6,586 research outputs found

    A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs

    Full text link
    We present a space and time efficient practical parallel algorithm for approximating the diameter of massive weighted undirected graphs on distributed platforms supporting a MapReduce-like abstraction. The core of the algorithm is a weighted graph decomposition strategy generating disjoint clusters of bounded weighted radius. Theoretically, our algorithm uses linear space and yields a polylogarithmic approximation guarantee; moreover, for important practical classes of graphs, it runs in a number of rounds asymptotically smaller than those required by the natural approximation provided by the state-of-the-art Δ\Delta-stepping SSSP algorithm, which is its only practical linear-space competitor in the aforementioned computational scenario. We complement our theoretical findings with an extensive experimental analysis on large benchmark graphs, which demonstrates that our algorithm attains substantial improvements on a number of key performance indicators with respect to the aforementioned competitor, while featuring a similar approximation ratio (a small constant less than 1.4, as opposed to the polylogarithmic theoretical bound)

    Space and Time Efficient Parallel Graph Decomposition, Clustering, and Diameter Approximation

    Full text link
    We develop a novel parallel decomposition strategy for unweighted, undirected graphs, based on growing disjoint connected clusters from batches of centers progressively selected from yet uncovered nodes. With respect to similar previous decompositions, our strategy exercises a tighter control on both the number of clusters and their maximum radius. We present two important applications of our parallel graph decomposition: (1) kk-center clustering approximation; and (2) diameter approximation. In both cases, we obtain algorithms which feature a polylogarithmic approximation factor and are amenable to a distributed implementation that is geared for massive (long-diameter) graphs. The total space needed for the computation is linear in the problem size, and the parallel depth is substantially sublinear in the diameter for graphs with low doubling dimension. To the best of our knowledge, ours are the first parallel approximations for these problems which achieve sub-diameter parallel time, for a relevant class of graphs, using only linear space. Besides the theoretical guarantees, our algorithms allow for a very simple implementation on clustered architectures: we report on extensive experiments which demonstrate their effectiveness and efficiency on large graphs as compared to alternative known approaches.Comment: 14 page

    Compact Routing on Internet-Like Graphs

    Full text link
    The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this routing scheme on random graphs with power-law node degree distributions, Pk∌k−γP_k \sim k^{-\gamma}. We find that the average stretch is very low and virtually independent of Îł\gamma. In particular, for the Internet interdomain graph, ÎłâˆŒ2.1\gamma \sim 2.1, the average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10410^4-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) dˉ\bar{d} and width of the distance distribution σ\sigma observed in the real Internet inter-AS graph have values that are very close to the minimums of the average stretch in the dˉ\bar{d}- and σ\sigma-directions. This leads us to the discovery of a unique critical quasi-stationary point of the average TZ stretch as a function of dˉ\bar{d} and σ\sigma. The Internet distance distribution is located in a close neighborhood of this point. This observation suggests the analytical structure of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the Internet's interdomain topology evolution.Comment: 29 pages, 16 figure

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    JGraphT -- A Java library for graph data structures and algorithms

    Full text link
    Mathematical software and graph-theoretical algorithmic packages to efficiently model, analyze and query graphs are crucial in an era where large-scale spatial, societal and economic network data are abundantly available. One such package is JGraphT, a programming library which contains very efficient and generic graph data-structures along with a large collection of state-of-the-art algorithms. The library is written in Java with stability, interoperability and performance in mind. A distinctive feature of this library is the ability to model vertices and edges as arbitrary objects, thereby permitting natural representations of many common networks including transportation, social and biological networks. Besides classic graph algorithms such as shortest-paths and spanning-tree algorithms, the library contains numerous advanced algorithms: graph and subgraph isomorphism; matching and flow problems; approximation algorithms for NP-hard problems such as independent set and TSP; and several more exotic algorithms such as Berge graph detection. Due to its versatility and generic design, JGraphT is currently used in large-scale commercial, non-commercial and academic research projects. In this work we describe in detail the design and underlying structure of the library, and discuss its most important features and algorithms. A computational study is conducted to evaluate the performance of JGraphT versus a number of similar libraries. Experiments on a large number of graphs over a variety of popular algorithms show that JGraphT is highly competitive with other established libraries such as NetworkX or the BGL.Comment: Major Revisio

    Cost-effective aperture arrays for SKA Phase 1: single or dual-band?

    Full text link
    An important design decision for the first phase of the Square Kilometre Array is whether the low frequency component (SKA1-low) should be implemented as a single or dual-band aperture array; that is, using one or two antenna element designs to observe the 70-450 MHz frequency band. This memo uses an elementary parametric analysis to make a quantitative, first-order cost comparison of representative implementations of a single and dual-band system, chosen for comparable performance characteristics. A direct comparison of the SKA1-low station costs reveals that those costs are similar, although the uncertainties are high. The cost impact on the broader telescope system varies: the deployment and site preparation costs are higher for the dual-band array, but the digital signal processing costs are higher for the single-band array. This parametric analysis also shows that a first stage of analogue tile beamforming, as opposed to only station-level, all-digital beamforming, has the potential to significantly reduce the cost of the SKA1-low stations. However, tile beamforming can limit flexibility and performance, principally in terms of reducing accessible field of view. We examine the cost impacts in the context of scientific performance, for which the spacing and intra-station layout of the antenna elements are important derived parameters. We discuss the implications of the many possible intra-station signal transport and processing architectures and consider areas where future work could improve the accuracy of SKA1-low costing.Comment: 64 pages, 23 figures, submitted to the SKA Memo serie

    Analytical designs of a space-borne magnetically-focused klystron amplifier Final report

    Get PDF
    Design analysis for magnetically focused klystron of satellite television transmission syste

    Mass and power modeling of communication satellites

    Get PDF
    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices

    Survey of Distributed Decision

    Get PDF
    We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model)
    • 

    corecore