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ANALYSIS

Jean-Paul Penot

We survey the relationships between well-posedness and well-behavior. The latter
notion means that any critical sequence (xn) of a lower semicontinuous function
f on a Banach space is minimizing. Here “critical” means that the remoteness of
the subdifferential ∂f(xn) of f at xn (i.e. the distance of 0 to ∂f(xn)) converges
to 0. The objective function f is not supposed to be convex or smooth and the
subdifferential ∂ is not necessarily the usual Fenchel subdifferential. We are thus
led to deal with conditions ensuring that a growth property of the subdifferential
(or the derivative) of a function implies a growth property of the function itself.
Both qualitative questions and quantitative results are considered.
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1 Introduction

In the present survey, we tackle the relationships of the notion of well-behavior of a func-
tion with the notion of well-posedness. In fact, we also consider variants of these notions
and we introduce quantitative tools which measure nice-behavior or well-behavior. The
main question can be roughly expressed as follows: given a differentiable function f on
a Banach space, can one deduce growth properties of f from a known growth behavior
of its derivative f ′? As a simple example, consider a differentiable even function f on R

such that for some p > 1 one has f ′(x) ≥ pxp−1 for x > 0; then one has f(x)−f(0) ≥ |x|p
for each x ∈ R.

In fact, we consider functions which are not necessarily differentiable and we do not
limit our study to the convex case as in Auslender [12], Auslender and Crouzeix [14],
Auslender, Cominetti and Crouzeix [15], Cominetti [55], Lemaire [109], Angleraud [1],
Dolecki-Angleraud [67].
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The importance of this question for algorithmic purposes can be illustrated by the
following situation (for more information about the use of conditioning for algorithmic
questions, in particular about rates of convergence, we refer to [12], [14], [15], [56], [105],
[106], [107], [109], [110], [138], [176], [198]). Suppose that in a numerical experience with
a minimization algorithm for a differentiable function f on some Euclidean space one has
the following outcomes

for the iteration k, 1 ≤ k < 10 ‖∇f(xk)‖ is of order 10−1

for the iteration k, 10 ≤ k < 100 ‖∇f(xk)‖ is of order 10−2

for the iteration k, 100 ≤ k < 1000 ‖∇f(xk)‖ is of order 10−3

for the iteration k, 1000 ≤ k ‖∇f(xk)‖ is of order 10−10.

Is it sensible to stop at iteration k = 1000? Such a question occurs when one does not
know the value of the infimum of f but one is only able to compute the value of f and
of its gradient at each iteration. In such a case, taking the magnitude of the gradient
as a stopping rule is tempting. However, as is well known, such a test is not sensible,
as the example of the one-variable function f given by f(x) = 1 − exp(−x2) shows: for
any sequence (xn) → ∞ one has (f ′(xn)) → 0 but (f(xn)) → 1 = sup f . This function
is quasiconvex, but not convex. Nonetheless, it is known that even for convex functions
there may exist critical (or stationary) sequences which are not minimizing (see [185],
[14], [196] and below for appropriate definitions).

It is the purpose of the present paper to survey results linking conditioning, well-
posedness and well-behavior. The methods we use are either techniques from convex
analysis or tools from nonsmooth analysis. Our main aim consists in extending to non-
convex, non differentiable functions results known under convexity or differentiability
assumptions.

Since we consider functions with no convexity or differentiability properties, for the
sake of versatility we use an unspecified subdifferential, owing to the facts that often
a given problem imposes a particular space and that not all subdifferentials have nice
properties in an arbitrary space. Also the nature of the functions involved may lead to a
specific choice of a subdifferential (for instance, the Fenchel subdifferential in the convex
case, a bunch of subdifferentials in the quasiconvex case; see [161] and its bibliography).
Thus the choice of a subdifferential may be dictated by the problem at hand. Elementary
facts about subdifferentials are recalled in section 3; we endeavour to give a simple
approach which minimizes assumptions and the pre-requisites for the reader unfamiliar
with the field.

Basic notions about well-posedness and well-behavior are recalled in sections 2 and
7. There we focus our attention on quantitative aspects. Links with the Palais-Smale
condition are delineated, apparently for the first time, in section 6. This condition plays
a key role in global analysis and nonlinear analysis (see [10], [40], [46], [57], [58], [61]-[63],
[82], [95], [96], [99], [130], [134], [136], [137], [148], [188]–[191], [200], [206]...). Sections 4
and 5 deal with critical sequences and critical functions, along with some other classes
of functions generalizing the class of convex functions introduced in [89] (see also [52],
[88]).

Estimates for the measures of nice-behavior introduced in section 7 are displayed in
section 8 under generalized convexity assumptions by using new or known subdifferentials
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from quasiconvex analysis.
The main part of the paper is section 9 in which three methods providing growth

estimates in terms of the behavior of the derivative (or subdifferential) of the function are
brought together and formulated in simple terms. This is a first step toward a comparison
between different methods yielding akin results.

Section 10 is devoted to the study of growth rates introduced in the convex case in
[14], [15]; we generalize the results obtained there and in [12], [55], [56] by relaxing the
convexity assumptions and the assumptions on the space. The links with duality theory
are not considered here, although a result from [157] dealing with the behavior of the
subdifferential of the Legendre-Fenchel conjugate of the function is evoked in section 11;
we refer to [1], [24], [29], [30], [55], [165], for such a matter. The links with perturbation
theory are not treated either; we refer to [69], [122], [158] and to the lecture by T.
Zolezzi in this conference. The relationships with Tikhonov regularization would also
deserve developments outside the scope of the present paper; we refer to [4], [47]–[51]
and their references. Section 11 and 12 are devoted to applications, namely the study
of perturbations of minima and minimizer sets in section 11 and metric regularity and
error bounds in section 12. Thus we are back to applications to algorithms.

2 Metrically well-set (or generalized well-posed) func-
tions

Throughout we consider a lower semicontinuous (l.s.c.) function f taking its values in
R

• = R∪{∞} defined on a Banach space X whose dual space is denoted by X∗. We set

domf := {x ∈ X : f(x) < +∞}
m := mf := inf f(X).

We denote by S (or Sf if there is any risk of confusion) the set of minimizers of f. Recall
that a sequence (xn) is said to be minimizing (for f) if (f(xn)) → m. For r ∈ R+ the
sublevel set of f with height r is

S(r) := {x ∈ X : f(x) ≤ r} .
If A is a subset of X and x ∈ X, ε ∈ R+ we set d(x,A) := inf

a∈A
d(x, a), U(A, ε) :=

{x ∈ X : d(x,A) < ε}, B (A, ε) := {x ∈ X : d (x,A) ≤ ε}. If A = {a} we write U (a, ε)
(resp. B(a, ε)) instead of U (A, ε) (resp. B(A, ε)); in particular, BX (or B) stands for
B(0, 1). The Hausdorff excess of a subset C of X over another subset D is given by

e (C,D) := sup {d (x,D) : x ∈ C} .
In [34] the following definition has been introduced as a variant of the classical notion of
well-posed minimization problem in the sense of Tikhonov (see [33], [69], [180], [181] for
this question) for which any minizing sequence converges to the unique minimizer. An-
other variant, also dropping the uniqueness assumption (but imposing that S is compact)
had been studied before by Furi and Vignoli [76].

Definition 2.1 A function f : X → R ∪ {∞} is said to be metrically well-set (in short
M-well-set and in symbols f ∈ M(X)) or metrically generalized well-posed if its set of
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minimizers S is nonempty and if for any minimizing sequence (xn) one has (d(xn, S)) →
0.

This notion is quite natural. The quadratic case is an important illustration.
Example. (see [56] for the finite dimensional case and [206] Proposition 37.33 for

the case A is an isomorphism) Suppose A : X → X∗ is a symmetric continuous linear
operator with closed range which is positive semi-definite. Then, for each b in the range
R(A) of A, the quadratic function f given by f(x) := 1

2 〈A(x), x〉 − 〈b, x〉 is M-well-set.

In fact, for any u ∈ A−1(b) one has S = N(A) + u where N(A) is the kernel of A and A
induces an isomorphism between the quotient space X/N(A) onto R(A), so that, by [44,
p. 99], for some α > 0 one has for each x ∈ X, with v := x− u,

f(x) −m = f(u+ v) − f(u) =
1

2
〈A(v), v〉 ≥ αd(v,N(A))2 = αd(x, S)2.

3 Subdifferentials

The definition we adopt here for the concept of subdifferential is a very loose one. Making
that choice, we are able to consider notions which are not local or which do not necessarily
coincide with the usual Fenchel subdifferential in the convex case. Such an enlargement
is necessary in order to encompass cases which are useful when dealing with generalized
convex functions for which specific concepts exist (see [161] for instance for a general
survey). Among them, the Fenchel subdifferential and the Plastria’s subdifferential, or
lower subdifferential, play a key role. Let us recall that given a point x in the domain
dom f of an extended real-valued function f on a normed vector space X with dual X∗

the lower subdifferential ∂<f(x) of Plastria [174] (resp. the Fenchel subdifferential or
global subdifferential) of f at x is the set of x∗ ∈ X∗ such that

f(u) − f(x) ≥ 〈x∗, u− x〉 ∀u ∈ [f < f(x)] (resp. ∀u ∈ X)

where [f < f(x)] = {u ∈ X : f(u) < f(x)} . The lower subdifferential has been used
for a number of purposes with quasi-convex functions, in particular for cutting planes
algorithms. Recall that f is said to be quasiconvex if its sublevel sets [f ≤ r] :=
f−1(] −∞, r]) are convex for each r ∈ R.

There are of course different ways of presenting subdifferentials (see for instance [17],
[92], [93], [156] and their references). As noticed by several authors, a unified approach is
convenient: in such a way, specific constructions and special properties can be avoided.

Here we define a subdifferential ∂ as a mapping which associates to any extended real-
valued function f on some normed space X (or to any f in some class of functions F (X),
X belonging to some class X of normed vector spaces) and to any x in the domain of f
a subset ∂f (x) of X∗ in such a way that if f attains at x its minimum then 0 ∈ ∂f (x).
We do not assume that ∂(c‖ · ‖)(x) ⊂ cBX∗ for any c > 0, x ∈ X, a condition which
is satisfied whenever ∂ coincides with the subdifferential of convex analysis on convex
functions, a natural requirement; however, this restriction is not satisfied by important
subdifferentials of quasiconvex analysis.

As mentioned above, we do not require that ∂ is local or localizable in the sense
that ∂f(x) = ∂g(x) when f and g coincide on a neighborhood of x. We will not impose
calculus rules either. However, an additional property of subdifferentials will be used.
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Definition 3.1 A subdifferential ∂ is said to be variational on a class F(X) of extended
real-valued functions on X if for any bounded below lsc function f ∈ F(X) and for any
α, ε, λ, ρ > 0 with ε < λρ and for any x ∈ X such that f(x) ≤ inf f(X) + ε there exist
w ∈ B(x, ρ) and w∗ ∈ ∂f(w) such that ‖w∗‖ ≤ λ, f(w) ≤ f(x) + α.

This property is satisfied when X is a Banach space, F(X) is a class of differentiable
functions and ∂f(x) = {f ′(x)} for x ∈ X and f ∈ F(X) (see [71], [72]). In view of the
Bronsted-Rockafellar’ theorem [41], it is also satisfied if X is a Banach space, F(X) is
a class of l.s.c. convex functions and ∂ is the Fenchel subdifferential. Both cases are
encompassed in the case of the class T (X) of l.s.c. tangentially convex functions. Here
f is said to be tangentially convex if for each x ∈ dom f the Hadamard lower derivative
(or contingent derivative) of f at x given by

f ′(x, u) := lim inf
(t,v)→(0+,u)

1

t
(f(x+ tv) − f(x))

is a convex function of u; then we take ∂ to be the Hadamard (or contingent) subdiffer-
ential given by

∂f(x) := {x∗ ∈ X∗ : x∗(·) ≤ f ′(x, ·)} .
Observe that f is tangentially convex when, for some differentiable function g and some
convex function h, f is of the form (a) f = g + h, or of the form (b) f = g ◦ h (with g
defined on R and nondecreasing) or of the form (c) f = h ◦ g (with g of class C1 from
X to another Banach space Y such that Y = g′(x)(X) − R+(domh − g(x)) for each
x ∈ dom f). In the case of quasiconvex functions, using results in [161], one can find an
adapted subdifferential which is variational.

More generally, as shown below, ∂ is variational whenever ∂ is reliable in the sense
of [149], [155], [89]. This notion, which is a variant of the concept of trustworthiness due
to Ioffe [91] can be defined as follows (see [149], [155], [160]).

Definition 3.2 A triple (X,F(X), ∂), where X is a Banach space, F(X) is a set of
functions on X, ∂ is a subdifferential, is said to be reliable (and any of its elements is
said to be reliable if the other two are considered as given) if for any lower semicontinuous
function f ∈ F(X), for any convex Lipschitzian function g on X, for any x ∈ dom(f) at
which f + g attains its infimum and for any ε > 0 one has

0 ∈ ∂f(u) + ∂g(v) + εB∗,

for some u, v ∈ B(x, ε) such that | f(u) − f(x) |< ε.

Thus, this property holds whenever a fuzzy sum rule of weak type (even weaker
than the one considered in [156]) is satisfied. In particular, it is satisfied for the Fréchet
subdifferential in the wide class of Asplund spaces (whereas this case is not covered under
the assumptions of [56]).

Lemma 3.3 If ∂ is a reliable subdifferential for a class F(X) of l.s.c. extended real-
valued functions on the Banach space X then it is variational.

Proof. Let f ∈ F(X) be bounded below on X , let α, ε, λ, ρ > 0 with ε < λρ and
let x ∈ X be such that f(x) ≤ inf f(X) + ε. Let µ > 0 be such that µ < λ, ε < µρ. The
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Ekeland’s variational principle (in the form given in [142]) yields some v ∈ B(x, µ−1ε)
such that f(v) + µ‖v − x‖ ≤ f(x) and

∀u ∈ X f(v) ≤ f(u) + µ‖u− v‖.
As ∂ is reliable, we can find w, z ∈ B(v, ρ − µ−1ε), w∗ ∈ ∂f(w), z∗ ∈ ∂(µ‖ · ‖)(z) such
that ‖w∗ + z∗‖ ≤ λ− µ, f(w) ≤ f(v) + α ≤ f(x) + α. Then w ∈ B(x, ρ), ‖w∗‖ ≤ λ and
the result is proved. �

Reliability of a localizable subdifferential entails that the subdifferential is significant
in this sense that the domain of subdifferentiability of any l.s.c. function is dense in its
domain (see [160, Lemma 2.4]). The same property holds for a localizable variational
subdifferential, with a similar proof. It would be interesting to know whether the two
assumptions of localizability and significance and the following conditions are enough to
ensure a mean value theorem:

(S1) If f is convex then ∂f(x) is the subdifferential in the sense of convex analysis;
(S2) If f attains at x a local minimum then 0 ∈ ∂f(x);
(S3) If h is linear and continuous then ∂(f + h)(x) = ∂f(x) + h.

These assumptions are natural requirements and are satisfied by usual subdifferentials
including the Hadamard and the Fréchet subdifferentials. With these assumptions, local-
ization and reliability do suffice (see [160] and, for the Fréchet case, see [114]; for another
approach, see [17]).

