10 research outputs found

    The output least squares identifiability of the diffusion coefficient from an H1H^1-observation in a 2-D elliptic equation

    Get PDF
    Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided

    Convergence guarantees for coefficient reconstruction in PDEs from boundary measurements by variational and Newton type methods via range invariance

    Full text link
    A key observation underlying this paper is the fact that the range invariance condition for convergence of regularization methods for nonlinear ill-posed operator equations -- such as coefficient identification in partial differential equiations (PDE)s from boundary observations -- can often be achieved by extending the seached for parameter in the sense of allowing it to depend on additional variables. This clearly counteracts unique identifiability of the parameter, though. The second key idea of this paper is now to restore the original restricted dependency of the parameter by penalization. This is shown to lead to convergence of variational (Tikhonov type) and iterative (Newton type) regularization methods. We concretize the abstract convergence analysis in a framework typical of parameter identification in PDEs in a reduced and an all-at-once setting. This is further illustrated by three examples of coefficient identification from boundary observations in elliptic and time-dependent PDEs

    Well-Behavior, Well-Posedness and Nonsmooth Analysis

    Get PDF
    AMS subject classification: 90C30, 90C33.We survey the relationships between well-posedness and well-behavior. The latter notion means that any critical sequence (xn) of a lower semicontinuous function f on a Banach space is minimizing. Here “critical” means that the remoteness of the subdifferential ∂f(xn) of f at xn (i.e. the distance of 0 to ∂f(xn)) converges to 0. The objective function f is not supposed to be convex or smooth and the subdifferential ∂ is not necessarily the usual Fenchel subdifferential. We are thus led to deal with conditions ensuring that a growth property of the subdifferential (or the derivative) of a function implies a growth property of the function itself. Both qualitative questions and quantitative results are considered

    A priori estimates of attraction basins for nonlinear least squares, with application to Helmholtz seismic inverse problem

    Get PDF
    International audienceIn this paper, we provide an a priori optimizability analysis of nonlinear least squares problems that are solved by local optimization algorithms. We define attraction (convergence) basins where the misfit functional is guaranteed to have only one local-and hence global-stationary point, provided the data error is below some tolerable error level. We use geometry in the data space (strictly quasiconvex sets) in order to compute the size of the attraction basin (in the parameter space) and the associated tolerable error level (in the data space). These estimates are defined a priori, i.e., they do not involve any least squares minimization problem, and only depend on the forward map. The methodology is applied to the comparison of the optimizability properties of two methods for the seismic inverse problem for a time-harmonic wave equation: the Full Waveform Inversion (FWI) and its Migration Based Travel Time (MBTT) reformulation. Computation of the size of attraction basins for the two approaches allows to quantify the benefits of the latter, which can alleviate the requirement of low-frequency data for the reconstruction of the background velocity model
    corecore