E% University of
OPEN (") ACCESS d BRISTOL

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Wood, Deborah Jane

Title:
Pressure-impulse impact problems and plunging wave jet impact.

General rights

The copyright of this thesis rests with the author, unless otherwise identified in the body of the thesis, and no quotation from it or information
derived from it may be published without proper acknowledgement. It is permitted to use and duplicate this work only for personal and non-
commercial research, study or criticism/review. You must obtain prior written consent from the author for any other use. It is not permitted to
supply the whole or part of this thesis to any other person or to post the same on any website or other online location without the prior written
consent of the author.

Take down policy

Some pages of this thesis may have been removed for copyright restrictions prior to it having been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you believe is unlawful e.g. breaches copyright, (either yours or that of a third
party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please contact: open-access@bristol.ac.uk and include the following information in your message:

* Your contact details
« Bibliographic details for the item, including a URL
 An outline of the nature of the complaint

On receipt of your message the Open Access team will immediately investigate your claim, make an initial judgement of the validity of the
claim, and withdraw the item in question from public view.



Pressure-impulse Impact Problems and Plunging
Wave Jet Impact

Deborah Jane Wood

School of Mathematics
University of Bristol

A Thesis submitted to The University of Bristol
for the degree of Doctor of Philosophy
in the Faculty of Science

October 1997



Abstract

This thesis looks at two types of problem. The first is that of pressure-impulse
modelling of wave impact on structures, following on from work carried out by
Cooker and Peregrine (1990 a.b, 1992, 1995). The second is that of the impact of a
jet from a plunging breaker on the undisturbed water in front of the wave.

Chapter 1 is a brief summary of the work which will follow. Each chapter has a
separate literature review.

Chapter 2 looks at many impact problems using pressure-impulse theory. Models
of wave impact on a vertical wall and cylinder are developed in particular looking
at more three-dimensional theoretical models than have been previously examined.
This work is of importance for the design of coastal structures, especiallyv break-
waters. The effect of having a porous berm in front of the wall and of having an
alr pocket trapped at the wall are examined. Experimental data from Hattori and
Arami (1992 and private communication) and experiments in Edinburgh (Oumeraci.
Bruce, Klammer and Easson (1995) and Oumeraci, Partenscky, Klammer and Ko-
rtenhaus (1997) and private communication) arc used for comparison.

Chapter 3 examines a wave impacting upwards on a deck jutting out from a
wall. Pressure-impulse theory is again used, and the effect of depth of water at the
wall and length of deck are examined. The implications for the design of coastal
structures and off-shore platforms are discussed.

Chapter 4 looks at what happens when a plunging wave jet impacts on the water
in front of itself. The impact is considered as the impact of two jets, one of which
is infinite in width. Two methods are put forward, the first of which is an extension
of a solution presented in Milne-Thompson (1962) which looks at the impact of two
finite jets, and we take the limit as one jet becomes infinite (a similar study is carried
out in Frankel and Weihs (1990)). The second method produces an exact solution
using complex analysis.

Finally, the last chapter draws conclusions from the work in the preceding chap-
ters, and makes some suggestions for future areas of work.
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Chapter 1

Introduction

This thesis examines two types of water wave impact. The first is that of a water
wave impacting on a rigid structure such as a sea wall, oil-rig leg or pier, and the
second the impact of a plunging breaker on the undisturbed water in front of itself.
The work is divided into three chapters: vertical structure impact, impact under a
deck, and jet impact. Each chapter has a separate literature review, but we begin
with a brief summary of what will be covered in each chapter and some motivation
for carrying out this work. In all the problems we discuss in this thesis we assume
that the fluid is inviscid, incompressible and that the motion is irrotational. All the
plots shown in this thesis are for non-dimensional quantities, except where units are

given for the quantities plotted.

1.1 Impacts on vertical structures.

Research into wave impact on a vertical wall is of particular importance for the design
of sca walls and breakwaters. A wave which is breaking or near breaking when it
hits a structure can cause large peaks in pressure. These pressures, though often of
very short duration (1ms in the laboratory, 10-50ms in prototvpe), are sometimes
substantial enough to shift, or blow holes in, a coastal structure. Hence, structures
such as a breakwater are built to reduce these impact pressures as much as possible.
Breakwaters come in many forms, shapes and sizes: rubble mound. vertical wall,

rubble mound and vertical wall, with perforations. without perforations. rectangular



caissons, cylindrical caissons. and many other variations on these. The choice of
which type of breakwater is most suitable is complex. and depends on many factors
such as position, tidal range. depth of water. availabilitv of materials. and of course
financial restrictions. In this thesis we consider primarily the vertical wall structure,
and briefly that of a vertical wall with a berm. A good summary of the design of

breakwaters, and how this has changed over the vears is given in Takahashi (1996).

Experimental work on impacts on structures has concentrated on the measure-
ment of the evolution in time of the pressures on the structure. If we consider a
given wave 1mpacting on a given structure and measure the pressures associated
with this particular impact, then the pressures measured from one wave to the next,
even with all the wave conditions remaining apparently the same. may vary quite
substantially. This makes analysis and prediction of quantities such as maximum
pressure and the pressure distribution on the structure difficult. However, Bagnold
(1939) noted that if we instead consider the integral of pressure with respect to time,
over the impact duration, this is a much more repeatable quantity. The integral of
pressure with respect to time over the impact is the quantity pressure impulse, P.
Hence, we choose in chapters 2 and 3 to concentrate on the calculation of pressure
impulse. A full description of this method, and the assumptions used is given in

chapter 2.

Cooker and Peregrine (1990 b, 1992) used pressure-impulse theory to develop a
model for the pressure impulse caused by a wave impacting on a vertical wall. In
chapter 2 we re-examine and extend this model. The Cooker and Peregrine model
considers the impact to be the uppermost part of the water adjacent to the wall at
impact, but with the same speed of impact occurring at every position along the
wall. i.e. the model is two-dimensional. In both experimental and field work of wave
impacts, but probably more noticeably in field studies. it is clear that the wave may
only impact on a section along the wall. Hence. the assumption of two-dimensional
behaviour may often not be reasonable. We begin by looking at impact on a finite

patch of a wall, and later extend this to impact on a semi-infinite patch of a wall.



This is of particular value for engineers examining the "spread’ of impact of a wave. If
the wave impacts on only the middle portion of a wall it is obviouslv not reasonable
to assume that the pressure impulse has the same distribution down the wall at
every position along the wall. However, if the wave impacts over a large region
across the wall, it may be reasonable to assume that the impact is two-dimensional
towards the centre of the impact region, and we investigate when we can make this

assumption.

One method of reducing the loads on a vertical wall breakwater structure is to put
a rubble mound/berm in front of it. This can affect the wave reflection and breaking
wave force on the vertical wall. We examine the effect of changes in porosity of a
rubble berm, on the pressure impulse in the water and on the structure. We find
that even varying the porosity quite considerably only changes the pressure impulse
in the liquid by at most 20 % . In this case, those models which have an impermeable
bed can be used to approximately predict pressure impulse for structures even with

a permeable berm.

When a plunging breaker impacts on a vertical wall it often traps an air pocket.
This air pocket can take the form of a large trapped bubble. The bubble first
contracts in size and then expands. Hence at the surface of the bubble at im-
pact the velocity of the body of water reverses in sign. This is as if the bubble
‘bounces’ back. We make a simple model of this ‘bounce-back’ effect, and compare
with experimental results from Hattori and Arami, and also PI\" (Particle Image
Velocimetry) experiments carried out at Edinburgh University. This model can be
uscd to predict pressure impulse down the wall and along the berm. The procedure
for comparison with experimental data is far from straight forward and is discussed
in this chapter. This model assumes an impermeable berm, but as stated carlier
the permeability does not have a great effect on the pressure impulse, so this model
could be used even for experiments with a permeable berm. Little research has been
done to model the effect of impact with a trapped air bubble. with the exceptions of

Bagnold (1939). Oumeraci and Partensky (1991) and Topliss (1994). The model in



this chapter, though verv crude, goes some way to predict the pressure impulse dis-
tribution, usually to within 40 %, with more accurate prediction of the total impulse

on the wall.

The second shape of structure we consider is that of a vertical cvlinder. This is
of particular importance when considering impact on an oil-rig leg or the circular
head of a breakwater. We carry out the analysis using pressure-impulse theory (as
with the vertical wall) but this time using cvlindrical co-ordinates. When a wave
impacts on a cylindrical structure the impact region is usually above the main bodv
of the water. However, we consider firstly a wave impacting on a patch, below water
level, on a cylinder and secondly of a wedge of water impacting on a cvlinder. We
discuss how this model can be simply adapted to allow for a more realistic free-
surface. It is found, that the convex shape of the cylinder reduces the pressure
impulse quite considerably compared with a flat shape. This model is sufficient to
make a preliminary analysis of the effect of having a three-dimensional impact, but
more realistic/complex model geometries were not considered due to shortage of
time.

It should be noted that for many of the situations considered in this chapter and
the next there are few previous theoretical formulae for prediction of the pressure
impulse, hence even if these models give predictions within 50% of measurement.

it is an improvement and useful for engineers.

1.2 Impact under a deck.

If we consider an oil-rig or a pier then it is not only the impact of the waves on
the vertical supports or legs of the structure which can cause damage. \lolent
wave motion can occur when the wave impacts upwards on a horizontal or sloping
surface, such as the walkway of a pier or platform of an oil-rig. Often the safest
wav of designing an oil-rig is to build the platform part of the 1ig so far out of the

reach of predicted violent waves that we can be sure no or little damage will occur.



However. every extra centimetre which is added on to the height of a rig costs large
amounts of money. Estimates of the magnitudes of pressures which occur when a
wave impacts a horizontal surface can lead not only to increased safetv but also to

decreased building and maintenance costs of a rig.

