11,747 research outputs found

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Financing sustainable energy for all: pay-as-you-go vs. traditional solar finance approaches in Kenya

    Get PDF
    This paper focuses on finance for Solar Home Systems (SHSs) in Kenya and asks to what extent emerging new finance approaches are likely to address the shortcomings of past approaches. Drawing on the STEPS Pathways Approach we adopt a framing that understands finance within a broader socio-technical context as a necessary but not sufficient component of achieving alternative pathways to sustainable energy access. The paper contributes in four ways. Firstly, it presents a comprehensive overview of past and new emerging approaches to financing SHSs in Kenya and their relative strengths and weaknesses. Secondly, it represents one of the first attempts in the literature to analyse the potential of new, real time monitoring technologies and pay as you go finance models to overcome the barriers faced by conventional consumer finance models for off-grid renewable energy technologies (RETs). Thirdly, by applying for the first time we are aware of a socio-technical approach, via the application of Strategic Niche Management (SNM) theory, to analyse the finance of RETs in developing countries, the analysis considers finance in the context of the social practices poor people seek to fulfil via access to the energy services that off-grid RETs provide, and the ways in which people previously paid for these services (e.g. via kerosene for lighting). This also situates the analysis within the understanding of SHSs as a niche that has to compete with the established regime of energy service provision and its attendant social and political institutional support. The paper therefore also contributes to the small but expanding body of literature that seeks to operationalise socio-technical transitions thinking and SNM within a developing country context

    Distributed control in virtualized networks

    Get PDF
    The increasing number of the Internet connected devices requires novel solutions to control the next generation network resources. The cooperation between the Software Defined Network (SDN) and the Network Function Virtualization (NFV) seems to be a promising technology paradigm. The bottleneck of current SDN/NFV implementations is the use of a centralized controller. In this paper, different scenarios to identify the pro and cons of a distributed control-plane were investigated. We implemented a prototypal framework to benchmark different centralized and distributed approaches. The test results have been critically analyzed and related considerations and recommendations have been reported. The outcome of our research influenced the control plane design of the following European R&D projects: PLATINO, FI-WARE and T-NOVA

    Beyond technology and finance: pay-as-you-go sustainable energy access and theories of social change

    Get PDF
    Two-thirds of people in sub-Saharan Africa lack access to electricity, a precursor of poverty reduction and development. The international community has ambitious commitments in this regard, e.g. the UN's Sustainable Energy for All by 2030. But scholarship has not kept up with policy ambitions. This paper operationalises a sociotechnical transitions perspective to analyse for the first time the potential of new, mobileenabled, pay-as-you-go approaches to financing sustainable energy access, focussing on a case study of pay-as-you-go approaches to financing solar home systems in Kenya. The analysis calls into question the adequacy of the dominant, two-dimensional treatment of sustainable energy access in the literature as a purely financial/technology, economics/ engineering problem (which ignores sociocultural and political considerations) and demonstrates the value of a new research agenda that explicitly attends to theories of social change – even when, as in this paper, the focus is purely on finance. The paper demonstrates that sociocultural considerations cut across the literature's traditional two-dimensional analytic categories (technology and finance) and are material to the likely success of any technological or financial intervention. It also demonstrates that the alignment of new payas- you-go finance approaches with existing sociocultural practices of paying for energy can explain their early success and likely longevity relative to traditional finance approaches

    Toward Third Generation Internet Desktop Grids

    Get PDF
    Projects like SETI@home and Folding@home have popularized Internet Desktop Grid (IDG) computing. The first generation of IDG projects scalled to millions of participatings but was dedicated to a specific application. BOINC, United Device and XtremWeb belong to a second generation of IDG platforms. Their architecture was designed to accommodate many applications but has drawbacks like limited security and a centralized architecture. In this paper we present a new design for Internet Desktop Grid, following a layered approach. The new architecture establishes an overlay network, giving the participating nodes direct communication capabilities. From that basis many key mechanisms of IDG can be implemented using existing cluster tools and extra IDG specificic software. As a proof of concept, we run a bioinformatic application on a third generation IDG, based on a connectivity service (PVC), an existing job scheduler (Condor), a high performance data transport service (Bittorent) and a custom result certification mechanism
    • 

    corecore