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Abstract

In this work, we consider several ways to overcome the challenges associated with polynomial

approximation and integration of smooth functions depending on a large number of inputs.

We are motivated by the problem of forward uncertainty quantification (UQ), whereby inputs

to mathematical models are considered as random variables. With limited resources, finding

more e�cient and accurate ways to approximate the multidimensional solution to the UQ

problem is of crucial importance, due to the “curse of dimensionality” and the cost of solving

the underlying deterministic problem.

The first way we overcome the complexity issue is by exploiting the structure of the

approximation schemes used to solve the random partial di↵erential equations (PDE),

thereby significantly reducing the overall cost of the approximation. We do this first using

multilevel approximations in the physical variables, and second by exploiting the hierarchy

of nested sparse grids in the random parameter space. With these algorithmic advances, we

provably decrease the complexity of collocation methods for solving random PDE problems.

The second major theme in this work is the choice of e�cient points for multidimensional

interpolation and interpolatory quadrature. A major consideration in interpolation in

multiple dimensions is the balance between stability, i.e., the Lebesgue constant of the

interpolant, and the granularity of the approximation, e.g., the ability to choose an arbitrary

number of interpolation points or to adaptively refine the grid. For these reasons, the Leja

points are a popular choice for approximation on both bounded and unbounded domains.

Mirroring the best-known results for interpolation on compact domains, we show that

Leja points, defined for weighted interpolation on R, have a Lebesgue constant which

grows subexponentially in the number of interpolation nodes. Regarding multidimensional

quadratures, we show how certain new rules, generated from conformal mappings of classical
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interpolatory rules, can be used to increase the e�ciency in approximating multidimensional

integrals. Specifically, we show that the convergence rate for the novel mapped sparse grid

interpolatory quadratures is improved by a factor that is exponential in the dimension of the

underlying integral.
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Chapter 1

Introduction

Mathematical modeling is an important tool for decision making in a diverse array of scientific

and engineering fields, as well as manufacturing, economic forecasting, public policy, and

many others. The solution of a mathematical model can be viewed as a mapping from input

data—e.g., coe�cients, forcing terms, initial and boundary conditions, domain geometry—

to an output of interest. In practice, the input data may be a↵ected by a large amount

of uncertainty due to intrinsic variability or the di�culty in accurately characterizing the

physical system. In order to correctly predict the behavior of the system, it is especially

pertinent to understand and propagate the e↵ect of the input uncertainty to the output of

the simulation, i.e., to the solution of the mathematical model. Such uncertainties can be

included in the mathematical model by adopting a probabilistic setting. Given statistical

information about the input variables, the goal then is to understand statistics of the solution,

e.g. mean and variance, or statistics of some functional of the solutions, e.g. outflow across

a boundary. This is called the forward uncertainty quantification (UQ) problem, and these

desired outputs are known as quantities of interest (QoI).

One of the important models of forward uncertainty quantification is partial di↵erential

equations (PDEs) with random input data. Assuming the random input may be parameter-

ized by some finite dimensional random vector, y 2 RN , the goal in this setting is to find

the solution u, which for almost every y satisfies the problem

D(a(y))[u] = f(y) in D, (1.1)
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subject to suitable boundary conditions, where D is a (physical) di↵erential operator on the

domain D, and a and f are random fields (see Chapter 2). Numerical solution of PDEs

with random inputs is a large and active research area; see, e.g., the overview [48] and the

references cited therein.

From a computational point of view, the major challenges to solving these problems stem

from the dimensionality of the input data, and the complexity of the underlying physical

model. First, the data could depend strongly on a large number of variables, introducing the

“curse of dimensionality.” In the general setting described above, this so-called “curse” refers

to an exponential relationship between the computational e↵ort required to numerically find

the solution u(y) and the dimension N of the input parameter. This means that to construct

an accurate polynomial approximation, one must take a number of samples, M , which grows

quite rapidly with respect to N .

The second major issue is related to the first: each of the samples required by

interpolation based methods for random PDEs—and all sampling methods in general, in

which the stochastic and deterministic degrees of freedom are uncoupled—may be extremely

expensive to compute. As mentioned above, to construct a fully-discrete solution, these

sample evaluations require the numerical solution of the underlying deterministic, physical

PDE model, which may be nonlinear, time dependent, sti↵, or otherwise computationally

intensive. This computational e↵ort is multiplied by the possibly large number of samples

necessary to construct an accurate interpolant, which may quickly exhaust available

computational resources. Furthermore, for many situations it is not totally understood

which sample points are best to use in multidimensional domains.

Among the myriad approaches to approximating the random dependence of the solution

map u(y), corresponding to (1.1), the Monte Carlo (MC) method is perhaps the simplest

(see, e.g., [33]). This method involves random sampling of the input vector of random

variables (also referred to as the stochastic parameter space) and the numerical solution

of the deterministic PDE at each of the sample points. In addition to the benefits of

simple implementation and a natural decoupling of the stochastic and spatial degrees of

freedom, MC methods feature a convergence rate that is independent of the dimension of the

stochastic space, making it particularly attractive for high-dimensional problems. However,
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the convergence, O(M�1/2) where M is the number of samples, is in general very slow.

Especially in the case the stochastic space is only of moderate dimension and the solution

of the PDE or a functional of interest is smooth with respect to the random parameters,

better convergence rates can be achieved using more sophisticated methods. Other ensemble-

based methods, including quasi-MC and importance sampling (see [69, 53, 88] and the

references therein), have been devised to increase convergence rates, e.g., proportional to

M�1 log(M)r(N), however, the function r(N) > 0 increases with dimension N . Moreover,

since both MC and quasi-MC are quadrature techniques for QoIs, neither have the ability

to simultaneously provide an approximation to the solution map y 7! u(y), required by a

large class of applications.

In the last decade, two global polynomial approaches have been proposed that often

feature fast convergence rates: intrusive stochastic Galerkin (SG) methods, based on pre-

defined orthogonal polynomials [41, 99], or best M -term and quasi-optimal approaches [18,

23, 94, 6]; and non-intrusive stochastic collocation (SC) methods, based on (sparse) global

Lagrange interpolating polynomials [2, 71, 70], orthogonal polynomial basis expansion [29],

or even local hierarchical basis functions [47, 64]. These methods converge rapidly when the

PDE solution u(y) is highly regular with respect to y, a property evident in a wide class of

high-dimensional applications.

Stochastic Galerkin methods based on global polynomials [41, 99] seek an approximation

to the solution map u(y) through projection into a given multidimensional polynomial

space. The drawback to this method is that this projection is done simultaneously with

the Galerkin projection of the physical problem, leading to large linear systems which

couple the physical and random degrees of freedom. Though they feature spectral rates

of convergence, the computational e↵ort required to solve the Stochastic Galerkin systems

is generally only feasible in for simpler problems (1.1). The work [27] shows that in terms

of computational work versus error, Galerkin methods in general fall behind non-intrusive

interpolation methods in all but the simplest cases.

Stochastic collocation (SC) methods [2, 71, 70] are similar to MC methods in the sense

that they involve only the independent solution of a sequence of deterministic PDEs at

given sample points in the stochastic space. However, rather than approximating QoIs

3



through random sample averages, SC methods attempt to reconstruct the coe�cients to a

(global) polynomial approximation to the function u(y) only through these point values. This

reconstruction is commonly based on (sparse) Lagrange interpolation [2, 71, 70], discrete L2

projections [65, 66], or compressed sensing [19, 79, 80, 34]. For problems where the solution

is a smooth function of the random input variables and the dimension of the stochastic space

is moderate, SC methods based on global polynomials have been shown to converge much

faster than MC methods [2, 71, 70].

With this motivation in mind, this work considers the problem of e�cient approximation

of multi-dimensional functions and integrals by global polynomial methods. Our contri-

butions to this e↵ort may be divided into roughly two main avenues of thought: Part I

looks at how to exploit the structure of fully discrete stochastic collocation solutions to

drastically—and provably—reduce the computational complexity of solving random PDEs,

and thus mitigate the curse of dimensionality. In Part II, we explore the problem of choosing

“good” points for both multidimensional interpolation and interpolatory quadrature. Here

we take a step back from the random PDE setting, and consider just the problem of

multidimensional approximation, noting that the analysis easily applies to collocation

methods for solving random PDEs in the interpolation case, and in the quadrature case the

analogy is to quadrature approximation of multidimensional integral QoIs. “Good points”

in the interpolation setting means that the points have a Lebesgue constant that grows

at a reasonable rate, and hence can be used to construct an accurate approximation with

few samples. In this respect, we prove that the Leja sequence is a promising point set for

interpolation. In the quadrature setting, we show that we can improve the convergence

rates for multidimensional quadratures by using conformal mappings to transform classical

interpolatory quadrature rules.

1.1 Complexity of Stochastic Collocation Methods

As described above, this work focuses on methods of multidimensional interpolation. In our

case, the dependence of the solution u of the random PDE (1.1) on the multidimensional

parameter y 2 RN is approximated via a global polynomial interpolation scheme based on
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evaluations of u. We can justify the choice of global polynomials in the situation where

the parameter dependence of u is very smooth, as is the case in the parametric PDEs

considered in this work. Note the the regularity requirements could be relaxed when the

constructions use local polynomial bases such as wavelets, splines, etc; see [47, 38]. A typical

multidimensional polynomial interpolant used in this work can be written

u(y) ⇡ IM [u](y) =
MX
j=1

cj j(y), (1.2)

where the { j}Mj=1

are a global polynomial basis, and the M coe�cients {cj}Mj=1

are

determined by the evaluation of u at certain sample points, i.e., {u(yj)}Mj=1

. Here we note

that in the case of random PDEs, the “evaluations” {u(yj)}Mj=1

, and hence the coe�cients

{cj}Mj=1

, are actually functions from the solution space of the deterministic problem, e.g.,

u(y) 2 H1

0

(D) for almost every y. Moreover, as solutions to PDEs, in practice these sample

evaluations are only computed approximately, and depending on the underlying model, may

be quite expensive to approximate.

1.1.1 Multilevel Methods for Stochastic Problems

In Chapter 4, we introduce a multilevel stochastic collocation (MLSC) approach for reducing

the computational cost incurred by standard, i.e., single level, SC methods. Drawing

inspiration from multigrid solvers for linear equations, the main idea behind multilevel

methods is to utilize a hierarchical sequence of spatial approximations to the underlying

PDE model that are then combined with a related sequence of stochastic discretizations,

i.e., the interpolant (1.2) for several di↵erent values of M , in such a way as to minimize

computational cost.

Starting with the pioneering works [52] in the field of integral equations and [42] in the

field of computational finance, the multilevel approach has been successfully applied to many

applications of MC methods; see, e.g., [5, 15, 26, 44, 43, 54, 67]. The MLSC method proposed

in this chapter is similar to the construction found in [8], where the authors propose to adapt

the resolution of the spatial and stochastic discretizations to reduce the total degrees of
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freedom. In contrast, our construction provides the flexibility of optimizing the interpolation

operators used at each level of discretization to minimize computational cost. Our method is

also similar to the multilevel quadrature approximations of moments of the solution studied

in [50, 51], which consider quasi-MC, polynomial chaos and collocation schemes. However,

our focus is on the analysis of the computational complexity of the multilevel interpolation

algorithms which also includes results for functionals of the solution. In particular, we prove

new interpolation error bounds on functionals of the solution that are needed for the analysis

of the MLSC methods.

Our major contribution to the area of multilevel methods, described in Chapter 4, is

to provide a rigorous convergence and computational cost analysis of the novel multilevel

stochastic collocation method in the case of elliptic equations, demonstrating its advantages

compared to standard single-level stochastic collocation approximations (1.2), as well as

multilevel MC methods. We also provide numerical results which corroborate the theory,

and discuss practical implementation issues.

1.1.2 Acceleration of Stochastic Collocation Methods

The dominant cost in applying any non-intrusive approach such as (1.2) lies in the solution

of the underlying linear/nonlinear PDEs (1.1) for a large set of values of y. In practice,

solutions to the deterministic PDEs are often computed using iterative solvers, e.g., conjugate

gradient (CG) methods for symmetric positive-definite linear systems, generalized minimal

residual method (GMRES) for non-symmetric linear systems [81], and fixed-point iteration

methods [78] for nonlinear PDEs. Several methods for improving the performance of iterative

solvers have been proposed, especially subspace and preconditioner methods for iterative

Krylov solvers. A strategy utilizing shared search directions for solving a collection of linear

systems based on the CG method is proposed in [13]. In [74], a technique called Krylov

recycling was introduced to solve sets of linear systems sequentially, based on ideas adapted

from restarted and truncated GMRES (see [83] and the references therein). We refer to

[56, 40, 77, 30, 45] for applications of improved Krylov solvers and preconditioners in SG

approximation.
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On the other hand, for a general iterative method, improved initial approximations can

also significantly reduce the number of iterations required to reach a prescribed accuracy.

A sequential orthogonal expansion is utilized in [40, 75], such that a low resolution solution

provides an initial guess for the solution of the system with an enriched basis. However, at

each step, all the expansion coe�cients must be explicitly recomputed, resulting in increased

costs. In [45], an extension of a mean-based preconditioner is applied to each linear system

in the SC approach, wherein the solution of the j-th system is given as the initial vector for

the (j+1)-th system. This approach, as well as the Krylov recycling method, imposes a full

ordering of the linear systems that appear in the SC approximation, rather than the loose

“level-by-level” ordering we adopt.

In Chapter 5, we propose to accelerate, i.e., to improve the computational e�ciency,

of non-intrusive approximations, focusing on SC approaches that construct a sequence of

multi-dimensional Lagrange interpolants in a hierarchical sequence of polynomial spaces. As

opposed to the multilevel methods described above, which reduce the overall computational

burden by taking advantage of a hierarchical spatial approximation, our approach exploits

the structure of the SC interpolant to accelerate the solution of the underlying ensemble

of deterministic solutions. Specifically, we predict the solution of the parametrized PDE at

each collocation point using a previously assembled lower fidelity interpolant constructed

on a subset of the high fidelity collocation grid. We then use this prediction to provide

deterministic (linear/nonlinear) iterative solvers with initial approximations which continue

to improve as the algorithm progresses through the levels of the interpolant. As a particular

application, we pose this acceleration technique in the context of hierarchical SC methods

that employ sparse tensor products of globally defined Lagrange polynomials [71, 70], on

nested one-dimensional Clenshaw-Curtis abscissas. However, the same idea can be extended

to other non-intrusive collocation approaches including orthogonal polynomials [99], as well

as piecewise wavelet polynomials expansions [11, 47].

The major result of Chapter 5 is to prove that this accelerated collocation algorithm

provides a reduction in computational complexity versus methods employing a naive iterative

solver approach. We also apply a similar technique to provide good preconditioners at
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a reduced cost. Numerical examples for random PDEs with both linear and nonlinear

underlying physical problem are given to support the theory.

1.2 E�cient point sets for Multidimensional Interpo-

lation and Interpolatory Quadrature

The second line of thought, considered in Part II, explores the problem of choosing good

points for multidimensional interpolation and interpolatory quadrature. As mentioned above,

rather than the random PDE setting above, in Chapters 6 and 7 we only consider the problem

of multidimensional approximation, noting that the analysis easily applies to collocation

methods for solving random PDEs, or for computing multidimensional integrals for QoIs in

the quadrature case.

1.2.1 Polynomials and Potential Theory

In the approximation of higher dimensional interpolation problems we may be willing to

sacrifice some stability, i.e., allow a larger growth-rate for the Lebesgue constant, in exchange

for more flexibility in choosing the number of multi-dimensional interpolation points. This

flexibility is lacking in the standard Smolyak sparse grids based on Gauss–Legendre and

Clenshaw–Curtis abscissa, where, especially in higher dimensions, the size of the set of

multidimensional interpolation points grows very rapidly as the fidelity of the sparse grid

approximation is increased. A popular choice in recent years are the Leja points [68]. For the

compact domain [�1, 1] ⇢ R, these are defined recursively: given a point y
0

, for n = 1, 2, . . . ,

define the next Leja point as

yn = argmax
y2[�1,1]

n�1Y
j=0

|y � yj| . (1.3)

There is still some ambiguity in this definition, since the maximum may be attained at

several points. For our purposes, we may choose any maximizer yn without a↵ecting the

analysis.
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In addition, by introducing an appropriate weight function w : R ! [0, 1], we may also

define the Leja sequence for weighted interpolation on the real line. Given a point x
0

, for

n � 1 we recursively define:

yn = argmax
y2R

(
w(y)

n�1Y
j=0

|y � yj|
)
. (1.4)

As above, any maximizer is suitable, so we are not worried about the ambiguity in this

definition. We make specific assumptions on the class of weight functions in §6.2, but mention

that this class includes the commonly encountered Gaussian density, w(y) = e�y2 .

The works [37, 68] show that a contracted version of the weighted Leja sequence (1.4)

is asymptotically Fekete. Specifically, this means that we first multiply the weighted Leja

sequence by a contraction factor, i.e.,

yn,j := n�1/↵yj, j = 0, . . . , n, (1.5)

for some appropriate real number ↵ = ↵(w) > 1, depending on the weight w. Then the

discrete point-mass measures µn giving weight 1/(n+1) to each of the first n+1 contracted

Leja points, i.e.,

µn :=
1

n+ 1

nX
j=0

�{y
n,j

}, (1.6)

converge weak⇤, as n ! 1, to an equilibrium measure on a compact subset of R. In other

words, the Leja points asymptotically distribute similar to Fekete points, which are known

to be a “good” set of points for interpolation (see §6.2.1 for a precise, potential theoretic

explanation).

In fact, the asymptotically Fekete property is a necessary (but not su�cient) property

for a set of points to have a subexponentially growing Lebesgue constant, and motivates our

study of the weighted Leja sequence for Lagrange interpolation. Our contribution, given in

Chapter 6, is to show that for a general class of weight functions w, the Lebesgue constant

for Lagrange interpolation on the weighted Leja sequence (1.4) grows subexponentially in

n. This result mirrors the best known results for the standard Leja points, and gives some
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theoretical justification for the use of weighted Leja points for interpolation in unbounded

domains.

1.2.2 Sparse Quadrature Rules with Conformal Mappings

Standard interpolatory quadrature methods, such as Gauss–Legendre and Clenshaw–Curtis,

tend to have points which cluster near the endpoints of the domain. As seen in the well-known

interpolation example of Runge, this can mitigate the spurious e↵ects of the growth of the

polynomial basis functions at the boundary. However, this clustering can be problematic and

ine�cient in some situations. Gauss–Legendre and Clenshaw–Curtis grids, with n quadrature

points on [�1, 1], are spaced asymptotically as n

⇡
p

1�y2
[60]. Hence these clustered grids may

have a factor of ⇡/2 fewer points near the middle of the domain, compared with a uniform

grid. This may have unintended negative e↵ects in certain situations, and the issue is

compounded when considering integrals over high-dimensional domains.

For numerical integration of an analytic function in one dimension, the convergence of

quadrature approximations based on orthogonal polynomial interpolants depends crucially

on the size of the region of analyticity, which we denote by ⌃. More specifically, they depend

on ⇢, the parameter yielding the largest Bernstein ellipse, which is defined as

E⇢ := {z 2 C : z +
1

z
 ⇢}, (1.7)

contained in region of analyticity ⌃ [96]. This gives some intuition as to why the most stable

quadrature rules place more nodes toward the boundary of the domain [�1, 1]; since the

boundary of E⇢ is close to {±1}, the analyticity requirement is weaker near the endpoints

of the domain. More specifically, to be analytic in E⇢, the radius of the Taylor series of f

at {±1} is only required to be ⇢� 1/⇢, while the radius of the Taylor series centered at 0 is

required to be at least ⇢+ 1/⇢.

On the other hand, the appearance of the Bernstein ellipse in the analysis is not

tied fundamentally to the integrand, but only to the choice of polynomials as basis

functions [49]. Thus, we may consider other types of quadrature rules which still take

advantage of the analyticity of the integrand. Using non-polynomial functions as a basis
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for the rule may improve the convergence rate of the approximation. Much research has

gone into investigating ways to find the optimal quadrature rule for a function analytic

in ⌃, and to overcome the aforementioned “⇡/2-e↵ect”, including end-point correction

methods [1, 63, 57], non-polynomial based approximation [9, 7, 16, 84, 98], and the

transformation methods [31, 46, 49, 58, 59, 76, 85] which map a given set of quadrature points

to a less clustered set. In this chapter, we consider the transformation approach, based on

the concept of conformal mappings in the complex plane. Many such transformations have

been considered in the literature, but we consider here the transformations from [49], which

o↵er the following benefits: (1) practical and implementable maps; and (2) simple concepts

leading to theorems which may precisely quantify their benefits in mitigating the e↵ect of

the endpoint clustering.

Our contribution to this line of research, given in Chapter 7, is to implement and analyze

the application of the transformed rules to sparse grid quadratures in the high-dimensional

setting. For high-dimensional integration over the cube [�1, 1]d, the endpoint clustering

means that a simple tensor product quadrature rule may use (⇡/2)d too many points. On

the other hand, we show that for sparse Smolyak quadrature rules based on tensorization of

transformed one-dimensional quadrature, this e↵ect may be mitigated to some degree. We

provide an analysis of the sparse grid mapped method to show that the improvement in the

convergence rate to a d-dimensional integral is (⇡/2)1/⇠(d), where ⇠(d)�1 � d.
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Part I

Complexity of Stochastic Collocation

Methods
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Chapter 2

Problem Setting

In this chapter, we describe in more detail the uncertainty quantification problem (1.1) of

PDEs with coe�cients modeled as random coe�cients. We make the necessary assumptions

and definitions so that the linear/nonlinear problem is well defined and has an appropriate

weak form, and discuss the spatial discretization to the underlying physical problem.

2.1 Random/Parameterized PDEs

Let D ⇢ Rd, d = 1, 2, 3, be a bounded domain, and (⌦,F ,P) denote a complete probability

space, where ⌦ is the sample space, F ✓ 2⌦ is a �-algebra, and P is the associated probability

measure. Define D(a) as a di↵erential operator that depends on a random field a(x,!) with

(x,!) 2 D ⇥ ⌦. The forcing term f = f(x,!) can be assumed to be a random field in

an analogous way. Then we make the previous stochastic parameterized boundary value

problem precise: find a stochastic function u : D ⇥ ⌦! R, such that it holds P-a.e. in ⌦

D(a)[u] = f in D, (2.1)

subject to suitable (possibly parameterized) boundary conditions.

In many applications, the source of uncertainty can be approximated with only a finite

number of uncorrelated, or even independent, random variables. For instance, a and f in

(2.1) may have a piecewise representation, or have spatial variation that can be modeled as
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a correlated random field, making them amenable to approximation by a Karhunen-Loève

(KL) expansion [62]. In practice, one has to truncate such expansions according to the

desired accuracy of the simulation. As such, we make the following assumption regarding

the random input data a and f (cf [48, 71]).

Assumption A1. (Finite dimensional noise) The random fields a and f have the form:

a(x,!) = a(x,y(!)) and f(x,!) = f(x,y(!)) on D ⇥ ⌦,

where y(!) = [y
1

(!), . . . , yN(!)] : ⌦! RN is a vector of uncorrelated random variables.

Assumption A1 is naturally satisfied by random fields that only depend on a finite set of

parameters, e.g.,

a(x,!) = a(x,y(!)) = a
0

+
NX

n=1

yn(!)an(x), {an}Nn=0

⇢ L2(D),

where y(!) is a vector of independent random variables. If this is not the case,

approximations of a that satisfy Assumption A1 can be obtained by appropriately truncating

a spectral expansion such as the Karhunen-Loève expansion [23, 41]. This introduces an

additional error; see [71] for a discussion of the e↵ect of this error on the convergence of

stochastic collocation methods and [35, 14] for bounds on the truncation error. As an

alternative to truncating infinite expansions, one can also consider using dimension-adaptive

sparse grids as interpolation operators. For more details on this type of approximation, we

refer the reader to [17, 39].

Another setting having a finite number of random variables occurs when the coe�cient a

and the forcing function f depends on a finite number of independent scalar random physical

parameters, e.g., di↵usivities, reaction rates, porosities, elastic moduli, etc. In this case, each

of the N parameters would have its own PDF %n(yn), n = 1, . . . , N , so that the joint PDF

is now given by %(y) =
QN

n=1

%n(yn). The algorithms discussed in part I apply equally well

to this setting. In the past several years, there has been much research on PDEs which

depend on a countably-infinite dimensional parameter [17, 18, 23]. These works are able to

show that for many random PDE problems, the solution map is su�ciently smooth so as
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to have a best-M term polynomial expansion which converges with dimension-independent

convergence rates. This analysis provides a rigorous theoretical justification for the use of

global polynomial reconstructions methods, and relies on complex analyticity assumptions on

u similar to those we consider below. On the other hand, practical algorithms for constructing

solutions to countably infinite problems are not well developed; see [94].

Now Assumption A1 and the Doob-Dynkin lemma [73] guarantee that a(x,y(!)) and

f(x,y(!)) are Borel-measurable functions of the random vector y : ⌦! RN . In our setting,

we let �n = yn(⌦) ⇢ R be the image of the random variable yn, and set � =
QN

n=1

�n,

for N 2 N
+

. If the distribution measure of y(!) is absolutely continuous with respect

to the Lebesgue measure, there exists a joint probability density function of y(!) denoted

by %(y) : � ! R
+

, with %(y) =
QN

n=1

%n(yn). Therefore, based on Assumption A1, the

probability space (⌦,F ,P) is mapped to (�,B(�), %(y)dy), where B(�) is the Borel �-algebra
on � and %(y)dy is a probability measure on B(�). Assuming the solution u of (2.1) is �-

measurable with respect to a and f , the Doob-Dynkin lemma guarantees that u(x,!) can

also be characterized by the same random vector y, i.e., u(x,!) = u(x, y
1

(!), . . . , yN(!)).

Let W (D) be a Banach space, and in addition to Assumption A1, assume the random

input data are chosen so that the stochastic system (2.1) is well-posed and has a unique

solution u in the weighted Bochner spaces Lq
%(�;W (D)), which for 1  q  1 are defined

by

Lq
%(�;X(D)) =

n
v : �! W (D) | v is strongly meas. and kvkLq

%

(�;W (D))

< 1
o

with corresponding norm k · kLq

%

(�;W (D))

given by

kvkq
Lq

%

(�;W (D))

=

Z
�

kv(·,y)kqW (D)

%(y)dy.

Note that the above integral will be replaced by the %-essential supremum when q = 1.

In this setting, the solution space consists of Banach-space valued functions that have finite

q-th order moments. Two example problems posed in this setting are given as follows.
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Example 2.1. (Linear elliptic problem). Find u : D ⇥ �! R such that %-a.e.8<: �r · (a(x,y)ru(x,y)) = f(x,y) in D ⇥ �,
u(x,y) = 0 on @D ⇥ �,

(2.2)

where the well-posedness of (2.2) is guaranteed in L2

%(�;H
1

0

(D)) with a(x,y) uniformly

elliptic, i.e., for %-a.e. y 2 �,

a
min

 ka(x,y)kL1
(D)

 a
max

with a
min

, a
max

2 (0,1), (2.3)

and f(x,y) square integrable, i.e.,
R
D

R
�

f 2(x,y) d%(y)dx < +1. We note that well-

posedness can also be established in a stochastic sense; c.f. [14]. We also remark that the

uniform ellipticity can be relaxed in certain situations, e.g., in groundwater flow problems

where � is an unbounded domain [2, 15, 93].