Impact of waves on a horizontal surface is verv closely linked to that of ship-
slamming problems. The early work by Von Karman (1929) and Wagner (1932)
focused on predicting the stresses involved when a seaplane lands on water. Since
then much work has been carried out on the ship-slamming problem, and a full
review is given in chapter 3.

In this chapter we discuss a flat deck, jutting out horizontally from a wall, which
is very close to the water level. We set up this problem in a similar manner to
problems discussed in chapter 2, and solve using pressure-impulse theory. We begin
by making some simplifications specific to this problem: that the deck is horizontal,
the wall is vertical, and we have a horizontal bed. \We also assume that the water
surface is flat and level with the deck (though this can be adapted and is discussed
further in chapter 3).

Firstly we consider the two extreme cases of infinite depth of water and infinite
length of deck. The first case is solved by considering the velocity potential of a plate
moving in stationary liquid, and making a change of reference frame. The velocity
potential for this fluid flow satisfies the same conditions as we require pressure
impulse to satisfy. The infinite deck case can be written down byv solving Laplace’s

equation in the fluid just under the deck.

The most general case is that of finite depth of water at the wall. At the position
where the deck meets the free surface we find that there is a square root singularity
in P . and hence singular fluid velocity components. Unfortunately this means that
many of the usual solution methods are unsuitable so instead we use a series of
conformal maps to map the problem to a plane wherce the singularity is no longer

present. We can then use standard solution methods in this plane and then map back



to the original plane. We obtain an explicit Fourier series solution to this problem.
which can be used to predict the spatial distribution of the pressure impulse below
the deck. In particular we note that the shallower the depth of water. the more

confined the motion and hence the the more violent the impact.

This chapter is concluded with a brief analysis of the impact of an elliptic shape
on a deck above an infinite depth of water. This is an estimation of a three-

dimensional impact.

Throughout chapters 2 and 3 the main method of solution is with Fourier se-

ries. This method has the huge advantage that the solutions are quick and casy to

evaluate.

1.3 Wave breaking and impinging Jets.

If we were to spend some time watching waves coming in and breaking on a beach,
over rocks or near a structure, we would very quickly notice that each wave breaks in
a slightly different manner. Some waves appear to almost "topple over spilling water
down the front of the wave, others break by forming a well developed jet from the
top of the wave, and others are somewhere in between. In chapter 4 we consider a
‘plunging’ breaker where a jet at the top of the wave 1s well developed and ‘plunges’
down to impact on the undisturbed water in front of the wave. Chapter -1 begins
with a literature review of general wave breaking, and in particular the research
which has been carried out on the cvolution of the jet from a plunging breaker.
When the jet impacts on the previously undisturbed water in front of the wave a
‘splash’ occurs, and it is this splash which chapter 4 sceks to model. The undisturbed
water can be considered as an infinitely deep jet into which the plunging jet impacts.
An immportant assumption (discussed later) is that we consider the flow to be almost
steady. We begin by modelling this impact by extending a model given in Milne-
Thompson (1962), for impact of two jets of finite width. This model is also given in

Crurevich (1965), which also refers back to many old sources. including Zhukovskii



(1890), Voight (1886) and Cisotti (1921). We take the limit as one of the jets
becomes infinitely wide, and find formulae for the free-streamlines of the flow. This
model was found to be incomplete as to simplify the mathematics it is necessarv to
feed into the model the outgoing angle of the jet as it splashes up, as well as the

ingoing angle and width of the plunging breaker jet.

We then consider a second solution model, this time where the previously undis-
turbed water jet is taken to be infinitely deep from the start of the analysis. We use
two complex maps, to map the flow to a plane where the flow can be represented by
a complex potential made up of a source, sink and uniform flow at infinity. Hence if
we know the angle and thickness of both incoming jets we can predict the angle and
thickness of the outgoing jets, and the free-streamlines associated with this flow.

Some examples of free-streamline plots are given.



Chapter 2

Impacts on vertical structures

2.1 Background.

Much research has been carried out on the impact of waves on structures. The
search for improvement in the design of coastal structures such as breakwaters and

seawalls has often been the driving force for research in this area.

In the late 1800’s and early 1900’s much research on impacts was carried out
by observational study. Stevenson (1864) made a detailed study of the design of
harbours and included surveys of wave impact on structures. Molitor (1935) uses
the results of some observational studies to provide formulae to calculate total wave
force on a structure. These measurements were important for general conclusions
about wave breaking, however, they were inaccurate because electrical recording was
not available, hence the rapid changes in the pressure and the peak pressures could
not be resolved.

Following on from these papers further experimental and observational studies
increased the knowledge of pressures occurring during impact. If a breaking or near-
breaking wave hits a structure a high pressure peak in the pressure-time plot occurs.
This large pressure is of short duration and throughout this study will be called the
impact pressure. Bagnold (1939) made a study of the impact pressures which occur
when a wave hits a wall. In particular he noted that for nominally fixed wave

conditions the pressures occurring vary from one wave to the next. but examination



of the integral of pressure, with respect to time, over the short duration of lmpact
gives more repeatable results. The integral of pressure over the impact time is called
the pressure impulse, and is a much more repeatable quantity from wave to wave
than the pressures themselves. Bagnold noted the important role of the air pocket
which sometimes occurs between the wave and structure. He developed a theory
for the prediction of the maximum pressures occurring, by using a model where the
water impacting on a structure is regarded as a piston which compresses a layer of
trapped air. Denny (1951) carried out further impact experiments (using Bagnold’s

equipment) which gave more support to Bagnold’s model.

Hayashi and Hattori (1958) also investigated the wave pressures of a breaker
impacting on a vertical wall, both theoreticallv and experimentally. Thev com-
mented, as Bagnold did, that the initial impact pressures vary from one wave to the
next, even with nominally fixed wave conditions, but also noted that the maximum
pressure over the rest of the wave period (i.e. the maximum pressure over the im-
pact, excluding the initial impact pressure peak) was much easier to predict. Hence
no theoretical prediction of impact pressures could be made but instead predictive
methods for maximum pressure, excluding the impact pressure were put forward.

One of the earlier studies of breaking waves on composite type breakwaters (a
vertical wall with a rubble mound in front) was Nagai (1960). Formulae were devel-
oped to predict both the maximum impact pressures and the maximum resultant
pressure per unit length, for use in the design of breakwaters. The formulae were
ostablished by looking at the momentum per unit area of a breaking wave to give
pressure impulse. A sampling rate of 500Hz for the pressures and high speed video
(3000 frames per second) meant the measurements were reasonably good at pick-
ing up the impact pressures. For waves which are breaking the empirical tormulae
derived are much better at predicting the peak pressures and impact duration than
Bagnold's piston model.

Richert (1968) looked further at the trapped air cushion. He noted that the



maximum pressures always occur below still water level and that the impact pres-
sures never decrease to zero at the bottom. However. this study only looked at
breaking waves preceded by non-breaking waves, hence the impact pressures pro-
duced are higher than if continual breaking waves were used. This is becausc if
continual breaking waves are used the residual spray and bubbles from the previous
breaking wave softens the impact. Many of the theoretical studies of wave impacts
at this stage were adaptations of Bagnold’s air pocket model. However. \Weggel
and Maxwell (1970) developed a numerical model for wave pressure distributions
for impacts of waves on a wall. They used an approximation to Eulers equation,
the continuity equation, and the equation of state, to show that the pressure satis-
fies the wave equation. They solved this numerically. subject to artificial boundary

conditions, to give a model which compared favourably with experimental results.

Accurate field data for impacts on coastal structures is more difficult to obtain
than laboratory data. In addition to the work carried out by Stevenson (mentioned
earlier), Hiroi (1920) and Sainflou (1928) made measurcments in the field. Hiroi and
Sainflou each produced formulae for the prediction of wave pressures for breaking and
non-breaking waves respectively. However, these studies were so earlv in rescarch
history that the equipment used means the data can not be used for accurate data
comparison. More recently Blackmore and Hewson (1984) carried out a series of
studies of wave impacts on sea walls in the South and West of England. Using
modern measuring and recording techniques, wave impact pressures were considered
and an expression to estimate these, related to the percentage of air entrainment,
was obtained. In addition an ongoing MAST 3 project on ‘Probabilistic design tools
for vertical breakwaters’ (PROVERBS), is a new source of both laboratory and field
data for impacts on vertical walls.

The development of pressure gauges with a very high frequency response allowed
Mitsuvasu (1966) to look in detail experimentally at the pressure-time histories of
impact pressures. A new air-cushion model for the impact pressures was developed,

improving Bagnold's model by allowing for air leakage.
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In the late 1980’s a series of experimental studies of waves impacting on walls
were carried out to improve the predictions of the impact pressures. In particular
1t was considered important to examine the impact pressure distribution over the
structures and to investigate which wave conditions produce the highest pressures.
Partensky (1988) commented that in the design of breakwaters the methods used for
predicting the peak pressures and resulting forces consistently gave underestimates.
This was often due to the lack of comparison of theoretical models with prototiype
measurements. He put forward a revised predicted pressure-distribution for coastal
structures which reduced the inaccuracies of force and peak pressure prediction.
Chan and Melville (1988) claimed that in their experiments the trapped air during
impact may contribute to both the higher pressures and pressure oscillations. In
particular the location of the wall relative to the position of wave-breaking had a
significant effect on the distribution of the impact pressures. Witte (1988) also car-
ried out detailed wave impact experiments on a vertical wall and a sloping surface.
High peak pressures occurring over short periods were observed. Most earlier inves-
tigations considered the local maximums of pressure of the impact, but in contrast

Witte also looked at time and space distributions of pressure.