Theorem 3.4 Let ∂ be a localizable and reliable subdifferential satisfying conditions
(S1) − (S3) above and let f : X → R

• = R ∪ {∞} be a l.s.c. function finite at a, b ∈ X.
Then there exists c ∈ [a, b[ and sequences (cn) , (c∗n) such that (cn) → c, (f(cn)) → f(c),
c∗n ∈ ∂f (cn) for each n and

lim inf
n

〈c∗n, b− a〉 ≥ f (b) − f (a) .(1)

When f is finite and continuous one can find c ∈ ]a, b[ and sequences (cn) , (c∗n) such that
(cn) → c, c∗n ∈ ∂f (cn) ∪ (−∂(−f)(cn)) for each n and

lim
n
〈c∗n, b− a〉 = f (b) − f (a) .(2)

4 Critical and minimizing sequences

The notion of subdifferential enables one to extend to nonsmooth functions the concept
of critical sequence and of critical point. This has been done in a number of places,
including [46] for the Clarke subdifferential and [89] for the general case.

Definition 4.1 Given a subdifferential ∂ and a function f we say that a point x is a
critical point of f if 0 ∈ ∂f(x). A real number r is said to be a critical value if there
exists some critical point x such that f(x) = r. We say that a sequence (xn) is critical
or, more precisely, ∂-critical, if there exists a sequence (x∗n) such that

x∗n ∈ ∂f(xn) and (x∗n) → 0.

Several authors rather use the term “stationary”, but we prefer to keep this term for
the case (xn) is critical for f and −f .
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The following proposition extends a recent result in [40], [148], [52]. It shows that
for any minimizing sequence of f one can always find a “nearby” sequence which is both
critical and minimizing. The proof adapted to our framework is even simpler than the
ones [148], [52], [89].

Proposition 4.2 Let X be a Banach space, let ∂ be a variational subdifferential and
let f : X → R ∪ {+∞} be a bounded below l.s.c. function. Let (xn) be a minimizing
sequence for f . Then there exists a minimizing sequence (wn) which is critical and such
that limn→∞ ‖xn − wn‖ = 0.

Proof. Let εn := f(xn) − m. Since the sequence (xn) is minimizing, we have
(εn) → 0+. When εn = 0 we take wn := xn. When εn > 0, the definition of a variational

subdifferential, with α := εn, λ = ρ := 2ε
1
2
n yields some wn ∈ X and some w∗

n ∈ ∂f(wn)

such that ‖xn − wn‖ ≤ 2ε
1
2
n , f(wn) ≤ f(xn) + εn, ‖w∗

n‖ ≤ 2ε
1
2
n and we get the required

sequence. �

Let us note that simple examples show that a minimizing sequence itself is not
necessarily a critical sequence, even when the function is differentiable.

As explained in the introduction, the reverse question is more interesting.
The following simple result shows that for a convex function, or more generally,

for an invex function, under assumptions which are mild when the space is finite dimen-
sional, the discrepancy between critical and minimizing sequences may only arise with un-
bounded sequences. Recall that a function f is said to be invex (or ∂-invex if there is any
risk of confusion) if any critical point of f is a minimizer: 0 ∈ ∂f(x) ⇒ f(x) = inf f(X).
See [117], [125], [172], [173], [166] for references and variations. Note that f is invex iff
0 ∈ ∂f(x) ⇒ 0 ∈ ∂<f(x). Obviously, any pseudoconvex function is invex; in particular
any convex function is invex. Here, as [85] (see also [123]-[124] (for the differentiable
case), [166] (for the Clarke’s subdifferential), [16], [18], [152] (in the general case)), f is
said to be pseudoconvex if for any x, y ∈ X

∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 ≥ 0 ⇒ ∀z ∈ [x, y] f(y) ≥ f(z).

Clearly, for any invex function, local minimizers are global minimizers. Such a property
is important and will be used later on. It has been shown in [78], [79] (see also [80]) that
this last property is satisfied by integral functionals.

Lemma 4.3 Let X be a reflexive Banach space and let f be an invex function on X such
that the weak limit of a critical sequence is a critical point. Assume one of the following
two assumptions

(a) if a critical sequence (xn) weakly converges to some x∞ then (f(xn)) → f(x∞).
(b) ∂f(x) ⊂ ∂<f(x) for each x ∈ X.

Then any bounded critical sequence of f is minimizing.

Observe that the assumption that the weak limit of a critical sequence is a critical
point is satisfied whenever the graph of ∂f is sequentially closed in the product of the
weak topology of X and the strong topology of X∗. In particular, it is satisfied if ∂ is
the Fenchel subdifferential. Under our invexity assumption and condition (a), it is also
satisfied if ∂ is the Plastria’s lower subdifferential, as easily checked.
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Proof. Let (xn) be a bounded critical sequence. Since X is reflexive, any subse-
quence of (xn) has a weakly converging subsequence whose limit x∞ is a critical point by
our closedness assumption. As f is invex, x∞ a minimizer of f. The continuity assump-
tion (a) ensures then that (f(xn)) → f(x∞) = inf f(X).When assumption (b) is satisfied
we have either f(xn) = f(x∞) or f(xn) > f(x∞) and taking x∗n ∈ ∂f(xn) ⊂ ∂<f(xn)
with (x∗n) → 0 we see that

f(xn) − f(x∞) ≤ 〈x∗n, xn − x∞〉 → 0,

so that, in both cases, (xn) is minimizing. �

The preceding lemma can be combined with the following result which generalizes
[55] Proposition 4.2 to the nonconvex case (see Proposition 5.2 below).

Lemma 4.4 Suppose ∂f(x) ⊂ ∂<f(x) for each x ∈ X and f is super-coercive in the
sense lim inf‖x‖→∞ f(x)/‖x‖ > 0. Then any critical sequence of f is bounded.

Note that both assumptions are satisfied when f is convex and coercive (i.e.
f(x) → ∞ as ‖x‖ → ∞); moreover, in such a case, one has a quantitative relation
linking r := lim inf‖x‖→∞ f(x)/‖x‖ to the radius of the greatest open ball centered at 0
on which f∗, the Fenchel conjugate of f , is majorized (see [31], [37], [55], [74], [75], [157],
[203]).

Proof. Given a critical sequence (xn) let (x∗n) → 0 be such that x∗n ∈ ∂f(xn) for
each n. By assumption, there exist r, s > 0 such that f(x) ≥ s‖x‖ whenever ‖x‖ ≥ r. If
(xn) is unbounded, taking a subsequence if necessary we may assume (‖xn‖) → ∞ and
that f(xn) > f(x0) for each n > 0. Then, as x∗n ∈ ∂<f(xn) we have

f(x0) − f(xn) ≥ 〈x∗n, x0 − xn〉,
‖xn‖−1f(x0) − s ≥ −‖xn‖−1‖x∗n‖(‖xn‖ − ‖x0‖),

a contradiction. �

The following criterion ensuring that a critical sequence is minimizing is rather spe-
cial; it is a variant of [52, Theorem 6.3].

Proposition 4.5 Let f be l.s.c. and bounded below on X. Suppose ∂f ⊂ ∂<f. Under the
following assumption (A), any critical sequence on which f is bounded is a minimizing
sequence:

(A) for any h > m := inf f(X) there exist k ∈ [m,h] and a nondecreasing function
ϕ : R+ → R+ such that for each x ∈ X

d(x, [f ≤ k]) ≤ ϕ((f(x) − k)+).

Proof. Suppose on the contrary that there exists a critical sequence (xn) such that
supnf(xn) < ∞ and which is not minimizing. Taking a subsequence if necessary, we
may assume that (f(xn)) converges to some ℓ > m and moreover that for some h ∈]m, ℓ[
we have ℓ + 1 > f(xn) > h for each n. Let k and ϕ be as in assumption (A). Without
loss of generality, we may assume k < h. For each n we have ϕ((f(xn) − k)+) ≥
d(xn, [f ≤ k]) > 0, so that we can find un ∈ [f ≤ k] such that

‖un − xn‖ ≤ 2ϕ((f(xn) − k)+).
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Let x∗n ∈ ∂f(xn) be such that (x∗n) → 0. Since ∂f(xn) ⊂ ∂<f(xn) and f(un) ≤ k < h <
f(xn) for each n, we have

〈x∗n, un − xn〉 ≤ f(un) − f(xn) < k − h

hence

h− k < ‖x∗n‖ ‖un − xn‖
≤ 2 ‖x∗n‖ϕ((f(xn) − k)+) ≤ 2 ‖x∗n‖ϕ(ℓ + 1 − k),

a contradiction with (‖x∗n‖) → 0. �

5 Well-behaved functions and critical functions

The following definition taken from [89] extends a notion introduced by Auslender [12],
Auslender-Crouzeix [14] and Auslender-Cominetti-Crouzeix [15] in the convex case, with
X finite dimensional.

Definition 5.1 A function f on X into R
• := (−∞,+∞] is said to be well-behaved if it

is lower semicontinuous, bounded below and if its critical sequences are minimizing. We
write f ∈ W or f ∈ W(X) or f ∈ W∂(X) if it is necessary to make clear the choice of
∂.

As mentioned in the introduction, even a convex function may not be well-behaved,
as shown by the following counter-example due to Rockafellar.

Example ([185]; see also [14], [196]) Let f : R
2 → R be given by f(0, 0) = 0,

f(r, s) = r2s−1 for s > 0, +∞ else. Then, for xn = (rn, r
2
n) with (rn) → ∞ we have

f(xn) = 1 and (f ′(xn)) → 0.
When f is bounded and ∂f ⊂ ∂<f , assumption (A) of the preceding proposition

ensures that f is well-behaved. Another case of well-behavior is contained in the following
criterion which is an immediate consequence of Lemmas 4.3 and 4.4.

Proposition 5.2 Suppose ∂ is contained in ∂<. Under the assumptions of Lemma 4.3,
if f is l.s.c., bounded below and super-coercive, then it is well-behaved.

The following class of functions has been introduced in [89] as a class related to the
class of well-behaved functions.

Definition 5.3 A function f : X → R
• := (−∞,+∞] is said to be critical (for the

subdifferential ∂) if for any critical sequence (xn) the sequence (f(xn)) of values converges
in R. It is said to be boundedly critical if for any bounded critical sequence (xn) the
sequence (f(xn)) converges in R.

Obviously, any well-behaved function is critical. Moreover, it is easy to see that a
boundedly critical function has at most one critical value. The function f : R → R given
by f(r) = − exp r is critical but not well-behaved.

Example [89] Given a nonempty closed subset S of a Banach space X, let f := dS

be the distance function to S. Then f is a well-behaved (hence critical) function for the
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Fréchet subdifferential. Other examples can be given by applying the stability properties
below or the criteria given in the next section.

The following result close to [89] Proposition 4.2 presents a criteria for the coincidence
of the class of critical functions with the class of well-behaved functions.

Proposition 5.4 Any well-behaved function is critical. A critical l.s.c. function bounded
below on X is well-behaved if the subdifferential ∂ is variational or if the set S of mini-
mizers of f is nonempty.

Proof. The first assertion has alredy been observed. Suppose f is critical, l.s.c.
and bounded below and ∂ is variational. Let (xn) be a critical sequence. We know
from Proposition 4.2 that there exists a minimizing sequence (wn) which is also a critical
sequence. The sequence (zn) given by z2n = xn, z2n+1 = wn is critical. Our assumption
on f ensures that (f(zn)) converges to lim f(wn) = inf f(X). Thus (f(xn)) → inf f(X).

When the set S is nonempty, any point of S is critical and in the preceding argument
we can take for (wn) the constant sequence with value such a point. �

Although the class of critical functions is defined in a simple way, it does not enjoy
good stability properties: the following properties require rather stringent assumptions.

Proposition 5.5 Let F : X → Y be a continuously differentiable mapping between
two Banach spaces. Suppose there exists c > 0 such that for any v ∈ Y one has
inf

{
‖u‖ : u ∈ F ′(x)−1(v)

}
≤ c‖v‖. Then, for any critical function g on Y such that

∂(g ◦ F )(x) ⊂ ∂g(F (x)) ◦ F ′(x) for each x ∈ F−1(dom g), the function f := g ◦ F is
critical.

Proposition 5.6 ([89]) Let f = h ◦ g where g : X → R is critical and h : R → R is
differentiable. Suppose there exists c > 0 such that h′(r) ≥ c for each r ∈ R and suppose
∂f(x) ⊂ h′(g(x))∂g(x) for each x ∈ X. Then f is critical.

Let us observe that the relation ∂f(x) ⊂ h′(g(x))∂g(x) is satisfied by a number of
subdifferentials such as the Fréchet and the Hadamard subdifferentials; if h is of class C1

it is also satisfied by the Clarke subdifferential.
Stability results for sums are presented in [89].
Let us now consider briefly two classes of functions introduced in [89] for which the

characterization of well-behavior in terms of sublevel sets can be extended.

Definition 5.7 A function f from X into R
• := R ∪{+∞} is said to be critically convex,

in short C-convex, if it satisfies the following property: for any pair of critical sequences
(xn), (x′n) with xn 6= x′n one has

lim
n→∞

|f(xn) − f(x′n)|
‖xn − x′n‖

= 0.(3)

If the preceding property is required for bounded critical sequences only, we say that f is
boundedly C-convex, in short BC-convex.

Again, for the Fréchet subdifferential, any distance function is C-convex. Other
important examples of C-convex functions are given in the following lemmas. Let us first
note an obvious relationship with the class of boundedly critical functions.
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Proposition 5.8 If f is BC-convex and has a bounded critical sequence (zn) whose
values are bounded, then f is boundedly critical.

The following two results provide examples and justify the terminology.

Lemma 5.9 If f is convex then it is C-convex. More generally, if f := h ◦ g with
h : Y → R ∪{+∞} convex l.s.c., g : X → Y Lipschitzian of class C1 and such that
for some c > 0 one has for each x ∈ X and each v ∈ Y ∂f(x) ⊂ g′(x)T (∂h(x)) and
inf {‖u‖ : u ∈ X, g′(x)u = v} ≤ c‖v‖, then f is C-convex.

Proof. Let (xn), (x′n) be critical sequences of f with xn 6= x′n for each n. For some
y∗n ∈ ∂h(yn), with yn = g(xn), one has (x∗n) = (y∗n ◦ g′(xn)) → 0, hence (y∗n) → 0, as for
each c′ > c and each v ∈ Y one can find u ∈ X with g′(xn)u = v, ‖u‖ ≤ c′‖v‖, so that

y∗n(v) = x∗n(u) ≤ ‖x∗n‖c′‖v‖.
Similarly, one can find y′∗n ∈ ∂h(y′n), where y′n := g(x′n), such that (y′∗n ) → 0. Now

f(x′n) − f(xn) = h(y′n) − h(yn) ≥ 〈y∗n, y′n − yn〉
≥ −k‖y∗n‖‖x′n − xn‖.

where k is the Lipschitz rate of g. Thus

‖x′n − xn‖−1 | f(x′n) − f(xn) |≤ kmax(‖y∗n‖, ‖y′∗n ‖) → 0. �

Lemma 5.10 [89] Any quadratic function is C-convex.

Let us present now some stability results for the class of C-convex functions.

Proposition 5.11 [89] Let A : X → Y be a surjective, continuous linear map between
two Banach spaces. Then, for any C-convex function h on Y, the function f := h ◦A is
C-convex whenever ∂f(x) ⊂ AT (∂h(x))

Proposition 5.12 [89] Let f = h ◦ g where g : X → R is C-convex and h : R → R is
differentiable and Lipschitzian. Suppose there exists c > 0 such that h′(r) ≥ c for each
r ∈ R and suppose ∂f(x) ⊂ h′(g(x))∂g(x) for each x ∈ X. Then f is C-convex.

The following criteria appear in [89] with almost the same assumptions.

Proposition 5.13 Suppose ∂ is reliable, X is a dual Banach space, f is l.s.c. and
satisfies the following assumptions:
(a) f is constant on the set Z of its critical points;
(b) if (zn) is a critical sequence weak∗ converging to some z, then z ∈ Z and (f(zn)) →
f(z);
(c) for any critical point z, any sequence (zn) weak∗ converging to z and any z∗n ∈ ∂f(zn)
one has (z∗n) → 0.