Example 2.2. (Nonlinear elliptic problem). For k 2 N, find u : D⇥�! R such that %-a.e.8<: �r · (a(x,y)ru(x,y)) + u(x,y)|u(x,y)|k = f(x,y) in D,

u(x,y) = 0 on @D.
(2.4)

The well-posedness of (2.4) is guaranteed in L2

% (�;W (D)) with a, f as in Example 2.1 and

W (D) = H1

0

(D) \ Lk+2 (D) [71].

2.1.1 Spatial Approximation

In what follows, we treat the solution to (2.1) as a parameterized function u(x,y) of the

N -dimensional random variables y 2 �. Moreover, since the solution u can be viewed as a

mapping u : � ! W (D), for convenience we may omit the dependence on x 2 D and write

u(y) to emphasize the dependence of u on y. This leads to a general weak formulation [48]

of the PDE in (2.1),

Z
D

 X
⌫2⇤

1

[⇤
2

S⌫(u(y);y)T⌫(v)

!
dx =

Z
D

f(y) v dx, 8v 2 W (D), %-a.e. in �. (2.5)

16



Here T⌫ , ⌫ 2 ⇤
1

[⇤
2

are linear operators independent of y, while the operators S⌫ are given

to be linear for ⌫ 2 ⇤
1

, and nonlinear for ⌫ 2 ⇤
2

. Thus, the stochastic parameterized

boundary-value problem (2.1) has been converted into a deterministic parametric problem

(2.5).

Let {'i}Mh

i=1

be a finite element (FE) basis of the space Wh(D) ⇢ W (D). A general SC

approach requires an approximate solution uh(·,y) 2 Wh(D)

uh(x,yL,j) =
M

hX
i=1

cL,j,i 'i(x), j = 1, . . . ,ML. (2.6)

at a set of points {yL,j}ML

j=1

⇢ �. The vector cL,j := (cL,j,1, . . . , cL,j,M
h

)> solves

M
hX

i=1

cL,j,i

Z
D

X
⌫2⇤

1

S⌫ ('i;yL,j) T⌫('i0) dx (2.7)

=
R
D
f(yL,j)'i0 �

P
⌫2⇤

2

S⌫

⇣PM
h

i=1

cL,j,i 'i;yL,j

⌘
T⌫('i0) dx, i0 = 1, . . . ,Mh,

for j = 1, . . . ,ML, with S⌫ and T⌫ defined as above. Note that for uh, (2.7) is equivalent

to (2.5) with the nonlinear operators subtracted on the right hand side. When ⇤
2

= ;, the
PDE is linear, and a standard FE discretization leads to a linear system of equations. We

consider only the linear form in Chapter 4, while in Chapter 5, we consider both linear and

nonlinear equations. Because each chapter relies on specific assumptions about the spatial

discretization used, we delay discussion of convergence rates to the individual chapters.
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Chapter 3

Sparse Grid Interpolation

The algorithms described later in Part I will apply to a broad class of multidimensional

approximation methods. Recall that we have defined a general polynomial interpolant

in (1.2). In this chapter, however, we discuss a specific version of such an interpolant, namely

sparse grid collocation based on globally defined Lagrange polynomials. This interpolant will

satisfy the specific assumptions we make for general interpolation algorithms in the following

chapters. Furthermore, we will analyze in detail the application of the multilevel and

acceleration methods of Chapters 4 and 5, respectively, to global sparse grid interpolation.

3.1 Sparse Grid Construction

The construction of the interpolant in the N -dimensional space � =
QN

n=1

�n is based

on sequences of one-dimensional Lagrange interpolation operators {U p(l)
n }l2N : C0(�n) !

Pp(l)�1

(�n), where Pp(�n) denotes the space of polynomials of degree p on �n. In particular,

for each n = 1, . . . , N , let l 2 N
+

denote the one-dimensional level of approximation and

let {y(l)n,j}
p(l)
j=1

⇢ �n denote a sequence of one-dimensional interpolation points in �n. Here,

p(l) : N
+

! N
+

is such that p(1) = 1 and p(l) < p(l + 1) for l = 2, 3, . . ., so that p(l) strictly

increases with l and defines the total number of collocation points at level l. For a univariate
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function v 2 C0(�n), we define U p(l)
n by

U p(l)
n [v](yn) =

p(l)X
j=1

v
�
y(l)n,j

�
'(l)
n,j(yn) for ln = 1, 2, . . . , (3.1)

where '(l)
n,j 2 Pp(l)�1

(�n), j = 1, . . . , p(l), are Lagrange fundamental polynomials of degree

p(l)� 1, which are completely determined by the property '(l)
n,j(y

(l)
n,i) = �i,j.

Using the convention that U p(0)
n = 0, we introduce the di↵erence operator given by

�p(l)
n = U p(l)

n � U p(l�1)

n . (3.2)

For the multivariate case, we let l = (l
1

, . . . , lN) 2 NN denote a multi-index and L 2 N
+

denote the total level of the sparse grid approximation. We also let g(l) : NN
+

! N
+

be a

strictly increasing function, defining a mapping between the multi-index l and the sparse grid

level L. Now, from (3.2), the L-th level generalized sparse-grid approximation of v 2 C0(�)

is given by

Ap,g
L [v](y) =

X
g(l)L

�
�p(l

1

) ⌦ · · ·⌦�p(l
N

)

�
[v](y)

=
X

g(l)L

X
i2{0,1}N

(�1)|i|
�
U p(l

1

�i
1

) ⌦ · · ·⌦ U p(l
N

�i
N

)

�
[v](y),

(3.3)

where i = (i
1

, . . . , iN) is a multi-index with in 2 {0, 1}, |i| = i
1

+ · · ·+ iN .

This approximation lives in the tensor product polynomial space P
⇤

p,g

L

given by

P
⇤

p,g

L

= span

(
NY

n=1

ylnn

���� l 2 ⇤p,g
L

)
,

where the multi-index set is defined as follows

⇤p,g
L =

⇢
l 2 NN

���� g(p†(l+ 1))  L

�
.

Here p†(l) = (p†(l
1

), . . . , p†(lN)), and p†(l) := min{w 2 N
+

: p(w) � l} is the left inverse

of p (see [3, 48]). The approximation (3.3) requires the independent evaluation of v on a
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deterministic set of distinct collocation points given by

Hp,g
L =

[
L�N+1g(l)L

Y
1nN

�
ylnn,j

 p(l
n

)

j=1

having cardinality ML. Some examples of functions p(l) and g(l) and the corresponding

polynomial approximation spaces are given in Table 3.1. In the last example in the table

↵ = (↵
1

, . . . ,↵N) 2 RN
+

is a vector of weights reflecting the anisotropy of the system,

i.e., the relative importance of each dimension [70]; we then define ↵min := min
n=1,...,N

↵n.

The corresponding anisotropic versions of the other approximations and corresponding

polynomial subspaces can be analogously constructed.

Table 3.1: The functions p : N
+

! N
+

and g : NN
+

! N and the corresponding multiindex
subspaces.

Multiindex Space p(l) g(l)

Tensor product p(l) = l max
1nN

(ln � 1)

Total degree p(l) = l
PN

n=1

(ln � 1)

Hyperbolic cross p(l) = l
QN

n=1

(ln � 1)

Sparse Smolyak p(l) = 2l�1 + 1, l > 1
PN

n=1

(ln � 1)

Anisotropic Sparse Smolyak p(l) = 2l�1 + 1, l > 1
PN

n=1

↵
n

↵
min

(ln � 1), ↵ 2 RN
+

For Smolyak multiindex spaces, the most popular choice of points are the sparse grids

based on the one-dimensional Clenshaw-Curtis abscissas [21] which are the extrema of

Chebyshev polynomials, including the end-point extrema. For level l, and in the particular

case �n = [�1, 1] and p(l) > 1, the resulting points are given by

yln,j = � cos

✓
⇡(j � 1)

p(l)� 1

◆
for j = 1, . . . , p(l). (3.4)
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In particular, in the Sparse Smolyak construction from Table 3.1, the choice

p(1) = 1, p(l) = 2l�1 + 1 for l > 1, and g(l) =
NX

n=1

(ln � 1). (3.5)

results in a nested family of one-dimensional abscissas, i.e.,
�
yln,j

 p(l)

j=1

⇢
�
yl+1

n,j

 p(l+1)

j=1

. Here,

the sparse grids are also nested, i.e.,

Hp,g
L ⇢ Hp,g

L+1

.

This corresponds to the most widely used sparse-grid approximation, as first described in

[86]. This is the typical choice we will make in the following chapters, however much of the

analysis does not depend strongly on this choice ofm and g, and we could use other functions,

e.g., anisotropic approximations. We remark also that other nested families of sparse grids

can be constructed from, e.g., the Leja points [25], Gauss-Patterson [95], Newton-Cotes, etc.

Remark 3.1. In general, the growth rate p(l) can be chosen as any increasing function

on N. However, for non-nested point families, such as standard Gaussian abscissas, the

approximation (3.3) is no longer guaranteed to be an interpolant, but the analysis of the

approximation error remains similar to the analysis presented here (see [71] for more details).

3.2 Lagrange Interpolating Formulation

When the multidimensional point sets are nested, the approximation Ap,g
L [v] is a Lagrange

interpolating polynomial [71], and thus (3.3) can be rewritten as a linear combination of

Lagrange basis functions,

Ap,g
L [v](y) =

M
LX

j=1

v(yL,j) L,j(y)

=
M

LX
j=1

v(yL,j)
X

l2J (L,j)

X
i2{0,1}N

(�1)|i|
NY

n=1

 l
n

�i
n

k
n

(j) (yn)| {z }
 

L,j

(y)

,
(3.6)
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where the index set J (L, j) is defined by

J (L, j) =

(
l 2 NN

+

����� g(l)  L and yL,j 2
NO

n=1

#p(l
n

�i
n

) with i 2 {0, 1}N
)
,

and #p(l
n

) = {ylnn,1, . . . , ylnn,p(l
n

)

} ⇢ �n.

For a given L and j, this represents the subset of multi-indices corresponding to the

tensor-product operators U p(l
1

�i
1

) ⌦ · · ·⌦U p(l
N

�i
N

) in (3.3) with the supporting point yL,j.

Then for each l 2 J (L, j) and i 2 {0, 1}N , the function
QN

n=1

 l
n

�i
n

k
n

(j) (yn) with kn(j) 2
{1, . . . , p(ln � in)}, n = 1, . . . , N , represents the unique Lagrange basis function for the

operator U p(l
1

�i
1

)⌦· · ·⌦U p(l
N

�i
N

) corresponding to yL,j. Therefore, the functions { L,j}ML

j=1

are given by a linear combination of tensorized Lagrange polynomials satisfying the “delta

property”, i.e.,  L,j0(yL,j) = �jj0 for j, j0 = 1, . . . ,ML. We require an interpolant of this form

for our analysis in Chapter 5; see (5.1).

3.3 Convergence of Sparse Grid Collocation

In this section, we examine the convergence of the sparse grid interpolation methods

described above. We will give two lemmas, the first regarding convergence in terms of

the number of points, ML, and the second in terms of the sparse grid level L.

We first need some understanding of the regularity of the solution u : �! H1

0

(D) to the

parameterized elliptic PDE described in Example 2.1. As such, we require the additional

assumption on the regularity of the coe�cient a:

Assumption A2. Assume that a : � ! L1(D) has a holomorphic complex continuation

a⇤ : CN ! L1(D).

Next, we use assumption A2 to show that the approximate PDE solutions uh
k

are analytic

in a region ⌃(⇢) ⇢ CN . For ⇢ = (⇢
1

, . . . , ⇢N) 2 (1,1)N , this region will have the form

⌃(⇢) =
Y

1nN

⌃(n; ⇢n) ⇢ CN , (3.7)
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where ⌃(n; ⇢n) denotes the region bounded by the Bernstein ellipse,

⌃(n; ⇢n) =

⇢
1

2

�
zn + z�1

n

�
: zn 2 C, |zn| = ⇢n

�
.

The set ⌃(⇢) ⇢ CN is the product of ellipses in the complex plane, with foci zn = ±1, which

are the endpoints of the domain �n, n = 1, . . . , N . Such ellipses are common in proving

convergence results for global interpolation schemes. Chapter 7 contains a more thorough

examination of these ellipses in global polynomial approximations.

The following result on the analyticity of the solution u is proved in [23, Theorem 1.2]

and [94, Lemma 3.3 and Theorem 2.5].

Lemma 3.1.1. (Analyticity of the PDE solution u) Under the assumption A2, there exists

⇢ = (⇢
1

, . . . , ⇢N) 2 (1,1)N such that the complex extension of u to the polyellipse ⌃(⇢),

u⇤ : ⌃(⇢) ! H1

0

(D) is well-defined and analytic in an open region containing ⌃(⇢).

In §4.4, we will also show that Assumption A2 leads to analyticity of certain functionals

of the solution. Note that with less regularity in the solution, we might use local basis

functions such as wavelets or splines to construct the interpolant [47, 64].

For a function v which admits an analytic extension in a polyellipse, convergence with

respect to the total number of collocation points for the tensor product, sparse isotropic,

and anisotropic Smolyak approximations (see Table 3.1), using both Clenshaw–Curtis and

Gaussian nodes, was analyzed in [2, 71, 70]. We restate the result here.

Theorem 3.2. Let W denote a general Banach space and let v 2 C0(�;W ) admit an analytic

extension in the complex polyellipse ⌃(⇢). Then, with r = min
1nN ⇢n, there exist constants

C(N) and µ(r,N), depending on N , such that

kv �Ap,g
L vkL2

%

(�;W )

 C(N)M�µ(r,N)

L ⇣(v),

where ML is the number of points used by Ap,g
L and

⇣(v) ⌘ max
z2⌃(⇢)

kv(z)kW . (3.8)
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Note that this estimate is not the best possible asymptotic estimate. Yet, it is satisfactory

for the MLSC examined in Chapter 4, which combines several di↵erent levels Lk into the

approximation. Some of the levels in the multilevel construction may be too small for the

asymptotic theory to apply, and so we take a safer estimate.

Remark 3.3. Dimension-dependent convergence rate. The asymptotic rate of

convergence µ = µ(r,N) in general deteriorates with growing dimension N of the stochastic

space. For example, we have µ = r/N in the tensor product case, and for Smolyak sparse

grids this is improved to µ = r/ log(N). The use of sparse grid SC methods is hence only

of interest for dimensions N for which µ � 1/2 so that the error still converges faster than

the corresponding Monte Carlo sampling error. The multilevel approximation presented in

Chapter 4 su↵ers from the same deterioration of convergence rate, and roughly speaking, the

MLSC method can improve on the multilevel Monte Carlo method only when standard SC

performs better that standard Monte Carlo; see [22, Theorem 4.1].

Remark 3.4. Anisotropic sparse grid approximations. To define anisotropic Smolyak

approximations, we introduce a weight vector ↵ = (↵
1

, . . . ,↵N) into the definition of g to

reflect the relative importance of each dimension when selecting points, e.g., the anisotropic

sparse Smolyak space uses p(l) = 2l�1 + 1, l > 1 and g(l) =
PN

n=1

↵
n

↵
min

(ln � 1). The weight

↵n is related to the size of the largest Bernstein ellipse ⌃ on which the map u : �n !
C0(

Q
j 6=n �n,W ) can be analytically extended. These weights can be computed either a priori

or a posteriori; see [70, section 2.2]. For an isotropic grid, all the components of the weight

vector ↵ are the same so that one has to take the worst case scenario, i.e., choose the

components of ↵ to all equal to the minimum ↵min.

In § 5.3.1, we will also require estimates on the convergence in terms of the sparse grid

level L 2 N+. Again, this can be given by a restatement of a result from [71, 70]. According

to Lemma 3.1.1, Assumption A2 implies that u is analytic in a polyellipse ⌃(⇢) given by (3.7).

Then the usual sparse grid convergence theory from [71, 70] gives:
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Lemma 3.4.1. Let u satisfy Assumption A2. For L 2 N+, the interpolation error u�Ap,g
L [u]

of the sparse grid SC method using Clenshaw-Curtis abscissas can be bounded as

ku�Ap,g
L [u]kL1

(�;H1

0

(D))

 C
sc

e�rN2

L/N

,

where, for a constant 0 < � < 1, the rate r = (1 � �)min
1nN log ⇢n, and the constant

C
sc

> 0 depends on N , u, and �.
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Chapter 4

Multilevel Stochastic Collocation

Methods

Some content of the following chapter first appeared (see [92]) in the SIAM/ASA Journal

of Uncertainty Quantification in 2015, published by the Society for Industrial and Applied

Mathematics (SIAM) and the American Statistical Association (ASA). Copyright by SIAM

and ASA. Unauthorized reproduction is prohibited. The author completed this work in

collaboration with Max Gunzburger, Aretha Teckentrup, and Clayton G. Webster. Some

notation has been slightly edited to maintain consistency with other chapters in this

manuscript, and much of the introductory material has been altered

In this chapter, we analyze a multilevel version of the stochastic collocation method

that, as is the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial

approximations to reduce the overall computational complexity. In addition, our proposed

approach utilizes, for approximation in stochastic space, a sequence of multi-dimensional

interpolants of increasing fidelity which can then be used for approximating statistics of

the solution as well as for building high-order surrogates featuring faster convergence rates.

A rigorous convergence and computational cost analysis of the new multilevel stochastic

collocation method is provided in the case of elliptic equations, demonstrating its advantages

compared to standard single-level stochastic collocation approximations as well as MLMC

methods.
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The outline of the chapter is as follows. In §4.1, we introduce some further assumptions on

the parametrization of the random inputs that are used to transform the original stochastic

problem into a deterministic parametric version, and necessary assumptions about the

regularity of the solution of the PDE, which are in addition to the assumptions made

in Chapter 2. A description of the spatial and stochastic approximations as well as the

formulation of the MLSC method follows in §4.2. In §4.3, we provide a general convergence

and complexity analysis for the MLSC method. As an example of a specific single level

SC approach satisfying our interpolation assumptions, in §4.4 we analyze the ML method

using generalized sparse grid stochastic collocation approach based on global Lagrange

interpolation introduced in §3.1. In §4.5, we provide numerical results that illustrate

the theoretical results and complexity estimates and also explore issues related to the

implementation of the MLSC method.

4.1 Further Assumptions

In this chapter, we will work only in basic setting of a linear random PDE (2.2), which

was introduced in Example 2.1. In addition to Assumption A1, we make the following

assumptions on a. We note that some of what is stated in the following has already been

assumed in §2.1, but we restate it here to make the setting more precise.

Assumption A3. (Boundedness) The image �n := yn(⌦) of yn is bounded for all n 2
{1, . . . , N} and, with � =

QN
n=1

�n, the random variables y have a joint probability density

function %(y) =
QN

n=1

e%(yn) 2 L1(�), where e%(·) : [�1, 1] ! R denotes the one-dimensional

PDF corresponding to the probability space of the random fields. Without loss of generality,

we assume that � = [�1, 1]N .

Assumption A4. (Existence and uniqueness) The coe�cient a(x,y) is uniformly bounded

and coercive, i.e., there exists amin > 0 and amax < 1 such that for %-almost every y,

amin  a(x,y)  amax 8x 2 D
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and f 2 H�1(D) is independent of y, so that the problem (2.2) admits a unique solution

u 2 L2

%(�;H
1

0

(D)) with realizations in H1

0

(D), i.e., u(·,y) 2 H1

0

(D) %-almost everywhere.

Assumption A3 can be weakened to include the case of unbounded random variables

such as Gaussian variables. See [2] for an analysis of the interpolation error and note that,

with only minor modifications, the multilevel stochastic collocation method introduced in

this chapter also applies to unbounded random variables. We also consider the problem of

interpolation on unbounded domains in Chapter 6. Furthermore, Assumption A4 can be

weakened to include coe�cients a that are not uniformly coercive; see [15, 93]. Finally, we

remark that the multilevel stochastic collocation method proposed in this chapter is not

specific to the model problem given in Example 2.1; it can be applied also to higher-order

PDEs and other types of boundary conditions.

4.2 Hierarchical multilevel stochastic collocation meth-

ods

We begin by recalling that standard stochastic collocation (SC) methods generally build an

approximation of the solution u by evaluating a spatial approximation uh(·,y) 2 Vh at a

given set of points {ym}Mm=1

in �, where Vh ⇢ H1

0

(D) is a finite-dimensional subspace. In

other words, we compute {uh(·,ym)}Mm=1

. Then, given a basis { m(y)}Mm=1

for the space

PM = span { m(y)}Mm=1

⇢ L2

%(�), we use those samples to construct the fully discrete

approximation given by the interpolant

u(SL)

M,h(x,y) = IM [uh](x,y) =
MX

m=1

cm(x) m(y), (4.1)

where the coe�cients cm(x) are fully determined by the semi-discrete solutions at the

collocation points, uh(x,ym) for m = 1, . . . ,M . In (4.1), we label the standard SC

approximation by ‘SL’ to indicate that that approximation is constructed using a single set of

points {ym}Mm=1

in stochastic space, in contrast to the multilevel approximations considered

below that use a hierarchy of point sets; thus, in this chapter we refer to (4.1) as a single
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level approximation. A wide range of choices for the interpolation points {ym}Mm=1

and basis

functions { m(y)}Mm=1

are possible. A particular example of the approximation (4.1), namely

global Lagrange interpolation on generalized sparse grids, was given in Chapter 3, and will

be analyzed in §4.4
Convergence of the SC approximation (4.1) is often assessed in the natural L2

%(�;H
1

0

(D))-

norm, and the goal is to determine a bound on the error ku� IM [uh]kL2

%

(�;H1

0

(D))

. To obtain

a good approximation with SC methods, it is necessary in general to use accurate spatial

approximations uh and a large number M of collocation points. To determine the coe�cients

cm(x) of the interpolant (4.1), the method requires the computation of uh(·,ym) for m =

1, . . . ,M so that, in practice, the cost can grow quickly with increasing N . Therefore,

to reduce the overall cost, we consider a multilevel version of SC methods that combines

di↵erent levels of fidelity of both the spatial and parameter approximations.

4.2.1 Hierarchical spatial approximations

For spatial approximation, we use a hierarchical family of finite element discretizations [10,

20]. As discussed in [50], the formulation of the multilevel method does not depend on the

specific spatial discretization scheme used and the results readily hold for other choices. For

k 2 N
0

, define a hierarchy of nested finite element spaces

Vh
0

⇢ Vh
1

⇢ · · · ⇢ Vh
k

⇢ · · · ⇢ H1

0

(D),

where each Vh
k

consists of continuous, piecewise polynomial functions on a shape regular

triangulation ⇢h
k

of D having maximum mesh spacing parameter hk. Note that k merely

serves to index the given spaces; the approximation properties of the space Vh
k

is governed

by hk. For simplicity, we assume that the triangulations {⇢h
k

}k2N
0

are generated by iterative

uniform subdivisions of the initial triangulation ⇢
0

; this implies that hk = ⌘�kh
0

for some

⌘ 2 N, ⌘ > 1 and that indeed the corresponding finite element spaces are nested.

Remark 4.1. For simplicity, we have assumed that the finite element family of spaces is

nested, and in fact, are constructed by a series of uniform subdivisions of a parent mesh with

mesh size h
0

. Neither of these assumptions are necessary for our algorithms or conclusions
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to hold, provided ⌘
1

 hk/hk+1

 ⌘
2

for some 0 < ⌘
1

< ⌘
2

< 1 and all k 2 N
0

; in such

cases, the finite element spaces are not necessarily nested.

We also let uh
k

(·,y) denote the Galerkin projection of u(·,y) onto Vh
k

, i.e., uh
k

2 Vh
k

denotes the finite element approximation. Note that uh
k

(·,y) is still a function on the

stochastic parameter space �. We assume the following approximation property of the finite

element spaces {Vh
k

}k2N
0

:

Assumption A5. There exist positive constants ↵ and Cs, independent of hk, such that for

all k 2 N
0

,

ku� uh
k

kL2

%

(�;H1

0

(D))

 Cs h
↵
k .

In general, the rate ↵ depends on the (spatial) regularity of u, which in turn depends

on the regularity of a and f as well as on the geometry of the domain D. For example, if

a, f , and D are su�ciently regular so that u 2 L2

%(�;H
2(D)), Assumption A5 holds with

↵ = 1 and Cs dependent only on a and kukL2

%

(�;H2

(D))

. For additional examples and detailed

analyses of finite element errors, see [93].

4.2.2 Stochastic interpolation

For stochastic approximation, we use interpolation over �, where we assume u 2 C0(�;H1

0

(D)).

The specific choice of interpolation scheme is not crucial at this juncture. We begin by letting

{IM
k

}1k=0

denote a sequence of interpolation operators IM
k

: C0(�) ! L2

%(�) usingMk points.

We assume the following:

Assumption A6. There exist positive constants CI , C⇣, and �, and a Banach space

⇤(�;H1

0

(D)) ⇢ L2

%(�;H
1

0

(D)) containing the finite element approximations {uh
k

}k2N
0

such

that for all v 2 ⇤(�;H1

0

(D)) and all k 2 N
0

kv � IM
k

vkL2

%

(�;H1

0

(D))

 CI �(Mk) ⇣(v),
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for some decreasing sequence {�k}k2N
0

, with �k = �(Mk), and operator ⇣ : ⇤(�;H1

0

(D)) ! R

that admits the estimates

⇣(uh
k

)  C⇣ h
�
0

and ⇣(uh
k+1

� uh
k

)  C⇣ h
�
k+1

.

Remark 4.2. As in the previous section, k is merely an index; we use the same index for

the hierarchies of spatial and stochastic approximations because, in the multilevel SC method

we introduce below, these two hierarchies are closely connected.

Remark 4.3. �k determines the approximation properties of the interpolant. Moreover,

we allow non-unique interpolation operators in the sequence, i.e., it is possible that, for any

k = 0, . . . ,1, Mk+1

= Mk and therefore IM
k+1

= IM
k

and �k+1

= �k. Thus, although the

spatial approximation improves with increasing k, i.e., hk+1

< hk, we allow for the parameter

space approximation for the index k + 1 remaining the same as that for k.

In §4.4, Assumption A6 is shown to hold, with �k = M�µ
k , for global Lagrange

interpolation using generalized sparse grids. The bounds on the function ⇣ in Assumption A6

are shown to be the key to balancing spatial and stochastic discretizations through the

multilevel formulation. Crucially, we make use of the fact that the interpolation error is

proportional to the size of the function being interpolated, measured in an appropriate

norm. In the case of the model problem (2.2), this norm is usually related to the (spatial)

H1

0

(D)-norm. The bounds in Assumption A6 then arise from the fact that for any k 2 N
0

,

kuh
k

kH1

0

(D)

is bounded by a constant, independent of k, whereas kuh
k

� uh
k�1

kH1

0

(D)

decays

with h�
k for some � > 0. We usually have � = ↵, where ↵ is as in Assumption A5. Note that

we have chosen to scale the bound on ⇣(uh
k

) by h�
0

to simplify calculations. Because h
0

is a

constant, this does not a↵ect the nature of the assumption.