A more theoretical approach in the prediction of the impact pressures was taken
by Cooker and Peregrine (1990 a,b). They used the idea of pressure impulse (de-
scribed later in section 2.2) and they developed a mathematical model for the large
short-lived pressures which occur during impacts. They solved a 2D boundary value
problem, for a vertical wall being hit by an idealized wave. Using unsteady poten-
tial flow computations (Cooker and Peregrine 1990a), to evolve in time an impacting
wave, they predicted unexpected, violent motion with very high pressures. accelera-
tions and velocitios. This was found to be due to the incident wave meeting the wall
with an almost vertical front producing a vertical jet shooting up the wall. Very
high pressures were predicted for the ‘flip through™ case where just before impact’
the wave face is parallel to the wall. Here the wave surface flips upwards rather than

undergoing a direct impact. Cooker (1990) carried out a study on the interaction
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between steep water waves and coastal structures. using the program based on a
boundary-integral method. The pressures predicted in this study were of similar
magnitude to those produced in experiment. Topliss (1994) continued these studies

by examining impact pressures in containers, the effect of entrained air. and the

associated oscillatory pressures which occur.

Cooker and Peregrine (1992) noted that it was not only the high pressures on
the structure itself that are important. In particular. bodies close to a structure can
be moved away by the significant fluid pressure gradients which occur. The nett
impulse is found to be large enough to propel a body in the dircction of the pressure
gradient, even when fluid drag is accounted for and acts in the opposite direction.
A similar effect is described in chapter 3 of this thesis where wave impact under a

deck causes a high pressure gradient away from the deck.

Kirkgoz (1991) examined experimentally the impact pressures of regular breaking
waves impacting on backward sloping walls. Both the impact pressures and the
resulting forces were sometimes higher on the sloping walls than on the vertical walls.
A statistical distribution method is used for the prediction of maximum impact
pressures. Lundgren (1969, 1991) summarized the developments in the design of
structural breakwaters and the methods which are used to reduce or in some cases
eliminate impact forces.

Continuing the historical review from 1991 onwards, experimental research now
focused more on examination of the effect of the shape of the wave impacting on the
resulting pressures, and also as a consequence on the effect of trapped or entrained
air. Hattori and Arami (1992) examined the effect of wave shape and the role of the
adiabatic processes of trapped air bubbles in the generation of impact pressures. The
most severe impact pressures tended to occur when a breaking wave hit, trapping
either lots of small air bubbles or a thin lens-shaped pocket of air. These experiments
included the use of high speed video as well as pressure measurements on the wall.

and are used for comparison with the pressure-impulse model of a “bounce back’



air pocket described later in this thesis. Schmidt. Oumeraci and Partenskv (1992)
carried out large scale model tests of impact loads on vertical walls. and classified
different types of impact by breaker tvpe. In particular plunging breakers impacting
on a vertical wall were examined and the impact pressure distributions, forces and
force impulses which came from these were analvsed. A statistical approach is taken

to aid prediction of these quantities.

Peregrine (1994) and Takahashi, Tanimoto and Shimosako (1994) gave reviews
of impacts on structures. Peregrine (1994) gave a summary and discussion of the
current theoretical knowledge of waves meeting hoth vertical and near-vertical walls.
He classified the pressures which occur during impact into three categories given by
peak, oscillatory and reflecting pressures, and discussed present theorctical meth-
ods of predicting them. In contrast Takahashi, Tanimoto and Shimosako (1994)
looked at more practical methods to estimate the impulsive pressures on composite
breakwaters and reviews these.

Recent experimental studies continue to examine the effect of trapped air. In
particular Hattori, Arami and Yui (1994) observed in their experiments that the
highest pressures (of very short duration) occurred when the vertical wave front
strikes a wall with only a very small amount of air trapped. After the initial peak
in the pressure, oscillations may be observed due to the trapping of air. If no air is
trapped then ‘flip through’ (as predicted in Cooker and Peregrine (1990 a,b)) occurs
which gives very high impulsive pressures. Hattori, Arami and Yui (1994) observed
that the greatest impact pressure occurred where the crest tip impacts near the still
water level on the wall. Chan (1994) also looked at a plunging wave impacting on
a vortical wall in deep water. Again it was confirmed that the pressures could be
decomposed roughly into the primary wave evolution pressures (during the initial
period of impact) followed by pressures affected by trapped air dynamics.

More theoretical studies (Cooker and Peregrine (1995)) show that P was in-

sensitive to the shape of the rear part of the incident wave. They also noted that
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the more confined the motion the higher the pressure impulse. Losada. Martin and
Medina (1995) experimentally investigated a solitary wave incident on a reflecting
structure. They computed the velocity field and the pressures along the wall and
base using a boundary-integral method, and found that these quantities compared

well with the theoretical pressure-impulse approach used bv Cooker and Peregrine.

One recent study is that of Zhang, Yue and Tanizawa (1996) who computed a
two-dimensional wave impacting on a rigid vertical wall using potential flow theory
and a boundary-integral method. Thev looked at the jet impact on the wall and the
pressures occurring due to this with an extension of the work in Cumberbatch (1960)
(which modelled an impact of a wedge of water on a wall). Their model gave pre-
dictions of both the maximum pressures and the risc time. The maximum pressure
from the model predicts a value about three times that of the mean experimental

value, and reasons for this are discussed in their paper.

Currently the experiments carried out in connection with the PROVERBS project
provide an ongoing source of data to be used as comparison with the theoretical
models. In particular the Particle Image Velocimetry (PIV) tests carried out at
Edinburgh University in 1994 (data made available through PROVERBS, though
experiments carried out prior to the project, sce section 2.5.4 and Oumeraci, Bruce,
Klammer and Easson (1995) and Oumeraci, Partenscky. Klammer and Kortenhaus
(1997)) and tests currently being done at Edinburgh University are particularly
useful for comparison, as unlike all the previously described experimental investiga-
tions, velocity profiles, as well as pressure measurements are available. A summary
of these experimental methods is given in section 2.5.4 together with comparisons

between the experimental data and the new theoretical models in this thesis.

2.2 Pressure impulse.

\Wave pressures on structures oceur in three forms. the ‘impact’ pressures which

arc high but act over a very short period of time, "oscillatory” pressures which are
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smaller in magnitude but act over a longer period of time, and finally the reflective
pressures which occur until the wave crest has been fully reflected away from the
wall. An example of a pressure-time curve (from Edinburgh PIV tests. see section

2.5.4) for wave impact on a wall is given in figure 2.1. This particular profile is when
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Figure 2.1: A ‘typical’ pressure-time curve for impact on a wall. (Edinburgh PIV
data)

a large air pocket becomes trapped at the wall, and is from a pressure-transducer
close to the foot of the vertical wall. Here we can clearly see the three stages, the
high peak corresponding to the impact pressure, the oscillations due to the air, and
the second peak caused by the reflective pressures. The most severe impacts last

only for about 1ms in the laboratory, and around 10-50ms in prototype.

Cooker and Peregrine (1990 b) showed that the effect of the free surface, where
the pressure is atmospheric, is to provide lower values than those predicted by a
water-hammer pressure model . In creating approximate mathematical models for
wave impact Cooker and Peregrine also noted that, except in the case where a thin
layer of water undergoes impact, the shape of the wave away from the impact region

is relatively unimportant. Hence the shape of a wave impacting on a structure may
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often be considered to have a flat free surface for simplicitv. s a result of the
boundary condition P =constant on the free surface the problem is linear. and

hence once the problem is solved., we can choose more realistic free surfaces to be

any of the contours of pressure impulse.

2.2.1 Governing equations.

Let p be the excess pressure over atmospheric, and g be the acceleration due to
gravity. The pressure impulse P is defined by P = [ pdt, as given in Lamb (§ 11,
1995) and Batchelor (§6.10, 1967). In our casc the integration is over the short

period of time during which the water and the structure collide.

Let u be the velocity of the liquid. We assume that the liquid is inviscid. that
1s that the ratio of the magnitude of the inertial forces to the magnitude of the
viscous forces is large. We choose a velocity scale U (from experiments later we
approximate this as 1.3m/s), a length scale L (again from later we usually choose
the depth of water at the wall for which a suitable value is 0.2m) and let gand p
be the viscosity and density of the fluid respectively. We can assume the fluid is
inviscid if the Reynolds number (pLU/p ) is large. We also assume that there is
no flow separation (around the body with which the wave impacts), which we may
for the short times of impact. The density and viscosity of water are approximatelv
1000kg/ m* and 0.001kg/m s respectively. Hence the Reynolds number is 260000.

which is sufficiently large to neglect viscous terms.
We consider the Euler equation of motion:

1
MU uvu=-lvp-g (2.1)
ot 0

For simplicity we choose units such that p =1 in the following. since only incom-
pressible flow is considered (as our velocity scale is much smaller than the speed of
sound, 1500111/s in water, and we assume no sound waves are set up).

The time in which the velocity changes during the impulsive event is very short.

The impulsive motion creates large pressure gradients. and a sudden change in the
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velocity in the fluid. However, the velocity of the fluid itself is not large. except
perhaps in a small jet (which for this study we will ignore, but occurs during the
case of ‘flip through’ discussed earlier). Hence g and the nonlinear term involving a
spatial derivative of u (whose ratio with du/dt is O( AtU/L)) can be neglected, as
they are small compared to the pressure gradient and Ou/dt (in a similar manner
to Cooker (1990)). Note that no assumption about vorticity has been made so we

can have arbitrary vorticity. The equation of motion is approximated by:

ou _
ot

Integration with respect to time over the duration of the impact gives:

—Vp. (2.2)

U, — U = —VP, (23)

where u, and u, are the velocities after and before impact respectively. Now
we assume the water is incompressible before and after impact, and so we have

V., = V.u, = 0. Therefore we need to solve
VP =0 (2.4)

in the fluid domain, subject to appropriate boundary conditions. The effects of
allowing compressible flow due to dispersed bubbles are discussed in Peregrine and

Thais (1996).

2.2.2 Boundary conditions.

The boundary conditions can be grouped into three different types:

1)At the free surface the pressure is taken to be zero, so
P =0, (2.5)

since we consider pressures relative to atmospheric pressure.