Then f is BC-convex.

Corollary 5.14 Suppose X is finite dimensional, f is of class C1 and is constant on
the set of its critical points. Then, (for the usual derivative) f is BC-convex.
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Proposition 5.15 Suppose ∂ is reliable and suppose f is l.s.c. and satisfies the following
assumptions:
(a) f is BC-convex;
(b) if (zn) is a critical sequence then (f(zn)) is bounded;
(c) for any sequence (zn) such that (‖zn‖) → ∞ and for any z∗n ∈ ∂f(zn) one has
(z∗n) → 0.

Then f is C-convex.

6 Nicely behaved functions and the Palais-Smale con-
dition

One of the following two variants of well-behavior has been introduced by Lemaire [109]
(essentially in the convex case and without the terminology we use here in order to avoid
confusions).

Definition 6.1 A function f : X → R ∪ {∞} is said to be nicely behaved if its set of
minimizers S is nonempty and if for any critical sequence (xn) one has (d(xn, S)) → 0.

It is said to be almost nicely behaved if S is nonempty and if this conclusion holds
for any critical sequence (xn) which is minimizing.

It is said to be very nicely behaved if S is nonempty and if for any critical sequence
(xn) one has both (d(xn, S)) → 0 and (f(xn)) → m.

We denote by N (X) (resp. A(X), resp. V(X)) the set of lsc nicely behaved (resp.
almost nicely behaved, resp. very nicely behaved) functions on X.

Obviously, with the preceding notation and the notations of Definitions 2.1 5.1 5 one
has

V(X) ⊂ W(X) ∩ N (X) ⊂ N (X) ⊂ A(X)andM(X) ⊂ A(X).

The following propositions describe some other relationships between these notions and
some other ones we introduced. The first one shows that for Lipschitzian functions
well-behavior is a consequence of nice-behavior.

Proposition 6.2 If f is nicely behaved and if f is uniformly continuous around S, then
f is well-behaved. In particular, if S is compact, if f is nicely behaved and is continuous
at each point of S, then f is well-behaved.

Proof. Let f ∈ N (X). The uniform continuity of our assumption means that for
each ε > 0 there exists δ > 0 such that for each x ∈ S and for each w ∈ X satisfying
d(w, x) < δ one has | f(w)− f(x) |< ε. It implies that for each critical sequence (xn) we
have (f(xn)) → min f since (d(xn, S)) → 0 as f is nicely behaved. �

Proposition 6.3 Suppose ∂ is variational. If f is l.s.c., almost nicely behaved, then f
is M-well-set: A(X) ⊂ M(X), hence N (X) ⊂ M(X).

Proof. Let f ∈ A(X). Given a minimizing sequence (xn) of f, using Proposition 4.2,
we can find a sequence (wn) which is critical, minimizing and such that (d(wn, xn)) → 0.
Since f ∈ A(X) we have (d(wn, S)) → 0. Thus (d(xn, S)) → 0. �

A partial converse is as follows.
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Proposition 6.4 If a critical function f is M-well-set or almost nicely behaved, then it
is nicely behaved.

Proof. Let f be a critical function and let (xn) be a critical sequence of f . Since
the set S of minimizers of f is nonempty, (xn) is minimizing by Proposition 5.4 and when
f is almost nicely behaved or M-well-set we have (d(xn, S)) → 0. �

Corollary 6.5 If a well-behaved function f is M-well-set or almost nicely behaved then
it is nicely behaved: W(X)∩M(X) ⊂ N (X), W(X)∩A(X) ⊂ N (X). Moreover, if ∂ is
variational, one has W(X) ∩M(X) = W(X) ∩ N (X) = W(X) ∩ A(X).

In particular, for a variational subdifferential, and for a Lipschitzian function f , one
has that f is nicely behaved iff f is well-behaved and M-well-set.

Now let us compare the notions of nice-behavior with a Palais-Smale condition.
This condition is not exactly the original one due to Palais and Smale, but is a variant
considered in a number of works [140], [40], [191], [63], [200]... in the differentiable case.

Definition 6.6 The function f is said to satisfy the Palais-Smale condition (PS)c for the
value c if any critical sequence (xn) such that (f(xn)) → c has a converging subsequence.
We will write f ∈ PS or f ∈ PS(X) if this property holds for c = m, with m := inf f(X).

The following observation is immediate.

Proposition 6.7 If f is l.s.c. and satisfies the Palais-Smale condition (PS)m, then
the set S of minimizers of f is compact, nonempty and f is almost nicely behaved.
Conversely, if the set S of minimizers of f is compact and if f is almost nicely behaved
then f satisfies the Palais-Smale condition (PS)m for the value m := inf f(X).

Proof. The first assertion follows from the fact that a minimizer is a critical point.
Let us prove the second one. Given a critical sequence (xn) which is minimizing, any
subsequence (xk(n)) of (xn) has a further subsequence (xk(h(n))) which converges to some
x∞. As f is l.s.c. we have f(x∞) ≤ lim f(xk(h(n))) = m, hence x∞ ∈ S and thus
(d(xn, S)) → 0 by a classical argument about sequences: f is almost nicely behaved.

Conversely, suppose f is almost nicely behaved and S is compact and let (xn) be
a minimizing critical sequence. Taking any sequence (un) in S such that d(un, xn) ≤
d(xn, S)+1/n and using the facts that (d(xn, S)) → 0 as f is almost nicely behaved, and
that (un) has a converging subsequence, we see that (xn) has a converging subsequence.
�

The following result has some similarity with Lemma 4.3. Here we say that f satisfies
the strong form of the Palais-Smale condition if any critical sequence has a converging
subsequence.

Proposition 6.8 Let f be an invex function on X such that the graph of ∂f is (strongly)
closed. Then, if f satisfies the strong form of the Palais-Smale condition it is nicely
behaved.

Proof. Let (xn) be a critical sequence. By assumption, it has a converging subse-
quence whose limit x∞ is a critical point by the closedness of ∂f. Since f is invex, we
have x∞ ∈ S. Taking subsequences if necessary, we conclude that (d(xn, S)) → 0. �
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Proposition 6.9 Any bounded below l.s.c. function f satisfying the Palais-Smale con-
dition (PS)m is almost nicely behaved. If moreover f is well-behaved then it is nicely-
behaved.

Proof. Let (xn) be a critical sequence which is minimizing. Using the (PS)m

condition we obtain that it has a subsequence which converges to some x∞. As f is l.s.c.
we get f(x∞) ≤ m or x∞ ∈ S. Thus (d(xn, S)) → 0 as the original sequence can be
replaced by an arbitrary subsequence. �

7 A quantitative approach

A quantitative approach can be adopted for the notions introduced above. Such a view-
point is useful to deal with perturbation questions, as we will show later on. For this
purpose, let us recall a piece of terminology and some useful tools. A modulus is a nonde-
creasing function on R+ which has limit 0 at 0 (see for instance [97, p. 356]). A function
γ : R+ → R+ is called a gage if it is nondecreasing and firm (or admissible or forcing)
in the sense : any sequence (rn) of R+ such that lim

n
γ(rn) = 0 converges to 0. Here we

note that for a nondecreasing function γ, firmness is equivalent to the property that γ is
positive on the set P of positive numbers.

As an instance of a way one can quantify the preceding notions, let us present the
following definition and lemma.

Definition 7.1 Given a subdifferential ∂, a function f on X and its associated remote-
ness δ(x) := d(0, ∂f(x)), the measure of C-convexity of f is the function on R+ given
by

χ(r) := χf (r) := sup

{ | f(x) − f(y) |
‖x− y‖ : x, y ∈ X,x 6= y, δ(x) ≤ r, δ(y) ≤ r

}
.

The proof of the following lemma is easy.

Lemma 7.2 The function f is C-convex iff χf is a modulus.

Some of the preceding statements can be given a quantitative form by using the
preceding measure of C-convexity. For instance, if f is a convex function, one has χf (r) ≤
r for each r ≥ 0. Indeed, for any x, y ∈ dom∂f with x 6= y, δ(x) ≤ r, δ(y) ≤ r, for
each x∗ ∈ ∂f(x), one has f(y) − f(x) ≥ −‖x∗‖ ‖y − x‖ hence f(x) − f(y) ≤ r ‖y − x‖
and a similar inequality with x and y interchanged. If f is quadratic on a Hilbert space,
f(x) = 1

2 (Ax | x) − (b | x), one also has χf (r) ≤ r. In fact, whenever x, y ∈ X satisfy
‖∇f(x)‖ ≤ r, ‖∇f(y)‖ ≤ r, by the mean value theorem, there exists some t ∈ [0, 1] such
that, for z := (1 − T )x+ ty, one has

|f(x) − f(y)| = |(∇f(z) | x− y)| = |(Az − b | x− y)|
≤ ((1 − t) ‖Ax− b‖ + t ‖Ay − b‖) ‖x− y‖ ≤ r ‖x− y‖ .

We will use the following two natural quasi-inverses of an element ϕ of the set N of
nondecreasing functions on R+ which take the value 0 at 0 :
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ϕe(s) = inf {r ∈ R+ : s ≤ ϕ(r)} ,

ϕh(s) = sup {r ∈ R+ : s ≥ ϕ(r)} .
When ϕ is strictly increasing, these two quasi-inverses coincide, but in general they are
different and any ψ such that ϕe ≤ ψ ≤ ϕh is a quasi-inverse of ϕ in the sense of [170]:
ϕ(r) < s⇒ r ≤ ψ(s), s < ϕ(r) ⇒ ψ(s) ≤ r.

These definitions are convenient to deal with a number of topics such as rearrange-
ments (see for instance [65], [133], [179], [193]). We will use them for the study of
conditioning and of well-behavior. Let us give a simple direct proof of the following
result from [143] Proposition 2.8 which is a key fact for our purposes.

Lemma 7.3 (a) If µ is an element of the set M of modulus, then γ := µe is an element
of the set G of gages. The same is true for any other quasi-inverse.

(b) If γ is an element of the set G of gages, then γh, as any quasi-inverse of γ, is
an element of the set M of modulus.

Proof. (a) Given µ ∈ M and s > 0 there exists δ > 0 such that µ(r) < s for any
r ∈ [0, δ]. Thus

µe(s) = inf {r ∈ R+ : s ≤ µ(r)} ≥ δ > 0.

(b) Given γ ∈ G and given ε > 0, we have δ := γ(ε) > 0, so that, for s ∈ R+, s < δ
we get

γh(s) = inf {r ∈ R+ : s < γ(r)} ≤ ε.

Thus µ := γh is continuous at 0 and µ(0) = 0 : µ ∈M. �

The preceding lemma can be combined with the following result.

Lemma 7.4 For any two functions ϕ, ψ from X to R+ ∪ {∞}, the following assertions
are equivalent:

(a) ϕ(x) → 0 ⇒ ψ(x) → 0;
(b) there exists a modulus µ such that ψ ≤ µ ◦ ϕ
(c) there exists a gage γ such that γ ◦ ψ ≤ ϕ.

Proof. The implication (b)⇒(a) is obvious. Assuming (a), let

µ(s) := sup{ψ(x) : ϕ(x) ≤ s}.
Then clearly µ is a modulus and ψ ≤ µ ◦ ϕ : (b) holds.

Using the fact that for any ϕ one has ϕe ◦ ϕ ≤ I, the identity mapping, we see that
(b)⇒(c), taking γ := µe, so that γ ◦ ψ ≤ µe ◦ µ ◦ ϕ ≤ ϕ, and using the fact that γ is a
gage.

Now let us show that (c)⇒(a). Given ε > 0, for any r < δ := γ(ε), r ≥ 0 we have
ψ(r) < ε whenever ϕ(r) < δ since when ψ(r) ≥ ε we have ϕ(r) ≥ γ(ψ(r)) ≥ γ(ε) = δ.
�

From the preceding two observations, one can deduce interesting consequences for
our purposes. A piece of terminology will ease our statements.
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Given an extended real-valued function f : X → R
• such that m := inf f(X) ∈ R

and S := Arg min f is nonempty, a function µ : R+ → R
•
+ := R+ ∪ {∞} has been called

a conditioner for f in [7], [157] if

∀x ∈ X d(x, S) ≤ µ(f(x) −m).

There exists a smallest conditioner and a smallest nondecreasing conditioner called the
canonical conditioner of f . The latter is given by

µf (t) := e(S(m+ t), S) := sup {d(x, S) : x ∈ S(m+ r)}
where S(r) := {x ∈ X : f(x) ≤ r}. We are interested in situations in which µf is a
modulus. In general, it is not easy to determine a conditioner; it is usually easier to find
a function γ : R+ → R

•
+ such that

∀x ∈ X γ(d(x, S)) ≤ f(x) −m.

Such a function is called a conditioning function ([7]) or a growth function. The largest
nondecreasing function γ satisfying this inequality (called the canonical growth (or con-
ditioning) function of f) is the function γf given by

γf (r) = inf {f(x) −m : x ∈ X, d(x, S) ≥ r} .
When γf is a gage, we call it the canonical conditioning gage of f .

The following result which relates the canonical growth function γf to the canonical
conditioner µf of f could be improved by substituting strict inequalities to inequalities
in the definitions, but we refrain to do so.

Proposition 7.5 ([157, Lemma 2.2]) The canonical growth function γf and the canon-
ical conditioner µf of f are quasi-inverses.

As a consequence, one disposes of the following characterization of metrically well-set
functions ([157]; see also [67]).

Proposition 7.6 For any function f : X → R
• := R∪ {∞} with finite infimum m and

nonempty set of minimizers S the following conditions are equivalent:
(a) f is metrically well-set;
(b) lim

ε→0
e(S(m+ ε), S) = 0;

(c) f has a conditioner which is a modulus;
(e) the canonical conditioner µf of f is a modulus;
(f) the canonical growth function γf of f is a gage;
(g) there exists a growth function which is a gage.

Proof. The equivalence (a)⇔(b), (b)⇔(e), (c)⇔(e), (f)⇔(g) are obvious or simple
reformulations. For the other equivalences, in Lemma 7.4 one can take ϕ(x) = f(x) −
m, ψ(x) = d(x, S). �

The following result partially proved in [157] (see also Lemma 9.8 below) completes
[7, Prop. 5.2], [202, Prop. 2]: here S is not supposed to be a singleton and the convexity
assumption is slightly relaxed. It will justify the next definition.

Proposition 7.7 Suppose X is a normed vector space (n.v.s.), S is nonempty, m is
finite, and f is convex (or starshaped at any x ∈ S) and metrically well-set. Then the
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function

ρf (r) := inf {f (x) −m : x ∈ X, d(x, S) = r}
coincides with the canonical conditioning function γf and is starshaped. Moreover the
canonical conditioner µf of f is such that −µf is starshaped.

Part of this result remains under a relaxed convexity assumption.

Proposition 7.8 Suppose X is a n.v.s., S is nonempty, m is finite, and f is quasi-
convex. Then the function ρf is nondecreasing, hence coincides with the canonical con-
ditioning function γf .

Another striking property of the function ρ := ρf is the following one, inspired by
[40] Propositions 2, 3 and Lemma 1. Note that here S could be an arbitrary subset of
X, not just the set of minimizers of f ; in particular, S could be the set of critical points
of f. Recall that a function ρ : R → R is said to be strictly quasiconcave on an interval
]a, b[ if for any r < s < t in ]a, b[ one has ρ(s) > min(ρ(r), ρ(t)).

