668 research outputs found

    Unimodular Random Trees

    Full text link
    We consider unimodular random rooted trees (URTs) and invariant forests in Cayley graphs. We show that URTs of bounded degree are the same as the law of the component of the root in an invariant percolation on a regular tree. We use this to give a new proof that URTs are sofic, a result of Elek. We show that ends of invariant forests in the hyperbolic plane converge to ideal boundary points. We also prove that uniform integrability of the degree distribution of a family of finite graphs implies tightness of that family for local convergence, also known as random weak convergence.Comment: 19 pages, 4 figure

    Higher cyclic operads

    No full text
    We introduce a convenient definition for weak cyclic operads, which is based on unrooted trees and Segal conditions. More specifically, we introduce a category Ξ\Xi of trees, which carries a tight relationship to the Moerdijk-Weiss category of rooted trees Ω\Omega. We prove a nerve theorem exhibiting colored cyclic operads as presheaves on Ξ\Xi which satisfy a Segal condition. Finally, we produce a Quillen model category whose fibrant objects satisfy a weak Segal condition, and we consider these objects as an up-to-homotopy generalization of the concept of cyclic operad

    Complexity of Grundy coloring and its variants

    Full text link
    The Grundy number of a graph is the maximum number of colors used by the greedy coloring algorithm over all vertex orderings. In this paper, we study the computational complexity of GRUNDY COLORING, the problem of determining whether a given graph has Grundy number at least kk. We also study the variants WEAK GRUNDY COLORING (where the coloring is not necessarily proper) and CONNECTED GRUNDY COLORING (where at each step of the greedy coloring algorithm, the subgraph induced by the colored vertices must be connected). We show that GRUNDY COLORING can be solved in time O∗(2.443n)O^*(2.443^n) and WEAK GRUNDY COLORING in time O∗(2.716n)O^*(2.716^n) on graphs of order nn. While GRUNDY COLORING and WEAK GRUNDY COLORING are known to be solvable in time O∗(2O(wk))O^*(2^{O(wk)}) for graphs of treewidth ww (where kk is the number of colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot be solved in time O∗(2o(wlog⁡w))O^*(2^{o(w\log w)}). We also describe an O∗(22O(k))O^*(2^{2^{O(k)}}) algorithm for WEAK GRUNDY COLORING, which is therefore \fpt for the parameter kk. Moreover, under the ETH, we prove that such a running time is essentially optimal (this lower bound also holds for GRUNDY COLORING). Although we do not know whether GRUNDY COLORING is in \fpt, we show that this is the case for graphs belonging to a number of standard graph classes including chordal graphs, claw-free graphs, and graphs excluding a fixed minor. We also describe a quasi-polynomial time algorithm for GRUNDY COLORING and WEAK GRUNDY COLORING on apex-minor graphs. In stark contrast with the two other problems, we show that CONNECTED GRUNDY COLORING is \np-complete already for k=7k=7 colors.Comment: 24 pages, 7 figures. This version contains some new results and improvements. A short paper based on version v2 appeared in COCOON'1

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    Feynman Categories

    Full text link
    In this paper we give a new foundational, categorical formulation for operations and relations and objects parameterizing them. This generalizes and unifies the theory of operads and all their cousins including but not limited to PROPs, modular operads, twisted (modular) operads, properads, hyperoperads, their colored versions, as well as algebras over operads and an abundance of other related structures, such as crossed simplicial groups, the augmented simplicial category or FI--modules. The usefulness of this approach is that it allows us to handle all the classical as well as more esoteric structures under a common framework and we can treat all the situations simultaneously. Many of the known constructions simply become Kan extensions. In this common framework, we also derive universal operations, such as those underlying Deligne's conjecture, construct Hopf algebras as well as perform resolutions, (co)bar transforms and Feynman transforms which are related to master equations. For these applications, we construct the relevant model category structures. This produces many new examples.Comment: Expanded version. New introduction, new arrangement of text, more details on several constructions. New figure
    • 

    corecore