2)At a section of a rigid boundary where impact occurs the velocity component

perpendicular to the boundary is taken to be zero after impact, and some function
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of position. V", before impact. Using the normal component of equation (2.3} we
find:

OP/On =1, (2.6)
where n is in the normal direction to the surface pointing into the fluid. We often
choose V' to be uniform in space, for want of better information as a reasonable
simplifying assumption. We often have 1" = —1 ie. a velocity with magnitude 1

in the direction towards the wall. Hence, equation (2.6) simplifies to give:

OP/on = —1. (:

o
=1

3)On a section of the rigid boundary where no impact occurs the velocity normal
to the boundary is zero both before and after impact. and so taking the normal

component of equation (2.3), we require:
dP/0n = 0. (2.8)

We often impose a far-field condition that at an infinite distance awav from the
impact region, P is zero.
Hence, to find a pressure-impulse model for an impact problem we must solve

Laplace’s equation subject to these boundary conditions.

2.2.3 Method of solution.

For the impact problems in this thesis the main method of solution is that of ob-
taining a Fourier series which solves Laplace’s equation subject to the appropriate
boundary conditions. The great advantage of this method is that providing the
Fourier series converges reasonably quickly it is easy to obtain data for the pressure
impulse. Even when the Fourier series convergence is not quick. methods such as
the use of Lanczos’ factors (see section 2.6.2), can be used to improve the conver-
gence. The case with which the Fourier series can usually be evaluated makes this

method of great practical importance. The simpler the formulace for estunates of the
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pressure impulse, the more likely it is that they can be put to use by engineers in

their calculations.

However, this does not mean that the use of Fourier series is the only wayv forward.
It is thought in particular that methods such as a boundarv-integral method would

be more adaptable, especially for problems such as the impact on a cvlinder.

2.3 Pressure-impulse models for impact on a wall.

Many of the studies of wave impact are for vertical walls or breakwaters. Almost all
the theoretical models and experimental studies have assumed that the motion is
two-dimensional, i.e. that the motion is the same for every slice taken perpendicular
to the wall or structure. Most experimental studies are set up so that the three-
dimensional effects are reduced as much as possible. However in the field it is
obvious that three-dimensional effects are present. It is possible that using a three-

dimensional model may lead to a reduction in the pressures predicted.

2.3.1 Two-dimensional impact on a wall.

Cooker and Peregrine (1990 b, 1992) looked at the pressure-impulse model of two-
dimensional impact on a wall. For the study in this section we take L to equal the
size of the impact region. All quantities are considered to be dimensionless unless
otherwise stated. Using the notation in this thesis we consider impact on a wall
which has water of depth D in front of it. We assume the velocity and density
of the liquid to be unitary. The impact is assumed to be two-dimensional. and so
Laplace’s equation was solved in the fluid domain, with the boundary condition
OP/On = —1 on the top depth 1 of the wall below water level. and OP/on =0
on the rest of the wall and along the base of the fluid domain. P = 0 is required
along the frec-surface. The origin is taken to be on the wall. at the water level of
the wave at impact. with y taken in the direction perpendicular to the wall. and z

vertically. The boundary conditions are as shown in figure 2.2.
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Figure 2.2: Boundary conditions for two-dimensional impact on a wall. as shown in
Cooker and Peregrine (1990 b).

Hence the two-dimensional solution, given in Cooker and Peregrine (1990b). is:
oo 2 . N
Pop=-Y 5 [1 — cos(An)]sin(\, z)e™ Y, (2.9)

n=0

where X\, = (n+3)7/D. Note unless otherwise stated the sum in all future expres-
sions is taken to be from 0 to oco. This Fourier series is obtained using separation
of variables and a similar method of solution is described in more detail in scction
3.6. The exact sum is from n =0 to 0o, so we must truncate it. For most cases in
this thesis inclusion of 50 terms is sufficient to give an accuracy of at least 4 decimal
places, but in the case of 1/D very small, many more terms are required.

Cooker and Peregrine (1990b, 1992) looked at the effect of varying the impact
region height, while keeping the depth of water D constant. We now consider
keeping the size of the impact region constant, and looking at the effect of variation
of water depth beneath the impact region. Figure 2.3 shows plots of pressure impulse
down a wall for different water depth at the wall, but keeping the impact region the
same height. ( a similar study is carried out in Chan (1994))

As the depth of water increases (i.c.the depth of water below the impact region
increases) the pressure-impulse plot has more of a “tail” which gives a larger total

impulse value. Figure 2.4 shows a plot of total impulse against depth of water.

20)



i

1

B E

- .
-2F =
z - ]
-3 —5
- ]

- -
—4 -
C 7
_55— I =
Foo ! ! .

C 1

- 8 :
_6_ 1 ;J ];j;l 1 1 l 1 1 — L 1 1 1 l 1 1 1 ]
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.3: Pressure impulse on a wall, keeping the impact region the same height.
z is the position on the wall. Each plot is labelled by the total depth of the wa-
ter.(impact region is z=—1 to 0 )
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(again keeping the height of impact region the same) The total impulse is given by

integrating equation (2.9) over the depth of the water:

ST T T ————————

Total Impulse

O-O . I i 1 - ‘ P 1 L l 1 1 1 i L 1 1
2 4 6 8 10

Depth of water at the wall, D.

Figure 2.4: Total impulse against depth of water, keeping the impact area constant
and varying the depth of water at the wall.

We can see that as the depth of water below the impact region increases the total
impulse increases. Of particular note is that the infinite depth solution shows that
there is no limit to the increase in total impulse as the water at the wall becomes
deeper. Cooker and Peregrine (1995) gives the pressure-impulse distribution on the

wall for the infinite depth case, D — oo:

1+ 2
1-2

1
P(0,z) = - [z log

] | (2.11)

+ log

1=
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Indefinite integration over z (for |z| > 1) gives:

/.P(O,z)dz = —l l:% log (1 — i) _ %10g(z2 D+ (14 2)log(1 + 2)

T 22

—2—(z=1)log(= - 1)|. (2.12)

When z is large the dominant term is log(z?), which is divergent as = — ~ . Hence
the total impulse is infinite. This shows that for deep water cases this model is in-
adequate. This emphasises the importance of examining either three-dimensional
impact (not having the impact the same at every position along the wall) or com-
pressibility effects for impacts on walls in relatively deep water. (as also discussed

in Chan (1994))

2.3.2 Three-dimensional impact on a wall.

We now consider the impact of a body of water on a patch of a wall. We let our
length scale L equal the depth of water at the wall and again all quantities stated
are dimensionless unless otherwise stated. Cooker and Peregrine (1995) noted that
unless the width of the impacting water is quite small the actual shape of the wave
away from the impact region is relatively unimportant. We take the impact arca to
be a patch on the wall and the free surface to be simplified to a horizontal surface.
Let A denote the area of the patch, and the depth of the wall be 1. e use
the boundary conditions described in section 2.2.2. On the free surface the usual
condition of P = 0 is required. The patch is where impact takes place so we need
oP/0y = V'(x,z), where y is the direction normal to the patch, and + and 2
arc as shown in figure 2.5. On the rest of the wall no impact occurs so we require
JP/0y = 0. Along the bottom of the region of the fluid we have a solid boundary so
JP/0z = 0 is required. We also need P — 0 as we move far away from the impact
patch. So a solution to Laplace’s equation subject to the boundary conditions shown
in figure 2.5 is required.

We can solve this problem in terms of a Fourier series expansion using a Fourler

integral. The boundary conditions on the planes z = 0 and z = —1 enable the
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Figure 2.5: Impact on a patch of a wall. View facing wall.



separation of the z dependence giving an expression for P:

P(z,y,2z) =Y _ Pa(z,y)sin(M2), (2.13)

where A\, = (n + 1/2)m. A Fourier transform of the problem in the » direction is

taken, where the Fourier cosine transform is given by equation (2.14).

o0

Pak,y) = / Pu(z,y) cos(kz)dz. (2.14)

— 00

In using a cosine Fourier transform we must assume that the patch is symmetric
about £ = 0. We consider first the condition on the impact patch, which from

equation (2.13) on the patch we have:

) %;’0) sin(A,z) = V(z, 2). (2.15)

n

Next we multiply by sin(),z) and integrate with respect to z:

OP,(z,0) :
0 2/V(x,z) sin(\,z)dz, (2.16)

where the integration in z is, for a given x, over values of z on the patch. Finally

we transform this equation in z to give:

iﬁna—(:"i) =2 [ [V(z,2)sin(2) cos(ka)dzds. (2.17)

where the integration is done over the patch area A.

We next carry out the transform in z of Laplace’s equation:

0*P,
oy?

— (k2 4+ )2)P, =0. (2.18)

To make the notation simpler we use m? = (k*+ X2) . In future expressions it must
be remembered that m is dependent on k and n. We require P(z,y,2) — 0 as
y — oo, which means that we need P.(k,y) — 0 as y — oo Solving equation

(2.18), and using P.(k,y) = 0 as y — oo provides an expression for P,(k.y):

P, (k,y) = An(k)e™™, (2.19)
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where A, (k) are functions of k, to be found using the boundary condition at the

wall. We use equations (2.17) and (2.19) to get:

A, (k) = —%/};/"(a:,z) sin(A,z) cos(kx)d.rd:z, (2.20)

The final step is to take the inverse transform of equation (2.19) and substitute into

equation (2.13) to obtain the Fourier sum for P:

1 foo
P(z,y,2) =) —/0 A, (k)e™™ sin(A,,2) cos(hr)dk. (2.

n

S

(§]

p—
~—

with A, (k) given by equation (2.20).
We next consider the specific case of a rectangular patch of depth and width d
and 2a respectively (symmetric about £ =0). 17(z,z) = —1 on the patch. Hence,

we can carry out the integration in equation (2.20) directly to obtain

4

An(k) = -

sin(ka) [1 — cos(A,d)]. (2.

