160 research outputs found

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    Threat modeling for communication security of IoT-enabled digital logistics

    Get PDF
    The modernization of logistics through the use of Wireless Sensor Network (WSN) Internet of Things (IoT) devices promises great efficiencies. Sensor devices can provide real-time or near real-time condition monitoring and location tracking of assets during the shipping process, helping to detect delays, prevent loss, and stop fraud. However, the integration of low-cost WSN/IoT systems into a pre-existing industry should first consider security within the context of the application environment. In the case of logistics, the sensors are mobile, unreachable during the deployment, and accessible in potentially uncontrolled environments. The risks to the sensors include physical damage, either malicious/intentional or unintentional due to accident or the environment, or physical attack on a sensor, or remote communication attack. The easiest attack against any sensor is against its communication. The use of IoT sensors for logistics involves the deployment conditions of mobility, inaccesibility, and uncontrolled environments. Any threat analysis needs to take these factors into consideration. This paper presents a threat model focused on an IoT-enabled asset tracking/monitoring system for smart logistics. A review of the current literature shows that no current IoT threat model highlights logistics-specific IoT security threats for the shipping of critical assets. A general tracking/monitoring system architecture is presented that describes the roles of the components. A logistics-specific threat model that considers the operational challenges of sensors used in logistics, both malicious and non-malicious threats, is then given. The threat model categorizes each threat and suggests a potential countermeasure

    Challenges and Limitation Analysis of an IoT-Dependent System for Deployment in Smart Healthcare Using Communication Standards Features

    Get PDF
    The use of IoT technology is rapidly increasing in healthcare development and smart healthcare system for fitness programs, monitoring, data analysis, etc. To improve the efficiency of monitoring, various studies have been conducted in this field to achieve improved precision. The architecture proposed herein is based on IoT integrated with a cloud system in which power absorption and accuracy are major concerns. We discuss and analyze development in this domain to improve the performance of IoT systems related to health care. Standards of communication for IoT data transmission and reception can help to understand the exact power absorption in different devices to achieve improved performance for healthcare development. We also systematically analyze the use of IoT in healthcare systems using cloud features, as well as the performance and limitations of IoT in this field. Furthermore, we discuss the design of an IoT system for efficient monitoring of various healthcare issues in elderly people and limitations of an existing system in terms of resources, power absorption and security when implemented in different devices as per requirements. Blood pressure and heartbeat monitoring in pregnant women are examples of high-intensity applications of NB-IoT (narrowband IoT), technology that supports widespread communication with a very low data cost and minimum processing complexity and battery lifespan. This article also focuses on analysis of the performance of narrowband IoT in terms of delay and throughput using singleand multinode approaches. We performed analysis using the message queuing telemetry transport protocol (MQTTP), which was found to be efficient compared to the limited application protocol (LAP) in sending information from sensors.Ministerio Español de Ciencia e Innovación under project number PID2020-115570GB-C22 (DemocratAI::UGR)Cátedra de Empresa Tecnología para las Personas (UGR-Fujitsu

    Suitability of LoRa, Sigfox and NB-IoT for Different Internet-of-Things Applications

    Get PDF
    The large-scale implementation of the internet of things (IoT) technologies is becoming a reality. IoT technologies benefit from low-power wide area network (LPWAN) systems. These technologies include Long Range (LoRa), Sigfox, and Narrowband IoT (NB-IoT). Numerous networks have already been deployed around the world, which is expected to accelerate the growth of IoT. This thesis discusses the performance of these three prominent LPWAN technologies in the market that have been specifically designed for IoT use. The main idea of LPWAN technologies is to provide wide coverage area using only small amount of base stations and to serve large amount of low-power and low-cost IoT devices. The main purpose of this thesis work is to compare LoRa, Sigfox, and NB-IoT and evaluate their suitability to various IoT applications. The appropriate technology selection is possible through in-depth analysis and technological comparison of LPWAN systems. There are many technological differences among these LPWAN technologies. A single technology may not be able to meet all requirements of all IoT applications. Therefore, some IoT applications can benefit from one technology more than others. The right selection helps in fulfilling the need of IoT application to save cost, time and improve efficiency. In addition to the literature-based suitability evaluation of the aforementioned technologies some practical measurements are performed using commercial off-the-shelf hardware. These measurements consider LoRa and Sigfox user devices in both outdoor and indoor locations. The key performance indicators obtained from the measurements are signal-to-noise ratio (SNR) and received signal strength indicator (RSSI). In addition, also penetration loss from outdoor to indoor is derived. The obtained measurement results were in line with the ones found from the literature