Proposition 7.9 Suppose ∂ is a reliable subdifferential. Suppose f is nicely behaved, or
more generally, suppose f is l.s.c., S is nonempty and that for some a, b ∈ [0,∞], a < b
and any r < t in ]a, b[ one has

inf {‖x∗‖ : x ∈ X, r ≤ d(x, S) ≤ t, x∗ ∈ ∂f(x)} > 0.

Then the function ρ := ρf defined above is strictly quasiconcave on ]a, b[. In particular,
there exists c ∈ [a, b] such that ρ is increasing on ]a, c[ and decreasing on ]c, b[.

Proof. Suppose on the contrary that there exist positive numbers r < s < t < ∞
in [a, b] such that ρ(s) ≤ min(ρ(r), ρ(t)). Then one can find a sequence (xn) in the set

F (s) := {x ∈ X : d(x, S) = s}
such that f(xn) −m ≤ ρ(s) + 1/n2. The Ekeland’s principle in the form given in [142]
Theorem A with γ = 1/n yields some

yn ∈ C := B(S, t)\U(S, r) := {x ∈ X : r ≤ d(x, S) ≤ t}
such that

f(yn) ≤ f(z) +
1

n
‖z − yn‖ ∀z ∈ C,

f(yn) ≤ f(xn) − 1

n
‖xn − yn‖.

We cannot have yn ∈ F (r) for n large as otherwise we would have ‖xn − yn‖ ≥ s − r
hence

ρ(r) ≤ f(yn) −m ≤ f(xn) − 1

n
‖xn − yn‖ −m ≤ ρ(s) +

1

n2
− 1

n
(s− r) < ρ(r)

for n large enough, a contradiction. Similarly, yn /∈ F (t) for n large. Therefore yn ∈
C\(F (r) ∪F (t)) ⊂ intC and yn is a local minimizer of f + 1

n‖ · −yn‖. Since ∂ is reliable,
there exists some critical sequence (zn) with zn so close to yn that zn ∈ C\(F (r)∪F (t)),
a contradiction with our assumption.
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In order to prove the last assertion, let us set

R := {s ∈]a, b[: ∀t > s ρ(t) < ρ(s)} .
We observe that for any r ∈ R and any s > r we have s ∈ R as otherwise we would find
some t > s with ρ(t) ≥ ρ(s), a contradiction with ρ(s) < ρ(r) and the strict concavity
of ρ. Let c := inf R and let us observe that what precedes shows that ρ is decreasing on
]c, b[. Let us prove that ρ is increasing on ]a, c[. If this is not the case, we can find some
r, s ∈]a, c[ such that r < s and ρ(r) ≥ ρ(s). As s /∈ R we can find some t > s such that
ρ(t) ≥ ρ(s); this is another contradiction with the strict concavity of ρ. �

As shown in the previous propositions dealing with the convex case, one has some-
times a property stronger than well-setness.

Definition 7.10 A function f on a metric space X is said to be very well-conditioned
if m is finite, if the set of minimizers S is nonempty and if there exists a starshaped
gage γ such that f(·) −m ≥ γ(d(·, S)). The (nondecreasing) function γ̂ given by γ̂(0) =
0, γ̂(t) := γ(t)/t is called a reduced growth function of f.

The case in which a linear growth function can be found (hence a constant reduced
growth function exists) is extremely important; see [56], [105], [107], [106], [138] and their
references for characterizations and applications.

The following simple criteria is taken from [54] (in the case p(t) = qt for some
q ∈]0, 1[) and from Ptak [177] in the general case. Here we say that a nondecreasing
function p : R+ → R+ is a Ptak function if the series s(t) :=

∑
n≥1 p

(n)(t) is convergent,

where p(0)(t) = t, p(1)(t) = p(t), p(n)(t) = p(n−1)(p(t)) and we say that s is the associated
sum.

Lemma 7.11 Let f be a bounded below real-valued function on a complete metric space
X which satisfies the following assumptions for some c > 0 and some Ptak function p
with associated sum s:

(a) if (xn) → x and (f(xn)) → m := inf f(X) then f(x) = m;
(b) there exist c > 0 such that for each v ∈ X there exists w ∈ X satisfying d(w, v) ≤

c(f(v) −m), f(w) −m ≤ p(f(v) −m).
Then the set S of minimizers of f is nonempty and d(x, S) ≤ cs(f(x)−m) for each

x ∈ X. In particular, for p(t) = qt with 0 < q < 1 we have f(x)−m ≥ c−1(1− q)d(x, S).

Proof. Without loss of generality we may suppose m = 0. Given x ∈ X we define
inductively a sequence by setting x0 := x and by associating to xn (supposed to be
already obtained) some xn+1 ∈ X such that d(xn+1, xn) ≤ cf(xn), f(xn+1) ≤ p(f(xn)).
Then we have f(xn) ≤ p(n)(f(x)) for n > 0 and (xn) is a Cauchy sequence, hence has a
limit x∞. By assumption (a) we have x∞ ∈ S and

d(x, x∞) ≤
∞∑

n=0

d(xn, xn+1) ≤
∞∑

n=0

cp(n)(f(x)) = cs(f(x)). �

Let us now deal with nice-behavior and well-behavior and introduce the following
notions.
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Definition 7.12 The measure of niceness of f is the function ν := νf : R+ → R
•
+ given

by

ν(r) := sup {d(x, S) : x ∈ X, δ(x) := d(0, ∂f(x)) ≤ r} .
The niceness index of f is the function η := ηf given by

η(s) := inf {δ(x) := d(0, ∂f(x)) : x ∈ X, d(x, S) ≥ s}

Definition 7.13 The measure of well-behavior of f is the function ω := ωf : R+ → R
•
+

given by

ω(r) := sup {f(x) −m : x ∈ X, δ(x) := d(0, ∂f(x)) ≤ r} .
The well behavior index of f is the function β := βf given by

β(s) := inf {δ(x) := d(0, ∂f(x)) : x ∈ X, f(x) ≥ m+ s}

Using again Lemma 7.4, but with ϕ(x) := δ(x) := d(0, ∂f(x)), ψ(x) := d(x, S) (resp.
ψ(x) := f(x) −m), we obtain characterizations of nice-behavior and well-behavior.

Proposition 7.14 For any function f : X → R
• with finite infimum m and nonempty

set of minimizers S, the following conditions are equivalent :
(a) f has a nice-behavior;
(b) δ(x) := d(0, ∂f(x)) → 0 ⇒ d(x, S) → 0;
(c) there exists a modulus µ such that d(·, S) ≤ µ(δ(·));
(e) the measure of niceness νf of f is a modulus ;
(f) the niceness index ηf of f is a gage ;
(g) there exists a gage γ such that δ(·) := d(0, ∂f(·)) ≥ γ(d(·, S)).

Proposition 7.15 For any function f : X → R
• with finite infimum m and nonempty

set of minimizers S, the following conditions are equivalent:
(a) f is well behaved;
(b) δ(x) := d(0, ∂f(x)) → 0 ⇒ f(x) → m;
(c) there exists a modulus µ such that f(x) −m ≤ µ(δ(·));
(e) the measure of well-behavior ωf of f is a modulus;
(f) the well-behavior index βf of f is a gage ;
(g) there exists a gage γ such that δ(·) := d(0, ∂f(·)) ≥ γ(f(·) −m).

The quantities introduced above are not unrelated (see [164]). In fact, if λf is given
by λf (s) := sup {f(x) −m : d(x, S) ≤ s}, and if λe

f is its lower quasi-inverse, the following
relations can be proved:

νf ≤ µf ◦ ωf βf ◦ γf ≤ ηf

ωf ≤ λf ◦ νf ηf ◦ λe
f ≤ βf .

Note that λf is a modulus if f is uniformly continuous.
We refer to [59] for another index of strong quasiconvexity which may have some

relationships with the preceding indexes. Let us also note the following fact.

Lemma 7.16 If γ̂ is a reduced growth function of f and if χ is the measure of C-
convexity of f then one has γ̂ ◦ dS ≤ χ ◦ δ. If ν is the measure of niceness of f and if γ̂
is l.s.c. at s = ν(r), then one has (γ̂ ◦ ν)(r) ≤ χ(r)
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Proof. Since any element u of S is a critical point, for each x ∈ X satisfying δ(x) = r
and each u ∈ S one has f(x) − f(u) ≤ χ(r) ‖x− u‖ hence f(x) −m ≤ χ(r)d(x, S) and
γ̂(dS(x)) ≤ χ(r). When γ̂ is l.s.c. at s = ν(r), taking the supremum over x ∈ δ−1([0, r])
we get the second assertion. �

8 Nice behavior in the quasiconvex and the convex

cases

In the present section we do not make the blanket assumption that f is convex, but
we examine some consequences of convexity or quasiconvexity assumptions and we use
the classical subdifferentials of quasiconvex (and convex) analysis. Besides the Plas-
tria’s lower subdifferential ∂< which definition has been introduced in section 3 and the
Gutiérrez infradifferential ∂≤ [84], we will use two other related subdifferentials which
seem to be new but whose importances are not as great. Recall that infradifferential
∂≤f(x) of f at x is the set of x∗ ∈ X∗ such that

f(u) − f(x) ≥ 〈x∗, u− x〉 ∀u ∈ S(f(x)) := [f ≤ f(x)].

Definition 8.1 The upper subdifferential of f at x ∈ dom f is the set ∂>f(x) of y ∈ X∗

such that

∀ u ∈ [f > f(x)] f(u) − f(x) ≥ 〈y, u− x〉.
The supradifferential of f at x ∈ dom f is the set ∂≥f(x) of y ∈ X∗ such that

∀ u ∈ [f ≥ f(x)] f(u) − f(x) ≥ 〈y, u− x〉.
Thus, the Fenchel subdifferential of f is given by

∂f(x) = ∂<f(x) ∩ ∂≥f(x) = ∂>f(x) ∩ ∂≤f(x).

Conditions ensuring that the lower subdifferential ∂<f(x) is nonempty are presented in
[174], [127] and [161]. It would be interesting to devise criteria for the upper subdiffer-
ential or the supradifferential. The following examples show the upper and the lower
subdifferentials of a quasiconvex function maybe large.

Examples. Let f(x) = min(x2 − 1, 0) for x ∈ X := R. Then ∂>f(1) = X∗,
∂≥f(1) = {0} while ∂≤f(1) and the Fenchel subdifferential of f at 1 are empty and
∂<f(1) = [2,∞[. For f given by f(x) = −(1−x2)1/2 for x ∈ [−1, 1], f(x) = 0 otherwise,
one has again ∂>f(1) = X∗, ∂≥f(1) = {0} but ∂<f(1) = ∂≤f(1) = Ø. Note that these
two functions are quasiconvex.

The following lemma and proposition complete [109] Lemme 3.1 and Proposition 3.1
and are our starting points in going outside the class of convex functions while using
subdifferentials which may differ from the Fenchel subdifferential. Note that ∂<f(x) =
X∗ when x ∈ S, so that the first relation in the following statement cannot be valid for
x ∈ S.

Lemma 8.2 Suppose S is nonempty. Then, for the lower subdifferential ∂<f one has

inf
u∈S

inf
y∈∂<f(x)

〈y, x− u〉 ≥ f(x) −m, for each x ∈ (dom ∂<f )\S(4)

d(x, S)d(0, ∂<f(x)) ≥ f(x) −m for each x ∈ dom ∂<f.
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Thus, for any subdifferential ∂ satisfying ∂f ⊂ ∂<f, any bounded critical sequence is
minimizing; in particular f is boundedly critical.

Proof. When x ∈ dom∂<f, x /∈ S, for any u ∈ S and any y ∈ ∂<f(x) one has
f(u) < f(x), hence

f(x) − f(u) ≤ 〈y, x− u〉,
so that the first inequality follows by taking the infima on u ∈ S and y ∈ ∂<f(x). The
second inequality ensues from the relation

〈y, x− u〉 ≤ ‖y‖.‖x− u‖
for x /∈ S and is obvious for x ∈ S. �

The following consequence has some similarity with [67, Proposition 3] and [56,
Theorem 5.2] which deal with the convex case.

Proposition 8.3 If ∂ is contained in the lower subdifferential ∂<, then any very well-
conditioned function f is nicely behaved. Moreover, for any reduced growth function γ̂ of
f, the niceness index ηf of f satisfies ηf ≥ γ̂.

Proof. Let γ̂ be a firm function such that for each x ∈ X

d(x, S)γ̂(d(x, S)) ≤ f(x) −m.

For x ∈ X\S, the second inequality of the preceding lemma yields

γ̂(d(x, S)) ≤ d(0, ∂<f(x)) ≤ d(0, ∂f(x))

and the result follows from the definitions. �

In the following statements we tackle a converse of the preceding result. Here we say
that a subsetD of a convex subsetC ofX is radially dense in C if, for any x0 ∈ C, x1 ∈ D,
the set D ∩ [x0, x1] is dense in the segment [x0, x1]. This condition is satisfied if C has a
nonempty interior intC and D :=intC. If f = g+ iC where iC is the indicator function of
C and g is a convex function onX continuous at each point of C, this condition is satisfied
with D = dom ∂f. Thus our statement contains [34] Prop. 4.6 and its generalization in
[109] Prop. 4.2 in which D = C = dom f = dom∂f . Recall that f is said to be
quasiconvex if f((1 − t)x0 + tx1) ≤ max(f(x0), f(x1)) whenever t ∈]0, 1[, x0, x1 ∈ X ; it
is said to be semi-strictly quasiconvex if this inequality is strict when f(x0) 6= f(x1) (see
[19], [201], for example). Note that any convex function is semi-strictly quasiconvex and
if f = h ◦ g with g semi-strictly quasiconvex and h increasing, then f is semi-strictly
quasiconvex.

Proposition 8.4 Let f be a l.s.c. quasiconvex function whose set of minimizers S is
nonempty. Let ∂ be a subdifferential such that ∂f ⊂ ∂≥f. Suppose that there exists some
subset D ⊂ dom ∂f containing S and radially dense in C := dom f and a nondecreasing
function ψ : R+ → R+ such that the following relation holds for each x ∈ D\S

inf
u∈S

sup
y∈∂f(x)

〈y, x− u〉 ≥ ψ(dS(x)).(5)
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Then, for ψ̃(t) := sup
0<c<1

c−1(1 − c)ψ(ct) one has for each x ∈ X\S

f(x) −m ≥ ψ̃(dS(x)).(6)

If f is semi-strictly quasiconvex one may substitute ∂>f to ∂≥f in what precedes.

Proof. The inequality (6) is obvious for x ∈ X\C. Let x ∈ C\S and let (εn) be a
sequence of positive numbers with limit 0. Let r := d(x, S) and let (un) be a sequence of
points of S such that ‖un−x‖ = qnr, with qn ≤ 1+εn. Given c ∈]0, 1[, for n large enough
we can find cn ∈ [c + εn, c+ 2εn] ⊂ [0, 1] such that wn := (1 − cn)un + cnx ∈ D. Then,
we have cn ≥ c+ εn ≥ qn

−1(c+ qn − 1). As ‖x− wn‖ = (1 − cn)‖x− un‖ = (1 − cn)qnr
it follows that

d(wn, S) ≥ d(x, S) − ‖x− wn‖
≥ r − (1 − cn)qnr ≥ rc > 0.

Our assumption yields some yn ∈ ∂f(wn) ⊂ ∂≥f(wn) (resp. ∂>f(wn) when f is semi-
strictly quasiconvex) such that

〈yn, wn − un〉 ≥ ψ(dS(wn)) − εn ≥ ψ(rc) − εn,

as ψ is nondecreasing. Moreover, by quasiconvexity (semi-strict quasiconvexity), we have
f(x) ≥ f(wn) (resp. f(x) > f(wn)). Thus we get

f(x) −m ≥ f(x) − f(wn) ≥ 〈yn, x− wn〉
≥ c−1

n (1 − cn)〈yn, wn − un〉
≥ c−1

n (1 − cn)(ψ(cdS(x)) − εn).