Q]
N
o
N

Using (2.21), for this specific case, we obtain the Fourier sum for P:

4

TAn

P(r,y,z)=— Z

n

[1 — cos(And)] I(n, 2, y) sin(An2), (2.23)

where
I - /'00 sin(ka) cos(kxz)e~®* )2y ),
fl,fﬂay ~ k(k'2+)\%)1/2

To evaluate pressure impulse for this problem the Fourier series must be truncated.

(2.24)

For a patch of height 0.1 the difference between taking 20 and 50 terms is only
1% and for a patch of height 1, the difference is substantially less. The integration
is carried out using NAG routine DO1ASF, which treats the integral as a Fourler
cosine transform. This particular integration method splits the integration domain
into subintervals and replaces the function to be integrated by a Chebyvshev-series
approximation. This enables us to plot contours of pressure impulse for this problem.
Of particular interest are the contours of pressure impulse on the wall itself, as shown
in figures 2.6, 2.7 and 2.8. The patch is of height 0.2. 0.5 and 1.0 for figures 2.6. 2.7

and 2.8 respectively. In all cases the patch has width 2.
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Figure 2.6: Pressure-impulse contours for impact on a patch of a wall where the
patch covers the top 20 % of the wall below water level and is width 2.
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Figure 2.7: Pressure-impulse contours for impact on a patch of a wall where the
patch covers the top 50% of the wall below water level and is width 2.
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Figure 2.8: Pressure-impulse contours for impact on a patch of a wall where the
patch covers the full height of the wall below water level and is width 2.



The total impulse for the full and top 20% impact are 1.085 and 0.08) respec-
tively. If integration is only over the central width 2a then the corresponding values
are 0.878 and 0.074. As expected the larger the area of impact the larger the total
impulse. Figure 2.9 shows a plot of total impulse against depth of water (the total
impulse has been temporarily been scaled to have depth of impact 1 as our length
scale L), where the integration is over the central width of 2a. and the impact
region is the top distance 1. We note that instead of the total impulse increasing
with depth of water below the impact region, as predicted by the 2D Cooker and
Peregrine model, it instead predicts that the total impulse tends to a finite value. It
is more realistic that as the depth of water at the wall becomes infinitely deep that

the total impulse tends to a finite value.

Figure 2.10 shows a comparison of the pressure impulse on the wall for the 2D
impact model used in Cooker and Peregrine (1990b, 1992) and down the centre line
of the 3D ‘patch’ model. For the comparison impact on the top 20 % of the depth of
water is used for both models, and the length of the patch is taken to be twice the
depth of the wall. Even though this patch is quite wide the ‘patch’ model shows a
lower pressure impulse down the centre line than is found using the 2D model. The
difference between the pressure impulse down the centre line for the 3D ‘patch’ and
9D models is only slight but if we move away from the centre line the difference 1n
the models increases rapidly.

Figure 2.11 is a plot of pressure impulse at the base of the wall under the centre
of the patch for varying values of d (the depth of the patch). As expected increasing
the height of impact increases the pressure impulse at the base of the wall. However.
the height of the patch has relatively little effect on the differcnce between the 2D
and 3D model, except when the patch is very small in height. As the height of the
patch increases from 0.6 the difference between the two models remains almost the
same. Figure 2.12 shows the ratio of the pressure impulse of the 3D “patch’ model
and 2D (Cooker and Peregrinc) model of impact on a wall. varving the depth of

(he impact region. The ratio does not vary very much but increases slightly as the
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Figure 2.9: Total impulse against depth of water at the wall, for 3D impact on a
patch of a wall, where the integration is over the central width of 2a (a = 1),
and the impact region is the top portion of depth 1. The total impulse has been
temporarily rescaled (for this diagram only) to have the unit length scale as the
depth of impact, and D as the depth of water at the wall.
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P along the centre line
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Figure 2.10: Pressure impulse along the centre line for the 2D (Cooker and Peregrine)
model and 3D ‘patch’ models of impact on a wall, with impact on the top 20%.
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depth of impact increases.

P at the centre of the base
0.8 ' T i T T T | T T T T T T T T
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Figure 2.11: Pressure impulse at the base of the wall in line with the centre of the
patch for the 2D (Cooker and Peregrine) model and 3D ‘patch’ models of impact on
a wall, varying the depth of the impact region.

Figure 2.13 shows a plot of P/P,, offshore on the bed along the line of symmetry
for a comparison of the Cooker and Peregrine 2D model, and the ‘patch’ model with
a patch of length 1 and 2 all for d = 0.5 and depth of water 1. P, is the value
of P at the middle bottom of the wall. This shows that once the pressure impulse
has been scaled by the value at the wall all the curves are very similar in nature.
However, as expected once the patch length is 1 or smaller there is a significant
difference between the values predicted by the Cooker and Peregrine model and the

‘patch’ model.
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Figure 2.12: Pressure impulse at the base of the wall in line with the centre of the
patch for the ratio of the 3D ‘patch’ model and 2D (Cooker and Peregrine) model
of impact on a wall, varying the depth of the impact region, with patch width 2.
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Figure 2.13: Plot of P/P,, offshore on the bed along the centre of the line of
symmetry for a comparison of the Cooker and Peregrine 2D model, and the ‘patch’
model with a patch of length 1 and 2. d = 0.5, depth of water 1. P,, is the value
of P at the middle bottom of the wall.
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2.3.3 Semi-infinite patch of impact.

We need to have a clearer way of comparing the ‘patch’ model and the two-dimensional
Cooker and Peregrine model. If the patch is sufficiently long. at or towards the cen-
tre of the patch the solution is the same as for the two-dimensional case. Hence. for
a given length of patch, we need to estimate how far into the patch it is reasonable
to assume that the solution has become two-dimensional. For a finite patch. this is
difficult to assess as both ends of the patch have an effect on the solution. So we

next consider a semi-infinite patch.

Figure 2.14 shows the problem we need to solve for impact on a semi-infinite
region of the wall. We again take our length scale L as the depth of water at

the wall, and work in dimensionless quantities. As we need to impose the forcing

',
P=90 P=0 .
€z
Y
oP __
a_y__l
—d
oP __ 2D — oP _
5;-0 VFP =0 3y 0 P—0
oP __
5;-0
—1

Figure 2.14: Impact on a semi-infinite patch of a wall. View facing wall.

condition on the patch over a semi-infinite region we solve using a slightly different
method to that used for the finite patch. We split the problem up into the two regions
+ <0 and > 0, the solutions to which we will denote as P, and P, respectively.

\We then use continuity of P and 0P/dr along the line v =y = 0, to find the
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solution. We consider first the solution in the left hand region. As z — —oc the
solution will tend to the two-dimensional Cooker and Peregrine solution for impact
on a wall (denoted now by P,p). If we subtract the solution for the 2D problem
off P, then the remaining problem whose solution is P, is the same as in left hand
region of figure 2.14 except that the condition over the patch is now dP/0y = 0.
So P, = P, — P,p. We can solve this problem for P,. and then find P, using
P, = P,. + P,p. In a similar manner to the solution of the finite patch model we
take a Fourier transform of the problem, to solve for P,., but this time the Fourier

transform is a Fourier-cosine transform in the y direction.
- fore)
Pro(z.k,2) =2 | Pro(a,y, 2) cos(ky)dy. (2:25)
0
The solution is given by:

P.. = 2/ ZA * sin(\,2) cos(ky)dk, (2.26)

where )\, = (n+ 3)m, m? = k% + A2, and the A, are obtained by the continuity
conditions given at z = 0.
From equation (2.9) the solution to the two-dimensional problem (rescaled to

have the length scale as the depth of water at the wall) is given by

Pp = — Z e [1 — cos(And)]sin(A,z)e Y, (2.27)
hence

P =2 /Ooo > Ay (k)e™ sin(A,z2) cos(ky)dk

-y X2_2 [1 — cos(And)] sin(Anz)e Y. (2.28)

n An

Solution in the right hand region is the very similar to P... The conditions
at z =0, z=—1 and on the wall are the same. However we require P, to be
positive, and to decrease to zero as T — o0 instead of being negative and increasing
to zero as ¢ — —oo (as Pre). The change in sign of in front of the z is to satisfy

the conditions at z = *oo, and the negative in front of the whole expression 1s
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to ensure continuity of pressure-impulse gradient at r = 0. Hence P, is given by

—P..(—x,y, 2), hence

P, = _2/0 S A (k)e ™ sin( Ay =) cos(ky)dk. (2.29)

From the conditions at £ = 0 we find that:

1
An(k) = — [1 — cos(A\,d)] ﬁ%ﬁ k#0
A, (0) = [1 — cos(\,d)] k=0. (2.30)

21 A,

Integration is carried out in a similar manner to that used in the evaluation of the
pressure impulse for the finite patch impact. Figures 2.15 (a) and (b) show pressure
impulse contours, for the semi-infinite patch, on the wall and hase respectively for
a patch of depth 0.3. Figures 2.16 (a) and (b) are similar but this time for a patch
of depth 1.0.

When the patch is of depth 0.3 and 1.0 the values only approximate the values
calculated by the two-dimensional model well at a distance into the patch of two
times the depth of the water i.e. the depth of penetration of the boundary conditions
outside of the patch is twice the depth of the water. Figure 2.17 is a plot of P along
the bottom of the wall for different depths of patch (scaled by the 2D model value).
If we examine this then we can see that the depth of impact has little effect on
penetration distance of the three-dimensional boundary into the patch. If we look
at a distance of 0.5 into the patch (along the bottom of the wall), we can see that
the pressure impulse is only approximately 0.775 and 0.850 of the two-dimensional

value for patches of depth 0.2 and 1.0 respectively.

