29 research outputs found

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators

    Efficient Methods for Multidimensional Global Polynomial Approximation with Applications to Random PDEs

    Get PDF
    In this work, we consider several ways to overcome the challenges associated with polynomial approximation and integration of smooth functions depending on a large number of inputs. We are motivated by the problem of forward uncertainty quantification (UQ), whereby inputs to mathematical models are considered as random variables. With limited resources, finding more efficient and accurate ways to approximate the multidimensional solution to the UQ problem is of crucial importance, due to the “curse of dimensionality” and the cost of solving the underlying deterministic problem. The first way we overcome the complexity issue is by exploiting the structure of the approximation schemes used to solve the random partial differential equations (PDE), thereby significantly reducing the overall cost of the approximation. We do this first using multilevel approximations in the physical variables, and second by exploiting the hierarchy of nested sparse grids in the random parameter space. With these algorithmic advances, we provably decrease the complexity of collocation methods for solving random PDE problems. The second major theme in this work is the choice of efficient points for multidimensional interpolation and interpolatory quadrature. A major consideration in interpolation in multiple dimensions is the balance between stability, i.e., the Lebesgue constant of the interpolant, and the granularity of the approximation, e.g., the ability to choose an arbitrary number of interpolation points or to adaptively refine the grid. For these reasons, the Leja points are a popular choice for approximation on both bounded and unbounded domains. Mirroring the best-known results for interpolation on compact domains, we show that Leja points, defined for weighted interpolation on R, have a Lebesgue constant which grows subexponentially in the number of interpolation nodes. Regarding multidimensional quadratures, we show how certain new rules, generated from conformal mappings of classical interpolatory rules, can be used to increase the efficiency in approximating multidimensional integrals. Specifically, we show that the convergence rate for the novel mapped sparse grid interpolatory quadratures is improved by a factor that is exponential in the dimension of the underlying integral

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Calculation of Realistic Charged-Particle Transfer Maps

    Get PDF
    The study and computation of nonlinear charged-particle transfer maps is fundamental to understanding single-particle beam dynamics in accelerator devices. Transfer maps for individual elements of the beamline can in general depend sensitively on nonlinear fringe-field and high-multipole effects. The inclusion of these effects requires a detailed and realistic model of the interior and fringe magnetic fields, including knowledge of high spatial derivatives. Current methods for computing such maps often rely on idealized models of beamline elements. This Dissertation describes the development and implementation of a collection of techniques for computing realistic (as opposed to idealized) charged-particle transfer maps for general beamline elements, together with corresponding estimates of numerical error. Each of these techniques makes use of 3-dimensional measured or numerical field data on a grid as provided, for example, by various 3-dimensional finite element field codes. The required high derivatives of the corresponding vector potential A, required to compute transfer maps, cannot be reliably computed directly from this data by numerical differentiation due to numerical noise whose effect becomes progressively worse with the order of derivative desired. The effect of this noise, and its amplification by numerical differentiation, can be overcome by fitting on a bounding surface far from the axis and then interpolating inward using the Maxwell equations. The key ingredients are the use of surface data and the smoothing property of the inverse Laplacian operator. We explore the advantages of map computation using realistic field data on surfaces of various geometry. Maps obtained using these techniques can then be used to compute realistically all derived linear and nonlinear properties of both single pass and circular machines. Although the methods of this Dissertation have been applied primarily to magnetic beamline elements, they can also be applied to electric and radio-frequency beamline elements
    corecore