12,111 research outputs found

    On uniqueness of the canonical tensor decomposition with some form of symmetry

    Get PDF
    We study the uniqueness of the decomposition of an nth order tensor (also called n-way array) into a sum of R rank-1 terms (where each term is the outer product of n vectors). This decomposition is also known as Parafac or Candecomp, and a general uniqueness condition for n = 3 was obtained by Kruskal in 1977 [Linear Algebra Appl., 18 (1977), pp. 95-138]. More recently, Kruskal's uniqueness condition has been generalized to n >= 3, and less restrictive uniqueness conditions have been obtained for the case where the vectors of the rank-1 terms are linearly independent in (at least) one of the n modes. We consider the decomposition with some form of symmetry, and prove necessary, sufficient, and necessary and sufficient uniqueness conditions analogous to the asymmetric case. For n = 3, 4, 5, we also prove generic uniqueness bounds on R. Most of these conditions are easy to check. Throughout, we emphasize the analogies and striking differences between the symmetric and asymmetric cases

    Geometrical approach to the proton spin decomposition

    Full text link
    We discuss in detail and from the geometrical point of view the issues of gauge invariance and Lorentz covariance raised by the approach proposed recently by Chen et al. to the proton spin decomposition. We show that the gauge invariance of this approach follows from a mechanism similar to the one used in the famous Stueckelberg trick. Stressing the fact that the Lorentz symmetry does not force the gauge potential to transform as a Lorentz four-vector, we show that the Chen et al. approach is Lorentz covariant provided that one uses the suitable Lorentz transformation law. We also make an attempt to summarize the present situation concerning the proton spin decomposition. We argue that the ongoing debates concern essentially the physical interpretation and are due to the plurality of the adopted pictures. We discuss these different pictures and propose a pragmatic point of view.Comment: 39 pages, 1 figure, updated version to appear in PRD (2013

    Complex Obtuse Random Walks and their Continuous-Time Limits

    Full text link
    We study a particular class of complex-valued random variables and their associated random walks: the complex obtuse random variables. They are the generalization to the complex case of the real-valued obtuse random variables which were introduced in \cite{A-E} in order to understand the structure of normal martingales in \RR^n.The extension to the complex case is mainly motivated by considerations from Quantum Statistical Mechanics, in particular for the seek of a characterization of those quantum baths acting as classical noises. The extension of obtuse random variables to the complex case is far from obvious and hides very interesting algebraical structures. We show that complex obtuse random variables are characterized by a 3-tensor which admits certain symmetries which we show to be the exact 3-tensor analogue of the normal character for 2-tensors (i.e. matrices), that is, a necessary and sufficient condition for being diagonalizable in some orthonormal basis. We discuss the passage to the continuous-time limit for these random walks and show that they converge in distribution to normal martingales in \CC^N. We show that the 3-tensor associated to these normal martingales encodes their behavior, in particular the diagonalization directions of the 3-tensor indicate the directions of the space where the martingale behaves like a diffusion and those where it behaves like a Poisson process. We finally prove the convergence, in the continuous-time limit, of the corresponding multiplication operators on the canonical Fock space, with an explicit expression in terms of the associated 3-tensor again

    Fock quantization of a scalar field with time dependent mass on the three-sphere: unitarity and uniqueness

    Get PDF
    We study the Fock description of a quantum free field on the three-sphere with a mass that depends explicitly on time, also interpretable as an explicitly time dependent quadratic potential. We show that, under quite mild restrictions on the time dependence of the mass, the specific Fock representation of the canonical commutation relations which is naturally associated with a massless free field provides a unitary dynamics even when the time varying mass is present. Moreover, we demonstrate that this Fock representation is the only acceptable one, up to unitary equivalence, if the vacuum has to be SO(4)-invariant (i.e., invariant under the symmetries of the field equation) and the dynamics is required to be unitary. In particular, the analysis and uniqueness of the quantization can be applied to the treatment of cosmological perturbations around Friedmann-Robertson-Walker spacetimes with the spatial topology of the three-sphere, like e.g. for gravitational waves (tensor perturbations). In addition, we analyze the extension of our results to free fields with a time dependent mass defined on other compact spatial manifolds. We prove the uniqueness of the Fock representation in the case of a two-sphere as well, and discuss the case of a three-torus.Comment: 30 page

    Classification of Two-dimensional Local Conformal Nets with c<1 and 2-cohomology Vanishing for Tensor Categories

    Full text link
    We classify two-dimensional local conformal nets with parity symmetry and central charge less than 1, up to isomorphism. The maximal ones are in a bijective correspondence with the pairs of A-D-E Dynkin diagrams with the difference of their Coxeter numbers equal to 1. In our previous classification of one-dimensional local conformal nets, Dynkin diagrams D_{2n+1} and E_7 do not appear, but now they do appear in this classification of two-dimensional local conformal nets. Such nets are also characterized as two-dimensional local conformal nets with mu-index equal to 1 and central charge less than 1. Our main tool, in addition to our previous classification results for one-dimensional nets, is 2-cohomology vanishing for certain tensor categories related to the Virasoro tensor categories with central charge less than 1.Comment: 40 pages, LaTeX 2

    On the rotational symmetry of 3-dimensional κ\kappa-solutions

    Get PDF
    In a recent paper, Brendle showed the uniqueness of the Bryant soliton among 3-dimensional κ\kappa-solutions. In this paper, we present an alternative proof for this fact and show that compact κ\kappa-solutions are rotational symmetric. Our proof arose from independent work relating to our Strong Stability Theorem for singular Ricci flows.Comment: 20 page

    Limit theorems for von Mises statistics of a measure preserving transformation

    Full text link
    For a measure preserving transformation TT of a probability space (X,F,μ)(X,\mathcal F,\mu) we investigate almost sure and distributional convergence of random variables of the form x→1Cn∑i1<n,...,id<nf(Ti1x,...,Tidx), n=1,2,...,x \to \frac{1}{C_n} \sum_{i_1<n,...,i_d<n} f(T^{i_1}x,...,T^{i_d}x),\, n=1,2,..., where ff (called the \emph{kernel}) is a function from XdX^d to R\R and C1,C2,...C_1, C_2,... are appropriate normalizing constants. We observe that the above random variables are well defined and belong to Lr(μ)L_r(\mu) provided that the kernel is chosen from the projective tensor product Lp(X1,F1,μ1)⊗π...⊗πLp(Xd,Fd,μd)⊂Lp(μd)L_p(X_1,\mathcal F_1, \mu_1) \otimes_{\pi}...\otimes_{\pi} L_p(X_d,\mathcal F_d, \mu_d)\subset L_p(\mu^d) with p=d r, r ∈[1,∞).p=d\,r,\, r\ \in [1, \infty). We establish a form of the individual ergodic theorem for such sequences. Next, we give a martingale approximation argument to derive a central limit theorem in the non-degenerate case (in the sense of the classical Hoeffding's decomposition). Furthermore, for d=2d=2 and a wide class of canonical kernels ff we also show that the convergence holds in distribution towards a quadratic form ∑m=1∞λmηm2\sum_{m=1}^{\infty} \lambda_m\eta^2_m in independent standard Gaussian variables η1,η2,...\eta_1, \eta_2,.... Our results on the distributional convergence use a TT--\,invariant filtration as a prerequisite and are derived from uni- and multivariate martingale approximations
    • …
    corecore