4.2.3 Formulation of the multilevel method

As in the previous sections, denote by {uh
k

}k2N
0

and {IM
k

}k2N
0

sequences of spatial

approximations and interpolation operators in parameter space, respectively. Then, for any
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K 2 N, the formulation of the multilevel method begins with the simple telescoping identity

uh
K

=
KX
k=0

(uh
k

� uh
k�1

), (4.2)

where, for simplicity, we set uh�1

:= 0.

It follows from Assumption A6 that as k ! 1, less accurate interpolation operators are

needed in order to estimate uh
k

� uh
k�1

to achieve a required accuracy. We therefore define

our multilevel interpolation approximation as

u(ML)

K :=
KX
k=0

IM
K�k

[uh
k

� uh
k�1

] =
KX
k=0

⇣
u(SL)

M
K�k

,h
k

� u(SL)

M
K�k

,h
k�1

⌘
. (4.3)

Rather than simply interpolating uh
K

, this approximation uses di↵erent levels of interpolation

on each di↵erence uh
k

� uh
k�1

of finite element approximations. To preserve convergence,

the estimator uses the most accurate interpolation operator IM
K

on the coarsest spatial

approximation uh
0

and the least accurate interpolation operator IM
0

on the finest spatial

approximation uh
K

� uh
K�1

. Note that in (4.3) a single index k is used to select appropriate

spatial and stochastic approximations and thus these approximations are indeed closely

related.

4.3 Analysis of the multilevel approximation

This section is devoted to proving the convergence of the multilevel approximation defined

in §4.2.3 and analyzing its computational complexity. We first prove, in §4.3.1, a general

error bound, whereas in Sections 4.3.2 and 4.3.3 we prove a bound on the computational

complexity in the particular case of an algebraic decay of the interpolation errors.

4.3.1 Convergence analysis

We consider the convergence of the multilevel approximation u(ML)

K to the true solution u in

the natural norm k · kL2

%

(�;H1

0

(D))

.
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First, we use the triangle inequality to split the error into the sum of a spatial

discretization error and a stochastic interpolation error, i.e.,

ku� u(ML)

K kL2

%

(�;H1

0

(D))

 ku� uh
K

k| {z }
(I)

L2

%

(�;H1

0

(D))

+ kuh
K

� u(ML)

K k| {z }
(II)

L2

%

(�;H1

0

(D))

. (4.4)

The aim is to prove that with the interpolation operators {IM
k

}Kk=0

chosen appropriately,

the stochastic interpolation error (II) of the multilevel approximation converges at the same

rate as the spatial discretization error (I), hence resulting in a convergence result for the

total error.

For the spatial discretization error (I), it follows immediately from Assumption A5 that

(I)  Csh
↵
K .

From (4.2) and Assumption A6, we estimate the stochastic interpolation error using the

triangle inequality:

(II) =
��� KX

k=0

(uh
k

� uh
k�1

)� IM
K�k

(uh
k

� uh
k�1

)
���
L2

%

(�;H1

0

(D))


KX
k=0

��(uh
k

� uh
k�1

)� IM
K�k

(uh
k

� uh
k�1

)
��
L2

%

(�;H1

0

(D))


KX
k=0

CI C⇣ �K�k h
�
k .

To obtain an error of the same size as (I), we choose interpolation operators such that

�K�k  Cs

�
(K + 1)CI C⇣

��1

h↵
K h��

k . (4.5)

Continuing from above,

(II) 
KX
k=0

Cs

�
(K + 1)CI C⇣)

��1

h↵
K h��

k CI C⇣ h
�
k = Csh

↵
K ,
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as required. It follows that with �k as in (4.5)

ku� u(ML)

K kL2

%

(�;H1

0

(D))

 2Cs h
↵
K .

4.3.2 Cost analysis

We now proceed to analyze the computational cost of the MLSC method. We consider the

"-cost of the estimator, denoted here by CML

" , which is the computational cost required to

achieve a desired accuracy ". In order to quantify this cost, we use the convergence rates of

the spatial discretization error and, for the stochastic interpolation error, the rates given by

assumptions A5 and A6. In particular, we will assume that A6 holds with �k = M�µ
k for

some µ > 0.

Remark 4.4. The choice �k = M�µ
k best reflects approximations based on SC methods

that employ sparse grids. In particular, as mentioned in §4.2.2, algebraic decay holds for

the generalized sparse grid interpolation operators considered in Chapter 3; see Theorem 3.2.

For other possible choices in the context of quadrature, see [50].

In general, the MLSC method involves solving, for each k, the deterministic PDE for

each of the Mk sample points from �; in fact, according to (4.3), two solves are needed, one

for each of two spatial grid levels. Thus, we also require a bound on the cost, which we

denote by Ck, of computing uh
k

� uh
k�1

at a sample point. We assume:

Assumption A7. There exist positive constants � and Cc, independent of hk, such that

Ck  Cc h
��
k for all k 2 N

0

.

If an optimal linear solver is used to solve the finite element equations for uh
k

, this assumption

holds with � ⇡ d (see, e.g., [10]), where d is the spatial dimension. Note that the constant

Cc will in general depend on the refinement ratio ⌘ described in §4.2.1.
We quantify the total computational cost of the MLSC approximation (4.3) using the

metric

C(ML) =
KX
k=0

MK�k Ck. (4.6)
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We now have the following result for the "-cost of the MLSC method required to achieve an

accuracy ku� u(ML)

K kL2

%

(�;H1

0

(D))

 ". In the analysis, we define the relations a . b and a h b

to indicate that a  Cb (resp. a = Cb) for some constant C independent the mesh width h,

the number of interpolation points M and the accuracy ".

Theorem 4.5. Suppose assumptions A5–A7 hold with �k = M�µ
k , and assume that ↵ �

min(�, µ�). Then, for any " < exp[�1], there exists an integer K, and a sequence {Mk}Kk=0

,

such that

ku� u(ML)

K kL2

%

(�;H1

0

(D))

 "

and

C(ML)

" .

8>>>>>><>>>>>>:

"�
1

µ , if � > µ�

"�
1

µ | log "|1+
1

µ if � = µ�

"�
1

µ

� �µ��

↵µ if � < µ�.

(4.7)

Proof. As in (4.4), we consider separately the two error contributions (I) and (II). To

achieve the desired accuracy, it is su�cient to bound both error contributions by "
2

. Without

loss of generality, for the remainder of this proof we assume h
0

= 1. If this is not the case,

we simply need to rescale the constants Cs, C⇣ , and Cc.

First, we choose K large enough so that (I)  "
2

. By Assumption A5, it is su�cient

to require Csh↵
K  "

2

. Because the hierarchy of meshes {hk}k2N
0

is obtained by uniform

refinement, hk = ⌘�kh
0

= ⌘�k, and we have

hK 
� "

2Cs

�
1/↵

if K =

⇠
1

↵
log⌘

�2Cs

"

�⇡
. (4.8)

This fixes the total number of levels K.

In order to obtain the multilevel estimator with the smallest computational cost, we

now determine the {Mk}Kk=0

so that the computational cost (4.6) is minimized, subject to

the requirement (II)  "
2

. Treating the Mk as continuous variables, we use the Lagrange
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multiplier method. To begin, we form the Lagrange function, using assumptions A5-A7.

L(M
0

, . . . ,MK ,�) =
KX
k=0

MK�k ⌘
k� + �

 
KX
k=0

CI C⇣ M
�µ
K�k ⌘

�k� � "/2

!
.

To find a relative extremum, we require rL = 0, leading to the K + 2 conditions

@L
@MK�k

= ⌘k� � �CI C⇣µM
�(µ+1)

K�k ⌘�k� = 0, k = 0, . . . , K, (4.9)

@L
@�

=
KX
k=0

CI C⇣ M
�µ
K�k ⌘

�k� � "/2 = 0. (4.10)

Solving the first K + 1 equations (4.9) for MK�k yields

MK�k = (CI C⇣µ�)
1/(µ+1)⌘

�k(�+�)

µ+1 , k = 0, . . . , K. (4.11)

Now, substitute (4.11) into (4.10), and solve for � to obtain

� = (2µ+1CIC⇣)
1/µµ�1"�(µ+1)/µS(⌘, K)(µ+1)/µ,

where

S(⌘, K) =
KX
k=0

⌘�k(���µ

µ+1

).

Inserting this into (4.11) results in the optimal choice

MK�k =
�
2CI C⇣ S(⌘, K)

�
1/µ

"�1/µ ⌘�
k(�+�)

µ+1 . (4.12)

Because MK�k given by (4.12) is, in general, not an integer, we choose

MK�k =
l
(2CI C⇣ S(⌘, K))1/µ "�1/µ ⌘�

k(�+�)

µ+1

m
. (4.13)

Note that this choice determines the sequence {Mk}Kk=0

and consequently {IM
k

}Kk=0

. Also

note that, in practice, this choice may not be possible for all interpolation schemes; see

Remark 4.6.
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With the number of samplesMK�k fixed, we now examine the complexity of the multilevel

approximation. Since dxe < x+ 1, for any x 2 R, we have

C(ML)

" =
KX
k=0

MK�kCk h
KX
k=0

MK�k ⌘
k�

.
KX
k=0

⇣ "

S(⌘, K)

⌘� 1

µ

⌘�k �+�

µ+1 ⌘k� +
KX
k=0

⌘k�

h "�
1

µS(⌘, K)
1

µ

KX
k=0

⌘�k
�+���(µ+1)

µ+1 +
KX
k=0

⌘k�

h "�
1

µS(⌘, K)
1

µ

KX
k=0

⌘�k ���µ

µ+1 +
KX
k=0

⌘k� (4.14)

h "�
1

µS(⌘, K)1+
1

µ +
KX
k=0

⌘k�.

To bound the cost in terms of ", first note that because K < 1

↵
log⌘(2Cs/") + 1 by (4.8), we

have
KX
k=0

⌘k�  ⌘�K

1� ⌘��
 ⌘�(2Cs)�/↵

1� ⌘��
"��/↵. (4.15)

Next, we need to consider di↵erent values of � and µ. When � > �µ, S(⌘, K) is a

geometric sum that converges to a limit independent of K. Because ↵ � �µ implies that

"��/↵  "�
1

µ for " < exp[�1], we have C(ML)

" . "�
1

µ in this case.

When � = �µ, we find that S(⌘, K) = K + 1, and so, using (4.8) and ↵ � µ�,

C(ML)

" . "�
1

µ (K + 1)1+
1

µ + "�
�

↵ h "�
1

µ | log "|1+
1

µ .

For the final case of � < �µ, we reverse the index in the sum S(⌘, K) to obtain a geometric

sequence

S(⌘, K) =
KX
k=0

⌘(k�K)

���µ

µ+1 = ⌘�K ���µ

µ+1

KX
k=0

⌘�k( �µ��

µ+1

) . "
���µ

↵(µ+1) .

Because ↵ � �, this gives

C(ML)

" . "�
1

µ "
���µ

↵(µ+1)

(1+

1

µ

) + "�
�

↵ h "�
1

µ

� �µ��

↵µ .
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This completes the proof.

Remark 4.6. Error and quadrature level. In this section, we characterized the

convergence of the interpolation errors in terms of the number of interpolation points Mk. Yet

when computing interpolants based on sparse grid techniques (see Chapter 3), an arbitrary

number of points will not in general have an associated sparse grid. Thus, choosing an

interpolant using the optimal number of points according to (4.13) may not be possible in

practice. However, in light of estimates such as [71, Lemma 3.9], it is not unreasonable to

make the assumption that given any number of points M , there exists an interpolant usingfM points, with

M  fM  CM � (4.16)

for some � � 1. We can think of � as measuring the ine�ciency of our sparse grids in

representing higher-dimensional polynomial spaces. Using (4.16), one can proceed as in

Theorem 4.5 to derive a bound on the "-cost of the resulting multilevel approximation.

Another possibility would be to solve a discrete, constrained minimization problem to find

optimal interpolation levels, relying on convergence results for the interpolation error in terms

of the interpolation level rather than number of points; see [70, Theorem 3.4]. However, our

cost metric relies on precise knowledge of the number of points, making theoretical comparison

di�cult.

Remark 4.7. Cancellations and computational cost. The cost estimate (4.6) takes

into consideration the cost of all the terms in the multilevel estimator (4.3). However, when

the same interpolation operator is used on two consecutive levels, terms in the multilevel

approximation cancel and need in fact not be computed. For example, if IM
K�k

= IM
K�k�1

,

then

IM
K�k

(uh
k

� uh
k�1

) + IM
K�k�1

(uh
k+1

� uh
k

) = IM
K�k

(uh
k+1

� uh
k�1

)

so that the computation of the interpolants of uh
k

is not necessary. Especially in the context

of sparse grid interpolation, in practice we choose the same interpolation grid for several

consecutive levels, leading to a significant reduction in the actual computational cost compared

to that estimated in Theorem 4.5. The e↵ect of these cancellations is clearly visible in some

of the numerical experiments of §4.5.
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Comparison to single level collocation methods

Under the same assumptions as in Theorem 4.5, for any Msl 2 N
0

and hsl, the error in the

standard single-level SC approximation (4.1) can be bounded by

ku� u(SL)

M
sl

,h
sl

kL2

%

(�;H1

0

(D))

 Cs h
↵
sl + CI ⇣(uh)M

�µ
sl .

To make both contributions equal to "/2, it su�ces to choose hsl h "1/↵ and Msl h "�1/µ.

This choice determines Msl and hence IM
sl

. The computational cost to achieve a total error

of " is then bounded by

C(SL)

" h h��
sl Msl h "�

1

µ

� �

↵ .

A comparison with the bounds on computational complexity proved in Theorem 4.5 shows

clearly the superiority of the multilevel method.

In the case � > �µ, the convergence rate of the finite element correction errors is

comparatively larger than the convergence rate of the interpolant when multiplied by the

cost factor �. From (4.14), this indicates that the cost MK�kCk is largest at the coarsest

level k = 0, and hence most of the computational e↵ort of the multilevel approximation

is expended computing IM
K

(uh
0

). The savings in cost compared to single level SC hence

correspond to the di↵erence in cost between obtaining samples uh
0

on the coarse grid h
0

and

obtaining samples uh
K

on the fine grid hsl = hK used by the single-level method. This gives

a saving of (hsl/h0

)� h "�/↵.

The case � = µ� corresponds to the computational e↵ort being spread evenly across the

levels, and, up to a log factor, the savings in cost are again of order "�/↵.

In contrast, when � < �µ, i.e., when the interpolation error is converging quickly

compared to the finite element approximations, the computational cost of computing one

sample of uh
k

grows comparatively quickly with respect to k, and most of the computational

e↵ort of the multilevel approximation is on the finest level k = K. The benefits compared

to single level SC hence corresponds approximately to the di↵erence between MK and Msl.

This gives a savings of MK/Msl h (h�
K)

1/µ h "�/↵µ.
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4.3.3 Multilevel approximation of functionals

In applications, it is often of interest to bound the error in the expected value of a functional

 of the solution u, where  : H1

0

(D) ! R. Similar to (4.1), the SC approximation of  (u)

is given by

 (SL)

k,h [u] = IM
k

[ (uh)] (4.17)

and, similar to (4.3), the multilevel interpolation approximation of  (u) is given by

 (ML)

K [u] :=
KX
k=0

IM
K�k

�
 (uh

k

)�  (uh
k�1

)
�
, (4.18)

where, as before, we set uh�1

:= 0 and we also assume, without loss of generality, that

 (0) = 0. Note that in the particular case of linear functionals  , we in fact have

 (SL)

k,h [u] =  (u(SL)

k,h ) and  (ML)

K [u] =  (u(ML)

K ).

Analogous to Theorem 4.5, we have the following result about the "-cost for the error��E⇥ (u)�  (ML)

K [u]
⇤�� in the expected value of the multilevel approximation of functionals.

Proposition 4.8. Suppose there exist positive constants ↵, �, µ, �, Cs, CI , C⇣ , Cc, with ↵ �
min(�, µ�), and an operator ⇣ : ⇤(�;R) ! R, for a Banach space ⇤(�;R) ⇢ L2

%(�;R)

containing the finite element approximations { (uh
k

)}k2N
0

, such that for all k 2 N
0

we have

F1. |E[ (u)�  (uh
k

)]|  Cs h↵
k

F2.
��E⇥ (uh

k

)�  (uh
k�1

)� IM
K�k

( (uh
k

)�  (uh
k�1

))
⇤��  CI M

�µ
K�k ⇣( (uh

k

)�  (uh
k�1

))

F3. ⇣( (uh
k

)�  (uh
k�1

))  C⇣ h
�
k

F4. Ck = Cc h
��
k .

Then, for any " < exp[�1], there exists an integer K and a sequence {Mk}Kk=0

such that

��E⇥ (u)�  (ML)

K (u)
⇤��  ",

with computational cost C(ML)

" bounded as in Theorem 4.5.
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The Assumptions F1–F4 are essentially the same as the Assumptions A5–A7 of Theorem

4.5, with perhaps di↵erent values for the constants Cs, CI , C⇣ , and Cc. Certainly, bounded

linear functionals have this inheritance property. In §4.4, we give some examples of nonlinear

functionals that also have this property.

4.4 Multilevel approximation using generalized sparse

grid interpolants

In this section, we use a specific example of a single level SC method that will be used to

construct the interpolation operators in our MLSC approach. As such, recall the definition of

the multi-dimensional (including sparse grid) interpolation from Chapter 3, which is defined

in (3.3).

Ap,g
L [v] =

X
g(l)L

NO
n=1

�p(l
n

)

n [v].

For the specific MLSC method in this section, the general interpolation operators introduced

in §4.2.2 are chosen as IM
k

= Ap,g
L
k

with Mk := ML
k

. However, we have already noted in

Remark 4.6 that an arbitrary number of points will not in general have an associated sparse

grid, and in practice a rounding strategy has to be applied to choose the interpolation

operator on each level. For examples of rounding strategies, see the numerical examples in

§4.5. Note that although in theory this rounding may change the computational complexity

of the MLSC estimators, our numerical investigations confirm that the complexities proved

in Theorem 4.5 are a good fit in practice.

Remark 4.9. Note that the sparse grid construction also contains a second notion of levels.

The levels in the sparse grid case should not be confused with the levels used previously in

the multilevel algorithm. For the latter, ‘levels’ refer to members of hierarchies of spatial and

stochastic approximations, both of which were indexed by k. In this section, ‘levels’ refer to

a sequence, indexed by l, of stochastic polynomial spaces and corresponding point sets used

to construct a specific sparse grid interpolant. The result of this construction, i.e., of using
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the levels indexed by l, is the interpolants used in the previous sections that were indexed by

k.

The goal of the section is to verify the the assumptions of our multilevel collocation

scheme for the generalized global sparse grid operator IM
k

= Ap,g
L
k

. The convergence of the

global sparse grid operators applied to the the approximate solutions uh
k

, and the functionals

 (uh
k

), depends on some analytic regularity of the PDE with respect to the parameterization.

Recalling assumption A2 and the definition of the Bernstein polyellipse (3.7), we have

used Lemma 3.1.1 to show that the approximate PDE solutions uh
k

are analytic in the region

⌃(⇢) ⇢ CN , for ⇢ = (⇢
1

, . . . , ⇢N) 2 (1,1)N . We have seen in Theorem 3.2 that under these

assumptions, there exist constants C(N) and µ(r,N), depending on N and r = min
1nN ⇢n,

such that

kv � IM
k

vkL2

%

(�;H1

0

(D))

 C(N)M�µ(r,N)

k ⇣(v),

where

⇣(v) ⌘ max
z2⌃(⇢)

kv(z)kH1

0

(D)

.

We thus verify the convergence assumptions A6 and those given in F2 and F3 by showing

that the bounds on the interpolation error above apply to the approximate solutions uh
k

and the functionals  (uh
k

), for k 2 N
0

, Define the Banach space ⇤(�;H1

0

(D)) consisting

of all functions v 2 C0(�;H1

0

(D)) such that v admits an analytic extension in the region

⌃(⇢). It follows from Lemma 3.1.1 that, under appropriate assumptions on a, we have u 2
⇤(�;H1

0

(D)). Because the dependence on y is unchanged in the approximate solution uh
k

, it

also follows that uh
k

2 ⇤(�;H1

0

(D)) for all k 2 N
0

, and hence also uh
k

�uh
k�1

2 ⇤(�;H1

0

(D))

for all k 2 N.

Similar to Assumption A5, it follows from standard finite element theory [10, 20] that with

⇣ as in (3.8), ⇣(uh
k

) can be bounded by a constant independent of k, whereas ⇣(uh
k

� uh
k�1

)

can be bounded by a constant multiple of h↵
k for some ↵ > 0. In general, the constants

appearing in these estimates will depend on norms of a and f as well as on the mesh

refinement parameter ⌘. We can hence conclude that with IM
k

= Ap,g
L
k

, Assumption A6

is satisfied for the interpolation schemes considered in Theorem 3.2. Therefore, for the
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numerical examples presented in §4.5, we utilize the sparse grid stochastic collocation as the

interpolation scheme.

Now we verify the analyticity assumption in Theorem 3.2 also for the functionals  (u).

Because Lemma 3.1.1 already gives an analyticity result for u, we use the following result,

which can be found in [97], about the composition of two functions on general normed vector

spaces.

Theorem 4.10. Let X
1

, X
2

, and X
3

denote normed vector spaces and let ✓ : X
1

! X
2

and

⌫ : X
2

! X
3

be given. Suppose that ✓ is analytic on X
1

, ⌫ is analytic on X
2

and ✓(X
1

) ✓ X
2

.

Then the composition ⌫ � ✓ : X
1

! X
3

is analytic on X
1

.

Hence, if we can show that  is an analytic function of u, we can conclude that  (u) is

analytic on ⌃(⇢). To this end, we need the notion of analyticity for functions defined on

general normed vector spaces, which we will now briefly recall.

Given normed vector spaces X
1

and X
2

and an infinitely Frèchet di↵erentiable function

✓ : X
1

! X
2

, we can define a Taylor series expansion of ✓ at the point ⇠ in the following way

[12]:

T✓,⇠(x) =
1X
j=0

1

j!
dj✓(⇠)(x� ⇠)j, (4.19)

where x, ⇠ 2 X
1

, the notation (x � ⇠)j denoting the j-tuple (x � ⇠, . . . , x � ⇠) and dj✓(⇠)

denoting the j-linear operator corresponding to the j-th Frèchet di↵erential Dj✓(⇠). The

function ✓ is then said to be analytic in a set Z ⇢ X
1

if, for every z 2 Z, T✓,z(x) = ✓(x) for

all x in a neighbourhood Nr(z) = {x 2 Z : kx � zkX
1

< r}, for some r > 0. The following

result now immediately follows from Theorem 4.10.

Lemma 4.10.1. Let the assumptions of Lemma 3.1.1 be satisfied. Suppose  , viewed as a

mapping from H1

0

(D) to R, is analytic in the set ⌃(u) ⇢ H1

0

(D), and u(z; x) 2 ⌃(u) for all

z 2 ⌃(⇢). Then,  � u, viewed as a mapping from � to R, admits an analytic extension to

the set ⌃(⇢).

Together with Theorem 3.2, now with W = R, it then follows from Lemma 4.10.1

that assumptions F2 and F3 in Proposition 4.8 are satisfied for the interpolation schemes

considered in this section, provided the functional  is an analytic function of u. Note that
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the function ⇣ in Theorem 3.2 acts on  (u) instead of u in this case, leading to optimal

convergence rates in h of the stochastic interpolation error.

To finish the analysis, we give some examples of functionals that satisfy the assumptions

of Lemma 4.10.1. We in particular make use of the following result on Taylor expansions

[12].

Lemma 4.10.2. Let ✓ : X
1

! X
2

, for normed vector spaces X
1

and X
2

, and let Z ⇢ X
1

.

If kdj✓(z)k  Cjj! for all z 2 Z and some C < 1, where k · k denotes the usual operator

norm, then ✓ is analytic on Z. In particular, ✓ is analytic on Z if kdjf(z)k = 0 for all z 2 Z

and all j � j⇤, for some j⇤ 2 N.

Example 4.11. (Bounded linear functionals) In this case, for any v, w 2 H1

0

(D), we have

d (v)(w) =  (w) and dj (v) ⌘ 0 8 j � 2,

which implies that  is analytic on all of (complex-valued) H1

0

(D). Examples of bounded

linear functionals include point evaluations of the solution u in one spatial dimension and

local averages of the solution u in some subdomain D⇤ ⇢ D, computed as 1

|D⇤|
R
D⇤ udx, in

any spatial dimension.

Example 4.12. (Higher order moments of bounded linear functionals) As a generalization of

the above example, consider the functional  (v) =  (v)q, for some bounded linear functional

 on H1

0

(D) and some q 2 N. For any v 2 H1

0

(D), the di↵erentials of  are

dj (v)(w
1

, . . . , wj) =  (v)
q�j

jY
i=1

(q � i+ 1) (wi), 1  j  q,

dj (v) ⌘ 0, j � q + 1,

from which it follows that  is analytic on all of H1

0

(D).
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Example 4.13. (Spatial L2-norm) Consider the functional  (v) =
R
D
v2dx = kvk2L2

(D)

. For

any v 2 H1

0

(D), the di↵erentials of  are

d (v)(w
1

) = lim
�!0

R
D
(v + �w

1

)2 �
R
D
v2

�
= lim

�!0

R
D
�vw

1

+
R
D
�2w2

1

�
= 2

Z
D

vw
1

,

d2 (v)(w
1

, w
2

) = lim
�!0

2
R
D
(v + �w

2

)w
1

� 2
R
D
vw

1

�
= 2

Z
D

w
2

w
1

,

dj (v) ⌘ 0 8 j � 2,

which implies that  is analytic on the entire space H1

0

(D). For the functional  (v) =

kvkL2

(D)

, we use Theorem 4.10 and the analyticity of the square root function on (0,1) to

conclude that  is analytic on any subset ⌃(u) ✓ H1

0

(D) not containing 0.

The analysis in this example can easily be extended to the functionals kvkH1

0

(D)

and

kvk2
H1

0

(D)

.

4.5 Numerical Examples

The aim of this section is to demonstrate numerically the significant reductions in

computational cost possible with the use of the MLSC approach. As an example, consider

the following boundary value problem on either D = (0, 1) or D = (0, 1)2:8<: �r · (a(y,x)ru(y,x)) = 1 for x 2 D

u(y,x) = 0 for x 2 @D.
(4.20)

The coe�cient a takes the form

a(y,x) = 0.5 + exp

"
NX

n=1

p
�nbn(x)yn

#
, (4.21)

where {yn}n2N is a sequence of independent, uniformly distributed random variables on [-1,1]

and {�n}n2N and {bn}n2N are the eigenvalues and eigenfunctions of the covariance operator

with kernel function C(x, x0) = exp[�kx�x0k
1

]. Explicit expressions for {�n}n2N and {bn}n2N
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are computable [41]. In the case D = (0, 1), we have

�1Dn =
2

w2

n + 1
and b1Dn (x) = An(sin(wnx) + wn cos(wnx)) for all n 2 N,

where {wn}n2N are the (real) solutions of the transcendental equation

tan(w) =
2w

w2 � 1

and the constant An is chosen so that kbnkL2

(0,1) = 1. In two spatial dimensions, with

D = (0, 1)2, the eigenpairs can be expressed as

�2Dn = �1Di
n

�1Dj
n

and b2Dn = b1Di
n

b1Dj
n

for some in, jn 2 N. In both one and two spatial dimensions, the eigenvalues �n decay

quadratically with respect to n [14].