2.4 Impact on a wall with a berm.

An important feature of many vertical breakwaters is the berm or rubble mound
which sometimes forms the foundation for caissons or is placed in front of the vertical

wall to reduce wave reflection and breaking wave force on the vertical wall. We
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Figure 2.15: (a) Pressure-impulse contours, for the semi-infinite patch, on the wall
for a patch of depth 0.3. (b) Pressure-impulse contours, for the semi-infinite patch,
on the bed in front of the wall for a patch of depth 0.3.
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Figure 2.16: (a) Pressure-impulse contours, for the semi-infinite patch, on the wall
for a patch of depth 1.0. (b) Pressure-impulse contours, for the semi-infinite patch,
on the bed in front of the wall for a patch of depth 1.0.
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Figure 2.17: P/(2D value) for the semi-infinite patch as a function of position along
the base of the wall, for d = 0.2,0.4,0.6,0.8,1.0 (from left to right in the top half
of the graph).
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extend the two-dimensional Cooker and Peregrine (1990 b, 1972, 1995) model for
impact on a wall to include a region of porous material in front of the wall It
1s assumed to be at a large scale such that all flow is at high Reynolds number.
including that in the porous berm. Hence, with allowance for the added mass of the
porous structure, the same pressure-impulse approach used for open water can be

applied. The berm is represented by a horizontal porous bed in front of a vertical

wall.

We split the problem into two regions as shown in figure 2.18 where the top
region is simply water and the bottom a rubble berm. We take our length scale
L to be the depth of water above the berm and work in dimensionless parameters.
P(z,y) is the pressure impulse. Note that for this and the following ‘bounce back’
model we now take y vertically, and z perpendicular to the wall. A bounded region
of water of length ¢ is used to simplify the analysis. A value of ¢ > 2 is adequate
to model the region close to the wall for a semi-infinite region of water. Hence as
long as the berm is horizontal for approximately twice the water depth, these results

should give a fair indication of the pressure patterns.
P=0

rd

y=1 4]
ph E@P/anz—l
l VP =0 \
AT N IV
y =0 P =P Sl=[0%
\
OP/on =0
ViP =0
BERM (2)
y=—b =0 \ r=c
dP/on =0

Figure 2.18: Boundary conditions required for wave impact on a vertical wall with
a porous berm in front. (vertical section)
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For simplicity we use the condition P =0 at a distance ¢ (> 2) awayv from the
wall. The other boundary conditions are similar to the conditions used before for
impact on a wall. Let the top half be region 1. and region 2 the bottom half. and P
and P, the solutions in the respective regions. In region 1 we have similar conditions
to those of impact on the wall, with the exception of the condition between the two
regions. In region 2 we have 0P/0n = 0 at the wall and base. Let S be the porosity

of the berm, assumed to be uniform. Using the same notation as previously used.

we have:
Vpl = —p(ua — ub), (231)

in region 1. In region 2 we not only have the water, but also rubble. Hence it is
much harder to accelerate water in region 2 than in region 1 as the water must be
given extra acceleration to speed up around the pieces of rubble. To allow for this in
region 2 we begin with the same equation as for region 1 (equation (2.31)). However,
the fluid passing through a region with obstructions needs a greater velocity to pass
the obstacles or restrictions. In general this leads to a greater resistance to the flow

so, as equation (2.31) is linear, we have:

—~
o
(%
o

SN’

VP, = —P,Uij(uja - ujb)

where p;; is the resisitivity, and uj, and wuj ave the jth component of u, and
u, respectively. For simplicity we assume isotropy, so we let p;; = g, where p is
equivalent to the resistivity to the flow of electric current in a metal with insulating
intrusions. We take pu equal to p + pn, where pp, is the added mass. Hence, in

region 2 we have:

VP, = —(p+ pm)(ua — up). (2.33)
The divergence of equations (2.31) and (2.33) gives:

V2P1 — O, (234)

and

VP, = 0. (2.35)
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Along the line y = 0 we require the pressure, and hence the pressure impulse to be

continuous, so along the boundary y = 0, we require:

P =P (2.36)

Let v; and v, be the vertical velocities at the interface between the two reeions.
in region 1 and 2 respectively. At y = 0 there is no mass lost. hence the flow of
mass is continuous across this boundary, so v; = Svy. S is a measure of porosity
and we assume that it is the fraction of the interface which has holes. The volume
measure of porosity (percentage of holes) is equivalent to the surface porosity. This
can be seen if we consider taking lots of thin slices to make up a volume. each
slice has porosity S, so the total volume must have porosity S. It is worth noting
that the equivalent velocity, mass flow per unit area = Su is often used for porous
media. Combining this with equations (2.31) and (2.33) we obtain the condition

that 0P, /0y = OP,/dy, where 3 = pS/(p+ pm). So along y = 0 we also need:

%—I; = 88—122 (2.37)
We need to solve equations (2.34) and (2.35) with equations (2.36) and (2.37) holding
along line y = 0 subject to the boundary conditions shown in figure 2.18.

Let P, = Py+Q where @ satisfies the problem in region 1 except with 0Q/0n =
0 along the left hand wall, and where P is the solution in region 1, with an
impermeable bed, i.e. 9F/0y =0 on y =0. F and () both satisfy Laplace’s
cquation.

The solution to the impermeable bed problem (originally C'ooker and Peregrine

1990b), is given by:

sinh A, (¢ — ) cos(Amy)
cosh( () ’

with Ap = (m + )7 and

2 1 .
E, = W(_l)m {1 — (‘()s(m + 3)7"’11 . (-_)_39)

m
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By satisfying the appropriate boundary conditions, ) and P, are found to be

of the form:
_ . sinh k, (1 — y)
Q= ; B, sinky(c — x) smh(E) (2.40)
with k, = (n+0.5)7/c and
: cosh &k, (y + b)
P = An kn - . :
2 ; sin k(¢ — 1) cosh (kD) (2.41)

We now impose the conditions given in equations (2.36) and (2.37) so that we

have P continuous:

> Apsinkg(c — z) = Py(z,0) + > B, sink,(c — z), (2.42)

and the flux continuous:

— > kncoth(k,) By sink,(c — z) = B ky tanh(k,b) Ay, sin k(¢ — z) (2.43)

respectively.

Multiplying equation (2.42) by sink.(c — z) and integrating with respect to z
gives:

A, — B, = g/c Py(z,0) sink.(c — x)dz = D,,say. (2.44)
c Jo

Next we substitute for Py(z,0) and carry out the integration to obtain an expression

for D,,:

4= [1 — cos(m + %)wu] .
D, = ; . TR (-1)". (2.45)

From equation (2.43) we have

B, = —BA, tanh(k,) tanh(k,b), (2.46)

hence

A, = D, /(1 + Btanh(k,) tanh(k,b)). (2.47)

We can find expressions for A, and B, by using equations (2.44), (2.45) and
(2.47). Thus pressure impulse can be calculated by evaluating the Fourier series

(after truncation). Figure 2.19 shows a plot of pressure-impulse contours for p =

43



1

1 1 1 l

_10 L 1 1 L | 1 Il 1 1 | L 1 1 | i L ! i

Figure 2.19: Pressure-impulse contours for impact on a wall with a porous berm in
front. 4 =0.5,6=0.3,b=1.0,c=2
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0.5,6=10.3, b=1.0,c = 2. The top half of the graph is above the berm and the

bottom half is the berm. Note the bending of the contours along the line y = 0

caused by the discontinuity of the pressure-impulse gradient where the water and

the water containing rubble meet.

Let P, be the value of pressure impulse at the bottom of the wall. Figures 2.20
and 2.21 are plots of P and P/P,, respectively with pu = 0.2,b=1.0,c = 2.0. and

p = 0.0,0.1,0.3. Figure 2.22 is a plot of P with p=10,b6=10c¢ = 20. and
B =0.0,0.1,0.3

P along porous berm
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Figure 2.20: Pressure impulse along the berm for impact on a wall with a porous
berm in front. 4 =0.2,0=1.0,c=2,3=10.0,0.1,0.3

Figures 2.20 and 2.22 show that the magnitude of the pressure impulse is reduced
for a berm with higher porosity. The greatest difference in the predicted pressure
impulse, from the models with differing porosity is closest to the wall. The larger

the value of u, the greater the effect. However, even for u = 1.0, the effect is still
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Figure 2.21: Pressure impulse/ P,, along the berm for impact on a wall with a
porous berm in front. ©=0.2,b=1.0,c=2,8=0.0,0.1,0.3
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quite small. So we examine the first of these plots but scaled by the value at the
wall. Figure 2.21 shows that the distribution of pressure impulse over the berm for
this particular set of values (and similarly for other values) is not affected greatly
by the porosity. If p is larger then the effect of changing the porosity was found
to be greater. The reduction in pressure impulse on the wall is at most 20 % and
usually much less. Thus for practical purposes impact pressures in the free water
above the berm are little affected by the berm’s porosity. Thus impact pressures
above the berm may be estimated by taking the pressure at the berm’s surface to

be the same as if the berm were impermeable.

Of course for shallow water above a berm the propagation of waves onto the wall
is strongly affected by the berm. The above study only applies to the violent impact

of a wave at the wall.

2.5 Wave ‘bounce back’.

2.5.1 Theory.

In experiments of waves impacting on vertical walls, in addition to the three-

dimensional effects being important, the effect of dispersed bubbles or trapped air is
also important. In addition to the studies described in section 2.1 some recent studies
have been carried out in this area. If a wave is breaking, or near breaking, when 1t
hits a wall often a large amount of air becomes trapped. The air can be in onc of
two forms: as a trapped bubble or as dispersed air, or most likely as a combination
of both. In particular Topliss (1994) looked at a theoretical model of a trapped
air pocket. In this study the trapped air was taken to be an oscillating circular
air bubble. The oscillations were modelled by the flow due to an oscillating line
source, and the oscillations of the radius of the bubble were taken to be small. hence
an equation for the complex potential of the flow could be calculated. Topliss also
developed a model for the bubbly mixture in the fluid that a plunging wave leaves

behind after it has impacted on a structurce. Peregrine (1994) gives a review of some
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of the methods used to model air entrainment /trapping during impact. Peregrine
and Thais (1996) model scaling for entrained air in violent water wave impacts by
using a ‘filling flow’ model (where a region is rapidly filled with liquid). following on
from Peregrine and Kalliadasis (1996). This model has manv similarities to the flip

through’ flow. Peregrine and Thais give an estimate of the reduction in pressure

caused by the presence of the air.