Passing to the limits we get

f(x) −m ≥ c−1(1 − c)(ψ(cdS(x)),

hence the announced inequality by taking the supremum on c. �

In the convex case, one can drop the assumption about the domain of ∂f provided
one makes stronger assumptions (compare with [119, Theorem 5.12], [208, Theorems 6
and 7] and [34, Proposition 4.6]).

Proposition 8.5 Suppose X is a dual Banach space and f is convex weak∗ l.s.c. with
a nonempty set of minimizers S. Suppose that ∂ is the Fenchel subdifferential and that
for some nondecreasing ψ : R+ → R+ one has for each x ∈ (dom∂f)\S

inf
u∈S

inf
y∈∂f(x)

〈y, x− u〉 ≥ ψ(dS(x)).(7)

Then, for ψ̃(t) := sup
0<c<1

c−1(1 − c)ψ(ct) one has for each x ∈ X\S

f(x) −m ≥ ψ̃(dS(x)).

Proof. Since S is a nonempty weak∗ closed convex subset of X, given x ∈ X\S
there exists some u ∈ S such that ‖x− u‖ = d(x, S). Given c ∈]0, 1[, let c > c with c < 1
and let w := (1− c)u+ cx, w := (1− c)u+ cx. The Bronsted-Rockafellar’s theorem yields
some wn ∈ B(w, εn) ∩D where D is the domain of ∂f and (εn) is a sequence with limit
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0 in ]0, (c− c)‖x− u‖[. One easily sees that d(w, S) = ‖w− u‖ > ‖w− u‖ = d(w, S) and
that for n large enough one has

dS(wn) ≥ dS(w) − ‖w − wn‖ ≥ dS(w).

Moreover, using precisions of the Bronsted-Rockafellar’s theorem displayed in [36], [171],
[153] Prop. 1.1, we can find some yn ∈ ∂f(wn) such that | 〈yn, w − wn〉 |< εn. Then we
have

f(x) −m ≥ f(x) − f(wn) ≥ 〈yn, x− wn〉
≥ 〈yn, x− w〉 − εn

≥ c−1(1 − c)〈yn, w − u〉 − εn

≥ c−1(1 − c)〈yn, wn − u〉 − c−1εn

≥ c−1(1 − c)ψ(dS(wn)) − c−1εn

≥ c−1(1 − c)ψ(dS(w)) − c−1εn

≥ c−1(1 − c)ψ(cdS(x)) − c−1εn.

Taking the limit on n and the supremum on c > c we get

f(x) −m ≥ c−1(1 − c)ψ(cdS(x))

Since c is arbitrary in ]0, 1[, we get the result. �

Thus, for convex functions we have a wide circle of characterizations (see [56] Theo-
rem 5.2). In the following statement which displays them, we denote by

hS(y) := sup
x∈S

〈x, y〉

the support function of the subset S of X (a positively homogeneous function extensively
used by L. Hörmander) and we denote by N (resp. G, resp. H) the set of nondecreasing
functions ψ : R+ → R+ (resp. the set of gages, resp. the set of functions ψ such that
t 7→ ψ(t)/t is a gage).

Proposition 8.6 Let f be a l.s.c. quasiconvex function on X whose set of minimizers S
is nonempty. Let ∂ be the Fenchel subdifferential. If there exists a subset D of dom∂f ra-
dially dense in domf and containing S then the assertions (a)–(g) below are equivalent. If
f is convex and X is reflexive then the assertions (a)–(c) are equivalent. Moreover, in the
implications (a)⇒(b)...⇒(g) one can keep the same function ψ while in the implications

(c)⇒(a), (g)⇒(a) one has to change ψ into ψ̃ given by ψ̃(t) := sup
0<c<1

c−1(1 − c)ψ(ct).

(a) there exists some ψ in N (resp. G, resp. H) such that for any x ∈ X one has
f(x) −m ≥ ψ(dS(x));

(b) there exists some ψ in N (resp. G, resp. H) such that for any x ∈ D, y ∈ ∂f(x),
u ∈ S one has 〈y, x− u〉 ≥ ψ(dS(x));

(c) there exists some ψ in N (resp. G, resp. H) such that for any x ∈ D, y ∈ ∂f(x),
one has 〈y, x〉 − hS(y) ≥ ψ(dS(x));

(d) there exists some ψ in N (resp. G, resp. H) such that for any x ∈ D, there
exists y ∈ ∂f(x) such that 〈y, x〉 − hS(y) ≥ ψ(dS(x));

(e) there exists some ψ in N (resp. G, resp. H) such that for any x ∈ D, one has
sup{〈y, x〉 − hS(y) : y ∈ ∂f(x)} ≥ ψ(dS(x));
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(f) there exists some ψ in N (resp. G, resp. H) such that for any x ∈ D one has
supy∈∂f(x) infu∈S〈y, x− u〉 ≥ ψ(dS(x));

(g) there exists some ψ in N (resp. G, resp. H) such that for any x ∈ D, one has
infu∈Ssupy∈∂f(x)〈y, x− u〉 ≥ ψ(dS(x)).

Proof. The implication (a)⇒(b) is a consequence of the inequality

〈y, x− u〉 ≥ f(x) − f(u).

The implication (b)⇒(c) follows by taking the infimum on u ∈ S on both sides; the
implications (c)⇒(d)⇒(e)⇒(f)⇒(g) are trivial.

The implication (c)⇒(a) (resp. (g)⇒(a)) has been proved in Proposition 8.5 (resp.
in Proposition 8.4). �

9 Conditioning in the general case

In this section we gather three different techniques to get growth estimates which com-
plete the criteria obtained in Lemma 7.11 and in the preceding section. The first one is
inspired by [207] and [56] and relies on the concept of variational subdifferential (hence
implicitely on the Ekeland’s principle). The second one is related to what is known as
deformation techniques. The third one is a simple but rough approach to the results of
[67] using sublevel sets, Dini derivatives and the Zygmund lemma.

It will be convenient to formulate our first estimate by using the following operation

(see [159]). Given a function ϕ : R+ → R+, its rounding
∩
ϕ is defined for t ∈ R+ by

∩
ϕ (t) := sup

0<c<1
(1 − c)ϕ(ct).

Such an operation (which would deserve more attention) is useful in the study of the
geometry of Banach spaces (see for instance [73, Lemma2] which asserts that if ψ is a

nonegative starshaped function then its biconjugate ψ∗∗ satisfies ψ∗∗(t) ≥ ψ̃(t) = t
∩
ϕ (t),

where ϕ(0) := 0, ϕ(t) := t−1ψ(t) for t > 0). Observe that
∩
ϕ≥ 1

2ϕ(1
2 ·), so that

∩
ϕ is

a gage when ϕ is a gage and if ϕ is starshaped one has
∩
ϕ≤ 1

4ϕ. Moreover, when ϕ is
nondecreasing, one has the following relations

sup
0<c<1

c−1(1 − c)

∫ ct

0

ϕ(s)ds ≤ t
∩
ϕ (t) ≤

∫ t

0

ϕ(s)ds,

which can be used to compare the following estimates.

Theorem 9.1 ([207], [56]) Suppose ∂ is variational on a class F(X) of l.s.c. extended
real valued functions on X. Let f ∈ F(X) be l.s.c., bounded below and satisfying the
following estimate for some r ∈ R+ and some nondecreasing function ϕ on R+

ϕ(dS(x)) ≤ ‖x∗‖ for any x ∈ B(S, r)\S, x∗ ∈ ∂f(x).(8)

Then
∩
ϕ is a reduced growth function for f on B(S, r/2) :

f(x) −m ≥∩
ϕ (dS(x))dS(x) for any x ∈ B(S, r/2).
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Thus, any nicely behaved function in F(X) is metrically well-set: N (X)∩F(X) ⊂ M(X).
Moreover, the canonical reduced growth function γ̂f of f and the niceness index ηf of f

satisfy γ̂f ≥∩
ηf .

Proof. Suppose, on the contrary, that there exists some z ∈ B(S, r/2) such that

f(z) −m <
∩
ϕ (dS(z))dS(z).

Then we have dS(z) > 0 and we can find c ∈]0, 1[ such that

f(z) −m < (1 − c)ϕ(cdS(z))dS(z).

Taking ρ < (1−c)dS(z), λ < ϕ(cdS(z)) such that λρ > f(z)−m, we can find w ∈ B(z, ρ),
w∗ ∈ ∂f(w) such that ‖w∗‖ < λ. It follows that

dS(w) ≥ dS(z) − ‖w − z‖ ≥ cdS(z) > 0

and dS(w) ≤ (2 − c)dS(z) < r, so that

λ ≥ ‖w∗‖ ≥ ϕ(dS(w)) ≥ ϕ(cdS(z)),

a contradiction with our choice of λ. The last assertion is a consequence of the definitions

and of the inequality γf (s) ≥∩
ϕ (s)s for s ∈ R+ and ϕ = η. �

The preceding proof is close to proofs in [207] and [56]. However the growth function
in our conclusion is different from the ones in these references and we do not make the
assumption that ϕ is bounded. In fact, it is possible to enlarge the domain in which one
disposes of a growth estimate for f (see [164]).

It is interesting to compare the preceding result with Propositions 8.4 and 8.5. We
first note that, setting ψ(t) = tϕ(t), the conclusions of Theorem 9.1, Propositions 8.4

and 8.5 are the same since ψ̃(t) = t
∩
ϕ (t). Moreover, relation (5) (resp. (7)) made in

Proposition 8.4 (resp. 8.5) implies

ϕ(dS(x)) ≤ sup {‖x∗‖ : x ∈ X, x∗ ∈ ∂f(x)}
(resp.

ϕ(dS(x)) ≤ inf {‖x∗‖ : x ∈ X, x∗ ∈ ∂f(x)}
which coincides with (8) when r = ∞). Thus, as the Fenchel subdifferential is variational
in the class of convex functions, we can conclude that, in the convex case, Theorem 9.1 is
a result better than Proposition 8.5 but that it cannot replace Proposition 8.4 inasmuch
∂≥ is not known to be variational.

In order to illustrate the preceding estimate, let us note that when ϕ(t) := κ we have

ψ̃(t) = t
∩
ϕ (t) = κt and we get linear conditioning:

f(x) −m ≥ κd(x, S).

Conversely, when ∂ is contained in the lower subdifferential, by Proposition 8.3 above
such a conditioning implies relation (8) with ϕ(t) = κt. When ϕ(t) = κt, we have

ψ̃(t) = t
∩
ϕ (t) = κt2/4 and the correspondence is not as accurate. The two methods we

consider next will give in that case the better estimate

f(x) −m ≥ 1

2
κd(x, S)2.
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Now let us give a short account of a quite different technique known as the defor-
mation method. The presentation we adopt differs from the ones in [40], [42], [58], [95],
[96], [99] [178], but is clearly related to these contributions. However, we do not consider
here the crucial passage from local notions to global ones, and as we limit our aims to
a study of growth properties, we only retain simple ideas. A more complex approach
would be required for other objectives such as the Ljusternik-Schnirelmann theory or the
Morse theory. The framework is a general metric space (X, d), a l.s.c. function f on X ,
and a “critical” subset C of X associated to f ; in this theory, C is not necessarily the
minimizer set S of f, but we are primarily interested in the case C = S. For the sake
of simplicity, we do not consider the case X is some open subset of some larger space,
although such a localization is important (see [95], [96]).

In the following definitions, we endeavour to capture the essence of the deformation
method.

Definition 9.2 A stream for f on X is a mapping h : R+ × X → X satisfying the
following conditions:

(a) for each x ∈ X the functions h(·, x) and f(h(·, x)) are continuous on R+;
(b) for each x ∈ X one has h(0, x) = x.

If h is jointly continuous it is called a deformation of f or an homotopy for f.
Homotopies are often defined on [0, 1] ×X only, but any mapping defined on [0, 1] ×X
and satisfying there conditions (a) and (b) can be extended to R+ ×X into a stream by
setting

h(t, x) := h(t− n, h
(n)
1 (x)) for n ≤ t < n+ 1, x ∈ X,

where h1 := h(1, ·). If h satisfies the semigroup property

h(t, h(s, x)) = h(s+ t, x) ∀s, t ∈ R+ ∀x ∈ X,(9)

h is called a flow (or rather a semiflow). Usually, flows arise from solutions of differential
equations or differential inclusions. For instance, if X is a Hilbert space, identifying X
and its dual, one may wish to consider solutions of the differential inclusion

− .
u (t) ∈ ∂f(u(t)), u(0) = x.(10)

Let us note that the reverse process of associating a functional to a vector field is a
fruitful method in the study of dynamical systems known as the Liapunov method. Here
we do not impose the stringent property (9) nor joint continuity. Instead we suppose
given a nondecreasing function ζ : R+ → R+ such that ζ(t) = 0 implies t = 0 (i.e. ζ is a
gage) and we say that h is a ζ-stream if for some countable subset D of R+ the following
two conditions are satisfied for each (t, x) ∈ (R+\D) ×X :

(a) v(t, x) := lim infsց0
1
sd(h(t+ s, x), h(t, x)) ≥ ζ(d(h(t, x), C));

(b) D+(−f ◦ h(·, x))(t) ≥ v(t, x)ζ(d(h(t, x), C)),
where D+g(t) := lim infsց0 s

−1(g(t + s) − g(t)) is the lower right Dini derivative of
the function g. We observe that the preceding conditions are intermediate between the
conditions of [58], [95], [99] which are purely metric conditions and differential conditions
such as the ones obtained by taking gradient or pseudo-gradient vector fields when X is
a Finsler manifold (see [61], [130], [136], [184], [188], [197], [200], [206] for instance). A
connection with the basic deformation lemmas of these works is the following elementary
result which relies on the Zygmund’s lemma ([192, Chapter 1], for instance).
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Lemma 9.3 Suppose f is bounded below and h is a ζ-stream for f on X. Then for any
0 < q < r and any x ∈ X such that d(x,C) = r there exists some τ := τ(x) > 0 such
that

(a) d(h(τ, x), C) = q, d(h(t, x), C) > q for t < τ ;
(b) f(x) − f(h(τ, x) ≥ ζ(q)d(h(τ, x), x) ≥ ζ(q)(r − q).

From this result it is easy to derive the following growth estimate.

Theorem 9.4 Suppose that for some l.s.c. gage ζ and for each c ∈]0, 1[ one can find a

cζ-stream for f . Let m := inf f(X) be finite and let γ be given by γ(t) :=
∫ t

0 ζ(s)ds be
finite. Then the following growth estimate holds for each x ∈ X :

f(x) −m ≥ γ(d(x,C)).