Let a⇤(z,x) = 0.5 + exp
hPN

n=1

p
�nbn(x)zn

i
be the complex extension of a. Given a

multiindex ⌫ 2 NN
0

, it is easy to see that the mixed partial derivatives of a⇤ satisfy

@⌫a
⇤(z,x) :=

@|⌫|a
@⌫1z

1

. . . @⌫N zN
(z,x) = a(z,x)

NY
n=1

(
p
�nbn(x))

⌫
n .

Thus, given z 2 CN , the power series

a⇤(z0,x) =
X
⌫2NN

0

@⌫a⇤(z,x)
⌫!

NY
n=1

(z0n � zn)
⌫
n

converges for all z0 2 CN such that |z0n�zn| < 1p
�
n

kb
n

(x)k
L

1
(D)

, n = 1, . . . , N , and thus a(z,x)

satisfies Assumption A2.

For spatial discretization, we use continuous, piecewise-linear finite elements on uniform

triangulations of D, starting with a mesh width of h = 1/2. As interpolation operators,

we choose the (isotropic) sparse grid interpolation operator (4.4), using p and g given by

the classic Smolyak approximation in Table 3.1, based on Clenshaw-Curtis abscissas; see

Chapter 3.
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The goal of the computations is to estimate the error in the expected value of a functional

 of the solution of (4.20). For fair comparisons, all values of " reported are relative

accuracies, i.e., we have scaled the errors by the value of E[ (u)] itself. We consider two

di↵erent settings: in §4.5.1, we consider problem (4.20) in two spatial dimensions with

N = 10 random variables whereas, in Sections 4.5.2 and 4.5.3, we work in one spatial

dimension with N = 20 random variables. Because the exact solution u is unavailable,

the error in the expected value of  (u) has to be estimated. In Sections 4.5.1 and 4.5.2,

we compute the error with respect to an “overkilled” reference solution obtained using a

fine mesh spacing h⇤ and high interpolation level L⇤. However, because this is generally

not feasible in practice, we show in §4.5.3 how the error can be estimated when the exact

solution is not available and one cannot compute using a fine spatial mesh and high stochastic

interpolation level. The cost of the multilevel estimators is computed as discussed in §4.3.2
and Remark 4.7, with � = d, i.e., by assuming the availability of an optimal linear solver. For

non-optimal linear solvers for which � > d, the savings possible with the multilevel approach

will be even greater than demonstrated below.

4.5.1 d = 2,N = 10

As the quantity of interest, we choose the average value of u in a neighborhood of the

midpoint (1/2, 1/2), computed as  (u) = 1

|D⇤|
R
D⇤ u(x)dx, where D⇤ denotes the union of

the six elements adjacent to the node located at (1/2, 1/2) of the uniform triangular mesh

with mesh size h = 1/256.

We start by confirming, in Figure 4.1, the assumptions of Proposition 4.8. The reference

values are computed with spatial mesh width h⇤ = 1/256 and stochastic interpolation level

L⇤ = 5.

The top-left plot of Figure 4.1 shows the convergence of the finite element error in the

expected value of  (u), and confirms that assumption F1 of Proposition 4.8 holds with ↵ = 2.

The top-right plot of Figure 4.1 shows the absolute value of the interpolation error in the

quantities  (uh) and  (uh) �  (u
2h) for a fixed interpolation level l = 1, i.e. for fixed Ml,

as a function of h. We see that the interpolation error in  (uh) is bounded by a constant
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Figure 4.1: D = (0, 1)2, N = 10. Top left: E[IM
5

 (uh)] and E[IM
5

( (u
1/256) �  (uh))]

versus 1/h (assumption F1). Top right: |E[(IM
5

� IM
l

) (uh)]| and |E[(IM
5

� IM
l

)( (uh)�
 (u

2h))]| versus 1/h (assumption F3). Bottom left: |E[(IM
5

� IM
l

) (uh)]/h2

0

| and |E[(IM
5

�
IM

l

)( (uh)�  (u
2h))]/h2| versus Ml, for various h (assumption F2). Bottom right: number

of samples MK�k versus k.

independent of h, whereas the interpolation error in  (uh)�  (u
2h) decays quadratically in

h. This confirms assumption F3 with � = 2.

The bottom-left plot of Figure 4.1 shows the interpolation error in  (uh) scaled by h2

0

and the interpolation error in  (uh)� (u
2h) scaled by h2 for several values of h. According

to assumptions F2 and F3, these plots should all result in a straight line CM�µ, where

C = CIC⇣ . The best fit which has C = 0.05 and µ = 1.4 is added for comparison.

The bottom-right plot of Figure 4.1 shows the number of samples Mk computed using

the formula (4.12), with C = 0.05 and µ = 1.4, for several values of ". The finest level K

was determined using the estimates on the finite element error from the top-left plot. Solid

lines correspond to numbers rounded up to the nearest integer, as is done in (4.13), whereas
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dotted lines correspond to the number of samples rounded up to the next level of the sparse

grid. As stated in Remark 4.7, when the same number of points are used for consecutive

levels, cancellations occur leading to savings in cost.

In Figure 4.2, we study the cost of the standard and multilevel collocation methods to

achieve a given total accuracy ". In both plots, the data labeled ‘SC’ and ‘MLSC’ denote

standard and multilevel stochastic collocation, respectively. For data labeled ‘formula’, the

number of samples was determined by the formula (4.12) with C = 0.05 and µ = 1.4, rounded

up to the next sparse grid level (the dotted lines in the bottom right plot of Figure 4.1). For

data labeled ‘best’, the number of samples was chosen by trial and error so as to achieve a

total accuracy " for the smallest computational cost. For all methods, we chose h
0

= 1/4.
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Figure 4.2: D = (0, 1)2, N = 10. Left: computational cost versus relative error ". Right:
computational cost scaled by "�1.36 versus relative error ".

In the left plot of Figure 4.2, we simply plot the computational cost of the di↵erent

estimators against ". For comparison, we have also added corresponding results for Monte

Carlo (MC) and multilevel Monte Carlo (MLMC) estimators. In both the ‘formula’ and the

‘best’ case, the multilevel collocation method outperforms standard SC. Both collocation-

based methods outperform both Monte Carlo approaches.

In the right plot in Figure 4.2, we compare the observed computational cost with that

predicted by Proposition 4.8 for the standard and multilevel collocation methods. In our

computations, we observed ↵ ⇡ 2, � ⇡ 2, and µ ⇡ 1.4, which with � = 2 gives computational

costs of "�1 and "�1.72 for the multilevel and standard SC method, respectively. We therefore

plot the computational cost scaled by "1. We see that both multilevel methods indeed seem
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to grow approximately like "�1, with the ‘formula’ case growing slightly faster for large value

of " and the ‘best’ case growing slightly faster for small values of ". The costs for both

standard collocation methods grow a lot faster with ".

Figure 4.3 provides results for a di↵erent quantity of interest,  (u) = kukL2

(D)

. The

left plot corresponds to the bottom-left plot in Figure 4.1 and again confirms that the

interpolation error in  (uh) �  (u
2h) scales with h2. The right plot corresponds to the left

plot of Figure 4.2, where we plot the computational cost of the di↵erent estimators against

". We see that all collocation-based methods outperform the Monte Carlo approaches. In

both the ‘formula’ and the ‘best’ case, the multilevel collocation method again outperforms

standard SC.
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Figure 4.3: D = (0, 1)2, N = 10. Left: E[I
5

 (uh)�IM
k

 (uh)]/h2

0

and [I
5

( (uh)� (u2h))�
IM

k

( (uh)�  (u
2h)]/h2 versus Mk, for various h. Right: computational cost versus relative

error ".

Remark 4.14. Before considering the second model problem, let us briefly comment on the

di↵erences between the ‘best’ and the ‘formula’ multilevel methods. The ‘formula’ multilevel

collocation method performs sub-optimally mainly for two reasons. First, it always rounds

up the number of samples Mk to the nearest sparse grid level, which may be substantially

higher than the number of samples actually required. Secondly, it does not take into account

sign changes in the interpolation error, which in practice can lead to significant reductions in

the interpolation error of the multilevel method. For both of these reasons, the interpolation

error is often a lot smaller than the required "/2, leading to sub-optimal performance. This
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issue is partly addressed in §4.5.3, where we consider not always rounding up, but rounding

the number of samples either up or down to the nearest sparse grid level.

4.5.2 d = 1,N = 20

We now repeat the numerical tests done in the previous section for the case D = (0, 1)

and N = 20. For the quantity of interest, we choose the expected value of the solution u

evaluated at x = 3

4

. The reference values are computed using the mesh width h⇤ = 1/1024

and interpolation level L⇤ = 5.

We again start by confirming, in Figure 4.4, the assumptions of Proposition 4.8. The

four plots of that figure convey the same information as do the corresponding plots in Figure

4.1 and again confirm assumptions F1, F2, and F3 of that theorem with ↵ = 2 and � = 2

and, in the bottom-left plot, the best line fit C = CIC⇣ with C = 0.005 and µ = 0.8.

Figure 4.5 conveys the same information and uses the same labeling as does Figure 4.2.

Again, for both the ‘formula’ and ‘best’ cases, the multilevel collocation method eventually

outperforms standard SC and both collocation-based methods also outperform the Monte

Carlo approaches. Based on the values ↵ ⇡ 2, � ⇡ 2, and µ ⇡ 0.8, Proposition 4.8 now

predicts the computational costs of "�1.25 and "�1.75 for the multilevel and the standard

collocation methods, respectively. The right-plot in Figure 4.5 indicates that the ‘formula’

multilevel collocation method indeed seems to grow like "�1.25 whereas the ‘best’ multilevel

method actually seems to grow slower for small values of ". This is likely due to the di↵erent

signs of the interpolation errors in the multilevel estimator. Also, again, the costs for both

standard collocation methods grow a lot faster with ".

4.5.3 Practical implementation

In Sections 4.5.1 and 4.5.2, the accuracy of the computed estimates was assessed by

comparison to a reference solution. Of course, in practice, a fine-grid, high-level reference

solution is not available. Therefore, in this section, we describe how to implement the

MLSC method without having recourse to a reference solution. We suggest the following

practical strategy that is similar to the one proposed in [42]. In order to determine the
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Figure 4.4: D = (0, 1), N = 20. Top left: E[IM
5

 (uh)] and E[IM
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( (u
1/1024) �  (uh))]

versus 1/h (assumption F1). Top right: |E[(IM
5

� IM
l

) (uh)]| and |E[(IM
5

� IM
l

)( (uh)�
 (u

2h))]| versus 1/h (assumption F3). Bottom left: |E[(IM
5

� IM
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) (uh)]/h2

0

| and |E[(IM
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�
IM

l

)( (uh)�  (u
2h))]/h2| versus Ml, for various h (assumption F2). Bottom right: number

of samples MK�k versus k.
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number of levels we need, we assume that equality holds on assumption F1, i.e. we assume

E[ (u)�  (uh
k

)] = Csh↵
k , and use the equality

E[ (uh
k

)�  (uh
k�1

)] = E[ (u)�  (uh
k�1

)]� E[ (u)�  (uh
k

)]

= Csh
↵
k�1

� Csh
↵
k

= (⌘↵ � 1)E[( (u)�  (uh
k

))],

where we recall that ⌘ = hk�1

/hk. Hence, the condition E[ (u)� (uh
k

)]  "/2 is equivalent

to the condition E[ (uh
k

)� (uh
k�1

)]  (⌘↵ � 1)"/2. We then have the following algorithm.

1. Estimate the constants ↵, �, µ, and C = CI C⇣ .

2. Start with K = 1.

3. Calculate the optimal number of samples Mk, k = 0, . . . , K, according to the formula

(4.12), and round to the nearest sparse grid level.

4. Test for convergence by checking if there holds

E[ (uh
k

)�  (uh
k�1

)]  (⌘↵ � 1) "/2.

5. If not converged, set K = K + 1 and return to step 3.

Note that in this procedure, steps 3 and 4 ensure that the interpolation error and the spatial

discretization error are each less than the required tolerance "/2, respectively.

The estimation of the constants ↵, �, µ, and C in step 1 can be done relatively cheaply

from computations done using mesh widths h
0

, h
1

, and h
2

and interpolation levels k = 0, 1, 2.

It is of course also possible to iterate over step 1, in the same manner as we iterate over

steps 3 and 4, and to continuously update our estimates of these constants as we increase

the number of levels in our multilevel estimator. This approach would eliminate some of

the problems related to possible pre-asymptotic e↵ects. It is also possible to use the idea

behind the continuation MLMC (CMLMC) method in [24] and use a Bayesian approach to

estimating the constants.
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We test the algorithm using the the model problem from §4.5.2. For the results provided
below, we estimated the convergence rate ↵ from the level 1 interpolants IM

1

of  (u
0

),  (u
1

),

and  (u
2

), resulting in ↵ ⇡ 2.1. In light of the results in Chapter 3, we assumed � = ↵.

We then used the first three interpolation levels of  (u
0

) and  (u
1

) �  (u
0

) to obtain the

estimates C ⇡ 0.01 and µ ⇡ 0.8. Note that the value of µ is the same as in §4.5.2 whereas

the value of the constant C is slightly larger. This is due to the fact that, for the large values

of h used to estimate this constant, the function ⇣( (uh) �  (u
2h)) has probably not yet

settled into its asymptotic quadratic decay.

As mentioned in §4.5.1, always rounding the number of samples resulting from formula

(4.12) up to the next sparse grid level may lead to a substantial increase in the computational

cost and hence a sub-optimal performance of the multilevel method. In practice, one might

therefore consider not always rounding up, but instead rounding either up or down. As long

as we do not round down more frequently than we round up, or at least not much more

often, this approach should still result in an interpolation error below the required tolerance

"/2.

Table 4.1 shows the number of samples MK�k resulting from the implementation

described in this section for the model problem with d = 1 and N = 20 from §4.5.2. For each
value of ", the first row, denoted by ‘formula’, corresponds to the numbers MK�k resulting

from formula (4.12) rounded up to the nearest integer. The second row, denoted ‘up’, are

the numbers in the first row rounded up to the next corresponding sparse grid level. For

the final row, denoted ‘up/down’, the rounding of the number of samples was done in the

following way: first, all numbers were rounded either up or down to the nearest corresponding

sparse grid level. If this resulted in more numbers being rounded down than up, we chose the

number that was rounded down by the largest amount and then instead rounded this number

up. This procedure was continued iteratively. The same was done when more numbers were

rounded up than down.

To confirm that the adaptive procedure still achieves the required tolerance on the total

error, we have, for Table 4.2, computed the stochastic interpolation and finite element

errors (with respect to a reference solution) and the computational cost of the multilevel

approximations from Table 4.1. For comparison, we have added the results for the multilevel
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Table 4.1: D = (0, 1), N = 20. Number of samples MK�k computed using formula (4.12)
and various rounding schemes.

" level 0 1 2 3 4

6.3e-4

formula 191 48 15

up 841 841 41

up/down 841 41 41

7.9e-5

formula 3002 747 233 73

up 11561 841 841 841

up/down 841 841 841 41

1.4e-5

formula 27940 6949 2169 677 212

up 120401 11561 11561 841 841

up/down 11561 11561 841 841 841

4.7e-6

formula 110310 27433 8562 2672 834

up 120401 120401 11561 11561 841

up/down 120401 11561 11561 11561 841

method which was manually found to give a total error less than " at minimal cost, which was

already computed in §4.5.2 assuming a reference solutions was available. Note that for large

values of ", the adaptive procedure described in this section overestimated the finite element

error, leading to a larger number of levelsK compared to that found in §4.5.2. It is clear from
Table 4.2 that not only does the alternative rounding procedure yield the required bound

on the error, it also significantly reduces the computational cost of the multilevel method,

bringing it close to what was manually found to be the minimal cost possible.

4.6 Remarks

Computing solutions of stochastic partial di↵erential equations using stochastic collocation

methods can become prohibitively expensive as the dimension of the random parameter space

increases. Drawing inspiration from recent work in multilevel Monte Carlo methods, this

work proposed a multilevel stochastic collocation method, based on a hierarchy of spatial

and stochastic approximations. A detailed computational cost analysis showed, in all cases,
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Table 4.2: D = (0, 1), N = 20. Stochastic interpolation and spatial errors (with respect to
the reference solution) and computational cost of various multilevel methods.

" Interpolation error Spatial error Cost

6.3e-4
up 6.7e-5 3.4e-5 8266

up/down 2.8e-4 3.4e-5 4902

best 8.0e-5 2.9e-4 369

7.9e-5
up 2.2e-5 6.3e-6 85558

up/down 3.0e-5 6.3e-6 15650

best 2.4e-5 3.4e-5 4591

1.4e-5
up 2.7e-6 1.6e-6 853207

up/down 8.3e-6 1.6e-6 158714

best 3.9e-6 6.3e-6 119699

4.7e-6
up 7.3e-8 1.6e-6 1519787

up/down 1.2e-6 1.6e-6 1038183

best 1.2e-6 1.6e-6 1038183

a su�cient improvement in costs compared to single-level methods. Furthermore, this work

provided a framework for the analysis of a multilevel version of any method for SPDEs in

which the spatial and stochastic degrees of freedom are decoupled.

The numerical results practically demonstrated this significant decrease in complexity

versus single level methods for each of the problems considered. Likewise, the results for the

model problem showed multilevel SC to be superior to multilevel MC even up to N = 20

dimensions.

One of the largest obstacles to the practicality of stochastic collocation methods is the

huge growth in the number of points between grid levels. In the multilevel case, this can

lead to a large amount of computational ine�ciency. Certain simple rounding schemes

were proposed to mitigate this e↵ect, and proved to be extremely e↵ective for the problems

considered. Similarly, since most of our example problems involved computation of a

reference solution for the estimation of the necessary constants, a more practical multilevel

stochastic collocation algorithm that dispensed with the need for a reference solution was

proposed and tested.
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It is clear that for any sampling method for SPDEs, whether Monte Carlo or stochastic

collocation, multilevel methods are to be preferred over single-level methods for improved

e�ciency. Especially in the case of stochastic collocation methods, multilevel approaches

enable one to further delay the curse of dimensionality, tempering the explosion of

computational e↵ort that results when the stochastic dimension increases. Though Monte

Carlo methods are often preferable for problems involving a large stochastic dimension,

multilevel approaches greatly improve the e↵ectiveness of stochastic collocation methods

versus Monte Carlo methods.
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Chapter 5

Accelerating Stochastic Collocation

Methods

Some content of this chapter first appeared in the paper [36], in the SIAM/ASA Journal of

Uncertainty Quantification, published by the Society for Industrial and Applied Mathematics

(SIAM) and the American Statistical Association (ASA). Copyright by SIAM and ASA.

Unauthorized reproduction is prohibited. The work was accomplished in collaboration with

Diego Galindo, Clayton Webster, and Guannan Zhang. It has been slightly edited to maintain

consistency with other chapters in this manuscript, and much of the introductory material

has been moved to Chapters 1.

In this chapter, we propose another general acceleration technique for decreasing the

computational complexity of stochastic collocation methods to solve PDEs with random

input data. Specifically, we predict the solution of the parametrized PDE at each collocation

point using a previously assembled lower fidelity interpolant, and use this prediction to

provide deterministic (linear/nonlinear) iterative solvers with initial approximations which

continue to improve as the algorithm progresses through the levels of the interpolant. With

nested collocation points, these coarse predictions can be assembled as a sub-step in the

construction of the high-fidelity interpolant. As a concrete example, we develop our approach

in the context of stochastic collocation approaches employing sparse tensor products of

globally defined Lagrange polynomials on nested one-dimensional Clenshaw-Curtis abscissas,
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providing a rigorous computational complexity analysis of the resulting fully discrete sparse

grid stochastic collocation approximation, with and without acceleration, and demonstrating

the e↵ectiveness of our proposed algorithm.

We begin in §5.1 by recalling the class of parameterized PDEs under consideration, as

well as the construction of the fully discrete solution. In §5.2 we give our acceleration

technique in the context of general SC methods for the approximation of both linear and

nonlinear stochastic parameterized elliptic PDEs using iterative solvers. In §5.3, we provide
a rigorous computational complexity analysis of our approach, in the specific context of the

sparse grid SC approximations defined in §3.1. Finally, in §5.4 we provide several numerical

examples, including both moderately large-dimensional linear and nonlinear parametrized

PDEs, illustrating the theoretical results and the improved e�ciency of this technique.

5.1 Fully-discrete collocation approximation

Recall the stochastic parameterized boundary value problem from (2.1), given in weak form

by (2.5). The acceleration technique proposed in §5.2 and the sparse-grid SC method

discussed in §5.3 will be based on spatial approximation of the solution given by (2.6).

For L 2 N
+

, let IL be a general interpolation operator that utilizesML collocation points,

denoted HL = {yL,j}ML

j=1

. Moreover, assume that we have a family of interpolation operators

{IL}L2N
+

, which approximates the solution uh(x, ·) in the polynomial spaces P
1

(�) ⇢ . . . ⇢
PL(�) ⇢ PL+1

(�) ⇢ . . . ⇢ L2

%(�), of increasing fidelity, defined on sets of sample points

HL ⇢ �. Assume further that the fully discrete solution uh,L 2 Vh(D)⌦PL(�) has Lagrange

interpolating form

uh,L(x,y) := IL[uh](x,y) =
M

LX
j=1

 
M

hX
i=1

cL,j,i'i(x)

!
 L,j(y), (5.1)

where { L,j}ML

j=1

is a basis for PL(�). The approximation (5.1) can be constructed by solving

for uh(x,yL,j) independently at each sample point yL,j 2 HL. In §5.3, we construct a specific

example of an interpolation scheme satisfying (5.1), namely global sparse grid collocation.
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5.2 Accelerating stochastic collocation methods

We next introduce our acceleration scheme for both linear and nonlinear elliptic PDEs. For

each L 2 N
+

, the bulk of the computational cost in constructing (5.1) goes into solving

the ML systems of equations (2.7) corresponding to yL,j, j = 1, . . . ,ML. In this chapter,

we consider iterative solvers for the system in (2.7), and propose an acceleration scheme to

reduce the total number of iterations necessary to solve the collection of systems over the set

of sample parameters. We remark that here the word ‘acceleration’ does not indicate that

the convergence properties of the iterative solver are improved, but rather that the overall

computational work required by the SC method is reduced.

Denoting by euh the output of the selected iterative solver for the system (2.7), for yL,j 2
HL the semi-discrete solution uh(x,yL,j) is approximated by

uh(x,yL,j) =
M

hX
i=1

cL,j,i 'i(x) ⇡ euh(x,yL,j) =
M

hX
i=1

ecL,j,i 'i(x),

where we define ecL,j = (ecL,j,1, . . . ,ecL,j,M
h

)>. Therefore the final SC approximation is given

by a perturbation of (5.1), i.e.,

euh,L(x,y) :=
M

LX
j=1

 
M

hX
i=1

ecL,j,i 'i(x)

!
 L,j(y). (5.2)

To start the iterative solver for the system (2.7), it is common to use a zero initial guess,

denoted by c

(0)

L,j = (0, . . . , 0)>. However, we can better predict the solution at level L using

lower level approximations: Assume that we first obtain euh,L�1

(x,y) by collocating solutions

to (2.7) over HL�1

. Then at level L, for each new point yL,j 2 HL \ HL�1

, the initial guess

c

(0)

L,j can be given by interpolating the solutions from level L� 1, i.e.,

c

(0)

L,j :=
⇣euh,L�1

(x
1

,yL,j), . . . , euh,L�1

(xM
h

,yL,j)
⌘>

=

M
L�1X

j0=1

e
cL�1,j0 L�1,j0(yL,j). (5.3)

For a convergent interpolation scheme, we expect the necessary number of iterations to

compute ecL,j to become smaller as the level L increases to an overall maximum level, denoted
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L
max

. As such, the construction of the desired solution euh,L
max

is accelerated through the

intermediate solutions {euh,L}Lmax

�1

L=1

. This approach reduces computational cost by improving

initial guesses, but does not depend on the specific solver used. Thus, our scheme may always

be combined with faster solvers or better preconditioners. In Algorithm 1, we outline the

acceleration procedure described above, using a general nonlinear iterative method for the

solution of (2.7). The update function S in line 12 depends on the chosen iterative method,

and is defined later for two specific examples.

Algorithm 1: The accelerated SC algorithm

Goal: Compute euh,L
max

(x,y) :=
PM

L

max

j=1

⇣PM
h

i=1

ecL
max

,j,i 'i(x)
⌘
 L

max

,j(y)

1: Define M
0

= 1 and e
c

0,1 = (0, . . . , 0)>

2: for L = 1, . . . , L
max

do

3: for yL,j 2 HL \
⇣SL�1

l=1

Hl

⌘
do

4: Compute the initial guess according to (5.3):

5: c

(0)

L,j =
PM

L�1

j0=1

e
cL�1,j0 L�1,j0(yL,j)

6: Initialize: k = 1
7: repeat
8: Compute residual r(k)

L,j = (r(k)L,j,1, . . . , r
(k)
L,j,M

h

)>:
9: for i = 1, . . . ,Mh do

10: r(k)L,j,i =
R
D
f (yL,j)'i �

X
⌫2⇤

1

[⇤
2

S⌫

⇣PM
h

i0=1

c(k)L,j,i0 'i0(x),yL,j

⌘
T⌫('i) dx

11: end for
12: Update the solution: c(k+1)

L,j = c

(k)
L,j + S (r(1)

L,j, . . . , r
(k)
L,j)

13: k = k + 1
14: until kc(k)L,j � c

(k�1)

L,j k < ⌧

15: e
cL,j = c

(k)
L,j

16: end for
17: end for

The e�ciency of the proposed algorithm depends crucially on the number of times the

iterative solver is used, i.e., how many sample points are in the set �HL = HL \
⇣SL�1

l=1

Hl

⌘
for each level L. In fact, if the sample points are not nested, it could be the case that

�HL = HL, and the algorithm may be very ine�cient. Hence, in the following sections we

will assume:
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Assumption A8. Assume that the point sets HL, L = 1, . . . , L
max

are nested, i.e.,

H
1

⇢ H
2

⇢ . . . ⇢ HL
max

⇢ �.

Then �HL = HL\HL�1

, and we can construct the intermediate solutions {euh,L}Lmax

�1

L=1

using

a subset of the information needed to approximate euh,L
max

.

In §3.1 we constructed a specific interpolant using a point set which satisfies Assumption

A8. Next, we give several examples using Algorithm 1, looking at iterative solvers for both

nonlinear and linear elliptic PDEs.

Example 5.1. Consider the weak form of the nonlinear elliptic PDE in Example 2.2, letting

S
1

(v;y) = a(x,y)rv, T
1

(v) = rv, S
2

(v,y) = v(x,y)|v(x,y)|s, and T
2

(v) = v; this implies

⇤
1

= {1}, ⇤
2

= {2}. Define the matrix AL,j = A(yL,j), j = 1, . . . ,ML by

[AL,j]i,i0 =

Z
D

a(yL,j)r'i0r'i dx, for i, i0 = 1, . . . ,Mh. (5.4)

Then using the fixed point iterative method in Algorithm 1, for the update step we define

S (r(1)

L,j, . . . , r
(k)
L,j) = A

�1

L,jr
(k)
L,j.

