r,s,t). If A\mathcal{A} is a non-empty subfamily of H(r)\mathcal{H}^{(r)}, B\mathcal{B} is a non-empty subfamily of H(s)\mathcal{H}^{(s)}, A\mathcal{A} and B\mathcal{B} are cross-tt-intersecting, and A+B|\mathcal{A}| + |\mathcal{B}| is maximum under the given conditions, then for some set II in H\mathcal{H} with tIrt \leq |I| \leq r, either A={AH(r) ⁣:IA}\mathcal{A} = \{A \in \mathcal{H}^{(r)} \colon I \subseteq A\} and B={BH(s) ⁣:BIt}\mathcal{B} = \{B \in \mathcal{H}^{(s)} \colon |B \cap I| \geq t\}, or r=sr = s, t<It < |I|, A={AH(r) ⁣:AIt}\mathcal{A} = \{A \in \mathcal{H}^{(r)} \colon |A \cap I| \geq t\}, and B={BH(s) ⁣:IB}\mathcal{B} = \{B \in \mathcal{H}^{(s)} \colon I \subseteq B\}. This was conjectured by the author for t=1t=1 and generalizes well-known results for the case where H\mathcal{H} is a power set.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1805.0524

    A result on polynomials derived via graph theory

    Full text link
    We present an example of a result in graph theory that is used to obtain a result in another branch of mathematics. More precisely, we show that the isomorphism of certain directed graphs implies that some trinomials over finite fields have the same number of roots

    Strongly intersecting integer partitions

    Get PDF
    We call a sum a1+a2+• • •+ak a partition of n of length k if a1, a2, . . . , ak and n are positive integers such that a1 ≤ a2 ≤ • • • ≤ ak and n = a1 + a2 + • • • + ak. For i = 1, 2, . . . , k, we call ai the ith part of the sum a1 + a2 + • • • + ak. Let Pn,k be the set of all partitions of n of length k. We say that two partitions a1+a2+• • •+ak and b1+b2+• • •+bk strongly intersect if ai = bi for some i. We call a subset A of Pn,k strongly intersecting if every two partitions in A strongly intersect. Let Pn,k(1) be the set of all partitions in Pn,k whose first part is 1. We prove that if 2 ≤ k ≤ n, then Pn,k(1) is a largest strongly intersecting subset of Pn,k, and uniquely so if and only if k ≥ 4 or k = 3 ≤ n ̸∈ {6, 7, 8} or k = 2 ≤ n ≤ 3.peer-reviewe

    Global hypercontractivity and its applications

    Get PDF
    The hypercontractive inequality on the discrete cube plays a crucial role in many fundamental results in the Analysis of Boolean functions, such as the KKL theorem, Friedgut's junta theorem and the invariance principle. In these results the cube is equipped with the uniform measure, but it is desirable, particularly for applications to the theory of sharp thresholds, to also obtain such results for general pp-biased measures. However, simple examples show that when p=o(1)p = o(1), there is no hypercontractive inequality that is strong enough. In this paper, we establish an effective hypercontractive inequality for general pp that applies to `global functions', i.e. functions that are not significantly affected by a restriction of a small set of coordinates. This class of functions appears naturally, e.g. in Bourgain's sharp threshold theorem, which states that such functions exhibit a sharp threshold. We demonstrate the power of our tool by strengthening Bourgain's theorem, thereby making progress on a conjecture of Kahn and Kalai and by establishing a pp-biased analog of the invariance principle. Our results have significant applications in Extremal Combinatorics. Here we obtain new results on the Tur\'an number of any bounded degree uniform hypergraph obtained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp over an essentially optimal regime for both the uniformity and the number of edges and solve a number of open problems in the area. In particular, we give general conditions under which the crosscut parameter asymptotically determines the Tur\'an number, answering a question of Mubayi and Verstra\"ete. We also apply the Junta Method to refine our asymptotic results and obtain several exact results, including proofs of the Huang--Loh--Sudakov conjecture on cross matchings and the F\"uredi--Jiang--Seiver conjecture on path expansions.Comment: Subsumes arXiv:1906.0556
    corecore