In order to relate this result to more classical ones, let us suppose we are given a
function σ : X → R+ called the index of criticality of f (or the slope of f) such that
for each c ∈]0, 1[ one can find a stream h satisfying the following two conditions for any
(t, x) ∈ (R+\D) ×X where D is a countable subset of R+:

(a) v(t, x) := lim infsց0
1
sd(h(t+ s, x), h(t, x)) ≥ cσ(h(t, x))

(b) D+(−f ◦ h(·, x))(t) ≥ cv(t, x)σ(h(t, x)),
If for instance X is a Banach space and ∂ is a subdifferential one may wish to take

σ(x) = δ(x) := d(0, ∂f(x)) as before; such a choice is known to be valid for the Clarke
subdifferential ∂↑ for the slope used in [58], [61]–[62] and [95]. When X is a Hilbert space
and f is a l.s.c. convex function, the differential inclusion

u′(t) ∈ −∂f(u(t)), u(0) = x

is known to have a unique solution [39, Théorème 3.2]; moreover, the map u(·) has a
right derivative u′+ on ]0,∞[ which satisfies

−u′+(t) ∈ ∂f(u(t)), ‖u′+(t)‖ = d (0, ∂f(u(t))) ,(11)

−(f ◦ u)′+(t) = ‖u′+(t)‖2 = ‖u′+(t)‖d(0, ∂f(u(t)),

and since

v(t, x) := lim inf
sց0

1

s
‖u(t+ s) − u(t)‖ = ‖u′(t)‖

by continuity of the norm, the preceding conditions are fulfilled if one takes σ(x) =
d(0, ∂f(x)). Taking for ∂ a subdifferential containing the Hadamard (or contingent) sub-
differential and contained in the Clarke subdifferential, the preceding case has been ex-
tended to the case f = g+h, where g is of class C1 (resp. of class C1 with a Lipschitzian
derivative) and h is convex l.s.c. in [190] (resp. [39, Proposition 3.12]), and, more gen-
erally, to the case f = h ◦ g, with g : X → Y of class C1, h convex l.s.c., with a natural
qualification condition in [83]. Let us note that in each of the preceding cases the function
f is tangentially convex,

f ′(x, v) = sup
y∈∂f(x)

〈y, v〉,

where f ′(x, ·) is the lower derivative of f at x, so that relation (11) ensures that (by weak
compactness of closed balls and Moreau’s minimax theorem)

inf
‖v‖≤σ(u(t))

f ′(u(t), v) = inf
‖v‖≤σ(u(t))

sup
y∈∂f(u(t))

〈y, v〉
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= sup
y∈∂f(u(t))

inf
‖v‖≤σ(u(t))

〈y, v〉

= sup
y∈∂f(u(t))

−‖y‖σ(u(t)) = −‖u′+(t)‖d(0, ∂f(u(t))

= (f ◦ u)′+(t) ≥ f ′(u(t), u′(t)),

so that u′(t) does represent the steepest descent direction in u(t).
Then the expected connection with what precedes can be stated as follows.

Corollary 9.5 Suppose that for some l.s.c. gage ζ the slope σ satisfies σ(x) ≥ ζ(d(x,C))

for each x ∈ X. Then, for m := inf f(X) and γ given by γ(t) :=
∫ t

0 ζ(s)ds, the following
growth estimate holds for each x ∈ X :

f(x) −m ≥ γ(d(x,C)).

Let us close this section by presenting a criteria for f to be M-well-set related to a
result in [67] (which uses the quite different technique of nondiscrete induction of Ptak
[177]) and in [164]. We need to introduce a notion of growth rate for f and to use the
following simple lemma, the proof of which we give for the reader’s convenience.

Lemma 9.6 For any nonempty subsets A,B,C of a metric space one has

e(C,A) ≤ e(C,B) + e(B,A).

Proof. As e(B,A) := sup
b∈B

d(b, A), and as for any c ∈ C, b ∈ B one has

d(c, A) ≤ d(c, b) + d(b, A),

switching d(c, b) to the left hand side and taking the supremum over b ∈ B we get

d(c, A) − d(c, B) ≤ e(B,A).

The result follows by a similar operation involving the supremum over c ∈ C. �

Let us introduce the growth rate of f as the function g : [m,∞[→ R+ ∪ {∞} given
by

g(r) := lim
sցr

ϑ(r, s) = sup
s>r

ϑ(r, s)

where, for s > r ≥ m,

ϑ(r, s) := inf

{
f(w) − r

d(w, S(r))
: w ∈ S(s)\S(r)

}
.

We observe that for each r ≥ m the function ϑ(r, ·) is nonincreasing and that, when f is
convex it is a constant function on ]r,∞[, as shown in the next lemma. We observe that
the growth rate of f satisfies g(r) ≥ ϑ(r) := infs>r ϑ(r, s) for each r ≥ m, with equality
when f is convex, in view of Lemma 9.8 below.

The assumptions of our criteria are rather strong, but the proof is simple. Given
m′ > m, these assumptions imply in particular that any local minimizer of f with value
in [m,m′] is a global minimizer (see [204], [205] in this connection). In the following
statement, given some m′ > m we say (as in [66, p. 159]) that a function h : [m,m′] → R

has a primitive H if the function h is (right) differentiable for each r ∈ [m,m′]\D,
where D is at most countable and H ′(r) = h(r) for r ∈ [m,m′]\D; then we write
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H(r) =
∫ m+r

m
h(t)dt, a notation consistent with the case h is regulated and the fact that

H is determined up to a constant, so that we can impose H(m) = 0.

Proposition 9.7 Suppose the function canonical growth function µ := µf : r 7→ e(S(m+
r), S) is continuous on [0,m′ − m] for some m′ > m and there exists a function h :
[m,m′] → R which has a primitive and is such that 1/g ≤ h. Then, for each r ∈ [0,m′−m]
one has

µf (r) := e(S(m+ r), S) ≤
∫ m+r

m

h(t)dt.

Proof. Since the definition of ϑ(r, s) for s > r ensures that

ϑ(r, s)e(S(s), S(r)) ≤ s− r,

the preceding lemma yields

D−µ(m+ r) : = lim inf
sցr

µ(m+ s) − µ(m+ r)

s− r
≤ lim inf

sցr

e(S(m+ s), S(m+ r))

s− r

≤ lim inf
sցr

1

ϑ(r, s)
=

1

g(r)
≤ h(r).

Using µ(r) = µ(r)−µ(m) ≤
∫ m+r

m
h(t)dt [192, Chapter 1] we get the announced estimate.

�

The following lemma shows that the assumptions we made are sensible in the convex
case.

Lemma 9.8 Suppose f is convex and r > m or r = m and S(r) (= S) is nonempty.
Then, for r < s < t, ϑ(r, s) = ϑ(r, t) , so that g(·) = c(·) where

c(r) := inf

{
f(w) − r

d(w, S(r))
: w ∈ X\S(r)

}
.

Moreover g is nondecreasing, hence on each interval on which g is positive the function
1/g is regulated and has a primitive.

Proof. It suffices to prove that ϑ(r, s) ≤ ϑ(r, t). Let z ∈ S(t)\S(r) and let un ∈ S(r)
be such that ‖un − z‖ ≤ d(z, S(r)) + εn, where (εn) → 0+. For q = (t− r)−1(s− r) and

wn := (1 − q)un + qz

we have f(wn) ≤ (1 − q)f(un) + qf(z) ≤ s. Moreover we have

d(wn, S(r)) ≥ ‖wn − un‖ − εn;

otherwise we could find vn ∈ S(r) such that

‖wn − vn‖ < ‖wn − un‖ − εn

and we would get

‖z − vn‖ < ‖z − wn‖ + ‖wn − un‖ − εn

‖z − vn‖ < (1 − q)‖z − un‖ + q‖z − un‖ − εn ≤ d(z, S(r)),

a contradiction. It follows that

ϑ(r, s) ≤ f(wn) − r

d(wn, S(r))
≤ (1 − q)r + qf(z) − r

‖wn − un‖ − εn
≤ q(f(z) − r)

q‖z − un‖ − εn
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Taking limits on n and the infimum on z, we get ϑ(r, s) ≤ ϑ(r, t).
A proof of the fact that c is nondecreasing is given in [14], [15] for X finite dimen-

sional, in [55] for X reflexive and in [149, Lemma 4.1], [164] in the general case. �

10 Auslender-Crouzeix’s rates of well-behavior

The following behavior rates have been introduced (but the second one) by Auslender
and Crouzeix in [14] in the convex case, with X finite dimensional. In order to extend
them to the general case we have to use the duality multimapping J : X ⇒ X∗ given by

J(x) :=
{
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖

}
.

When X is a Hilbert space and X is identified with its dual, then J is simply the
identity mapping. In the nonconvex case, these rates which are functions defined below
on the interval [m,∞[, with m := inf f(X), depend on the choice of the subdifferential .
However, this dependence does not appear in the notation we use, as long as there is no
risk of confusion:

a(r) : = inf
{
‖x∗‖ : x ∈ f−1(r), x∗ ∈ ∂f(x)

}
,

b(r) : = inf
{
‖x∗‖ : x ∈ f−1([r,∞[), x∗ ∈ ∂f(x)

}
,

c(r) : = inf

{
f(w) − r

d(w, S(r))
: w ∈ X\S(r)

}
,

k(r) : = inf

{
f ′(x,

v

‖v‖) : x ∈ f−1(r), v ∈ J−1(∂f(x)), v 6= 0

}
.

Here f ′(x, ·) is the Hadamard lower derivative (or contingent derivative) of f at x defined
in sections 3 and 9. The original definition of k involved instead the radial derivative
of f. Under the assumption that R+domf is a closed vector subspace, both derivatives
coincide (see [45]). We note that b(r) = β(r −m) for each r ≥ m and that when ∂f is
contained in ∂<f it follows from Lemma 8.2 that for r > m

a(r) ≥ r −m

µf (r −m)
.

Let us present some comparison between these quantities. Their proofs are often sim-
ilar to the ones in [14, Lemma 2.1] or [55, Lemma 5.2 and Theorem 5.3] but they require
some supplementary assumptions (as we do not assume convexity) and the following
characterization of best approximations .

Lemma 10.1 For a nonempty convex subset C of X and w ∈ X, x ∈ C the following
assertions are equivalent:

(a) x is a metric projection of w in C, that is ‖x− w‖ = d(w,C);
(b) J(w − x) ∩N(C, x) 6= Ø where N(C, x) is the normal cone to C at x given by

N(C, x) := {x∗ ∈ X∗ : ∀u ∈ C 〈x∗, u− x〉 ≤ 0} .
If f is a convex function and if C := f−1(R−), w ∈ domf\C, x ∈ f−1(0) then the

preceding assertions are satisfied whenever there exists some r > 0, x∗ ∈ ∂f(x) such that
r−1x∗ ∈ J(w − x). If f takes some finite negative value, this last condition is equivalent
to (a) and (b).
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Proof. The first part is proved in [167, Theorem 3.1]. A proof of the second part
in the reflexive case is given in [55, Lemma 5.1] using duality arguments. Let us provide
a simple direct proof of it. Since R+∂f(x) is obviously included in N(C, x), it suffices
to show that any element u∗ of J(w− x) ∩N(C, x) belongs to ]0,∞[∂f(x) when f takes
some finite negative value. As u∗ ∈ N(C, x) iff (u∗, 0) ∈ N(E ∩ (X × R−) , (x, 0)), where
E is the epigraph of f and as the indicator function iX×R−

of X × R− is continuous at
some point of E, by the Moreau-Rockafellar theorem one has

N(E ∩ (X × R)− , (x, 0)) = ∂(iE + iX×R−
)(x, 0) = ∂iE(x, 0) + ∂iX×R−

(x, 0).

Thus, there exists s ≥ 0 such that (u∗,−s) ∈ ∂iE(x, 0) = N(E, (x, 0)). If s = 0, we have
u∗ ∈ N(domf, x). Then, as w ∈ domf,

‖w − x‖2 = 〈u∗, w − x〉 ≤ 0,

a contradiction with w ∈ X\C. Thus, s > 0 and for r := s−1 we get x∗ := ru∗ ∈ ∂f(x).
�

Remark. The preceding proof shows that if X is reflexive and if f is convex, finite
and takes negative values, then, for x ∈ f−1(0) and C := f−1(R−) one hasN(C, x)\{0} =
R+∂f(x)\{0} (given u∗ ∈ N(C, x)\{0} one can find w ∈ X\C such that u∗ ∈ J(w− x)).

Let us start with the simplest comparison which is as follows. Here we use the
Hadamard (or contingent) subdifferential of f at x ∈ dom f which is the set of x∗ ∈ X∗

which are bounded above by the contingent derivative f ′(x, ·) of f at x.

Proposition 10.2 Suppose ∂f(x) is contained in the contingent subdifferential of f at
x for each x ∈ f−1(r), where r ≥ m. Then

a(r) ≤ k(r).

Proof. Let x ∈ f−1(r), v ∈ J−1(x∗), for some x∗ ∈ ∂f(x), v 6= 0 and let
u := ‖v‖−1v. The definitions and the assumption yield

f ′(x, u) ≥ 〈x∗, u〉 = ‖x∗‖ ≥ a(r),

so that the result follows by taking the infimum on v and x. �

Proposition 10.3 Suppose f is quasiconvex and for some r ≥ m and each x ∈ f−1(r)
one has ∂f(x) ⊂ N(S(r), x) where ∂ is an arbitrary subdifferential. Then

c(r) ≤ k(r).

As observed in [161] the inclusion ∂f(x) ⊂ N(S(r), x) is satisfied by all known
subdifferentials of quasiconvex analysis when there is no local minimizer of f in f−1(r).
It also holds without any assumption for the infradifferential ∂≤ of Gutiérrez [84], hence
for the Fenchel subdifferential. Thus, if r > m and if f is semi-strictly quasiconvex, that
inclusion holds for the Plastria’s subdifferential [161, Prop. 18].

Proof. Suppose f is quasiconvex, or, more generally, that S(r) is convex. Let
x ∈ f−1(r), v ∈ J−1(∂f(x)), v 6= 0 and let u := ‖v‖−1v. By definition of the Hadamard
lower derivative, there exist sequences (tn) ց 0, (un) → u such that

f ′(x, u) := lim
n
t−1
n (f(x+ tnun) − f(x)) .
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The inclusion ∂f(x) ⊂ N(S(r), x) and Lemma 10.1 ensure that for each n the point x is
a best approximation of wn := x+ tnu in S(r). Thus

tn = ‖wn − x‖ = d(wn, S(r)).

Let w′
n := x + tnun, t

′
n := d(w′

n, S(r)), so that, d(·, S(r)) being Lipschitzian with rate
one,

| t′n − tn |=| d(w′
n, S(r)) − d(wn, S(r)) |≤ ‖w′

n − wn‖ = tn‖un − u‖
and

(
t′nt

−1
n

)
→ 1. Thus t′n > 0 for n large enough and

f ′(x, u) = lim
n

f(w′
n) − f(x)

t′n
= lim

n

f(w′
n) − r

d(w′
n, S(r))

≥ c(r).

Taking the infimum on x and v we get the result. �

Proposition 10.4 Suppose that for some r ≥ m and each x ∈ X\S(r) one has ∂f(x) ⊂
∂<f(x), the lower subdifferential of Plastria. Then for each r′ > r one has

c(r) ≤ b(r+) := lim
s→r+

b(s) ≤ b(r′) ≤ a(r′).

If for each x ∈ f−1([r,∞[) one has ∂f(x) ⊂ ∂≤f(x), the infradifferential of Gutiérrez,
then one has

c(r) ≤ b(r) ≤ a(r).

Proof. Let w ∈ f−1([r,∞[), w∗ ∈ ∂f(w) and let (xn) be a sequence of S(r) such
that (‖w − xn‖) → d(w, S). Then, as f(xn) ≤ r < r′ ≤ f(w) and as ∂f(w) ⊂ ∂<f(w),
we have

c(r) ≤ lim
n

f(w) − r

‖w − xn‖
≤ lim sup

n

f(w) − f(xn)

‖w − xn‖

≤ lim sup
n

〈w∗, w − xn〉
‖w − xn‖

≤ ‖w∗‖.

The first assertion follows by taking the infimum over w and w∗. The proof of the second
assertion is similar: when ∂f(w) ⊂ ∂≤f(w) for each w ∈ f−1([r,∞[) the preceding
inequalities are valid in so far as f(xn) ≤ f(w). �

Let us consider a reverse inequality. The idea of considering truncations of the
function f appears in [108] for more qualitative aims.