With u(k)
h,L(x,yL,j) =

PM
h

i=1

c(k)L,j,i 'i(x), this update is equivalent to solving the linear system

Z
D

a(yL,j)ru(k+1)

h,L rv dx =

Z
D

h
f(yL,j)� u(k)

h,L(yL,j)|u(k)
h,L(yL,j)|s

i
v dx 8v 2 Vh(D),

to update u(k)
h to u(k+1)

h at the (k + 1)-th iteration. Note that each iteration of the solver in

Algorithm 1 requires the solution of this system, which is not aided by our algorithm.

Example 5.2. As a special case of the example above, consider the weak form of the linear

elliptic problem in Example 2.1 with ⇤
1

= {1}, ⇤
2

= ;, S
1

(v;y) = arv and T
1

(v) = rv in

(2.7). Due to the linearity, at each collocation point the solution uh(x,yL,j) =
PM

h

i=1

cL,j,i'i(x)

can be approximated by solving the following linear system

AL,jcL,j = fL,j, (5.5)
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with AL,j = A(yL,j), j = 1, . . . ,ML as in (5.4), and (fL,j)i =
R
D
f(x,yL,j)'i(x)dx for i =

1, . . . ,Mh. Under our assumptions on the coe�cient a, the linear system (5.5) is symmetric

positive definite, and we use the CG method [81] to find its solution. For k 2 N+, by defining

p

(k)
L,j = r

(k)
L,j �

X
k0<k

p

(k0)>
L,j AL,jr

(k)
L,j

p

(k0)>
L,j AL,jp

(k0)
L,j

p

(k0)
L,j ,

we get the update function

S (r(1)

L,j, . . . , r
(k)
L,j) =

p

(k)>
L,j r

(k)
L,j

p

(k)>
L,j AL,jp

(k)
L,j

p

(k)
L,j.

Recall the following well-known error estimate for CG:

���cL,j � c

(k)
L,j

���
A

L,j

 2

✓p
L,j � 1

p
L,j + 1

◆k ���cL,j � c

(0)

L,j

���
A

L,j

, (5.6)

where L,j = (yL,j) denotes the condition number of AL,j, c
(0)

L,j is the vector of initial guess

and c

(k)
L,j is the output of the k-th iteration of the CG solver. As opposed to Example 5.1, for

this example Algorithm 1 provides initial guesses for the solution of the linear system (5.5).

To evaluate the e�ciency of the accelerated SC method, we define cost metrics for

standard and accelerated SC approximations. In general, the computational cost in floating

point operations (flops) is the combined total number of iterations to solve (2.7) for each of

the ML
max

sample points—denoted by K
zero

and K
acc

for the standard and accelerated SC

methods, respectively—multiplied by the cost of performing one iteration, denoted C
iter

. Let

C
int

be the additional cost of interpolation incurred by using the accelerated initial vectors

(5.3). Then we define the respective cost metrics for the two di↵erent cases.

Standard SC cost: C
zero

= C
iter

K
zero

, (5.7)

Accelerated SC cost: C
acc

= C
iter

K
acc

+ C
int

. (5.8)

In Example 5.2, the discretization of the linear PDE leads to ML sparse systems of

equations of size Mh ⇥Mh. When solving these systems with a CG solver, K
zero

and K
acc

63



are the sum of solver iterations contributed from each sample system. In this case, the cost

of one iteration is just the cost of one matrix vector product, i.e., C
iter

= CDMh, where CD

depends on the domain D and the type of finite element basis.

Remark 5.3. (Interpolation costs). Many adaptive interpolation schemes already require

evaluation of the intermediate interpolation operators as in (5.3), e.g., to compute residual

error estimators. Thus, these methods will incur the interpolation cost C
int

even in the zero

initial vector case. Furthermore, for most nonlinear problems the deterministic solver is

expensive, so reducing the number of iterations is the most important element in reducing

the cost. In each of these settings, we can define the cost metrics as simply K
zero

and K
acc

.

Remark 5.4. (Hierarchical preconditioner construction). When solving linear systems

using iterative methods, convergence properties can be improved by considering the condition

number of the system. As with initial vectors, an interpolation algorithm can be used to

construct good, cheap preconditioners. We consider preconditioner algorithms where an

explicit preconditioner matrix, or its inverse, is constructed. In this case, for some low

collocation level L
PC

, we construct a strong preconditioner, PL
PC

,j := P (yL
PC

,j), for each

individual iterative solver, j = 1, . . . ,ML
PC

. Then, these lower level preconditioners are

interpolated for the subsequent levels. More specifically, for L > L
PC

, and yL,j 2 HL \HL
PC

,

we use the preconditioner

ePL,j := eP (yL,j) =

M
L

PCX
j0=1

PL
PC

,j0  L
PC

,j0(yL,j). (5.9)

Numerical illustrations of this approach are given in §5.4.

5.3 Applications to sparse grid stochastic collocation

In this section, we provide a specific example of an interpolation scheme satisfying the

assumptions described in §5.2, a generalized sparse grid SC approach. We briefly review the

construction of sparse grid interpolants, and rigorously analyze the approximation errors and

the complexities of both the standard and accelerated SC approaches, in order to demonstrate
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the improved e�ciency of the proposed acceleration technique when applied to iterative linear

solvers. Note that the analysis in §5.3.1 and §5.3.2 are conducted in the setting of using

Clenshaw-Curtis sparse grid, thus we assume the independence of all the random variables

{yn, n = 1, . . . , N} in this section.

In what follows, we use the sparse grid operators described in §3.1. Specifically, we define
the operator IL := Am,g

L , where we make the specific choices

p(1) = 1, p(l) = 2l�1 + 1 for l > 1, and g(l) =
NX

n=1

(ln � 1). (5.10)

For the remainder of the chapter, we will also assume that IL uses the Clenshaw-Curtis

sparse grid based on (3.4). Our analysis does not depend strongly on this choice of p and g,

and we could use other functions, e.g., anisotropic approximations. With p, g fixed, we then

write HL = Hp,g
L .

Finally, to construct the fully-discrete approximation in the space Vh(D) ⌦ P
⇤

p,g

L

(�) we

apply the Lagrange interpolating form of operator IL[·], given by (3.6), to uh(x,y) in (2.6)

to obtain:

uh,L(x,y) = IL[uh](x,y) =
M

LX
j=1

 
M

hX
i=1

cL,j,i'i(x)

!
 L,j(y). (5.11)

Due to the delta property of the basis function  L,j(y), the interpolation matrix for IL[uh] is

a diagonal matrix, and thus the coe�cient vectors cL,j = (cL,j,1, . . . , cL,j,M
h

) for j = 1, . . . ,ML

can be computed by independently solving ML systems of type (2.7).

5.3.1 Error estimates for fixed L

In what follows, we focus on the linear elliptic problem described in Examples 2.1 and 5.2, and

present a detailed convergence and complexity analysis of a fully discrete SC approximation,

denoted euh,L, for any fixed level, 1  L  L
max

. This analysis provides the basis for analyzing

the computational complexity of our acceleration method constructed over the sequence of

levels 1  L  L
max

. As specified above we consider only the isotropic Smolyak version of

SC interpolant given by (3.3), defined on Clenshaw-Curtis abscissas. However, our analysis
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can be extended without any essential di�culty to anisotropic SC methods and some more

complicated underlying PDEs.

The di↵erential operator corresponding to the parameterized elliptic PDE (2.2) admits

a weak form that is a symmetric, uniformly coercive and continuous bilinear operator on

H1

0

(D); i.e., there exist ↵, � > 0, depending on a
min

and a
max

but independent of y, such

that for every v, w 2 H1

0

(D),���� Z
D

a(y)rvrw dx

����  ↵ kvkH1

0

(D)

kwkH1

0

(D)

and � kvk2H1

0

(D)


Z
D

a(y)|rv|2 dx.

In this case, the bilinear form induces a norm, kvk2 =
R
D
a(y)|rv|2 dx, which for functions

v(x) =
PM

h

i=1

ci�i(x) 2 Vh(D), with c = (c
1

, . . . , cM
h

), coincides with the discrete norm

kckA(y), where the matrix A(y) is defined in (5.4). Thus we have

Continuity: kckA(y) = kvk 
p
↵ kvkH1

0

(D)

, and, (5.12a)

Ellipticity:
p
� kvkH1

0

(D)

 kvk = kckA(y) . (5.12b)

In order to investigate the complexity of euh.L, L 2 N
+

, we first need to derive su�cient

conditions for the error ku � euh,LkL2

%

to achieve a tolerance of " > 0, where L2

% :=

L2

%(�;H
1

0

(D)). Using the triangle inequality, the total error can be split into three parts, i.e.,

ku� euh,LkL2

%

 ku� uhk| {z }
e
1

L2

%

+ kuh � uh,Lk| {z }
e
2

L2

%

+ kuh,L � euh,Lk| {z }
e
3

L2

%

. (5.13)

The contributions of e
1

and e
2

correspond to the FE and SC errors, respectively, and have

been previously examined [71]. The error e
3

contributed by the linear solver is often omitted

from the analysis in the literature, and in practice can be controlled by setting a tight

tolerance on the iterative solver. However, the analysis presented here is focused on providing

cost estimates for the iterative solver and requires careful consideration of this term. First,

we recall error estimates for e
1

and e
2

, given from [71].

Lemma 5.4.1. Let Th be a uniform finite element mesh over D ⇢ Rd, d = 1, 2, 3, with Mh =

O(1/hd) grid points. For the elliptic PDE in Example 2.1, when u(x,y) 2 L2

%(�;H
1

0

(D) \
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Hs+1(D)), s 2 N
+

, the error of the finite element approximation uh is bounded by

ku� uhkL2

%

 C
fem

hs, (5.14)

where the constant C
fem

is independent of h and y.

For e
2

, recall the error estimate of Theorem 3.4.1, which states a convergence rate in

terms of the level L 2 N+:

ku� IL[u]kL1
(�;H1

0

(D))

 Csce
�rN2

L/N

, (5.15)

where, for a constant 0 < � < 1, the rate r = (1 � �)min
1nN log ⇢n, and the constant

Csc > 0 depends on N , u, and �.

Note that we have already assumed � = [�1, 1]N with the uniform measure, so the

essential supremum above is taken with respect to Lebesgue measure. We remark also that

the projection of u into the finite element subspace, denoted uh, also satisfies Assumption

A2 with the same region of analyticity, and therefore the application of the interpolant, IL,

to the semidiscete solution uh will converge as in (5.15).

We now consider the global solver error e
3

in (5.13), which is the error incurred by

approximating the solution to (5.5) at each sample point. The di↵erence uh,L � euh,L can be

written as an interpolant of the solver error, i.e., uh,L � euh,L = IL[uh � euh], which represents

the solver error amplified by the interpolation operator. Define the Lebesgue constant of

the operator IL[·] by CL = maxy2�
PM

L

j=1

| L,j(y)| where  L,j is given in (3.6). For IL[·] in
(3.6), we have

kuh,L � euh,LkL1
(�;H1

0

(D))

 CL max
j=1,...,M

L

kuh(yL,j)� euh(yL,j)kH1

0

(D)

.
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Thus, from the ellipticity condition in (5.12b),

e
3

 CL max
j=1,...,M

L

kuh(yL,j)� euh(yL,j)kH1

0

(D)

 CL
1p
�

max
j=1,...,M

L

kcL,j � e
cL,jkA(y

L,j

)

 ⌧p
�
CL,

where ⌧ is defined to be the tolerance of the linear solver. Note that the expression uh � euh

is only defined at collocation points. The solver error for each fixed yL,j 2 HL is controlled

by the CG convergence estimate (5.6). We now provide an upper bound of the Lebesgue

constant CL in the following lemma.

Lemma 5.4.2. The Lebesgue constant for the isotropic sparse-grid interpolation operator

IL[·] (3.6), using the Clenshaw-Curtis rule on � =
QN

n=1

�n = [�1, 1]N is bounded by

CL  [(L+ 1)(L+ 2)]N , (5.16)

where L, N are the interpolation level and dimension of the parameter space, respectively.

Proof. For n = 1, . . . , N , define �l
n

to be the Lebesgue constant of the one-dimensional

operator U p(l
n

). For Lagrange interpolants based on Clenshaw-Curtis abscissas, we have

that �l
n

 2

⇡
log (p (ln)� 1)+1 for ln � 2 [28]. Combining this with the growth rate m given

by (5.10), it is easy to obtain that �l
n

 2ln � 1 for ln � 2.

For v 2 C0(�n), the di↵erence operator �p(l
n

) for ln = 1 satisfies

���p(1)[v]
��
L1

(�

n

)

=
��U p(1)[v]

��
L1

(�

n

)

 �
1

max
y
n

2#1

|v(yn)|.

For ln � 2, the triangle inequality yields

���p(l
n

)[v]
��
L1

(�

n

)

=
��U p(l

n

)[v]� U p(l
n

�1)[v]
��
L1

(�

n

)

 (�l
n

+ �l
n

�1

) max
y
n

2#l

n

|v(yn)|.

68



Finally, for v 2 C0(�), we bound the norm of the interpolant IL[v] by

kIL[v]kL1
(�)

=

������
X

g(l)L

�p(l
1

) ⌦ · · ·⌦�p(l
N

)[v]

������
L1

(�)



0@2N
X

g(l)L

NY
n=1

ln

1A max
j=1,...,M

L

|v(yL,j)|

 2N
 

L+1X
l=1

l

!N

max
j=1,...,M

L

|v(yL,j)|

= [(L+ 1)(L+ 2)]N max
j=1,...,M

L

|v(yL,j)|,

which gives the desired estimate.

5.3.2 Complexity analysis

Now we analyze the cost of constructing euh,L
max

, L
max

2 N
+

, with the prescribed accuracy

". Here we assume " > 0 is su�ciently small, and study the asymptotic growth of the total

costs (5.8) for the construction of euh,L
max

by the accelerated algorithm described in §5.2. For
comparison, we will also analyze the cost (5.7) associated with the standard SC method,

where iterative solvers for the sequence of solutions to the linear systems (5.5) are seeded

with the zero vector as an initial guess. According to the error estimates discussed in §5.3.1,
a su�cient condition to ensure ku� euh,L

max

kL2

%

 " is that

ke
1

kL2

%

 C
fem

hs  "

3
, (5.17a)

ke
2

kL2

%

 ke
2

kL1
%

 C
sc

e�rN2

L

max

/N  "

3
, (5.17b)

ke
3

kL2

%

 ke
3

kL1
%

 (L
max

+ 2)2N
⌧p
�
 "

3
. (5.17c)

In §5.2 we defined K
zero

and K
acc

as the total number of solver iterations used by the

standard and accelerated SC methods, respectively, to solve (5.5) at each sample point.

Now let K
zero

(") and K
acc

(") represent the minimum values of K
zero

and K
acc

, respectively,

needed to satisfy the inequalities (5.17). Here we aim to estimate upper bounds of K
zero

(")
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and K
acc

("). Note that, for fixed dimension N , level L
max

, and mesh size h, the total number

of iterations is determined by the inequality (5.17c). Thus, the estimation of K
zero

(") and

K
acc

(") has two steps: (i) Given N and ", estimate the maximum possible h to satisfy (5.17a)

and the minimum L
max

that achieves (5.17b); (ii) Substitute the obtained values into (5.17c)

to estimate upper bounds on K
zero

(") and K
acc

(") according to the CG error estimate (5.6).

For (i), we have the following lemma, that follows immediately from Lemmas 5.4.1 and 3.4.1.

Lemma 5.4.3. Given the assumptions of Lemmas 5.4.1 and 3.4.1, the error bounds (5.17a)

and (5.17b) can be achieved by choosing the mesh size h and the level L
max

according to

h(") =

✓
"

3C
fem

◆
1/s

and L
max

(") =

⇠
N

log 2
log

✓
1

rN
log

✓
3C

sc

"

◆◆⇡
. (5.18)

For convenience, we treat the integer quantities K
zero

("), K
acc

("), and L
max

(") as positive

real numbers in the rest of this section. Now, based on the estimate in Lemma 5.4.2 for the

Lebesgue constant CL
max

, we state the following lemma related to the choice of an appropriate

tolerance ⌧(") to satisfy the error bounds (5.17c).

Lemma 5.4.4. Let " > 0. Given the assumptions of Lemmas 5.4.1 and 3.4.1, a su�cient

condition to ensure e
3

< "/3 is that

⌧(") =

p
� "

3(L
max

(") + 2)2N
. (5.19)

Moreover, it holds

1p
�
(L+ 2)2N⌧(")  C

sc

e�rN2

L/N

for L = 0, . . . , L
max

(")� 1,

where L
max

(") is the minimum level given in (5.18).

Proof. (5.19) is an immediate result of (5.17c). For L = 0, . . . , L
max

(")� 1, we have

1p
�
(L+ 2)2N⌧(")  1p

�
(L

max

(") + 2)2N⌧(")  "

3
 C

sg

e�rN2

(L

max

(")�1)/N  C
sg

e�rN2

L/N

,

which completes the proof.
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Using the selected h := h("), L
max

:= L
max

("), and ⌧ := ⌧("), we now estimate the

upper bounds on the number of CG iterations needed to solve a linear system at a point

yL
max

,j 2 HL
max

. To proceed, define

k
zero

:= max
y
L

max

,j

2H
L

max

kL
max

,j, and kL
acc

:= max
y
L,j

2�H
L

kL,j for L = 1, . . . , L
max

,

where kL,j is the number of CG iterations required to achieve kcL,j � c

(k
L,j

)

L,j kA
L,j

 ⌧("),

which, in general, depends on the choice of initial vector. Note that, in the case c

(0)

L,j =

(0, . . . , 0)>, there is no improvement in the iteration count as the level L increases, so k
zero

does not depend on L. Now we give the following estimates on k
zero

and {kL
acc

}Lmax

L=1

.

Lemma 5.4.5. Under the conditions of Lemmas 5.4.1 and 3.4.1, for any yL
max

,j 2 HL
max

,

if the CG method with zero initial vector is used to solve (5.5) to tolerance ⌧ > 0, then k
zero

can be bounded by

k
zero

 log

 
2
p
↵ kuhkL1

(�;H1

0

(D))

⌧

!,
log

✓p
̄+ 1p
̄� 1

◆
. (5.20)

Here  = supy2� (y), with (y) the condition number of the matrix A(y) corresponding to

(2.7). Alternatively, if the initial vector is given by the acceleration method as in (5.3), then,

for L = 1, . . . , L
max

, kL
acc can be bounded by

kL
acc

 log

 
4
p
↵C

sc

e�rN2

(L�1)/N

⌧

!,
log

✓p
̄+ 1p
̄� 1

◆
. (5.21)

Proof. Let yL,j be an arbitrary point in HL, 1  L  L
max

. Given an initial guess c

(0)

L,j,

the minimum number of CG iterations needed to achieve tolerance ⌧ > 0 can be obtained

immediately from (5.6), that is,

kL,j =

&
log

 
2kcL,j � c

(0)

L,jkAL,j

⌧

!,
log

✓p
L,j + 1

p
L,j � 1

◆'
, (5.22)

where AL,j = A(yL,j) is the FE system matrix corresponding to parameter yL,j, and L,j =

(yL,j) is the condition number ofAL,j (See Example 5.2). In the case that c(0)L,j = (0, . . . , 0)>,

71



the estimate in (5.20) can be obtained from (5.12a), i.e.,

���cL,j � c

(0)

L,j

���
A

L,j

= kcL,jkA
L,j


p
↵ kuhkL1

(�;H1

0

(D))

.

Alternatively, when using euh,L�1

for L = 1, . . . L
max

to provide initial vectors for the CG

solver (based on (5.3)), for yL,j 2 �HL we use Lemma 5.4.4 and (5.12a) to get the following

estimate:

���cL,j � c

(0)

L,j

���
A

L,j


p
↵
⇣
kuh � uh,L�1

kL1
(�;H1

0

(D))

+ kuh,L�1

� euh,L�1

kL1
(�;H1

0

(D))

⌘


p
↵

✓
C

sc

e�rN2

(L�1)/N

+
1p
�
(L+ 1)2N⌧

◆
 2

p
↵C

sc

e�rN2

(L�1)/N

. (5.23)

With (5.22), this leads directly to the estimate in (5.21).

Remark 5.5. (Acceleration over sparse grid levels). We can combine (5.23) with the CG

error estimate (5.6) to see that

���cL,j � c

(k)
L,j

���
A

L,j

 4
p
↵Csc

✓p
L,j � 1

p
L,j + 1

◆k

e�rN2

(L�1)/N

.

From this, we clearly see that the the necessary number of iterations needed to reach a given

tolerance is not fixed, but rather continues to improve as the algorithm moves through the

levels L of the SC interpolant. This improvement is also not a↵ected by reducing the size of

the spatial mesh. Furthermore, we see that our algorithm does not preclude preconditioning,

which improves the convergence rate of the solver by reducing the condition number L,j.

In the accelerated case, the sparse-grid interpolant IL
max

[uh] must be constructed in the

following fashion: before solving the system (5.5) corresponding to a sample point yL,j 2
�HL, we must first solve the systems for all sample points in HL�1

. With a total number

�ML = #(�HL) of new linear systems at level L, the total number of CG iterations for the

newly added points at level L can be bounded by �MLkzero and �MLkL
acc

, for the standard

and the accelerated cases, respectively. Then since ML
max

=
PL

max

L=1

�ML, we find that the
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total number of iterations for the standard and accelerated schemes can be bounded as

K
zero

(")  ML
max

k
zero

, and K
acc

(") 
L
maxX

L=1

�ML k
L
acc

.

This leads to the following estimates.

Theorem 5.6. Given Assumption A2, and the conditions of Lemmas 5.4.1 and 3.4.1, for

" > 0, the minimum total number of CG iterations K
zero

(") to achieve ku� euh,L
max

kL2

%

< ",

using zero initial vectors is bounded by

K
zero

(")  C
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✓
3C
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"

◆�N 
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+
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log 2
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⇥ 1

log
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◆
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4

+ 2N log log
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✓
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◆��
,

(5.24)

where  is as defined in Lemma 5.4.5, and the constants C
1

, C
2

, C
3

and C
4

are defined by

C
1

=

✓
e

log 2

◆N�1

✓
2

rN

◆N

, C
2

= 1 +
1

log 2
log

✓
1

rN

◆
,

C
3

= 6

r
↵

�
kuhkL1

(�;H1

0

(D))

, C
4

= 2N log

✓
2N

log 2

◆
.

(5.25)

Proof. To achieve the prescribed error, we balance the three error sources that contribute to

the total error (5.13). To control e
1

and e
2

, set h = h(") and L
max

= L
max

(") according to

Lemma 5.4.3. For the solver error e
3

, we choose the solver tolerance ⌧ = ⌧(") according to

Lemma 5.4.4. As above, the total number of iterations K
zero

(") can be bounded by

K
zero

(")  ML
max

k
zero

. (5.26)
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From Lemma 5.4.4 and 5.4.5, we have

k
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In addition, following [71, Lemma 3.9], we bound the number of interpolation points:
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L
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(5.28)
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,

where in the last line we have used (5.18) to replace L
max

. Substituting (5.27) and (5.28)

into (5.26) concludes the proof.

Theorem 5.7. Given Assumption A2, and the conditions of Lemmas 5.4.1 and 3.4.1, for

" > 0, the minimum total number of CG iterations K
acc

("), to achieve ku� euh,L
max

kL2

%

< ",

in Algorithm 1, is bounded by

K
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(5.30)

where  = supy2�((y)), C1

and C
2

are defined as in (5.25), and C
5

is defined by

C
5

= 2N log

✓
2N

log 2

◆
+ log

✓
4

r
↵

�

◆
.
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Proof. To achieve the prescribed error, we again choose h = h("), L
max

= L
max

(") and

⌧ = ⌧(") as in Lemmas 5.4.3 and 5.4.4. Then, K
acc

(") can be bounded by

K
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(") =
L
maxX

L=1

X
y
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2�H
L
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L
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�ML k
L
acc

.

From Lemma 5.4.4 and 5.4.5, for L = 1, . . . , L
max

, we have
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Hence,
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where S can be bounded using results from geometric sums, i.e.,
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Combining the last two inequalities, along with (5.28), we get

K
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Substituting (5.18) for L
max

concludes the proof.

In the case of the accelerated SC method, an interpolant IL�1

[euh], defined by (3.6) and

(5.2), must be evaluated for each of the �ML collocation points in �HL. Each interpolant

evaluation costs 2ML�1

� 1 operations, i.e., additions and multiplications, and must be

evaluated for each of the Mh components of the FE coe�cient vector. Then the interpolation

cost on each level is Mh�ML(2ML�1

� 1) for L = 1, . . . , L
max

("). Now we give an estimate

of the total interpolation cost C
int

(") for our algorithm to achieve the prescribed accuracy ".

Theorem 5.8. Given Assumption A2 and the conditions of Lemma 5.4.1, for su�ciently

small " > 0, the total cost of interpolation when using the sparse grid interpolation method

in (5.3) is bounded by
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,

where C
2

are defined as in Theorem 5.6, and C
8

= 64e�2 (e/rN)2N .

Proof. The total interpolation cost is bounded by
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Substituting the definition of L
max

(") from Lemma 5.4.3 into (5.31) concludes the proof.

Based on Theorems 5.6, 5.7 and 5.8, we finally discuss the savings of the accelerated SC

method proposed in §5.2. By comparing the estimates of K
zero

(") and K
acc

("), we see that

the acceleration technique reduces log(C
3

/") in (5.24) to 2
�
21/N � 1

�
log (3C

sc

/") in (5.30).

On the other hand, when taking into account the cost of interpolation C
int

, we must consider

the cost C
iter

of performing each iteration.

In the case of CG solvers, C
iter

is the cost of one matrix-vector multiplication, and will

be determined by the size of the unknown vector, Mh, and the sparsity of the mass matrix

A(y). Thus C
iter

is proportional to the size of the finite element vector, i.e., C
iter

= CDMh,

where CD depends on the dimension d of the physical domain and choice of finite element

basis. For example, without the use of a preconditioner, we can assume that the condition

numbers of the matrices A(y), for y 2 �, satisfy  := supy2� (y)  (C/h)
2, where the

constant C > 0 is independent of y 2 � [4]. Then we can specify the contribution of the

condition number in Theorems 5.6 and 5.7; using log(x) � (x� 1)/x and Lemmas 5.4.1 and

5.4.3, we estimate

1

log
⇣p

+1p
�1

⌘ 
p
+ 1

2
 C

✓
3C

fem

"

◆
1/s

.

Now as " ! 0, the asymptotic iterative solver costs, C
zero

= CDMhKzero

are of the order

Mh

�
1

"

�
1/s �

log
�
1

"

� N+1

�
log log

�
1

"

� N�1

, while in the accelerated case, the estimate for

CDMhKacc

, is of the same order with respect to ", but with an improvement from the

factor
�
21/N � 1

�
in the constant. For the accelerated method, the additional interpolation

costs C
int

are of order Mh

�
log

�
1

"

� 
2N �

log log
�
1

"

� 
2(N�1)

, which is negligible compared to

the iterative solver complexity. It is clear that, asymptotically, the accelerated method leads

to a net reduction in computational cost. We remark that for many adaptive interpolation

methods, the addition of new points already involves evaluation of the current (coarse)

interpolant. In this case, the cost of interpolation can be ignored, and the accelerated

method should be used.
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5.4 Numerical examples

The goal of this section is to demonstrate the reduction in computational cost of SC

methods using the proposed acceleration technique. In Example 5.1, we first use the

accelerated SC method to solve a stochastic parameterized elliptic PDE with one spatial

dimension, and compute the overall cost and iteration savings gained by acceleration.