In this section we consider a large air bubble trapped at the wall, which produces
oscillatory pressures. The impulse due to the first oscillation instead of bringing the
water to rest, may bounce the water backwards. So the velocity of the part of the
wave Impacting may reverse in sign. Cooker and Peregrine (1990 b) looked at a
pressure impulse model for the ‘flip through’ conditions which corresponds to water
motion normal to the wall ceasing on impact. If the compressed air causes the
water to be pushed back, then boundary conditions corresponding to a reversal of
the normal component of velocity, may be more appropriate.

We consider a plunging breaker impacting on a vertical wall, with our length scale
L the water depth at the wall. As before we solve Laplace’s equation subject to
appropriate boundary conditions. In a similar way to the model of impact on a wall
we take the free surface to be horizontal and take P = 0 along it. Along the rigid
bottom of the liquid region we have the usual boundary condition of dP/0n = 0,
where n is in the normal direction to the boundary. Section 2.4 showed that this
assumption is reasonable even if a porous berm is present in front of the wall,
providing we have a reasonably large depth of water at the wall below the impact
region. We assume the wave is moving towards the wall with a horizontal velocity
component of —U . The conditions on the wall can be split into three separate
regions. At the top of the wall we have a region where the jet part of the breaking
wave impacts with the wall, here there is a velocity component perpendicular to the
wall before impact but none after impact (similar to the "flip through™ approach).
Using cquation (2.3) we find we need 0P/dn = —U on the jet impact region (b <

y < 1). At the other extreme, at the bottom of the wall is a region where there
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Is no impact (0 < y < «a) so the velocity is zero perpendicular to the wall both
before and after impact so using equation (2.3) again we require dP/dn =0 on the
no impact region. In between these two regions (¢ < y < b) we can have a region
where there is a bubble. If there is no bounce back the boundary condition is the
same as at the top section of the wall. However if we have a region of ‘bounce back’
then the velocity perpendicular to the wall in this region is assumed for simplicity
just to undergo a change in sign. Again we use the component of equation (2.3)
normal to the wall and have 0P/0n = —2U in this region. We assume that [’
is uniform and hence take U = 1. The boundary conditions for the ‘no bounce

back’ and ‘bounce back’ cases are shown in figures 2.23 and 2.24 respectively. e

P=0
1
dP/on = —1
b
dP/on = —1 VP =0
a
OP/on =0
Y
0 E dP/on =0

Figure 2.23: Boundary conditions required for wave lmpact with ‘no bounce
back’.(vertical section)

solve Laplace’s equation using separation of variables to get a Fourier series solution
given in equation (2.48) where o, = (n+ 2)m . The expressions for A, are given in

equations (2.49) and (2.50) for ‘no bounce back’ and ‘bounce back’ respectively.

P = Z 4,e7 " cos(a,y) (2.48)

n

>
N e back : A, = —————[(=1)" — sin(a,a (2.49
No bounce bac DR [(—1) (ana)] )



1
OP/On = —1

b

a
OP/0n =0

Y

0 T

OP/On =0

Figure 2.24: Boundary conditions required for wave impact with ‘bounce
back’.(vertical section)

2
m [sin(ay,b) + (—1)" — 2sin(o, a)]. (2.50)
2

With bounce back : A, =

Figures 2.25 and 2.26 show the pressure impulse contours for ‘no bounce back’
and ‘bounce back’ respectively. The dark solid line shows the position of the middlc
region (bounce back/no bounce back).

Clearly a much bigger impulse arises from bounce back. If we examine figure
2.27, which 1s a plot for pressure impulse down the wall, we can see that the peak
P is almost twice as big for the bounce back situation as for the no bounce back
case.

Pressure-impulse contours give a fair approximation to maximum pressure con-
tours if a good estimate of impact duration is available. However in the case of
bounce back, the time scale is dependent on the compression of the air, and hence is
longer. Since bounce back gives a longer duration the estimated maximum pressures

arc generally smaller. If the duration is too long the pressure-impulse approximation

becomes less appropriate.
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P along the left hand wall
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Figure 2.27: Pressure impulse down the left hand wall.



2.5.2 Experimental comparison.

In the next two sections we discuss the comparison of the ‘bounce-back’ model
with experiments. One problem which is discussed in more detail in section 2.5.4,
1s that of the definition of pressure impulse when analysing experimental results,
In particular it is difficult to know which interval of time we should Integrate the

pressure over to obtain an estimate of the pressure impulse from experiments.

To analyse the data from Hattori and Arami (1992 and private communication)
a very simple analysis procedure was used. A simple isoceles triangular distribution
of pressure against time was chosen. Hence the pressure impulse was calculated by
multiplying the rise time (the time taken for the pressure to rise from zero to its
first peak value) by the first peak in pressure.

For the Edinburgh PIV data, the measurements are available, and so a more

detailed analysis procedure could be applied and is described in detail in section

2.5.4.

2.5.3 Comparison with Hattori experiments.

Hattori and Arami (1992 and private communication) carried out experiments to
analyse the effect of entrained air. An estimate of the position of the bubble (values
of a and b) and the velocity of the wave was obtained from ‘snapshots’ from a video
taken of the experiments. Figure 2.28 shows a comparison of the pressure impulse
down the wall obtained in these experiments with the pressure impulse predicted by
the Cooker and Peregrine 2D wall impact model and the ‘bounce back™ model. The
bubble position is denoted by a dark line. The ‘bounce back’ and ‘no bounce back’
arc over and under predictions in comparison with some of the experimental data.
The magnitude of the pressure impulse is predicted reasonably well. but the shape
of the pressure-impulse distribution is not reflected in the theoretical values. Total
impulse for the ‘bounce back’, no bounce back and Hattori data are 1.746Ns/m.

1.078Ns/m and 1.742Ns/m respectively. So the "bounce back™ model is better. The
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value of total impulse is predicted well by using the ‘bounce back™ method. whereas

the ‘no bounce back’ method under predicts.

The distribution of the pressure impulse down the wall for the experimental data
is quite an evenly spread distribution with a peak pressure lower than that predicted
by the ‘bounce back’ model. Both these inadequacics of the model can probably be
explained by not having a very realistic boundary condition at the position of the
bubble. The boundary condition is inadequate in at least two respects. The first is
the assumption that the water is bounced back with the same velocity with which
it began. It is likely that the velocity of bounce back is less than the incoming
velocity, which would make the peak in pressure smaller. Secondly in taking the
boundary condition as being dP/0n = —2 at the position of the bubble, we have
taken no account of the shape of the bubble. We have assumed a uniform velocity
distribution and imposed the corresponding boundary condition flat on the wall.
A more realistic boundary condition could be obtained by considering the velocity
distribution around the bubble after the impact to be normal to. for mathematical
simplicity, a semi-circle. This would soften the boundary condition and lead to a
more widely spread pressure-impulse distribution. However, in most experiments the
velocity distribution is not measured, so it is difficult to obtain a good approximation
of a non-uniform velocity distribution from experiment, though a boundarv-integral
method as used in section 3.8 could be used. We also note that in these experiments
the size of the transducers are approximately lcin in diameter and the wave height
is only about 8cm, so one source of error could be that the transducers are not
localized enough. This together with the crude method of analysing the data means
that we could be as much as 30 % out when evaluating the pressure impulse from

the experimental data.

2.5.4 Comparison with Edinburgh PIV experiments.

One of the major problems with comparing experimental data with theoretical mod-

ols, is that often the information required for the theoretical model i1s difficult to



Hattori

008 T T 1T T T 1T 171 T T T 1Tt T T Tt [t 17 1t 1 T 1 17 v T T T 1

‘1

0.06 —

- — Normal bounce back". ]

... no bounce back

>~ 0.04} B , |
(m) | x Hattori’s experiments |
0.02f —

- ' 3

OOO [ S N SO Y S S A NN A SR R R :| T S SR T N T T T S S U S T S T S T Y SO SR S S 1
0 10 20 30 40

Figure 2.28: Pressure impulse along the left hand wall, for ‘bounce back’, ‘no bounce
back’ and Hattori’s experiments (1992). Error in the evaluation of pressure impulse
from the experimental data could be as much as 30 %.
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measure experimentally. In these theoretical models we need to feed in not only the
height of the wave, and position of the air pocket at impact but also a measure of
velocity at impact. Most experiments concentrate on the measurement of pressures.
but no measurements of velocity are made. It is sometimes possible to make esti-

mates of the velocity of the wave if high speed video is available as we did for the

Hattori and Arami experiments.

A relatively new method of experimentally obtaining a velocity profile for an
impact is Particle Image Velocimetry (PIV). Oumeraci, Bruce, Klammer and Easson
(1995) and Oumeraci, Partenscky, Klammer and Kortenhaus (1997) describe PIV
measurements made at the University of Edinburgh. The measurements in these
papers together with further data and an analysis program from Bruce (Private
communication) and Kortenhaus (Private communication) respectively are used in
this chapter to further compare the ‘bounce back’/ no ‘bounce back’ models with
experimental data. PIV works by seeding the wave with tiny reflective particles
which are then stroboscopically illuminated, i.e. subjecting the wave to flashes of
light, interspersed with dark periods at a known frequency. At a particular time
when the velocity profile is required a photograph with a long shutter speed is taken
which includes at least two times when the wave is illuminated. Hence the velocity
at a local point can be determined by looking at the sets of images. A velocity map

can then be built up.