Proposition 10.5 Suppose ∂ is local and variational in some class F(X) of l.s.c. func-
tions on X. Then, given f and r such that S(r) := [f ≤ r] is nonempty (in particular
for r > m) and fr := max(f, r) ∈ F(X), one has

c(r) ≥ b(r+) := inf
r′>r

a(r′) ≥ b(r).

Note that the condition about the truncations of f is satisfied if F(X) is the class of
convex functions or the class of quasiconvex functions on X .

Proof. Since X\S(r) is open and fr coincides with f on X\S(r) we have ∂fr(x) =
∂f(x) for each x ∈ X\S(r). Then, by Theorem 9.1, the estimate ‖x∗‖ ≥ b(r+) for each
x ∈ X\S(r) and each x∗ ∈ ∂f(x) yields for each x ∈ X

fr(x) − r ≥ b(r+)d(x, S(r)),
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as S(r) is the minimizer set of fr. The result follows. �

In order to get another inequality, we use the upper subdifferential ∂>f(x) of f at x,
introduced above as the set of x∗ ∈ X∗ such that

f(u) − f(x) ≥ 〈x∗, u− x〉 ∀u ∈ [f > f(x)].

It seems that this subdifferential has not been used yet and is not of much interest.
However, it is larger than the Fenchel subdifferential ∂F , so that condition (13) below is
slightly more general than the one in which ∂F f(x) stands in place of ∂>f(x). In that
case, relation (13) reduces to condition (12). Observe that if r = max f(X), condition
(13) is trivially satisfied whatever f is (since in that case one has ∂>f(x) = X∗). That
would not be the case with the Fenchel subdifferential, as the following example shows:
X = R, x = 1, f(u) = −

√
1 − u2 for u ∈ [−1, 1], f(u) = 1 for | u |> 1.

Hereafter we say that f is radially usc on its domain if for any w, x ∈ domf the
function t 7→ f((1− t)x+ tw) is usc on [0, 1]. Let us observe that this property is satisfied
if f is convex as for any z ∈ [w, x] one has

f((1 − t)z + tw) ≤ (1 − t)f(z) + tf(w),

hence limsupt→0+
f((1−t)z+tw) ≤ f(z) and similarly limsupt→0+

f((1−t)z+tx) ≤ f(z);
see [161].

Proposition 10.6 Suppose X is a dual Banach space, f is quasiconvex, l.s.c. for the
weak∗ topology and radially usc on its domain.
(a) Suppose that for some r ≥ m and for each x ∈ f−1(r)

N(S(r), x) ⊂ R+(∂>f(x) ∩ ∂f(x)).(12)

Then one has

a(r) ≤ c(r).

(b) If f ′(x, u) ≤ sup {〈x∗, u〉 : x∗ ∈ ∂>f(x)} and

N(S(r), x) ⊂ R+∂f(x)(13)

for each x ∈ f−1(r) and each u ∈ X then one has

k(r) ≤ c(r).

Proof. Let w ∈ X\S(r). As S(r) is weak∗ closed there exists a best approximation
x to w in C := S(r). Moreover, we have f(x) = r since otherwise we would have f(x′) < r
for some x′ ∈ [x,w], x′ 6= x by the radial upper semicontinuity of f and this would lead
to x′ ∈ S(r), ‖x′ − w‖ < ‖x− w‖, a contradiction. In view of Lemma 10.1, we can find
u∗ ∈ J(w − x) ∩N(C, x). As ‖u∗‖ = ‖w − x‖ > 0, relation (12) yields some s > 0 such
that x∗ := s−1u∗ ∈ ∂>f(x) ∩ ∂f(x). As f(w) > r = f(x), we can write

f(w) − f(x) ≥ 〈x∗, w − x〉 = 〈s−1u∗, w − x〉 = s−1‖u∗‖.‖w − x‖
hence, as x∗ ∈ ∂f(x),

f(w) − r

d(w,C)
≥ s−1‖u∗‖ = ‖x∗‖ ≥ a(r).

Taking the infimum on w ∈ X\S(r) we get the announced inequality.
If the assumption of assertion (b) holds, setting u := ‖w−x‖−1(w−x) = ‖v‖−1v with

v := s−1(w − x) and observing that by relation (13) we can find s > 0 and x∗ ∈ ∂f(x)
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such that u∗ = sx∗ so that J(v) = s−1J(w − x) contains x∗, the definitions of ∂>f(x)
and k yield

f(w) − r

d(w,C)
≥ 1

‖w − x‖ sup
z∗∈∂>f(x)

〈z∗, w − x〉 ≥ f ′(x, u) ≥ k(r)

and the second assertion follows by taking the infimum on w ∈ X\S(r). �

Theorem 10.7 Let a, b, c be the rates associated with an arbitrary function f. Among
the following assertions:

(a) a(r) > 0 for each r > m;
(b) b(r) > 0 for each r > m;
(c) c(r) > 0 for each r > m;
(d) f is well-behaved;
(f) any critical sequence on which f is bounded is minimizing

one always has (d)⇔(b)⇒(a), (d)⇒(f)⇒(a); if ∂f ⊂ ∂<f one has (c)⇒(d). If moreover
the assumptions of Proposition 10.6 (a) hold, all these assertions are equivalent.

Proof. (b)⇒(d). If f is not well behaved, one can find r > m and sequences (xn)
in f−1([r,∞[), (x∗n) in X∗ such that (x∗n) → 0 and x∗n ∈ ∂f(xn) for each n. Then one has
b(r) = 0. (d)⇒(b). If b(r) = 0 for some r > m there exist sequences (xn) in f−1([r,∞[),
(x∗n) in X∗ such that (x∗n) → 0 and x∗n ∈ ∂f(xn) for each n; thus f is not well-behaved.
The implication (f)⇒(a) is similar. The implications (d)⇒(f) and (b)⇒(a) are obvious,
as a(r) ≥ b(r).

(c)⇒(d) when ∂f ⊂ ∂<f. If f is not well-behaved one can find r > m and sequences
(xn), (x∗n) → 0 such that f(xn) > r, x∗n ∈ ∂f(xn) for each n. Then, as ∂f(xn) ⊂ ∂<f(xn),
for each u ∈ C := S(r) we have

r − f(xn) ≥ f(u) − f(xn) ≥ 〈x∗n, u− xn〉 ≥ −‖x∗n‖.‖u− xn‖,
hence, taking the infimum on u ∈ C we get

f(xn) − r ≤ ‖x∗n‖d(xn, C) ≤ ‖x∗n‖c(r)−1(f(xn) − r),

a contradiction for n so large that ‖x∗n‖ < c(r).
(a)⇒(c) follows from the inequality a(r) ≤ c(r) when the assumptions of Proposition

10.6 (a) hold. �

Gathering different hypothesis, we can get more precise results, as in [14], but with
relaxed convexity assumptions.

Proposition 10.8 Suppose X is a dual Banach space, f is quasiconvex, l.s.c. for the
weak∗ topology and radially usc on its domain. Suppose that for some r ≥ m and for any
w ∈ f−1([r,∞[), x ∈ f−1(r) one has ∂f(w) ⊂ ∂≤f(w) and inclusion (12). Then one has

a(r) = b(r) = c(r).

If, instead of (12), one has

sup {〈x∗, u〉 : x∗ ∈ ∂f(x)} ≤ f ′(x, u) ≤ sup
{
〈x∗, u〉 : x∗ ∈ ∂>f(x)

}
(14)

then

a(r) = b(r) = c(r) = k(r).
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Proof. Once one observes that the first part of relation (14) implies that ∂f(x) is
contained in the Hadamard subdifferential of f at x, everything is a consequence of the
previous estimates. �

Proposition 10.9 Suppose f is convex, l.s.c. and bounded below and ∂ is the Fenchel
subdifferential. Then for each r > m := inff(X) one has b(r) = c(r) ≤ a(r) ≤ k(r). If
X is a dual Banach space and f is l.s.c. for the weak∗ topology then one has

a(r) = b(r) = c(r) = k(r).

Proof. The first assertion is a consequence of Propositions 10.2, 10.4 and 10.5.
Under the assumptions of the second assertion, the hypothesis of Proposition 10.6 (b)
are satisfied but relation (13) as for each x ∈ domf one has

sup {〈x∗, u〉 : x∗ ∈ ∂f(x)} = f ′(x, u).

However, the proof of Proposition 10.6 and the proof of Lemma 10.1 show that when f
is convex and r > m one can replace condition (13) by the weaker one

N(S(r), x) ∩ J−1(domf\S(r) − x) ⊂ R+∂f(x),

so that the conclusion k(r) ≤ c(r) holds. �

The preceding equalities are given in [15] in the finite dimensional case. It would be
interesting to know whether they all hold in an arbitrary Banach space.

For the question of dual characterizations of well-behavior, we refer the reader to [1],
[13], [55] and the paper [24] we received during the revision of the present article.

11 Application to perturbation of minimizer sets

In this short section we evoke the use of the notion of metrically well-set function for
studying perturbations questions, following [7], [8], [30], [34] and [157]. Let us construct
a topology appropriate to this aim. We observe that even for a very strong topology such
as the topology of uniform convergence one cannot preserve the quality of conditioning
under small perturbations and one cannot get lower semicontinuity of the minimizer set.
Take for instance the one variable function f given by f(x) := max(| x | −1, 0) and the
nearby functions fε,p given by fε,p(x) = ε(| x |p −1) for x ∈ [−1, 1], fε,p(x) = f(x) for
| x |> 1. Still the topology of uniform convergence is too strong a topology and it is not
adapted to the case the functions take the value +∞. Thus, we use a topology related
to (but weaker than) the Pompeiu-Hausdorff convergence of epigraphs. Given a family
A of closed subsets of a normed space X (which could be an arbitrary metric space for
parts of what follows) and two subsets C,D of X we set

eA(C,D) : = e(C ∩A,D) := sup
x∈C∩A

d(x,D) A ∈ A.

dA(C,D) : = max(eA(C,D), eA(D,C)) A ∈ A
In the usual cases one takes for A either {X} or {B(S, r) : r > 0} for some S ⊂ X or
the family of closed bounded sets or the family of closed balls centered at 0. In the latter
case, we set, for r ∈ R+

er (C,D) := eB(0,r)(C,D) := sup {d (x,D) : x ∈ C ∩B(0, r)}
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dr (C,D) := max (er (C,D) , er (D,C)) ,

with the usual convention inf Ø = ∞, sup Ø = 0 in R+ and we call them the bounded
(or truncated) Hausdorff excesses (resp. the bounded Hausdorff distances) of C over D.
These quantities have been introduced in [98], [135, p. 169] to study the variation of
vector subspaces; they are also mentioned in the work of Mosco (Ref. [132]) and Moreau.
These local (or truncated) excesses (or hemimetrics) and metrics have been used in 1986
by the author in [147] in order to replace the Mosco convergence by a stronger one
preserving usual operations and extensively used for a quantitative study of conditioning
in [6], [7], [8], [157] and for dealing with analytical and geometrical operations in [6],
[7], [8], [9], [25], [26], [27], [32], [147], [146], [186], [187]). A comparison with other
convergences is made in many other references. It has been shown that the Legendre-
Young-Fenchel transform is continuous for the topology these local metrics induce ([29],
[35], [144]) and that they satisfy a collective triangle inequality [145, Corollary 1.3] which
justifies the name “polymetrics”.

Identifying a function f : X → R with its epigraph

E(f) := {(x, r) ∈ X × R : r ≥ f(x)} ,
the preceding hemimetrics and polymetrics induce hemimetrics and polymetrics on the

space R
X

of extended real-valued functions on X :

eA(f, g) := e(E(f), E(g)) = e(E(f) ∩A,E(g)),

dA(f, g) := max (eA (E(f), E(g)) , eA (E(g), E(f))) ,

with a corresponding simplification of the notation when A = B(0, r) × R.

Then one can define a topology called the topology of A-convergence (and when A
is the family of balls the topology of bounded hemiconvergence, or bounded-Hausdorff

convergence) on R
X

by taking as a base of open sets the open “balls”

VA(f, ε) :=
{
g ∈ R

X
: dA(f, g) < ε

}
.

When A is the family of balls, this topology is metrizable and, if X is complete, the space
C(X) of closed proper functions is complete in the associated metric ([9]).Moreover, when
X is a Hilbert space, the topology of bounded hemiconvergence just described coincides
with the topology of Attouch-Wets previously defined through infimal convolution ([5]).

In what follows, we endow the set R
X

of extended real valued functions on X the
topology associated with the family A of cylinders A := AX× R where AX belongs to
a family AX of subsets of X, for instance the family of balls BX(0, r) with r > 0. This
choice will enable us to convey the main ideas (in particular the notion of reef) and to
avoid some technical details in presenting results about the perturbation of infima and

minimizers. Let us observe however that this topology induced on R
X

by the family of
polymetrics (dA)A∈A is stronger than the topology of bounded hemiconvergence induced
by the family (dB)B∈B, where B is the family of balls centered at 0 in X× R. In fact,
given subsets C,D of X × R, one has eA(C,D) ≥ eB(C,D) when A ⊃ B, in particular
when A = BX(0, r) × R and B = BX(0, r) × [−r, r]. Thus the following theorem differs
from previous results. Note that a connection can be established thanks to the following
lemma.
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Lemma 11.1 Using the preceding notation, given a function f ∈ R
X which is bounded

below on bounded sets, and given ε > 0, A ∈ A, there exists B ∈ B such that eA(f, g) < ε

whenever g ∈ R
X

satisfies eB(f, g) < ε. Therefore, if F is a subset of R
X

such that for
each r > 0 there exists some c(r) > 0 satisfying inf {f(x) : x ∈ BX(0, r)} ≥ −c(r) for
each f ∈ F , the topologies induced on F by the families (dA)A∈A and (dB)B∈B coincide.

Proof. Let A := BX(0, r)× R ∈A and let c := c(r) ≥ r be such that f(x) ≥ −c
for each x ∈ BX(0, r). Given (x, s) ∈ E(f) ∩ A we observe that −c ≤ f(x) ≤ s so that

s′ := min(s, c) ∈ [−c, c]. As (x, s′) ∈ B := BX(0, r) × [−c, c], given g ∈ R
X

such that
eB(f, g) < ε, we can find (y, t′) ∈ E(g) such that d((x, s′), (y, t′)) < ε. Then, for t := t′ +
s′ − s, we have (y, t) ∈ E(g) and d((x, s), E(g)) ≤ d((x, s), (y, t)) = d((x, s′), (y, t′)) < ε.
Taking the supremum on (x, s) ∈ E(f) ∩A we get eA(f, g) < ε. The proof of the second
assertion is similar, interchanging the roles of f and g. �

The following central result for the study of perturbed minimization problems has
two faces: the value function f 7→ mf appears to satisfy a Lipschitz type property, but
the set of minimizers Sf varies in a way similar to a Stepanov behavior, i.e. one can
estimate e (Sg, Sf ) but not e (Sg, Sh) for g, h close to f . Moreover e (Sg, Sf ) is sensitive
to the conditioning of f (thus g 7→ e (Sg, Sf ) is of Hölder type, usually). Here we say
that f is inf-connected if its sublevel sets are connected. This class of functions has been
extensively studied by Avriel, Zang and their co-authors ([20], [204]...). Quasiconvex
functions on a normed space are obviously inf-connected. Note that here we do not
suppose the set Sf is bounded as in [157] [149] and we simplify some arguments thanks
to the use of the family A of cylinders described above. The case of the genuine bounded
Hausdorff topology is similar.

Theorem 11.2 Suppose the set Sf of minimizers of f is nonempty and A = AX × R,
where AX ∩ Sf is nonempty.Then

mg ≤ mf + eA(f, g).