Example 5.2 considers a similar problem and looks at the number of CG iterations versus

the collocation error, also demonstrating the e↵ect of varying parameter dimension N on the

convergence of the individual systems. In addition, as described in Remark 5.4, we extend our

acceleration technique to interpolated preconditioners, which also exhibit the improvements

of the method. Finally, Example 5.3 applies the accelerated method to iterative solvers for

nonlinear parametrized PDEs.

The analysis in section 5.3.1 had two components: (i) estimates for the reduction in total

solver iterations using acceleration, and (ii) interpolation costs. The interpolation costs can

be computed exactly for the non-adaptive methods we consider, and in Example 5.1, we

balance all error contributions and examine the total cost, including both solver iterations

and interpolation construction. In Examples 5.2 and 5.3 we focus only on the number of

iterations of the CG solver.

Example 5.1

We consider the following elliptic stochastic parameterized PDE8<: �r · (a (x,y)ru (x,y)) = 10 in D ⇥ �,
u(x,y) = 0 on @D ⇥ �,

(5.32)

where D = [0, 1], y = (y
1

, y
2

, y
3

, y
4

)>, �n = [�1, 1], n = 1, . . . , 4, and a is given by:

log (a (x,y)� 1) = e�1/8 (y
1

cos ⇡x+ y
2

sin ⇡x+ y
3

cos 2⇡x+ y
4

sin 2⇡x) . (5.33)
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The {yi}4i=1

are i.i.d. uniform random variables in [�1, 1]. In the one-dimensional physical

domain, an FE discretization using linear elements yields tridiagonal, symmetric positive-

definite systems. While this type of system could be solved e�ciently by direct methods,

nevertheless we use CG solvers to demonstrate the convergence properties of the acceleration

method.

Table 5.1 compares the standard and the accelerated SC methods, where the error for each

approximate solution, euh,L
max

, is computed against a highly refined approximate reference

solution euh⇤,L⇤ with h⇤ = 2�14, L⇤ = 10. In Figure 5.1 we plot the savings of the accelerated

SC method, computed according to the cost metrics (5.7) and (5.8). Since the constants

C
fem

and C
sc

in Lemma 5.4.3 are not known a priori, to balance the error contributions in

(5.17), we use a set of 100 realizations of uh(x,y), obtained with very small mesh size and

CG tolerance, as reference solutions; and then tune h, ⌧ , L using those realizations, until

the interpolant achieves the desired overall error " in the L2

% norm. Especially for the larger

systems, i.e., those with a large number of spatial degrees of freedom, significant savings are

achieved. The percent savings in the number of iterations versus the cost of interpolation

are calculated according to

C
zero

� C
acc

C
zero

=
MhCD(Kzero

�K
acc

)� C
int

MhCDKzero

,

where CD = 5, since the matrices are tridiagonal.

Table 5.1: Comparison in computational cost between the standard and the accelerated
SC methods for solving (5.32)–(5.33).

Tot. Err FE DoFs SC Pts CG tol K
zero

K
acc

Savings

1⇥ 10�2 255 137 1⇥ 10�3 28,259 21,123 19.4 %

5⇥ 10�3 511 401 5⇥ 10�3 173,671 83,884 42.4%

1⇥ 10�3 2,047 1,105 1⇥ 10�4 2,001,905 626,215 62.3%

5⇥ 10�4 4,095 2,929 5⇥ 10�5 10,878,352 1,842,703 74.5%

1⇥ 10�4 16,383 7,537 1⇥ 10�5 114,570,175 12,345,968 75.1%
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Figure 5.1: Cost (left axis) and percent savings (right axis) of the accelerated SC method
versus the standard SC method for (5.32)–(5.33). Costs are computed using (5.7) and (5.8).

Example 5.2

We consider the following stochastic parameterized linear elliptic problem

8<:�r · (a (x,y)ru (x,y)) = cos(x
1

) sin(x
2

) in D ⇥ �,

u(x,y) = 0 on @D ⇥ �,
(5.34)

where D = [0, 1] ⇥ [0, 1], �n = [�
p
3,
p
3], n = 1, . . . , N , and x = (x

1

, x
2

) is the spatial

variable. The random variables {yn}Nn=1

are i.i.d. and are each uniformly distributed in

[�
p
3,
p
3], with zero mean and unit variance, i.e., E[yn] = 0, and E[ynym] = �nm, for n,m 2

N
+

. The coe�cient a represents theN -term truncation of an expansion of a random field with

stationary covariance function, given by Cov [log (a� 0.5)] (x
1

, x0
1

) = exp (�(x
1

� x0
1

)2/R2

c) ,

where x
1

, x0
1

2 [0, 1], and Rc is the correlation length. Then, we have

log(a(x,y)� 0.5) = 1 + y
1

�p
⇡Rc/2

�
1/2

+
NX

n=2

⇣n'n(x)yn, (5.35)

where ⇣n and 'n(x) are the eigenvalues and eigenfunctions associated with the covariance

function; see [71] for more details on this example and the explicit calculation of the

eigenvalues and eigenfunctions. Here we will consider two correlation lengths, namely

Rc = 1/2, and Rc = 1/64. where Figure 5.2 shows the corresponding decay of eigenvalues.
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Figure 5.2: First 19 eigenvalues for (5.35) for correlation length Rc = 1/64, 1/2.

For the spatial discretization, we use a finite element approximation on a regular triangular

mesh with linear finite elements and 4225 degrees of freedom. The CG method is used for

the linear solver with diagonal preconditioners and a tolerance of 10�14.

First, in Table 5.2, we report the error and total iteration count of both the standard case,

using zero initial vectors, and accelerated SC construction, computed with several dimensions

N and Rc = 1/64. The error is measured using the expectation of the approximate solutions,

kE[uh,L
max

] � E[uh,L⇤ ]kL2

(D)

, for L
max

= 1, . . . , 7, where the “exact” solution E[uh,L⇤ ] is

computed using L⇤ = 8. We compare these errors against the cumulative total number

of iterations, K
zero

and K
acc

, needed to construct E[uh,L
max

].

An alternative approach to accelerating SC methods is found in [45]. For a particular

SC level L
max

, this method orders the collocation points lexicographically, with each

dimension ordered according to the decay of the eigenvalues associated with (5.35). We

also implemented a similar method without the sequential ordering; for a given level L, at

each new collocation point in �HL the solution at the nearest collocation point from lower

levels is given as an initial guess to accelerate the CG solver. We refer to this method as the

“nearest neighbor” approach. Figure 5.3 shows the average number of iterations needed to

solve the linear system (5.5), where the average is taken over the new points at level L, i.e.,

�HL, for L = 1, . . . , 7. We compare our interpolated acceleration algorithm, the nearest

neighbor approach, and standard SC method without acceleration, for N = 3 and N = 11,

using Rc = 1/64. The interpolated initial vector provided by the acceleration algorithm
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Table 5.2: Iteration counts and savings of the accelerated SC method for solving (5.34)–
(5.35) with correlation length Rc = 1/64, and parameter dimensions N = 3, 5, 7, 9, and
11.

Error SC Pts K
zero

K
acc

Savings in K

N=3

3.83e-8 25 6,780 5,991 11.6%

9.57e-10 69 18,893 14,628 22.6%

9.86e-12 177 48,691 27,765 43.0%

N=5

5.28e-07 61 17058 15095 11.6%

1.03e-08 241 67,955 53,992 20.6%

1.44e-10 801 226,597 150,241 33.7%

N=7

2.43e-08 589 168,237 136,072 19.1%

6.63e-10 2,465 706,049 500,718 29.1%

1.94e-11 9,017 2,585,970 1,496,391 42.1%

N=9

1.68e-07 1,177 338,428 277,583 18.0%

7.83e-09 6,001 1,729,337 1,273,895 26.3%

8.86e-11 26,017 7,505,343 4,719,820 37.1%

N=11

2.59e-07 2,069 596,368 495,705 16.9%

2.43e-08 12,497 3,608,185 2,736,615 24.2%

1.95e-09 63,097 18,231,420 12,139,658 33.4%

yields a reduction in the average number of iterations at each level, which increases with L.

Figure 5.3 also shows the e↵ect of using the nearest neighbor solution as the initial vector,

which provides some improvement over the standard case using zero initial vectors, but the

savings do not match those of our approach.

The left plot of Figure 5.4 shows the total iteration savings achieved by the acceleration

algorithm with di↵erent maximum collocation levels L
max

= 1, . . . , 6. The savings are

measured as the percentage reduction in the cumulative iteration count up to level L
max

,

relative to standard case using zero initial vectors, i.e., (K
zero

�K
zero

)/K
zero

. Here we also

see the e↵ect of random parametric dimension on the convergence of SC methods: as N

increases, our algorithm provides less accurate initial guesses for a given maximum SC level

L
max

. This can also be seen by comparing the left and right plots of Figure 5.3, which show

how the average number of iterations at a given SC level L changes from N = 3 to N = 11.
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Figure 5.3: Comparison of the average CG iterations per level for solving problem (5.34)–
(5.35) with dimensions N = 3 (left) and N = 11 (right), and correlation length Rc = 1/64.

On the other hand, the right plot of Figure 5.4 shows the same total iteration savings now

plotted versus error. As above, the error is measured as kE[uh,L
max

] � E[uh,L⇤ ]kL2

(D)

, with

L⇤ = 7. These results are in agreement with the theoretical asymptotic estimates from

Theorem 5.7, which predict an increased savings vs error for larger dimensions.

For two di↵erent correlation lengths Rc = 1/2 and Rc = 1/64, Figure 5.5 plots the

convergence of the error in E[uh,L] versus the total number of CG iterations for N = 3 and

N = 11. The larger correlation length, Rc = 1/2, results in slower convergence of the SC

interpolant than for Rc = 1/64, but note that the accelerated method reduces the total

iteration count in both cases.

On the other hand, we can employ anisotropic methods to increase the e�ciency of SC in

the case of larger correlation lengths [70]. Anisotropic SC methods will place more points in

directions corresponding to large eigenvalues of (5.35), and the importance of each dimension

is encoded in a weight vector (see (5.10)). Figure 5.6 plots the average number of iterations

for problem (5.34)–(5.35) with a relatively large correlation length Rc = 1/2, and N = 11.

Here we employ the weights given by an a posteriori selection described in [70], i.e., the weight

vector ↵ 2 RN , with ↵
1

= 0.85,↵
2

= ↵
3

= 0.8,↵
4

= ↵
5

= 1.0,↵
6

= ↵
7

= 1.6,↵
8

= ↵
9

=

2.6,↵
10

= ↵
11

= 3.7. The acceleration method decreases the average number of iterations
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Figure 5.4: Percentage cumulative reduction in CG iterations vs level (left) and error
(right) for solving (5.34)–(5.35) using our accelerated approach, with N = 3, 5, 7, 9, 11, and
for correlation length Rc = 1/64.

10
2

10
4

10
6

10
8

10
−10

10
−8

10
−6

10
−4

10
−2

Total CG Iterations

E
rr

o
r

 

 

R
c
=1/2, zero vec

R
c
=1/2, w/ acc

R
c
=1/64, zero vec

R
c
=1/64, w/ acc

10
2

10
4

10
6

10
8

10
−10

10
−8

10
−6

10
−4

10
−2

Total CG Iterations

E
rr

o
r

 

 

R
c
=1/2, zero vec

R
c
=1/2, w/ acc

R
c
=1/64, zero vec

R
c
=1/64, w/ acc
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(left), and N = 11 (right).
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Figure 5.6: Average CG iterations per level for solving problem (5.34)–(5.35) for N = 11
and with correlation length Rc = 1/2, using an isotropic SC (left) and anisotropic SC (right).
The ine�ciencies from using an isotropic grid are partially o↵set by increased gains from
acceleration.

needed to solve the linear system, but the e↵ect is not as pronounced as in the case of an

isotropic SC method. This occurs because the isotropic method places far too many points

in relatively unimportant directions, thus the dependence of u(y) on a certain component

yn of y may be well approximated at very low levels. Anisotropic methods exhibit better

convergence with respect to ML
max

(and lower interpolation costs) versus isotropic methods,

yet we see here that the acceleration algorithm helps to somewhat o↵set the ine�ciency of

isotropic methods for anisotropic problems.

In the preceding results we have used a simple diagonal preconditioner strategy. As

described in Remark 5.4, we can also construct e�cient preconditioners with our acceleration

scheme. Table 5.3 shows the e↵ectiveness of di↵erent preconditioning strategies for solving

equations (5.34)–(5.35), with N = 7 and Rc = 1/64, where we compare the average number

of iterations needed to solve (5.5) at each new point yL,j 2 �HL at a given level L. Here

we compute an incomplete Cholesky preconditioner for each linear system on the levels L =

1, . . . , L
PC

, for L
PC

= 1, 2, and 3, and use these to provide an “accelerated” preconditioner

(5.9) for the systems on the remaining levels L
PC

+1, . . . , L
max

. We compare this against the

cases where a simple diagonal preconditioner and an incomplete Cholesky preconditioner are

used. The three-level accelerated preconditioner reduces the average number of iterations to
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Table 5.3: Average iteration counts for the standard (top), and the accelerated (bottom) SC
method using six preconditioner schemes to solve (5.34)–(5.35) with N = 7, and Rc = 1/64.

CG iterations for standard SC

Level No PC Diag PC Inc. Chol. L
PC

= 1 L
PC

= 2 L
PC

= 3

1 243 243 55 55 – –

2 311.8 278.4 54.7 60.7 54.7 –

3 332.3 284.9 54.6 63.5 54.9 54.6

4 341.0 286.1 54.6 65.2 55.3 54.6

5 345.8 286.7 54.6 66.2 55.5 54.6

6 348.4 286.9 54.6 66.7 55.6 54.6

CG iterations for accelerated SC

Level No PC Diag PC Inc. Chol. L
PC

= 1 L
PC

= 2 L
PC

= 3

1 243 243 55 55 – –

2 299.3 264.6 52.9 58.4 52.9 –

3 295.8 251.3 49.1 57.1 49.4 49.1

4 270.8 225.8 43.7 52.3 44.2 43.7

5 237.0 194.3 37.3 45.8 38.0 37.3

6 186.1 151.9 28.9 36.0 29.5 28.9

86



within a decimal point of the incomplete Cholesky preconditioner, and the cost of computing

the low-level preconditioners and interpolating is relatively cheap in comparison.

Example 5.3

The preceding experiments demonstrate the benefits of using acceleration to reduce the

overall number of iterations of an individual linear solvers. In the case of a nonlinear PDE,

the possibilities for savings can be even greater than the linear cases above, since convergence

of a nonlinear solver may be slow or even unattainable from a poor initial vector. In this

example, we consider the problem8>>>><>>>>:
�r · (a (x,y)ru (x,y)) + F [u](x,y) = x in D ⇥ �,

u(0,y) = 0 in �,

u0(1,y) = 1 in �,

where a is given by (5.33), D = [0, 1], �n = [�1, 1], n = 1, . . . , 4, and F [u] is some nonlinear

function of u. In what follows, we consider the nonlinear functions F [u] = u5, and F [u] = uu0.

Nonlinear problems are typically solved with the use of iterative methods such as Picard

iterations or Newton’s method. We implement a combination of these methods that begins

with Picard iterations, then utilizes Newton’s method once the relative errors are small. For

spatial discretization, we use piecewise linear finite elements on [0, 1] with a mesh size of

h = 1/500, and solved the resulting systems at each iteration using exact methods. We

remark that the solution of the linear systems is not accelerated by our algorithm, but we

only decrease the total number of Picard and Newton iterations. The stopping criterion for

the solver is a relative tolerance of 10�8 in the l2 norm.

Results for these experiments are given in Figure 5.7. For each SC level, L = 1, . . . , 8,

we plot the average number of nonlinear iterations, where the average is taken over the set

of points which are new to level L, namely �HL. Finally, we show the total computational

time in Table 5.4, for di↵erent maximum levels of collocation approximation, measured on

a workstation with 1.7GHz dual core processors and 8 GB of RAM. We note that in Table

5.4, the size of the finite element system is fixed. Thus, as we move to higher levels of
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Figure 5.7: Average number of nonlinear iterations per level for solving problem (5.36)
with F [u] = uu0 (left) and F [u] = u5 (right).

collocation, the approximation in parameter space becomes relatively more expensive to

compute compared to the solving the finite element systems. This is why the savings begin

to decrease after level 5, even though Figure 5.7 shows dramatic savings in iterations for

higher levels. Furthermore, the reason for the negative savings for the SC approximation

with L = 2 is that the interpolant is not yet accurate enough to overcome the additional

cost of the acceleration.

5.5 Remarks

In this chapter, we proposed and analyzed an acceleration method for construction of sparse

interpolation-based approximate solutions to PDEs with random input parameters. The

acceleration method exploits the sequence of increasingly accurate approximate solutions to

provide increasingly good initial guesses for the underlying deterministic iterative solvers.

We have developed this method using a global Lagrange polynomial basis but the method

can easily be extended to other non-intrusive methods.

While our method takes advantage of the natural structure provided by hierarchical

SC methods, we do not take advantage of any hierarchy in the spatial approximation.

Our method may be used in combination with multilevel methods [92] to accelerate the
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Table 5.4: Computational time in seconds for computing solution to problem 5.36 using
the accelerated method (“acc”) and the standard method (“zero”).

SC Level 2 3 4 5 6

F [u] = u5, acc .03018 .113832 .2746 .7039 2.33314

F [u] = u5, zero .025976 .119256 .339678 .949184 2.61958

% Savings -16.2 4.5 19.2 25.8 10.9

F [u] = uu0, acc .027754 .089082 .22706 .629451 2.05741

F [u] = uu0, zero .026527 .090435 .273355 .895027 2.4008

% Savings -4.6 1.5 16.9 29.7 14.3

construction of SC interpolants, and reuse information from level to level. The combination

of the acceleration scheme with multilevel methods will be the subject of future work.

We rigorously studied error estimates in the special the case of linear elliptic PDEs with

random inputs, providing complexity estimates for the proposed method. Several numerical

examples confirm the expected performance. While the analysis of §5.3.1 applies to linear

stochastic parameterized PDEs, the acceleration method may be even more well suited to

nonlinear problems, as convergence rates may be improved, based on the choice of a good

initial guess for nonlinear iterative solvers. A final numerical example demonstrates the

advantage of our approach to nonlinear problems. A more rigorous study of acceleration

for nonlinear solvers and extension to time dependent problems may provide interesting

opportunities in the future.
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Chapter 6

Lebesgue Constants for Leja

Sequences on Unbounded Domains

The following content has been submitted for publication, and is available in [55]. The author

acknowledges colloboration from Guannan Zhang on this project.

The Lebesgue constant for a countable set of nodes provides a measure of how well the

interpolant of a function at the given points compares to best polynomial approximation

of the function. We are especially interested in how this constant grows with the number

of interpolation nodes, i.e., the corresponding degree of the interpolating polynomial, in an

unbounded domain. Due to a simple recursive formulation, the Leja points show promise as a

foundation for multi-dimensional approximation methods such as sparse grid collocation [68].

As such, in this chapter we analyze the Lebesgue constant for a sequence of weighted

Leja points on the real axis. Leveraging results from weighted potential theory [82], and

orthogonal polynomials with exponential weights [61], we show that the Lebesgue constant

for the weighted Leja points grows subexponentially with the number of interpolation nodes.

The rest of the chapter is organized as follows. In §6.1, we introduce the concept of

weighted Lagrange interpolation of a function on the real line, and in Theorem 6.1 state our

main result that describes the growth of the Lebesgue constant for weighted Leja points. To

prove our new theorem, we use results from potential theory, which we introduce in §6.2.
Specifically, we exploit the relationship between discrete potentials and polynomials with
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zeros at the Leja points, and the fact that the measures µn converge weak⇤ to the appropriate

equilibrium measure of the Fekete points. While potential theory gives us almost the whole

result, we also require some explicit estimates on the spacing of the weighted Leja points,

which are given in §6.3. The completion of the proof of our main theorem describing the

growth of the Lebesgue constant for weighted Leja points is given in §6.4, followed by

concluding remarks.

6.1 Lagrange Interpolation and Leja Points

In this section we recall in more detail the problem of weighted Lagrange interpolation of a

function on the real line. We also discuss the Lebesgue constant for a set of interpolation

points, and show how it relates to the best approximation error. Finally, in §6.1.1 we describe
our main contribution, which involves a theoretical estimate of the growth of the Lebesgue

constant of the weighted Leja sequence versus of the number of interpolation points. More

specifically, in Theorem 6.1 we prove that the Lebesgue constant of the weighted Leja points

grows subexponentially.

To make the setting precise, assume we are given a continuous function f on R that we

would like to interpolate. In other words, we have a set of n+1 points, {xk}nk=0

⇢ R, and the

values {f(xk)}nk=0

at each of those points. Lagrange interpolation constructs a polynomial

In[f ], of degree n, that matches f at every interpolation point, i.e.,

In[f ](xk) = f(xk), k = 0, . . . , n.

The fundamental Lagrange basis functions for {xk}nk=0

are defined as:

ln,k(x) =
nY

j=0

j 6=k

(x� xj)

(xk � xj)
, k = 0, . . . , n. (6.1)
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These functions satisfy ln,k(xj) = �j,k for all j, k = 0, . . . , n. The unique Lagrange interpolant

of degree n for f is then given by

In[f ](x) =
nX

k=0

f(xk)ln,k(x). (6.2)

Given an appropriate weight function w : R ! [0, 1], to estimate the w-weighted

approximation error for this interpolation scheme, we define Pn = span{xj}nj=0

to be the

space of polynomials of degree at most n over R, and let pn be an arbitrary element of Pn.

Then the error in the norm of L1(R), with k · k1 := k · kL1
(R), is given by

kw (f � In[f ]) k1  kw (f � pn) k1 + kw In[pn � f ]k1

 kw (f � pn) k1 (1 + Ln) , (6.3)

where the quantity

Ln := sup
x2R

(
nX

k=0

w(x)|ln,k(x)|
w(xk)

)
(6.4)

is called the Lebesgue constant. In contrast to the case of unweighted Lagrange interpolation

on a bounded domain, here the Lebesgue constant explicitly involves the weight function w.

In the inequality (6.3), we may take the infimum over all pn 2 Pn, to see that the Lebesgue

constant relates the error in interpolation to the best approximation error by a polynomial

in Pn:

kw (f � In[f ]) k1  (1 + Ln) inf
p
n

2P
n

kw (f � pn) k1. (6.5)

Thus, we see that the problem of constructing a stable and accurate Lagrange interpolant

consists in the construction of a set of interpolation points for which Ln does not grow too

quickly.

6.1.1 Our contribution

In this work we prove the following result:
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Theorem 6.1. Let ↵ > 1 and assume w : R ! [0, 1] is a weight function of the following

form

w(x) = exp(�Q(x)), with Q(x) = |x|↵, x 2 R. (6.6)

Then the Lebesgue constant for the weighted Leja sequence (1.4), defined on R, grows

subexponentially with respect to the number of interpolation points n , i.e.,

lim
n!1

(Ln)
1/n = lim

n!1

0@sup
x2R

8<:
nX

k=0

������
w(x)

Qn
j=0

j 6=k
(x� xj)

w(xk)
Qn

j=0

j 6=k
(xk � xj)

������
9=;
1A1/n

= 1.

The rest of this chapter is devoted to the proof of Theorem 6.1. Similar to the case

of unweighted Leja points [90, 91], in §6.2, we explore the connection between polynomials

and weighted potentials, and show how classical weighted potential theory can be used to

understand the asymptotic behavior (with respect to n) of an nth degree polynomial with

roots at the contracted Leja points. While these techniques give us most of the result, the

final part of the proof requires an explicit estimate on the spacing of the weighted Leja

nodes, which is developed in §6.3. Finally, in §6.4, we combine the spacing result and

weighted potential theory to complete the proof of Theorem 6.1.

6.2 Weighted Potential Theory

In this section, we state some necesary definitions and results from weighted potential theory,

which will be the main tools we use to prove Theorem 6.1. For more details, we refer the

interested reader to [82]. The class of weights used in this chapter, defined in (6.6), are a

subset of the well-studied Freud weights [61]. From (6.6), note first that we may extend Q

to be a function on C, and that w has the following properties:

1. The extended weight function w : C ! [0, 1] is continuous in C.

2. The set ⌃
0

:= {x 2 R
��w(x) > 0} has positive capacity, i.e.,

cap(⌃
0

) = sup{cap(K) : K ✓ ⌃
0

, K compact} > 0,
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where

cap(K) = exp

✓
inf

⇢Z
K

Z
K

log |x� t| dµ(x)dµ(t) : µ 2 M(K)

�◆
.

3. The limit |x|w(x) ! 0 as |x| ! 1, x 2 R.

In the language of weighted potential theory, these properties imply that w is admissible.

Furthermore, we also define the Mhaskar-Rhamanov-Sa↵ number an = an(w), as the

unique solution to the equation (see [82, Corollary IV.1.13]):

n =
1

⇡

Z a
n

�a
n

xQ0(x)p
a2n � x2

dx. (6.7)

This number an has a few special properties which we use in the following analysis. First,

the weighted sup-norm of an nth degree polynomial on R is realized on the compact set

[�an, an], i.e., for all pn 2 Pn,

kpnwk1 = sup
|x|a

n

|pn(x)|w(x), (6.8)

and |pn(x)|w(x) < kpnwk1 for |x| > an [82]. Second, from [61, p. 27], an ! 1 at

approximately the rate n1/↵, i.e.,

an ⇠ n1/↵. (6.9)

Here, and in what follows, for two sequences an, bn, we write an ⇠ bn if and only if there

exist constants C
1

, C
2

> 0, independent of n, such that C
1

 a
n

b
n

 C
2

.

Let M(R) be the collection of all positive unit Borel measures µ with Supp(µ) ✓ R. For

µ 2 M(R) and x, t 2 R, define the weighted energy integral

Iw(µ) =

Z Z
log (|x� t|w(x)w(t))�1 dµ(x)dµ(t)

=

Z Z
log

1

|x� t| dµ(x)dµ(t) + 2

Z
Qdµ.

95



We also define the logarithmic potential by

Uµ(x) :=

Z
log

1

|x� t| dµ(t). (6.10)

The goal of weighted potential theory is to find and analyze the measure µ 2 M(R) that

minimizes the weighted energy integral Iw(µ). The following theorem may be found in

general form in [82, Theorem I.1.3], and is presented here for the specific case (6.6) of a

continuous, admissible weight w on R.

Theorem 6.2. Let w be a continuous, admissible weight function on R ⇢ C, and define

Vw := inf
�
Iw(µ)

��µ 2 M(R)
 
. (6.11)

Then we have the following properties:

• The quantity Vw is finite.

• There exists a unique measure µw 2 M(R) such that

Iw(µw) = Vw,

and the equilibrium measure µw has finite logarithmic energy, i.e.,

�1 <

Z Z
log

1

|x� t| dµw(t)dµw(x) =

Z
Uµ

w(x) dµw(x) < 1.