    Security issues in Internet of Things

    Get PDF
    The main idea behind the concept of the Internet of Things (IoT) is to connect all kinds of everyday objects, thus enabling them to communicate to each other and enabling people to communicate to them. IoT is an extensive concept that encompasses a wide range of technologies and applications. This document gives an introduction to what the IoT is, its fundamental characteristics and the enabling technologies that are currently being used. However, the technologies for the IoT are still evolving and maturing, leading to major challenges that need to be solved for a successful deployment of the IoT. Security is one of the most significant ones. Security issues may represent the greatest obstacle to general acceptance of the IoT. This document presents an assessment of the IoT security goals, its threats and the security requirements to achieve the goals. A survey on a representative set of already deployed IoT technologies is done to assess the current state of the art with regards to security. For each solution, a description of its functionality, its security options and the issues found in the literature is given. Finally, the common issues are identified and a set of future solutions are given.La idea principal detrás del concepto de Internet de las cosas (IoT) es conectar todo tipo de objetos cotidianos, para permitir comunicarse entre sí y que personas se comuniquen con ellos. IoT es un amplio concepto que abarca una extensa gama de tecnologías y aplicaciones. Este documento da una introducción a lo que es el IoT, sus características fundamentales y las tecnologías que se están utilizando actualmente. Sin embargo, las tecnologías usadas en el IoT todavía están en evolución y madurando, dando lugar a grandes desafíos que deben resolverse para un despliegue exitoso del IoT. La seguridad es uno de las más significativos. Los problemas de seguridad pueden representar el mayor obstáculo para la aceptación general del IoT. Este documento presenta una evaluación de los objetivos de seguridad en el IoT, sus amenazas y los requisitos necesarios para alcanzar dichos objetivos. Se realiza un estudio sobre un conjunto representativo de tecnologías IoT en uso para evaluar su estado actual respecto a la seguridad. Para cada solución, se da una descripción de su funcionalidad, sus protecciones y los problemas encontrados. Finalmente, se identifican los problemas comunes y se dan un conjunto de soluciones futuras.La idea principal darrera del concepte d'Internet de les coses (IoT) és connectar tot tipus d'objectes quotidians, per permetre comunicar-se entre sí i que les persones es comuniquin amb ells. IoT és un ampli concepte que engloba una extensa gamma de tecnologies i aplicacions. Aquest document dona una introducció al que és el IoT, les seves característiques fonamentals i les tecnologies que s'estan utilitzant actualment. No obstant, les tecnologies utilitzades en el IoT encara estan evolucionant i madurant, donant lloc a grans reptes que s'han de resoldre per a un desplegament exitós del IoT. La seguretat és un dels reptes més significatius. Els problemes de seguretat poden representar el major obstacle per l'acceptació general de l'IoT. Aquest document presenta una avaluació dels objectius de seguretat en el Iot, les seves amenaces i els requisits necessaris per assolir aquests objectius. Es realitza un estudi sobre un conjunt representatiu de tecnologies IoT en ús per avaluar el seu estat actual respecte a la seguretat. Per cada solució, es dona una descripció de la seva funcionalitat, les seves proteccions i els problemes trobats. Finalment, s'identifiquen els problemes comuns i es donen un conjunt de solucions futures

    Over-the-air software updates in the internet of things : an overview of key principles

    Get PDF
    Due to the fast pace at which IoT is evolving, there is an increasing need to support over-theair software updates for security updates, bug fixes, and software extensions. To this end, multiple over-the-air techniques have been proposed, each covering a specific aspect of the update process, such as (partial) code updates, data dissemination, and security. However, each technique introduces overhead, especially in terms of energy consumption, thereby impacting the operational lifetime of the battery constrained devices. Until now, a comprehensive overview describing the different update steps and quantifying the impact of each step is missing in the scientific literature, making it hard to assess the overall feasibility of an over-the-air update. To remedy this, our article analyzes which parts of an IoT operating system are most updated after device deployment, proposes a step-by-step approach to integrate software updates in IoT solutions, and quantifies the energy cost of each of the involved steps. The results show that besides the obvious dissemination cost, other phases such as security also introduce a significant overhead. For instance, a typical firmware update requires 135.026 mJ, of which the main portions are data dissemination (63.11 percent) and encryption (5.29 percent). However, when modular updates are used instead, the energy cost (e.g., for a MAC update) is reduced to 26.743 mJ (48.69 percent for data dissemination and 26.47 percent for encryption)

    LoRaWAN communication implementation platforms

    Get PDF
    A key role in the development of smart Internet of Things (IoT) solutions is played by wireless communication technologies, especially LPWAN (Low-Power Wide-Area Network), which are becoming increasingly popular due to their advantages: long range, low power consumption and the ability to connect multiple edge devices. However, in addition to the advantages of communication and low power consumption, the security of transmitted data is also important. End devices very often have a small amount of memory, which makes it impossible to implement advanced cryptographic algorithms on them. The article analyzes the advantages and disadvantages of solutions based on LPWAN communication and reviews platforms for IoT device communication in the LoRaWAN (LoRa Wide Area Network) standard in terms of configuration complexity. It describes how to configure an experimental LPWAN system being built at the Department of Computer Science and Telecommunications at Poznan University of Technology for research related to smart buildings

    A COMPREHENSIVE REVIEW OF INTERNET OF THINGS WAVEFORMS FOR A DOD LOW EARTH ORBIT CUBESAT MESH NETWORK

    Get PDF
    The Department of Defense (DOD) requires the military to provide command and control during missions in locations where terrestrial communications infrastructure is unreliable or unavailable, which results in a high reliance on satellite communications (SATCOM). This is problematic because they use and consume more digital data in the operational environment. The DOD has several forms of data capable of meeting Internet of Things (IoT) transmission parameters that could be diversified onto an IoT network. This research assesses the potential for an IoT satellite constellation in Low Earth Orbit to provide an alternative, space-based communication platform to military units while offering increased overall SATCOM capacity and resiliency. This research explores alternative IoT waveforms and compatible transceivers in place of LoRaWAN for the NPS CENETIX Ortbial-1 CubeSat. The study uses a descriptive comparative research approach to simultaneously assess several variables. Five alternative waveforms—Sigfox, NB-IoT, LTE-M, Wi-sun, and Ingenu—are evaluated. NB-IoT, LTE-M, and Ingenu meet the threshold to be feasible alternatives to replace the LoRaWAN waveform in the Orbital-1 CubeSat. Six potential IoT transceivers are assessed as replacements. Two transceivers for the NB-IoT and LTE-M IoT waveforms and one transceiver from U-blox for the Ingenu waveform are assessed as compliant.Lieutenant, United States NavyApproved for public release. Distribution is unlimited
    corecore