In particular, for r > d(0, Sf ) one has mg ≤ mf + eA(f, g), where A = BX(0, r)× R.
Suppose f is metrically well-set, with growth gage γ. Given ε > 0 let δ > 0 be such

that δ ≤ 1
2 min(ε, γ(1

2ε)), or, more generally, δ ≤ min(ε, 1
2γ(ε − δ)). If AX contains

B(Sf , ε) and if g is some inf-connected function on X satisfying dA (f, g) < δ, then one
has e (Sg, Sf ) ≤ ε. Moreover, if h is another inf-connected function satisfying dA (f, h) <
δ, then one has

|mg −mh| ≤ dA (g, h) .

Proof. The first assertion is immediate: given x ∈ Sf , δ > eA(f, g) we can find
(y, t) ∈ E(g) such that d(x, y) < δ,

g(y) − f(x) ≤ t− f(x) ≤ ‖(y, t) − (x, f(x))‖ ≤ δ.

Taking the infimum on y and δ we get the announced inequality.
In order to prove the second assertion, let us consider ε > 0, δ > 0, A ∈ A such

that δ ≤ min(ε, 1
2γ(ε − δ)), B(Sf , ε) ⊂ AX and an inf-connected function g such that

dA(f, g) < δ. For any y ∈ X such that d(y, Sf ) = ε there exists x ∈ U(y, δ) such that
f(x) < g(y) + δ. Then we have d(x, Sf ) > ε− δ, hence f(x) ≥ mf + γ(ε− δ). It follows



178 Jean-Paul Penot

that we cannot have g(y) ≤ mf +γ(ε−δ)−δ and a fortiori we cannot have g(y) ≤ mf +δ.
Thus, the sublevel set [g ≤ mf +δ] is contained in the union of U(Sf , ε) and X\B(Sf , ε).
Since these sets are open and since the connected set [g ≤ mf + δ] meets the first one by
what precedes, it is contained in it. As Sg is contained in [g ≤ mf + δ] by the begining of
the proof, we get e(Sg, Sf ) ≤ ε. Note that we can take δ ≤ sup0<c<1 min(ε(1−c), 1

2γ(cε)),

in particular δ ≤ 1
2 min(ε, γ(1

2ε)).
The last assertion follows from the fact that for any β > 0 with dA(f, g) < δ−β and

any

y ∈ [g < mg + β] ⊂ [g < mf + eA(f, g) + β] ⊂ [g < mf + δ]

one has y ∈ U(Sf , ε) ⊂ A so that we can find z ∈ B(y, dA(g, h) + β) with h(z) <
g(y) + dA(g, h) + β. As β is arbitrarily small, we get mh ≤ mg + dA(g, h). Moreover one
can interchange the roles of g and h. �

Remark. In a similar way one can prove that if ϕ is a conditioner for f, if g is an
inf-connected function on X such that dA(f, g) < δ for some set A := AX× R with AX

containing B(Sf , δ + ϕ(δ)), then one has

e (Sg, Sf ) ≤ dA (f, g) + ϕ (2dA (f, g)) .

This result can be applied to the study of projection operators ; see [7], [157], and
for a more direct approach, [163], [168] and their references.

One can also deduce from the preceding result a quantitative form of an upper
hemicontinuity result of [29], [30], [157], for the subdifferential ∂f of a convex function
f satisfying a smoothness condition or whose conjugate f∗ satisfies a growth condition.
Here we use the Legendre-Fenchel conjugate of the function f, given by the usual formula
f∗(y) := supx∈X(〈y, x〉− f(x)) and we observe that for any x0 ∈ X the set ∂f (x0) is the
minimizer set of f∗ − 〈x0, ·〉.

Theorem 11.3 ([157]) Let f : X → R ∪ {+∞} be a proper convex l.s.c. function
subdifferentiable at some x0 ∈ X such that ∂f (x0) is nonempty and bounded and such
that for some gage γ one has for each y ∈ X∗

f∗ (y) − 〈x0, y〉 ≥ inf
X∗

(f∗ − 〈x0, ·〉) + γ (d (y, ∂f (x0))) .(15)

Then, given r > sup {‖y‖ : y ∈ ∂f (x0)} , there exists some ε > 0 such that for x ∈
B (x0, ε) one has

e (∂f (x) , ∂f (x0)) ≤ r ‖x− x0‖ + γh (2r ‖x− x0‖) .

Before presenting a variant of this result, let us observe that condition (15) is related
to a smoothness property of f . Given a modulus µ one defines f to be µ-smooth at x0

if there exists some y0 ∈ X∗ such that

∀x ∈ X f (x) ≤ f (x0) + 〈x − x0, y0〉 + µ (‖x− x0‖) .
Then one can show (see [28, Theorem 2.1, Prop. 3.1] and [21], [22], [165]) that

∀y ∈ Y f∗ (y) ≥ f∗ (y0) + 〈x0, y − y0〉 + µ∗ (‖y − y0‖) ,
and if µ̂ given by µ̂ (t) = t−1µ (t) is a modulus, one sees easily that f is Fréchet differen-

tiable at x0 with f
′

(x0) = y0. Then one can apply the preceding corollary with γ = µ∗.
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Using the results of [28] and [202] we get a quantitative form of a well known upper
semicontinuity result.

Variants along this line have been given in [29], [30]. Let us present here a simple
approach which avoids the weak∗ compactness argument of [30, Theorem 3]. It relies on
the following lemma of independent interest.

Lemma 11.4 Suppose the set Sf of minimizers of f is nonempty, let γ be a growth
function for f and let β := γ̂ be the slope of γ given by β(0) = 0, β(t) = t−1γ(t) for
t > 0. Then, for any function g such that g − f is Lipschitzian with rate c and for any
ε > 0 such that β(ε) > c one has e(Sg, Sf ) ≤ ε. In other terms

e(Sg, Sf ) ≤ βh(c).

Proof. The result is obvious when Sg is empty. Otherwise, given y ∈ Sg, for each
x ∈ Sf we have

f(y) − f(x) ≤ g(y) − g(x) + cd(y, x)

≤ cd(y, x).

Taking the infimum over x ∈ Sf it follows that

γ(d(y, Sf )) ≤ f(y) −mf ≤ cd(y, Sf ),

hence

β(d(y, Sf )) ≤ c.(16)

As β is nondecreasing, for any ε > 0 such that c < β(ε) one has d(y, Sf ) ≤ ε, hence
e(Sg, Sf ) ≤ ε. Then the definition of βh yields e(Sg, Sf ) ≤ βh(c). When β is l.s.c., we
deduce from (16) that β (e (Sg, Sf )) ≤ c. �

Proposition 11.5 Let f be an arbitrary function on the normed space X, let ∂ be the
Fenchel subdifferential and let w∗ ∈ ∂f(X) be such that f − w∗ is very-well conditioned
with reduced growth gage β. Then, for each x∗ ∈ X∗ one has

e
(
(∂f)−1(x∗), (∂f)−1(w∗)

)
≤ βh(‖x∗ − w∗‖).

If X is the dual space of a normed space X∗, if w
∗ corresponds to some element w∗ ∈ X∗

in the canonical injection X∗ → X∗ and if f is the conjugate function of a l.s.c. proper
convex function f∗, then for each x∗ ∈ X∗ one has

e (∂f∗(x∗), ∂f∗(w∗)) ≤ βh(‖x∗ − w∗‖).

Proof. Setting j := f − w∗, k := f − x∗, the result follows from the preceding
lemma in which f and g are replaced by j and k respectively, using the equivalence

w ∈ (∂f)−1(w∗) ⇔ w∗ ∈ ∂f(w) ⇔ w ∈ Sj

and the similar one with w, w∗ replaced by x, x∗ respectively. The last assertion, which
is close to [30, Theorem 3], is a consequence of the equivalence

x ∈ (∂f)−1(x∗) ⇔ x∗ ∈ ∂f(x) ⇔ x ∈ ∂f∗(x∗). �



180 Jean-Paul Penot

12 Error bounds, penalization and metric regularity

Among the outcomes of the study of conditioning and error bounds are their uses for
exact penalization. For such applications, we refer the reader to the thorough survey
by Pang [138] and to its abundant bibliography. Let recall briefly the principle of this
procedure, which is quite simple. Consider the constrained minimization problem

(P) minimize j(x) subject to x ∈ F,

where the feasible set F is a nonempty subset of a metric space X and the objective
function j is Lipschitzian with rate ℓ on X. Let f := j + iF , where iF is the indicator
function of F given by iF (x) = 0 for x ∈ F, ∞ for x ∈ X\F. The value of (P) is clearly
the infimum m of f on X, but the new objective function is difficult to handle. It is
advisable to substitute to it the more tractable function

fr := j + rh

when one disposes of an auxiliary function h : X → R which satisfies h | F = 0,

h(x) ≥ cd(x, F ) ∀x ∈ X.

This is possible, thanks to the following result which is a slight variant of the well-known
[53, Proposition 2.4.3], [138, Theorem 3], as here we do not assume that problem (P)
has an optimal solution.

Lemma 12.1 Suppose the auxiliary function h satisfies the preceding assumptions and
j is Lipschitzian with rate ℓ. Then for any r ≥ p := ℓc−1 one has

inf
x∈X

fr(x) = inf
x∈F

j(x).

If moreover F is closed and r > p one has

Arg min
X

fr = Arg min
F
j.

Proof. As for any u ∈ F, x ∈ X we have

j(u) ≤ j(x) + ℓd(x, u),

taking the infimum on u ∈ F and then on x ∈ X we get

m := inf
u∈F

j(u) ≤ inf
x∈X

(j(x) + ℓd(x, F )) ≤ inf
x∈X

(j(x) + ph(x)) ≤ inf
x∈X

(j(x) + rh(x)) .

Since h(x) = 0 for x ∈ F, these inequalities are equalities. The same reason yields
Arg minF j ⊂ Arg minX fr. Now if x ∈ Arg minX fr then

rh(x) = fr(x) − j(x) = m− j(x)

≤ m− (m− ℓd(x, F )) = pcd(x, F ) ≤ ph(x).

Since r > p we must have h(x) = 0, hence d(x, F ) = 0 and x ∈ F as F is closed. �

The preceding assumptions on h are satisfied when F is the set of minimizers of a
linearly conditioned function h. The growth criteria obtained in the preceding sections
may be useful in such a connection.

An important case is when the feasible set F is defined by equalities and inequalities
or, more generally, as an implicit constraint of the form

F = g−1(C),
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where g : X → Z is a mapping in some other metric space Z, C is a subset of Z and
when g is metrically regular in the sense that for some c > 0 one has

d(x, F ) ≤ cd(g(x), C) ∀x ∈ X.

Then one can take h(x) = cd(g(x), C), a function which is usually easier to compute than
d(·, F ). A famous result due to Hoffman [87] asserts that such a situation occurs when
X and Z are finite dimensional normed spaces, g is affine and C is a polyhedral cone.
Such a result has been extended by Ioffe [90] to the case X and Z are Banach spaces, Z
is a product V ×W, C = {0}×D where D is a polyhedral cone in the finite dimensional
space W ; see also [68], [100]–[103], [104]. In each of these cases, one has a penalization
result which is standard in mathematical programming.

The preceding inequality pertains to the notion called metric regularity; however,
this notion is usually adopted in a local sense. Recall that a multimapping M : X ⇒ Y
between two normed spaces is said to be metrically regular around some (x0, y0) if there
exist c > 0 and neighborhoods V, W of x0 and y0 respectively such that for each y ∈W
and each x ∈ V satisfying d(x,M−1(y)) < δ one has d(x,M−1(y)) ≤ cd(y,M(x)). It has
been shown that such a property is equivalent to an openness property (see [23], [38],
[143]). This property has been widely used, in the convex case as in the nonconvex case
(see for instance [23], and [150] for recent contributions with numerous references). In
particular, it is a useful tool for computing tangent cones and normal cones (see [141],
[162] and their references).

When one considers a convex multimapping, the usual notion of metric regularity
can be simplified, thanks to the following nice result of Li and Singer [113, Theorem 4].
In the general (local) case, see [86] and [186, Lemma 9.39].

Proposition 12.2 Suppose M : X ⇒ Y is a multimapping with convex graph. Then the
following assertions, in which c and δ are positive numbers and W is a subset of Y , are
equivalent:

(a) for each y ∈W and each x ∈ X satisfying d(x,M−1(y)) < δ one has

d(x,M−1(y)) ≤ cd(y,M(x));

(b) for each y ∈W and each x ∈ X one has d(x,M−1(y)) ≤ cd(y,M(x));

The equivalence is an easy consequence of the following lemma in which one takes
h(x) := d(y,M(x)), S := M−1(y).

Lemma 12.3 Let S be an arbitrary nonempty subset of X, let δ > 0 and let h be a
continuous convex function on X, null on S and such that d(x, S) ≤ h(x) for each x ∈ X
satisfying d(x, S) ≤ δ. Then d(x, S) ≤ h(x) for each x ∈ X.

Proof. Given x ∈ X, let (un) be a sequence of S such that rn := d(x, un) → r :=
d(x, S). Let t ∈]0, 1] be such that td(x, S) < δ. We may assume that td(x, un) < δ for
each n. Let zn := (1− t)un + tx. As d(zn, S) ≤ ‖zn − un‖ < δ and as h(un) = 0, we have

d(zn, S) ≤ h(zn) ≤ th(x).(17)

Now we claim that lim supn d(zn, S) ≥ td(x, S). Otherwise, there exist ε > 0 and an
infinite set of integers K such that d(zk, S) < td(x, S) − ε for each k ∈ K. Then we can
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find some wk ∈ S such that d(zk, wk) < tr − ε and we get for k ∈ K large enough

d(x,wk) ≤ d(x, zk) + tr − ε ≤ (1 − t)rk + tr − ε < r,

a contradiction. Taking limsup in relation (17) we get d(x, S) ≤ h(x). �

We refer to the recent papers of Auslender [13] and Lewis and Pang [111] for more
results in the direction of error bounds for convex systems and their relationships with
conditioning and recession conditions.
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[1] P. Angleraud. Caractérisation duale du bon comportement de fonctions convexes. C.
R. Acad. Sci. Paris Sér. I Math. 314 (1992), 583-586.

[2] E. Asplund, R. T. Rockafellar. Gradients of convex functions. Trans. Amer. Math.
Soc. 139 (1966), 443-467.

[3] H. Attouch. Variational Convergence for Functions and Operators. Pitman, Boston,
1984.

[4] H. Attouch. Viscosity solutions of minimization problems. Epi-convergence and scaling.
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[26] D. Azé, J.-P. Penot. Operations on convergent families of sets and functions. Optimiza-
tion 21 (1990), 521-534.
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[32] D. Azé, M. Volle. A stability result in quasi-convex programming. J. Optim. Theory
Appl. 67, 1 (1990), 175-184.

[33] E. Bednarczuk, J.-P. Penot. On the position of the notions of well-posed minimization
problems. Boll. Un. Mat. Ital. B. (7) 6-B, (1992), 665-683.

[34] E. Bednarczuk, J.-P. Penot. Metrically well-set minimization problems. Appl. Math.
Optim. 26 (1992), 273-285.

[35] G. Beer. Conjugate convex functions and the epi-distance topology. Proc. Amer. Math.
Soc. 108 (1990), 117-126.

[36] J. M. Borwein. A note on ε-subgradients and maximal monotonicity. Pacific J. Math.
103 (1982), 307-314.

[37] J. M. Borwein, J. D. Vanderwerff. Convergence of Lipschitz regularization of convex
functions. J. Funct. Anal. 128 (1995), 139-162.

[38] J. M. Borwein, D. M. Zhuang. Verifiable necessary and sufficient conditions for open-
ness and regularity of set-valued and singled-valued maps. J. Math. Anal. Appl. 134

(1988), 441-459.
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