• Let Fw be the modified Robin constant for w, given by

Fw := Vw �
Z

Qdµw. (6.12)

The logarithmic potential Uµ
w is continuous for z 2 C and, moreover, for every x 2

Supp(µw) ⇢ R,

Uµ
w(x) +Q(x) = Fw. (6.13)
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Proof. The first two statements are quoted directly from, and proved in, [82, Theorem I.1.3].

To prove the third statement, we note that C \ R has exactly two connected components,

namely {Im(z) > 0} and {Im(z) < 0}, and that of course every point in Supp(µw) ⇢
{Im(z) = 0} is a boundary point for both of these sets. Thus, by [82, Theorem I.5.1], Uµ

w

is continuous on Supp(µw). Hence, from [82, Theorem I.4.4], Uµ
w is continuous on all of C,

and (6.13) holds for every x 2 Supp(µw) ⇢ R.

6.2.1 Weighted Fekete Points

In this section we describe the connection between Leja points and the weighted equilibrium

measure µw. For n � 0, let Tn denote a general set of points in R with cardinality |Tn| = n+1,

and let w be an admissible weight on R. We say a set of n+1 points is (weighted-)Fekete if

it maximizes the quantity:

Fn = argmax
|T

n

|=n+1

0BB@ Y
t,s2T

n

t 6=s

|t� s|w(t)w(s)

1CCA
2

(n+1)(n+2)

. (6.14)

It is known that the Lebesgue constant for a set of Fekete points Fn satisfies

L(Fn) := sup
x2R

X
s2F

n

����w(x)
Q

t 6=s(x� t)

w(s)
Q

t 6=s(s� t)

����  n+ 1.

Furthermore, we also know that for a sequence of Fekete point sets, {Fn}n�1

,

lim
n!1

0BB@ Y
t,s2F

n

t 6=s

|t� s|w(t)w(s)

1CCA
2

(n+1)(n+2)

= exp(�Vw),

where Vw, as defined in (6.11), is the weighted logarithmic capacity for R with respect to w.

For interpolation schemes, we are also interested in arrays of points with similar asymptotic

properties to Fekete points in the limit as n ! 1, since this is a necessary condition for a
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sequence of points to have a well-behaved Lebesgue constant. Thus, we make the following

definition:

Definition 6.3. A sequence of point sets {Tn}n�1

, with |Tn| = n, n � 1, is called

asymptotically (weighted) Fekete if

lim
n!1

0BB@ Y
t,s2T

n

t 6=s

|t� s|w(t)w(s)

1CCA
2

(n+1)(n+2)

= exp(�Vw).

Note that a sequence of interpolation points may be asymptotically Fekete but not Fekete,

i.e., without satisfying (6.14) for any n 2 N. The following lemma, first proved in [37] in

a more general setting than the one considered here, and later in [68], indicates that the

contracted Leja sequence distributes asymptotically like the Fekete points.

Lemma 6.3.1. The contracted Leja sequence, defined by (1.4) and (1.5) is asymptotically

Fekete.

Next we define the discrete point-mass measure associated with the points Tn as

⌫T
n

=
1

n+ 1

X
t2T

n

�{t},

where �{t} is the standard Dirac delta function for the point t 2 Tn. If a sequence of measures

{⌫T
n

}n�0

corresponds to an asymptotically Fekete sequence of interpolation nodes, the next

lemma tells us that they converge to a particular measure; see [37, Theorem 2.3], and [68,

Theorem 3.1].

Lemma 6.3.2. Let µw be the equilibrium measure for R with respect to w (see Theorem 6.2),

and let {Tn}n�0

be an asymptotically Fekete sequence of point sets with corresponding discrete

measures {⌫T
n

}n�0

. Then we have

lim
n!1

⌫T
n

= lim
n!1

1

n+ 1

X
t2T

n

�{t} = µw,
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where equality is understood in the weak⇤ sense. In particular, for the measures µn, defined

by (1.6), corresponding to the contracted Leja sequence,

lim
n!1

µn = µw.

6.2.2 Potentials and Polynomials

Taken together, the previous two lemmas tell us that the discrete point-mass measures

associated with the contracted Leja sequence converge weak⇤ to the weighted equilibrium

measure for R corresponding to the weight w given in (6.6). This fact enables us to make

a key connection between potential theory and Leja points, and provides the basis for the

proof of Theorem 6.1.

With {xn,j}nj=0

as in (1.5), define Pn,k to be the polynomial with roots at each of the n

contracted Leja points xn,j, j = 0, . . . , k � 1, k + 1, . . . , n, i.e.,

Pn,k(x) =
nY

j=0

j 6=k

(x� xn,j),

and let µn,k be the measure which assigns mass 1

n
to each of the roots of Pn,k, i.e.,

µn,k =
1

n

nX
j=0

j 6=k

�{x
n,j

}. (6.15)

Then, taking the logarithm of |P 1/n
n,k w|, we convert the polynomial into a discrete logarithmic

potential with respect to the measure µn,k, i.e.,

log |Pn,k(x)w(x)
n|1/n =

1

n

nX
j=0

j 6=k

log |x� xn,j|�Q(x)

= �Uµ
n,k(x)�Q(x).

By Lemma 6.3.1, the weighted Leja sequence is asymptotically Fekete, and therefore we

have µn,k ! µw in the weak⇤ sense. This connections allows us to exploit potential
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theory to understand the asymptotic behavior of weighted polynomials. In particular, by

considering polynomials with roots at the contracted Leja points (1.5), we explicitly explore

this asymptotic behavior in the following two lemmas, which will be an essential part of the

proof of Theorem 6.1.

Lemma 6.3.3. Given " > 0, there exists an N 2 N such that, for n > N and 0  k  n,

��kPn,kw
nk1/n1 � exp (�Fw)

�� < ".

Proof. First, [82, Theorem I.3.6] implies that for all n and 0  k  n,

kPn,kw
nk1 � exp(�nFw).

This yields lim infn!1 kPn,kwnk1/n1 � exp(�Fw) independently of k. In the remainder of the

proof, we seek to show that

lim supn!1 kPn,kwnk1/n1  exp(�Fw).

Now let " > 0 be given. We will seek to show that there exists an N such that for n > N ,

and for all 0  k  n,

sup
x2R

⇢
1

n
log |Pn,k(x)|�Q(x)

�
 �Fw + ✏.

Define Kw := Supp(µw). Because of (6.33), we know that for our weight function

sup
x2R

⇢
1

n
log |Pn,k(x)|�Q(x)

�
= sup

x2K
w

⇢
1

n
log |Pn,k(x)|�Q(x)

�
,

and from (6.13), we have the relation

Uµ
w(x) +Q(x) = Fw, 8x 2 Kw ⇢ R.

Hence we can write

sup
x2K

w

⇢
1

n
log |Pn,k(x)|�Q(x)

�
= �Fw + sup

x2K
w

{�Uµ
n,k(x) + Uµ

w(x)} . (6.16)
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Let � > 0, to be chosen later. We rewrite the arguments of the supremum on the right-hand

side of (6.16) as integrals and divide them each into two parts:

�Uµ
n,k(x) + Uµ

w(x) =

Z
|x�t|��

log |x� t| dµn,k(t)�
Z
|x�t|��

log |x� t| dµw(t)

+

Z
|x�t|<�

log |x� t| dµn,k(t)�
Z
|x�t|<�

log |x� t| dµw(t).

First, for � < 1, clearly

Z
|x�t|<�

log |x� t| dµn,k(t) =
X
j 6=k

|x�x
n,j

|<�

log |x� xn,j|  0. (6.17)

To deal with the other pieces, first define the function ��(t; x) to be the indicator function

for the set Kw \ B(x, �), where B(x, �) is the ball of radius � about x. We claim that for

fixed � > 0, the function

g(x) :=

Z
B(x,�)

log |x� t| dµw(t),

is continuous. To see this, let f�(t; x) := ��(t; x) log |x� t|. Then,

g(x) :=

Z
B(x,�)

log |x� t| dµw(t) = Uµ
w(x)�

Z
K

w

f�(t; x)dµw(t).

The first function on the right-hand side is continuous by Theorem 6.2. To see that the latter

is continuous, let {yn}1n=1

⇢ Kw be a sequence converging to x. Then as yn ! x, f�(t; yn)

converges to f�(t; x), and |f�(t; yn)|  max{log(diam Kw), log
1

�
}. Hence, by the bounded

convergence theorem, g(yn) ! g(x).

Since the support of the measure µw is compact, we know the function log |x � t| is
uniformly bounded above for x, t 2 Kw. As � ! 0, f�(t; x) is a decreasing sequence of

integrable functions, which converge pointwise almost everywhere to log |x � t|. Hence by

the monotone convergence theorem, as � ! 0,

Z
K

w

f�(t; x) dµw(t) !
Z
K

w

log |x� t| dµw(t).
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Hence, for any x, there exists a 1 > �x > 0 such that

�
Z
|x�t|<�

x

log |x� t| dµw(t) =

Z
K

w

f�
x

(t; x) dµw(t)�
Z
K

w

log |x� t| dµw(t)  "/4. (6.18)

Furthermore, by the continuity argument in the previous paragraph, we can choose an rx < �x

so that for any y 2 Kw with |y � x| < rx,����Z|y�t|<�
x

log |y � t| dµw(t)�
Z
|x�t|<�

x

log |x� t| dµw(t)

����  "/4. (6.19)

Again by compactness, we can cover Kw by some finite set {B(yi, ry
i

)}Mi=1

. Moreover, there

exists a � > 0 such that for any x 2 Kw, B(x, �) ⇢ B(yi, ry
i

) for some i = 1, . . . ,M . This

will be the chosen �. Indeed, from (6.18) and (6.19), and by � < ry
i

< �y
i

,

�
Z
|x�t|<�

log |x� t| dµw(t)  �
Z
|x�t|<�

y

i

log |x� t| dµw(t)

 �
Z
|y

i

�t|<�
y

i

log |yi � t| dµw(t) + "/4 (6.20)

 "/2.

Finally we deal with the remaining integrals in (6.16). For any x, the function log |x� t|
is continuous on the set |x � t| > �. The fact that µn,k ! µw weak⇤ implies by definition

that there exists an N
1

2 N, such that if n > N
1

,

Z
|x�t|��

log |x� t| dµn,k(t) 
Z
|x�t|��

log |x� t| dµw(t) + "/4.
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Moreover, for any non-negative integers k
1

6= k
2

, we find for some C > 0,

��� Z
|x�t|��

log |x� t| dµn,k
1

(t)�
Z
|x�t|��

log |x� t| dµn,k
2

(t)
���

=

��������
1

n

X
j 6=k

1

|x�x
n,j

|��

log |x� xn,j|�
1

n

X
j 6=k

2

|x�x
n,j

|��

log |x� xn,j|

��������
 1

n

����log✓diam(Kw)

�

◆���� .
The right-hand side is small as n ! 1, so we can choose N

2

> N
1

such that for n > N
2

,

and 0  k
1

, k
2

 n,����Z|x�t|��

log |x� t| dµn,k
1

(t)�
Z
|x�t|��

log |x� t| dµn,k
2

(t)

���� < "/4.

This implies that for n > N
2

and 0  k  n,

Z
|x�t|��

log |x� t| dµn,k(t) 
Z
|x�t|��

log |x� t| dµw(t) + "/2. (6.21)

Furthermore, by compactness of Kw, using standard arguments we can also choose N >

max{N
1

, N
2

} to be independent of x. See [Taylor, Lemma 2.4.12].

Combining (6.17), (6.20), and (6.21) with (6.16) yields the desired result.

Lemma 6.3.4. For all " > 0, there exist � > 0 and N 2 N, such that for n > N , and

0  k  n, �������
0@w(xn,k)

n
Y

|x
n,k

�x
n,j

|��

|xn,k � xn,j|

1A1/n

� exp(�Fw)

������� < ".

Proof. Let " > 0 be given, and Kw = Supp(µw) as above. To prove the lemma, it will be

enough to show that�������log
0@w(xn,k)

n
Y

|x
n,k

�x
n,j

|��

|xn,k � xn,j|

1A1/n

� (�Fw)

������� < ".
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First, notice that

log

 Y
|x

n,k

�x
n,j

|��

|xn,k � xn,j|
!

1/n

=

Z
|t�x

n,k

|��

log |t� xn,k| dµn,k(t),

and of course

log (w(xn,k)
n)1/n = �Q(xn,k).

Furthermore, we have already seen from (6.13) that

Uµ
w(x) +Q(x) = Fw, 8x 2 Kw ⇢ R. (6.22)

Thus, we estimate

����� log
 
w(xn,k)

n
Y

|x
n,k

�x
n,j

|��

|xn,k � xn,j|
!

1/n

� (�Fw)

�����
=

������log
 
w(xn,k)

n
Y

|x
n,k

�x
n,j

|��

|xn,k � xn,j|
!

1/n

+ Uµ
w(xn,k) +Q(xn,k)

������

�����
Z
|t�x

n,k

|��

log |t� xn,k| dµn,k(t)�
Z
|t�x

n,k

|��

log |t� xn,k| dµw(t)

�����| {z }
A

+

�����
Z
|t�x

n,k

|<�

log |t� xn,k| dµw(t)

�����| {z }
B

+ |�Q(xn,k) +Q(xn,k)| .

The last term is equal to zero, so it is left to show that there exists a � > 0 and N 2 N

independent of n and k such that A < "/2 and B < "/2. The proof for the quantity A is

shown in the proof of Theorem 6.3.3, and the proof for B follows essentially from the proof

of [90, Theorem 2.4.6], so we forgo the details here.
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6.3 Spacing of the weighted Leja points

The goal of this section is to state and prove a result regarding the spacing of the contracted

Leja sequence. This will be crucial to the final step in the proof of Theorem 6.1.

Theorem 6.4. Let w and ↵ > 1 be as in (6.6), and let n 2 N, with 0  i, j  n. Then,

for some constant C > 0, independent of n, the contracted Leja sequence (1.5) satisfies the

spacing property

C|xn,i � xn,j| � n�1. (6.23)

To prove Theorem 6.4, the main spacing result for the contracted Leja sequence, we

use a weighted version of the classical Markov-Bernstein inequalities, which relate norms of

polynomials to norms of their derivatives. First, for an and Q as defined in (6.7) and (6.6),

respectively, define the function

'n(t) =
|t� a

2n||t+ a
2n|

n
p

(|t+ an|� an⇣n)(|t� an|+ an⇣n)
, (6.24)

where

⇣n = (↵n)�2/3 .

Remark 6.5. The function 'n plays the same role as the function

�n(t) =
1

n
p
1� t2

,

for the Markov-Bernstein inequalities for unweighted polynomials on [�1, 1].

Proof of Theorem 6.4. Let ' be as in (6.24). The main fact we need for this proof is a

Bernstein-type inequality for weighted polynomials, which can be found, for instance, in [61,

Theorem 10.1]: for any polynomial pn of degree n � 1, there exists some C, independent of

pn and n, such that

|(pn(t)w(t))0| 
C

'n(t)
kpnwk1, t 2 R. (6.25)
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From [61, Theorem 5.4(b)], we estimate that

sup
t2[�a

n

,a
n

]

���� 1

'n(t)

���� ⇠ p
↵
n

an
.

Hence, for any polynomial pn of degree n, and t 2 R,

|(pn(t)w(t))0|  C
n

an
kpnwk1. (6.26)

In particular, this holds for the polynomial Pn defined by

Pn(t) :=
n�1Y
j=0

(t� xj). (6.27)

Given 0  j < n, by the mean value theorem, there exists a point t between xj and xn such

that

|Pn(xj)w(xj)� Pn(xn)w(xn)|
|xn � xj|

= |(Pn(t)w(t))
0| .

Notice that for 0  j < n, Pn(xj) = 0 by definition. Then from (6.26),

|Pn(xn)w(xn)|
|xn � xj|

 Cn

an
|Pn(xn)w(xn)| ,

which implies

C|xn � xj| �
an
n
.

Using the fact an ⇠ n1/↵ from (6.9), we get

C|xn � xj| �
an
n

⇠ n1/↵�1. (6.28)

Let n � 1, and j < n, such that xn,j, xn,n � 0. Then using (6.28), along with (1.5), we

calculate

C|xn,n � xn,j| = Cn�1/↵|xn � xj| � n�1/↵n1/↵�1 = n�1.
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Now let i, j  n, and assume without loss of generality that i < j. The above calculation

shows that

2C|xn,i � xn,j| � j�1 � n�1.

which, up to constants independent of n, is the desired result.

6.4 Proof of Theorem 6.1

In this section, we prove our main theorem concerning the growth of the Lebesgue constant

of the weighted Leja sequence. Similar to the proof in the unweighted case given in [90, 91],

we separate the proof of the theorem into several smaller components.

To begin, we first show that the Lebesgue constant of the weighted Leja sequence on the

real line is equal to a weighted Lebesgue constant of the contracted Leja sequence (1.5) on a

fixed compact set. To do this, we first use the fact from (6.8) that supremum a w-weighted,

nth degree polynomial is realized in the compact set [�an, an]. Then, we exploit the specific

form (6.6) of our weight function to show that

Q(n1/↵x) = nQ(x), (6.29)

which in turn implies that

w(x) = w(n�1/↵x)n. (6.30)

Finally, let 0 < c < 1 be the smallest constant such that

sup
n

n�1/↵an  c. (6.31)

Note that c < 1 by (6.9). Now defining K := [�c, c], this means that

y 2 [�an, an] =) x := n�1/↵y 2 K. (6.32)
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Furthermore, for any n = 1, 2, . . . , let qn 2 Pn. Define eqn(x) 2 Pn to be the unique polynomial

such that

qn(x) = n�n/↵eqn(n1/↵x)

Then we calculate

sup
x2R

w(x)n |qn(x)| = n�n/↵ sup
x2R

w(n1/↵x)
��eqn(n1/↵x)

��
= n�n/↵ sup

y2R
w(y) |eqn(y)|

= n�n/↵ sup
y2[�a

n

,a
n

]

w(y) |eqn(y)|
= sup

y2[�a
n

,a
n

]

w(n�1/↵y)n
��qn(n�1/↵y)

��
 sup

x2K
w(x)n |qn(x)|

 sup
x2R

w(x)n |qn(x)| .

From this string of inequalities we have that for any n � 1, and qn 2 Pn,

sup
x2R

w(x)n |qn(x)| = sup
x2K

w(x)n |qn(x)| .

Then using [82, Corollary III.2.6], we know that supp(µw) =: Kw ✓ K, and

sup
x2K

w(x)n |qn(x)| = sup
x2K

w

w(x)n |qn(x)| . (6.33)
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Now from the definition (6.8), along with (6.29)–(6.33), we calculate

Ln = sup
x2R

8>><>>:
nX

k=0

��������
w(x)

w(xk)

0BB@ nY
j=0

j 6=k

x� xj

xk � xj

1CCA
��������
9>>=>>;

= sup
x2[�a

n

,a
n

]

8>><>>:
nX

k=0

��������
w(x)

w(xk)

0BB@ nY
j=0

j 6=k

x� xj

xk � xj

1CCA
��������
9>>=>>;

= sup
x2[�a

n

,a
n

]

8>><>>:
nX

k=0

��������
w(n�1/↵x)n

w(n�1/↵xk)n

0BB@ nY
j=0

j 6=k

n�1/↵(x� xj)

n�1/↵(xk � xj)

1CCA
��������
9>>=>>;

 sup
y2K

8>><>>:
nX

k=0

��������
w(y)n

w(xn,k)n

0BB@ nY
j=0

j 6=k

y � xn,j

xn,k � xn,j

1CCA
��������
9>>=>>;

 n

8>><>>: max
k=0,...,n

0BB@supy2K
w

����w(y)nQn
j=0

j 6=k
(y � xn,j)

����
w(xn,k)n

Qn
j=0

j 6=k
|xn,k � xn,j|

1CCA
9>>=>>; .

Thus, to show that this Lebesgue constant grows at a subexponential rate, the above

calculation indicates that we only need to show that

lim
n!1

8<:n

0@ max
k=0,...,n

supy2K
w

|w(y)n
Qn

j=0

j 6=k
(y � xn,j)|

w(xn,k)n
Qn

j=0

j 6=k
|xn,k � xn,j|

1A9=;
1/n

= 1. (6.34)

Of course, n1/n ! 1 as n ! 1, so to prove (6.34), it is enough to show that, uniformly in

k, the numerator and denominator both converge to exp(�Fw), i.e.,

lim
n!1

sup
y2K

w

0BB@|w(y)n
nY

j=0

j 6=k

(y � xn,j)|

1CCA
1/n

= exp(�Fw), (6.35)
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and

lim
n!1

8>><>>:w(xn,k)
n

nY
j=0

j 6=k

|xn,k � xn,j|

9>>=>>;
1/n

= exp(�Fw), (6.36)

with both limits independent of k = 0, . . . , n. Recall that Fw was defined explicitly in (6.12),

and is called the Robin constant with respect to the weight w.

Let � > 0, and k = 0, . . . , n. To prove (6.36), we split the product into two parts:

nY
j=0

j 6=k

|xn,k � xn,j|w(xn,k)

=

0@w(xn,k)
n

Y
|x

n,k

�x
n,j

|��

|xn,k � xn,j|

1A
| {z }

A
1

(n,k,�)

0@ Y
|x

n,k

�x
n,j

|<�

|xn,k � xn,j|

1A
| {z }

A
2

(k,n,�)

.

Then we seek to show that as n ! 1 and � ! 0,

A
1

(n, k, �)1/n ! exp(�Fw), (6.37)

and

A
2

(n, k, �)1/n ! 1, (6.38)

and that convergence of the limits is independent of k = 0, . . . , n.

We have reduced the proof to essentially a problem in weighted potential theory. The

convergence of the limits (6.35) and (6.37) follow directly from Lemmas 6.3.3 and 6.3.4,

respectively, which are proven in the appendix. Thus, we have left to show statement (6.38),

which requires a more direct approach. We explicitly use the spacing of the contracted Leja

sequence from Theorem 6.4, and find that the remainder of the estimate involving A
2

(n, k, �)

follows from this spacing lemma.

By assuming � < 1, it is clear that the product A
2

(n, k, �) is always less than one.

Therefore, the following theorem will complete the proof of Theorem 6.1.
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Lemma 6.5.1. Given " > 0, there exists � > 0, N 2 N such that for n > N , and 0  k  n,

0@ Y
|x

n,k

�x
n,j

|<�

|xn,k � xn,j|

1A1/n

> 1� ".

Proof. We first split the product into two components:

Y
|x

n,k

�x
n,j

|<�

|xn,k � xn,j| =
Y

x
n,j

2X
1

(k,�)

|xn,k � xn,j|⇥
Y

x
n,j

2X
2

(k,�)

|xn,k � xn,j|.

where

X
1

(k, �) :=
n
xn,j

��� j  n, xn,k � � < xn,j  xn,k

o
,

X
2

(k, �) :=
n
xn,j

��� j  n, xn,k  xn,j < xn,k + �
o
.

At least one of these sets may be empty, and in that case we simply set the corresponding

product equal to one. Now, let m
1

,m
2

be the cardinality of the sets X
1

(k, �) and X
2

(k, �),

resp., and label these points in the following way

xn,k � �  xn,i
m

1

 . . .  xn,i
1

< xn,k < xn,j
1

< . . . < xn,j
m

2

< xn,k + �.

Then from Theorem 6.4, we can show that for any 1  s  m
1

,

|xn,k � xn,i
s

| = |xn,k � xn,i
1

|+ . . .+ |xn,i
s�1

� xn,i
s

| � s

Cn
. (6.39)

Similarly, for 1  t  m
2

,

|xn,k � xn,j
t

| = |xn,k � xn,j
1

|+ . . .+ |xn,j
t�1

� xn,j
t

| � t

Cn
. (6.40)
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Now, using (6.39) and Sterling’s approximation, we see that

0@ Y
x
n,j

2X
1

(k,�)

|xn,k � xn,j|

1A1/n

=

 
m

1Y
s=1

|xn,k � xn,i
s

|
!

1/n

�
 

m
1Y

s=1

s

Cn

!
1/n

=

 
m

1

!
1

m

1

Cn

!m
1

/n

�
⇣m

1

Cn

⌘m
1

/n

. (6.41)

Similarly, we can show that

0@ Y
x
n,j

2X
2

(k,�)

|xn,k � xn,j|

1A1/n

�
⇣m

2

Cn

⌘m
2

/n

. (6.42)

As ⌧ ! 0+, the function ( ⌧
C
)2⌧ ! 1. Thus, we let ⌧ < min{C, 1

e
} be small enough so that

1� " <
⇣ ⌧
C

⌘
2⌧

< 1.

Let m be the number of Leja points within the interval {t 2 R : |xn,k � t| < �}. According

to [90, Theorem 2.4.5], for our chosen ⌧ > 0, we can choose N 2 N, and �
0

> 0 such that if

n > N , and � < �
0

,

max
nm

1

n
,
m

2

n

o
 m

n
=

Z
|t�x

n,k

|<�

dµn,k(t) < ⌧.

We know f(x) = xx is a decreasing function on (0, 1
e
), and hence from (6.41) and (6.42), this

implies that

0@ Y
x
n,j

2X
1

(k,�)

|xn,k � xn,j|

1A1/n0@ Y
x
n,j

2X
2

(k,�)

|xn,k � xn,j|

1A1/n

�
⇣m

1

Cn

⌘m
1

/n ⇣m
2

Cn

⌘m
2

/n

�
⇣ ⌧
C

⌘
2⌧

> 1� ",

which is the desired result for X
1

(k, �) and X
2

(k, �). This completes the proof.
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6.5 Remarks

In this chapter, we considered the properties of Leja points for weighted Lagrange

interpolation on an unbounded domain. Due to their nested structure, simple recursive

formulation, and generally stable behavior, Leja points show promise for high-dimensional

interpolation methods. Our contribution to this area was to prove that the Lebesgue

constant for the weighted Leja sequence grows subexponentially with respect to the number

of interpolation nodes. Furthermore, we proved a theorem regarding the separation of the

weighted Leja points.

Of course, a subexponential rate encompasses a wide range of growth, potentially much

bigger than the optimal Lebesgue constant O(log n). On the other hand, our experience

with Leja points indicates that the Lebesgue constant grows linearly, i.e., O(n), with respect

to the number of nodes. Our proof relies on potential theory, which gives only asymptotic

estimates of growth. We expect that a more explicit estimate of the Lebesgue constant would

require di↵erent techniques, and this is the subject of future work.
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Chapter 7

Sparse grid quadrature based on

conformal mappings

This work has been submitted to the Proceedings of the 3rd Sparse Grids and Applications

Workshop, held in October 2016 in Miami, FL.

For functions which are complex analytic in a certain domain containing a compact

interval I ⇢ R, this chapter looks at how we may find better points by transforming classical

interpolation sequences under a conformal mappings [49, 58]. We demonstrate the extension

of these quadrature approximations, built from conformal mapping of interpolatory rules, to

sparse grid quadrature in the multidimensional setting. In one dimension, computation of an

integral involving an analytic function using these transformed quadrature rules can improve

the convergence rate by factor approaching ⇡/2 versus classical interpolatory quadrature [49].

This work shows that this ⇡/2 improvement increases exponentially with the dimension of

the underlying integral problem.

The outline of the chapter is as follows. First, we introduce the one-dimensional

transformed quadrature rules in §7.1, and in §7.1.2 describe how to use them in the

construction of sparse grid quadrature rules for integration of multidimensional functions.

In §7.2, we provide a brief analysis of the corresponding mapped method to show that

the improvement in the convergence rate to a d-dimensional integral is (⇡/2)1/⇠(d), where

⇠(d)�1 � d, and provide numerical tests for the sparse grid transformed quadrature rules in
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§7.3. We conclude this chapter with some remarks on the benefits and limitations of the

method in §7.4.

7.1 Transformed Quadrature Rules

In this section, we introduce one-dimensional transformed quadrature rules, based on the

conformal mappings described in [49], applied to classical polynomial interpolation based

rules. These rules will be used as a foundation for sparse tensor product quadrature rules

for computing high-dimensional integrals, introduced in later sections.

To begin, suppose we want to integrate a given function f over the domain [�1, 1], and

assume this function admits an analytic extension in a region [�1, 1] ⇢ ⌃ ⇢ C. Given a set

of points {xj}nj=1

, an interpolatory quadrature rule is defined from the Lagrange interpolant

of f , which is the unique degree n� 1 polynomial matching f at each of the abcissas xj, i.e.,

Ln[f ](x) =
nX

j=1

f(xj)l
n
j (x), where lnj (x) =

nY
i=1

i 6=j

x� xi

xj � xi

.

The quadrature approximation of the integral of f , denoted Qn[f ], is then defined by

Z
1

�1

f(x) dx ⇡
Z

1

�1

Ln[f ](x) dx =
nX

j=1

cjf(xj) =: Qn[f ], (7.1)

with weights given explicitly as

cj =

Z
1

�1

lnj (x) dx. (7.2)

Now, according to the Cauchy integral theorem, since f has an analytic extension, we

can evaluate the integral along any (complex) path contained in ⌃ with endpoints {±1}.
Next, let g be a conformal mapping satisfying the conditions:

g(±1) = ±1, and g ([�1, 1]) ⇢ ⌃. (7.3)
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According to the argument above, the integral can be rewritten as the path integral from

�1 to 1, with the path parameterized by the map g, i.e.,

Z
1

�1

f(x) dx =

Z
1

�1

f(g(s))g0(s) ds.

Applying our original quadrature rule to the latter integral,

Z
1

�1

f(g(s))g0(s) ds ⇡
nX

j=1

cjg
0(xj)| {z }

:=c̃
j

f(g(xj)| {z }
:=x̃

j

) =: eQn[f ], (7.4)

we obtain a new quadrature rule with transformed weights {c̃j}nj=1

and points {x̃j}nj=1

.

Equation (7.4) provides the motivation for the choice of the specific conformal mapping

g. Specifically, the Taylor series for f , centered at points x 2 [�1, 1] which are close to the

boundary, may have a radius which extends beyond the largest Bernstein ellipse in which

f is analytic. We may then hope to find a g such that a Bernstein ellipse is conformally

mapped onto the whole region where f is analytic, where classical convergence theory yields

the convergence rate for f � g. In addition to (7.3), it is especially advantageous to have g

map [�1, 1] onto itself, i.e.,

g([�1, 1]) = [�1, 1]. (7.5)

In this case, the transformed weights and points remain real-valued, and we avoid evaluations

of f with complex inputs.

We now turn our attention to several specific conformal mappings which satisfy the

conditions (7.3), along with the extra condition (7.5). For more details on the derivation

of the maps, see [49]. The first mapping we consider applies to functions which admit an

analytic extension at every point on real line; in other words, functions which have only

complex singularities. In this case, the natural transformations to consider are ones that

conformally map a Bernstein ellipse (3.7) to a strip about the real line. Specifically, we

define a map which takes the Bernstein ellipse with shape parameter ⇢ to the complex strip

with half-width 2

⇡
(⇢ � 1), as shown in Figure 7.1. First, given a value for ⇢, we define the
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parameter

m1/4 = 2
1X
j=1

⇢�4(j� 1

2

)

2

. 
1 + 2

1X
j=1

⇢�4j2

!
,

and K = K(m) to the be the elliptic parameter corresponding to m; see [32]. Now we define

the mapping

g
1

(z) = tanh�1

✓
m1/4sn

✓
2K

⇡ sin�1(z)|m

◆◆�
tanh

�
m1/4

�
. (7.6)

We’ll refer to this map as the “strip map” in the following.
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g
1�!
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0

0.2

0.4

Figure 7.1: The mapping (7.6) takes the Bernstein ellipse E
1.4 (left) to a strip of half-width

2(1.4� 1)/⇡ ⇡ .255.

According to (7.4), we also need to know the derivative of g
1

, given by

g0
1

(z) =
2Km1/4

⇡
p
1� z2

cn(!|m)dn(!|m)

(1�m1/2sn(!|m))

�
tanh

�
m1/4

�
. (7.7)

with ! = 2K sin�1(z)/⇡. For our applications, we also require the values of g0
1

at the

endpoints of the interval, which are given by

g0
1

(±1) = 4K2m1/4
�
1 +m1/2

� �
⇡2 tanh

�
m1/4

�
.

Another way to change the endpoint clustering, and transform the quadrature rule under

a conformal map, is to use an appropriately normalized truncation of the power series for

sin�1(z). The map 2

⇡
sin�1(z) perfectly eliminates the clustering of the Gauss–Legendre and

Clenshaw–Curtis points, but since it has singularities at ±1, it is useless for our purposes.

On the other hand, by considering a truncation of the power series

sin�1(z) =
1X
k=1

�(k + 1/2)

�(1/2)

z2k+1

(2k + 1)k!
,
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we define a more desirable mapping. To this end, for M � 1, we define

g
2

(z) = c(M)
MX
k=1

�(k + 1/2)

�(1/2)

z2k+1

(2k + 1)k!
, (7.8)

with an appropriately chosen constant c(M) < 1 so that g
2

(±1) = ±1. This mapping is

much easier to implement than the previous mapping. We will call this map the “pill map”,

since it maps the Bernstein ellipse to a pill-shaped region about [�1, 1] with flatter sides.

In Figure 7.2, we plot the image of the ellipse E⇢ with ⇢ = 1.4, under the mapping (7.8)

with M = 4. The region on the right has almost flat sides, with width a little bigger than

2

⇡
(1.4� 1) ⇡ .255.
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Figure 7.2: The mapping (7.8), with M = 4, takes the Bernstein ellipse E
1.4 (left) to a

pill-shaped region with sides of length ⇡ .255.

7.1.1 Standard One-dimensional Quadrature Rules

Here we give a brief summary of some standard interpolatory-type quadrature rules, to which

we will apply the mappings of the previous section. Only the nodes are discussed here, as

the weights for each method will be defined according to (7.2). For an overview of the theory

of interpolatory quadrature, see [96, Ch. 19].

The first quadrature rule is based on the extrema of the Gauss–Chebychev polynomials.

For a given number of points n, these are given by:

xj = cos

✓
(j � 1)⇡

n

◆
, 1  j  n. (7.9)

If we choose the number of nodes to be n = 2i�1+1, i > 1, then they form a nested sequence

known as the Clenshaw–Curtis nodes.
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Another set of points of interest are the well-known Gaussian abscissa, which are the roots

of orthogonal polynomials with respect to a given measure. Here we consider the sequence of

Gauss–Legendre nodes, which consists of the roots of the sequence of polynomials orthogonal

to the uniform measure on [�1, 1], i.e., the n roots of the polynomials

Pn(x) =
dn

dxn

⇥
(x2 � 1)n

⇤
, n � 0. (7.10)

With the introduction of a weight into the integral from (7.1), other families of orthogonal

polynomials can be used. The main advantage of Gauss points is their high degree of

accuracy, i.e., the one-dimensional quadrature rules built from n Gauss points integrate

exactly polynomials of degree 2n�1. However, Gauss–Legendre points do not form a nested

sequence, which may lead to ine�ciency in the high-dimensional quadrature setting. In fact,

without nestedness of the one-dimensional sequence, the sparse grid rule described in the

following section may not even be interpolatory. We also remark that nested quadrature

sequences based on the roots of orthogonal polynomials, the so-called Gauss–Patterson

points, are also available, but we do not consider these types of rules herein.

The final set of nodes we consider are known as the Leja sequence. Leja points satisfy a

recursive definition, that is, given a point x
1

2 [�1, 1], for n � 2 define

xn = argmin
x2[�1,1]

n�1Y
j=1

|x� xj|, (7.11)

where we typically take x
1

= 0. Of course, there may be several minimizers to (7.11), so

for computational purposes, we simply choose the minimizer closest to the left endpoint.

The Leja sequence is typically better suited for high-dimensional interpolation versus

quadrature. In the interpolation setting, Leja sequences are known to have good properties

for approximation in high-dimensions [68], and there has been much research related to the

stability properties of such nodes when used for Lagrange interpolation [91, 55]. In the

quadrature setting, the lack of symmetry can sometimes lead to null weights assigned to

certain nodes. On the other hand, they have the added benefits of being a nested sequence
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that grows one point at a time, and have asymptotic distribution which is that same as that

of Gauss and Clenshaw–Curtis nodes.

7.1.2 Sparse Quadrature for High Dimensional Integrals

For the numerical approximation of high-dimensional integrals over product domains,

it is natural to consider simple tensor products of one-dimensional quadrature rules.

Unfortunately, these rules su↵er from the curse of dimensionality, as the number of

points required to accurately compute the integral grows exponentially with the underlying

dimension of the integral; i.e., a rule using n points in each dimension requires nd points. For

certain smooth integrands, we can mitigate this e↵ect by considering sparse combinations

of tensor products of these one-dimensional rules, i.e., sparse grid quadrature. It is known

that sparse grid rules can asymptotically achieve approximately the same order of accuracy

as full tensor product quadrature, but use only a fraction of the number quadrature

nodes [38, 72, 71].

Rather than the one-dimensional integral from before, we let d > 1 be the dimension and

define � := [�1, 1]d. In addition, by letting x = (x
1

, . . . , xd) be an arbitrary element of �,

we consider the problem of approximating the integral

Id[f ] =

Z
�

f(x) dx, (7.12)

using transformed quadrature rules.

We review the construction of sparse grid quadratures here, noting that it is the same

as the construction detailed in Section 3.1. To define the sparse grid rules, we first denote

by {Ip(l)}l�1

a sequence of given one-dimensional quadrature operators using p(l) points.

Here Ip(l) may be a standard interpolatory quadrature Qp(l) from (7.1), or its conformally

transformed version eQp(l) from (7.4). With I
0

:= 0, define the di↵erence operator

�l := Ip(l) � Ip(l�1)

.
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Figure 7.3: Location of the two-dimensional transformed sparse grid nodes (blue dot)
using an underlying Clenshaw–Curtis rule, compared to standard Clenshaw–Curtis sparse
grids (red x).

Then given a set of multiindices ⇤w ⇢ Nd
0

, we define the sparse grid quadrature operator to

be

IN
w

[f ] =
X
l2⇤

w

dO
i=1

�p(l
i

)

[f ] =
X
l2⇤

w

dO
i=1

�
Ip(l

i

)

� Ip(l
i

�1)

�
[f ], (7.13)

where we refer to the natural number w as the level of the sparse grid rule, and Nw is the

total number of points in � used by the sparse grid. The choice of multiindex set ⇤w may

vary based on the problem at hand. It may be anisotropic, i.e., dimension dependent, or

if appropriate error indicators are defined, it may even be chosen adaptively. Some typical

choices are given in Table 3.1, but for simplicity, we consider only standard isotropic Sparse

Smolyak grids. For more information on anisotropic rules, see [70].

The e↵ect of the conformal mapping on the placement of the nodes used by the sparse

quadrature rule (7.13) is similar to the one-dimensional case. In Figure 7.3, we have

plotted the nodes of a two-dimensional Clenshaw–Curtis sparse grid with the transformation

map (7.8), using ⇢ = 1.4, versus a traditional Clenshaw–Curtis sparse grid. Note how the

clustering of the nodes toward the outer boundary of the cube is diminished.
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7.2 Comparison of the transformed sparse grid quadra-

ture method

In this section we investigate the potential improvement in convergence for computation of

high-dimensional integrals using the sparse grid quadrature method based on TQ rules. The

di↵erent mappings (7.6) and (7.8), since they have di↵erent properties, will be considered

separately. Furthermore, the focus of this section will be on the transformation of Gauss–

Legendre rules, though we remark that starting from a one-dimensional convergence result

such as the following theorem, the rest of the analysis is similar for the Clenshaw–Curtis

case. We begin by quoting the following one-dimensional result stated from [49], establishing

the convergence of the transformed Gauss–Legendre rule for an analytic integrand.

Theorem 7.1. For some ⇢ > 1, let f be analytic and uniformly bounded by A > 0 in a

region ⌦⇢ � [�1, 1]. Given a conformal map g : ⌃⇢ ! ⌦ satisfying (7.3), for n � 1 the

transformed Gauss–Legendre quadrature rule (7.4) has the error bound

���I[f ]� eQn[f ]
���  64A�

15(1� ⇢�2)
⇢�2n, (7.14)

where � = sups2⌃
⇢

g0(s).

Now taking a specific region of analyticity and a given conformal map, Theorem 7.1 may

be used to fully quantify the benefit of the transformation method. We start by considering

functions analytic in the strip S" of half width " about the real line, and the Gauss–Legendre

rule transformed under the map (7.6).

Theorem 7.2 ([49, Theorem 3.1]). Let f be analytic and uniformly bounded by A > 0

in a strip S" of half width " about the real line, and g
1

the conformal map (7.6) mapping

E
1+

⇡

2

" ! S". Then for n � 1, and any "̃ < ", the transformed Gauss–Legendre quadrature

rule has the error bound

���I[f ]� eQn[f ]
���  64A�

15(1� (1 + ⇡/2"̃)�2)

⇣
1 +

⇡

2
"̃
⌘�2n

, (7.15)

where � = sups2S
"̃

g0
1

(s).
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Note that we must take "̃ < ", since otherwise the value of � is infinite for the strip

mapping g
1

. However, we do not lose much, and this theorem shows that we can achieve

savings of almost a factor of ⇡/2 for functions analytic in a strip S".

For the mapping (7.8), the results are somewhat more complicated, due to the fact that

the properties of the map depend crucially on the chosen degree M of the truncation, and for

a given M we may not be able to realize the full factor of ⇡/2. From a practical standpoint,

this is not much worse than the case of the strip mapping (7.6), since full information about

the analyticity of the integrand may not be available, and hence it may be di�cult to tune

the parameter of the mapping to the integral at hand. Thus, what we have in the case of

the map (7.8) is a more precise result with all the parameters specified. The following result

from [49] will apply to functions which are analytic in the "-neighborhood of [�1, 1], denoted

U". Then we have the following theorem.

Theorem 7.3 ([49, Theorem 6.1]). Let "  .8, and let f be analytic and uniformly bounded

by A > 0 in a "-neighborhood U" of [�1, 1]. Let g
2

be the conformal map (7.8), truncated

at degree M = 4. Then for n � 1, the transformed Gauss–Legendre quadrature rule has the

error bound ���I[f ]� eQn[f ]
���  64A�

15(1� (1 + 1.3")�2)
(1 + 1.3")�2n , (7.16)

where � = sups2S
"

g0
2

(s).

From the one dimensional results of Theorem 7.2 and Theorem 7.3, for the maps (7.6)

and (7.8), resp., we are able to fully quantify the benefits of the TQ rules applied to sparse

grid quadrature in high dimensions. The following theorems give the convergence rate for a

sparse grid quadrature approximation of an analytic integrand based on the Gauss–Legendre

points. Recall that we are considering only isotropic sparse Smolyak constructions, according

to the last row in Table 3.1.

Corollary 7.3.1. Let f be analytic in
Qd

i=1

S" for some " > 0, and let g
1

be the conformal

mapping (7.6). Then for any "̃ < ", the sparse quadrature (7.13) built from transformed

Gauss–Legendre quadrature rules satisfies the following error bound in terms of the number
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of quadrature nodes:

|Id[f ]� IN
w

[f ]|  C("̃, f, �, d)
⇣
1 +

⇡

2
"̃
⌘� 2d

2

1/d

N
⇠(d)

w

. (7.17)

with

⇠(d) =
log(2)

d(⇣ + log(d))
. (7.18)

Corollary 7.3.2. For some 0 < "  .8, let f be analytic in
Qd

i=1

U", and let g
2

be the

conformal mapping (7.8) truncated at degree M = 4. Then the sparse quadrature (7.13)

built from transformed Gauss–Legendre quadrature rules satisfies the following error bound

in terms of the number of quadrature nodes:

|Id[f ]� IN
w

[f ]|  C(", f, �, d) (1 + 1.3")
� 2d

2

1/d

N
⇠(d)

w , (7.19)

with ⇠ as in (7.18).

The proofs of the preceding results are omitted. We mention that from the one

dimensional results of Theorem 7.2 and Theorem 7.3, they follow from well-known sparse

grid analysis techniques and estimates on the number of quadrature nodes; see, e.g., [71].

We remark again that it is not necessary to use the same " in each dimension, but we make

that choice for clarity of presentation. As mentioned in §7.1.2, in the case that the integrand

f has dimension-dependent smoothness, anisotropic sparse grid methods are available.

We now make a few remarks on the improvements of Corollary 7.3.1 and Corollary 7.3.2

over sparse grids based on traditional interpolatory quadrature methods. First, note that

for functions f 2 C(�) which admit an analytic extension in either
Qd

i=1

S" or
Qd

i=1

U", the

largest (isotropic) polyellipse in which f is analytic has the shape parameter ⇢ = 1+". Hence,

the convergence rate of typical sparse grid Gauss–Legendre quadrature, using N abscissa, is

|I[f ]� IN [f ]| = O
⇣
(1 + ")

� 2d

2

1/d

N⇠(d)

⌘
. (7.20)

Thus, the improvement in convergence rate is multiplied exponentially in the sparse grid

case, i.e., in the case of Corollary 7.3.1, the number of points required to reach a certain
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tolerance is reduced by a factor approaching (⇡/2)⇠(d)
�1

, with ⇠ as in (7.18). In other words,

let N
SGTQ

and N
SG

be the necessary number of points for the right-hand sides of (7.17)

and (7.20), respectively, to be less than a given tolerance. Then, we may calculate the limit

lim
"!0

NSG

NSGTQ

=
⇣⇡
2

⌘⇠(d)�1

. (7.21)

The constants are ignored in the calculation, though the transformed quadrature may have

slightly improved constant versus the standard case. We also note that ⇠(d)�1 � d, so the

improvement is exponential in the dimension. In the case of the sparse grid quadrature

approximation transformed by (7.8), we use (7.19), so the factor is 1.3⇠(d)
�1

rather than

(⇡/2)⇠(d)
�1

. As mentioned in the work [49], the factor of 1.3 is still much less than ⇡/2 ⇡ 1.57,

but for small " and large truncation parameter M this can improved to 3/2; see [49, Theorem

6.2].

7.3 Numerical Tests of the Sparse Grid Transformed

Quadrature Rules

In this section we test the sparse grid transformed quadrature rules on a number of

multidimensional integrals, and compare the performance versus standard rules. The

transformed rules we consider are based on the conformal mapping of Gauss–Legendre,

Clenshaw–Curtis, and Leja quadrature nodes, which are describe in §7.1.1. We transform

these rules using both of the conformal mappings (7.6) and (7.8), using the Matlab code

provided in [49] to generate the one-dimensional quadrature sequences. The Tasmanian

sparse grid toolkit [87, 89] is used for the implementation of the full sparse grid quadrature

rule.

7.3.1 Comparison of Maps

For the first test, we compare the sparse grid methods with the transformed quadratures

to traditional quadrature approximations for computing the integral of three test functions

over the cube [�1, 1]3 in three dimensions. In each case, we compare the di↵erent maps (7.6)
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Figure 7.4: Comparison of sparse grid quadrature rules for computing the integral of (7.22)
over the cube [�1, 1]3, using the conformal maps (7.6) (left), and (7.8) (right).

and (7.8) for the generation of the transformed one-dimensional quadrature from the

Clenshaw–Curtis, Gauss–Legendre, and Leja rules. The chosen mapping parameters are

⇢ = 1.4 with (7.6) and truncation parameter M = 4 for (7.8).

In Figure 7.4, we plot the results for approximating the integral over [�1, 1]3 of the

function

f(x, y, z) =
1

(1 + 5x2)(1 + 5y2)(1 + 5z2)
. (7.22)

This function has complex singularities at points z 2 C3 where at least one coordinate

zj = 1p
5

i, and is hence analytic in the complex hyper-strip
Q

3

i=1

S
1/

p
5

. As expected, the

quadrature generated according to the mapping (7.6) performs the best here, though the

chosen parameter ⇢ = 1.4 is somewhat less than the optimal, since the value 2

⇡
(1.4 � 1) ⇡

.255 < 1/
p
5. Regardless, the transformed sparse grid approximations again perform better

than their classical counterparts, gaining up to two orders of magnitude in the error for

Clenshaw–Curtis and Gauss rules. Note that on the right-hand plot, the transformation (7.8)

does not work well with the Leja rule. The results for the standard quadrature are repeated

in each plot for ease of comparison.

Figure 7.5 again shows the results for approximating the integral of the function

f(x, y, z) = exp�10(x2

+y2+z2), (7.23)

126



Number of Quadrature Points
100 101 102 103 104 105

E
rr

o
r

10-10

10-8

10-6

10-4

10-2

100

102

Convergence of Transformed Quadrature Rules:

f(x) = e-10|x|
2

CC
TCC
Leja
TLeja
GL
TGL

Number of Quadrature Points
100 101 102 103 104 105

E
rr

o
r

10-10

10-8

10-6

10-4

10-2

100

102

Convergence of Transformed Quadrature Rules:

f(x) = e-10|x|
2

CC
TCC
Leja
TLeja
GL
TGL

Figure 7.5: Comparison of sparse grid quadrature rules for computing the integral of (7.23)
over the cube [�1, 1]3, using the conformal maps (7.6) (left), and (7.8) (right).

over the cube [�1, 1]3. This function is entire, but grows rapidly in the complex hyperplane

away from [�1, 1]3. The left-hand plot shows the performance of the sparse grid transformed

quadratures using the transformation (7.6), while the right-hand plot uses (7.8). In each case,

the sparse quadrature approximations using mapped rules outperform traditional sparse grid

quadrature, and there is only a slight di↵erence in the performance of the transformed rules

corresponding to the di↵erent mappings.

Finally, in Figure 7.6, we plot results for approximating the integral of the function

f(x, y, z) = cos(1 + x2 + y2 + z2), (7.24)

over the cube, [�1, 1]3. This function is entire and does not grow too quickly away from the

unit cube in the complex hyperplane C3. On the other hand, by fixing the parameters in the

conformal mapping, we are restricting the analyticity of the composition f � g, and hence

restricting the convergence rate of the transformed sparse grid rules. In other words, the

conformal mapping technique cannot take full advantage of the analyticity of this function.

Thus, we see that the rules based on holomorphic mappings are inferior for computing the

integral of this function, though the transformed Leja rule using (7.6) is competitive, at least

up to the computed level.
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Figure 7.6: Comparison of sparse grid quadrature rules for computing the integral of (7.24)
over the cube [�1, 1]3, using the conformal maps (7.6) (left), and (7.8) (right).

7.3.2 E↵ect of Dimension

Next we investigate the e↵ect of increasing the dimension d of the integral problem, and see

whether the holomorphic transformation idea indeed decreases the computational cost with

growing dimension. The test integral for this experiment is

Z
[�1,1]d

dY
i=1

✓
1

1 + 5x2

i

◆
dx. (7.25)

In Table 7.1 we compare the number of points used to estimate the integral (7.25) in d =

2, 4, 6 dimensions, up to the given error tolerance. We use both the Clenshaw–Curtis and

the Leja rules, with their corresponding transformed versions. Here we implement only the

map (7.6) with ⇢ = 1.7, which maps the ellipse (3.7) to a strip of half-width 1

⇡
(1.7 � 1) ⇡

1/
p
5. This integral has simple product structure, so we compare the computed sparse grid

approximation to the “true” integral value computed to high precision. As expected, the

sparse grid rules using transformed quadrature need far fewer points to compute the value

of the integral up to a given tolerance, as compared with standard sparse grid rules. As the

dimension increases, because of the doubling rule p from Table 3.1, the number of points

grows rapidly from one level to the next. Thus, a certain grid may vastly undershoot or

overshoot the optimal number of points needed to achieve a certain error. Furthermore, it
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Table 7.1: Comparison of the number of points used by a given sparse grid quadrature rule
to approximate the integral (7.25) to the given tolerance

Dimension Tol CC TCC Ratio Leja TLeja Ratio

2 10�7 1537 705 2.18 666 435 1.53
4 10�5 1507329 271617 5.55 73815 20475 3.61
6 10�2 6436865 127105 50.64 593775 12376 47.98

may be the case that the convergence has not yet reached the asymptotic regime for such a

large tolerance 10�2, and so we claim from Table 7.1 that the transformed sparse grid rules

may work well even before the convergence is governed by the asymptotic theory.

7.4 Remarks

In this chapter, we have demonstrated the application of the transformed quadrature rules

of [49] to isotropic sparse grid quadrature in high dimensions, and showed that in certain

situations we are able to speed up convergence of a transformed sparse approximation by a

factor approaching (⇡/2)⇠(d)
�1

, where ⇠(d)�1 ⇡ d log d. We applied the rules to several test

integrals, and experimented with di↵erent conformal mappings g, and found that the sparse

grid quadratures with conformally mapped rules outperformed the standard sparse grid

rules based on one-dimensional interpolatory quadrature by a significant amount for several

example integrands. The convergence is shown to be improved even when the mappings

are not tuned to the specific integrand at hand, and even before convergence enters the

asymptotic regime.
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et Appliquées, 103(2):400–428. 3, 14

[19] Chkifa, A., Dexter, N., Tran, H., and Webster, C. G. (2016). Polynomial approximation

via compressed sensing of high-dimensional functions on lower sets. arXiv preprint

arXiv:1602.05823. 4

132



[20] Ciarlet, P. G. (1978). The Finite Element Method for Elliptic Problems. North–Holland.

29, 42

[21] Clenshaw, C. W. and Curtis, A. R. (1960). A method for numerical integration on an

automatic computer. Numerische Mathematik, 2(1):197–205. 20

[22] Cli↵e, K., Giles, M., Scheichl, R., and Teckentrup, A. (2011). Multilevel monte carlo

methods and applications to elliptic PDEs with random coe�cients. Comput. Vis. Sci.,

14(1):3–15. 24

[23] Cohen, A., DeVore, R., and Schwab, C. (2011). Analytic regularity and polynomial

approximation of parametric and stochastic elliptic PDEs. Analysis and Applications,

9(01):11–47. 3, 14, 23

[24] Collier, N., Haji-Ali, A.-L., Nobile, F., von Schwerin, E., and Tempone, R. (2015). A

continuation multilevel monte carlo algorithm. BIT Numerical Mathematics, 55(2):399–

432. 53

[25] De Marchi, S. (2004). On Leja sequences: some results and applications. Applied

mathematics and computation, 152(3):621–647. 21

[26] Dereich, S. and Heidenreich, F. (2011). A multilevel Monte Carlo algorithm for Lévy-
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