We examine the data from a test where an impacting plunging breaker is well
developed, and which traps a large pocket of air and an air-water mixture. From
Figure B-5 of Oumeraci, Partenscky, Klammer and Kortenhaus (1997) (reproduced
in figure 2.29 by using the analysis program), a plot of horizontal force against time,
we make a choice of the period of integration for the calculation of the pressure
impulse. The choice of start time is when the force graph cuts the axis: ¢, = 8.07
seconds (the start of the rise in force). The choice of where to integrate up to
is complex. Firstly. we must consider for what length of time pressure-impulse

caleulations are valid for. We can use pressure-impulse calculations only it u; >

(@]
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uuz, u 1S the velocity. That is the ratio of the nonlinear term to the du/ot term.
(O(AtU/L))), is small. So we require. A < L/U. In this particular experiment
we have a velocity (U) of 1.3m/s (see later), and a length (height of the water at
the wall at impact, L) of 0.2m (see later), hence the time scale must be much less
than 0.15s. So we choose to integrate up to t, = 8.16s, which is the point where the
plot starts to flatten off a bit. This makes the duration of the Impact to be 0.09s,

which is about as large as we can make it before our assumptions become really

questionable.

From Figure B-1 (c) of Oumeraci, Partenscky. Klammer and Kortenhaus (1997).
reproduced in figure 2.30, which is a profile of the wave a short time before lmpact,
we estimate that the height of the wave is 0.235m, and the position of the top and
bottom of the bubble are 0.194m, and 0.073m respectively (the height of the wall is
0.316m).

We also need an estimate of the velocity of the wave. Using figures 6 and 7 from
Oumeraci, Bruce, Klammer and Easson, we sce that (height)/(water depth at the
wall) of the underside of the jet from the plunging breaker is approximately 1.4,
Here the horizontal velocity does not change much in time and can be estimated as
1.3m/s. Feeding these into the ‘bounce back’ and Cooker and Peregrine model we

obtain the plots shown in figure 2.31.

Here it is clear that the profile is reasonably the same shape, but the theoretical
predictions have the maximum pressure impulse too far down the wall. The Cooker
and Peregrine model under predicts the pressure impulse and the ‘bounce back’
over predicts it. As mentioned in the analysis of Hattori’s experimental values.
the ‘bounce back’ model produces values of pressure impulse which are too high
bhecause we assume that the bubble bounces back with the opposite of the incident
velocity component normal to the wall. A more realistic approach is to consider the
bubble bouncing back with a cosine velocity profile. i.e. that there is no ‘bounce

back’ at the edges of the bubble and the maximum ‘bounce back’ is at the centre of
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Figure 2.29: Horizontal force on the wall, for impact of a plunging breaker trapping a
large air pocket. Edinburgh PIV data. (Plotted using analysis program Kortenhaus

(private communication))



Figure 2.30: Profile of a wave used in Edinburgh PI\" tests, trapping a large air
bubble at a time just before impact, from Oumeraci. Partenscky, Klammer and
Kortenhaus (1997).
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Figure 2.31: Pressure impulse on the wall, for impact of a plunging breaker trapping

a large air pocket
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the bubble. This is similar to considering the bubble as being cylindrical and just
‘bouncing back’ with the component of the radial velocity (of the bubble) in the

direction normal to the wall. This gives a slightly better prediction of the pressure

impulse as shown in figure 2.32.

X Large air bubble:p10/26059420
Nl T ! T ! I ! ! ! T { ! ! T ! ! ! T T !
i — bou’nce back with( cos N
- ... no bounce back i
i X PIV data .
I i
0.2 7
: i
~ I ]
(m) [ ]
o1 -
i ]
; ]
0.0l . e
0 50 100 150 200 250

P(Ns/m?)

Figure 2.32: Pressure impulse on the wall, for impact of a plunging breaker trapping
a large air pocket

However, we still have two further adjustments to our model. Firstly, the ‘snap
shot’ picture from which we estimated the position of the bubble and height of
the wave is at a time before the actual impact, on examination of a video of the
experiments it is clear that the top of the wave drops a few centimetres, and the
bubble moves up and decreases in size slightly before it impacts. Hence a better
estimation for the height of the wave, bottom and top of the bubble are 0.195m,
0.08m and 0.17m respectively. Using these values we obtain figure 2.33. However,

the pressure impulse from the experimental data is much larger than both theoretical
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Figure 2.33: Pressure impulse on the wall, for impact of a plunging breaker trapping
a large air pocket
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predictions. This means we require one more stage of analysis. Figure 2.34 is a plot
of the pressure from the transducers on the berm in front of the vertical structure.
Here channel 6 is the reading of the pressure transducer almost at the level of the
berm, at the wall, and channel 1 is at the edge of the berm furthest away fom
the wall. Channels 2-5 are on the berm in between 1 and 6. The distance of the
transducers 6 to 1, from the wall, are 0.000m, 0.120m. 0.240m. 0.350m, 0.516m and
0.662m respectively. If we look at the pressure plots we can see that often the impact
pressure peak occurs on top of a background pressure. We now examine figure 2.1
specifically to look at the reflective pressures. The pressure-impulse model we use in
this chapter takes no account of gravity. The second peak in the profile. the reflective
pressure, is caused by the wave motion of the water being accelerated /decelerated
by the wall. So, when we compare our theoretical model with experimental results
we should subtract off a profile that the reflective pressures would have if there were
no high peak impact pressure distribution on top of this. The most accurate way of
doing this would be to reflect the shape of the reflective pressure peak in the local
minimum at about 8.325s to give the reflective pressure distribution below the high
pressure peak caused by impact. However this is complex, and would be difficult
to do for large amounts of data. Hence we approximate this ‘background’ pressure
caused by gravity as a triangular or trapezoidal distribution and subtract this off
our calculation of pressure impulse. If at t=8.07s the pressure plot is below zero
then a triangular shape is subtracted off, as shown in figure 2.35. If the pressurc
plot is above zero at t=8.07s, then we subtract off a trapezoidal shape as shown
in figure 2.36. This makes the procedure for calculating the ‘background pressure’
simple and therefore could be applied to large amounts of data. This is based on a
suggestion in Walkden, Hewson and Bullock (1997).

Figure 2.37 shows the pressure impulse on the wall for the impact of a plunging
breaker trapping a large air pocket, for the two theoretical models and the PIV data.

where the PIV data has had the background pressure removed.

The distribution prediction is far from perfect but adequate. The pressures on
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plunging breaker trapping a large air pocket. Edinburgh PI\" data. (Plotted using

Figure 2.34: Pressure against time for transducers on the berm with impact of a
analvsis program Kortenhaus ( private communication))
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Figure 2.35: Pressure against time for transducer 6 (almost at the base of the wall),
showing the triangular background pressure to be removed. (Edinburgh PIV data)
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Figure 2.36: Pressure against time for transducer 5 (on the berm), showing the
trapezoidal background pressure to be removed. (Edinburgh PIV data)
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Figure 2.37: Pressure impulse on the wall, for impact of a plunging breaker trapping
a large air pocket
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the berm are reasonably predicted using this model, as shown in figure 2.38.
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Figure 2.38: Pressure impulse along the berm, for impact of a plunging breaker
trapping a large air pocket

2.5.5 Experimental conclusions.

The ‘bounce back’ model could not predict the distribution of the pressure impulse
down the wall for the Hattori and Arami experiments. However the total impulse
could be quite accurately predicted. Two reasons for the inadequacy of the pre-
diction of the pressure-impulse distribution could be the simple way in which the
pressure impulse was calculated from the experimental data, and also the difficulties

in estimating the velocity of the wave and the position and size of the air bubble.

The Edinburgh PIV data compared well with the ‘bounce back’ model which also
predicted the distribution of pressure impulse along the berm well. In particular

the cosine distribution for the velocity seemed most appropriate. The pressure
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impulse was calculated by integrating from the start in the rise in force, to the first
‘flat” part of the force graph after the peak. keeping within the time limit within
which pressure-impulse theory is valid. A triangular (or trapezoidal) distribution

of pressure was subtracted off the pressure impulse so as to remove the effect of a

background pressure.

Theoretical work on the prediction of pressures, forces or pressure impulse for
impacts with large air pockets, where the air bubble is taken account of is very
scarce. With the exception of the work carried out by Topliss (1994). Ramkema
(1978) and Bagnold (1939), virtually no theoretical work exists for the prediction
of pressure impulse for impact on a wall with any sort of model for the trapped air.
Our model, predicts the distribution of the pressure impulse to within about 40 % .
Although far from perfect these predictions are at least a start. The prediction of
the total impulse (as demonstrated with the Hattori and Arami data, section 2.5.3)

1s much better.

There are many difficulties in building into a model of impact the effect of the
pocket of air. The biggest is that of the choice of boundary condition at the position
of the air pocket. Ideally the shape of the bubble should be taken into account. We
only made a very simple approximation to this by using a cosine distribution for
the ‘bounce back’ velocity. If we imposed boundary conditions on the surface of
the bubble (assuming the bubble has the same shape before and after bounce-back)
then the problem solution domain becomes more complicated. This model may be
extended to allow for this, using for example, boundary-integral methods. Another
problem is that even if we can allow for the shape of the bubble, it is difficult to
know what boundary condition we should impose on it. The pressure on the bubble
boundary must be one constant before and another after impact but it is not clear
what the change in this constant should be, or how to estimate it. This problem
needs further investigation.

Inaccuracies in our ability to estimate parameters such as the velocity, wave
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height and bubble position (PIV ‘snapshots’ are not taken at impact but a short
time before) are also a source of error. This is hecause PIV analvsis is difficult at

the time of impact due to the air entrainment which occurs.

2.6 Impact on cylinders.

Although the study of wave impact has mainly concentrated on vertical wall or
breakwater structures it is also useful to study impacts on other geometrical shapes.
In particular we consider impact on a circular cylinder, representing an oil rig leg,

a pile, or the circular head of a breakwater.

Many experimental and theoretical studies have been carried out for impacts on
cylinders. In particular most have focused on non-breaking waves. However, Honda
and Mitsuyasu (1974) carried out an experimental investigation into wave forces of
breaking waves impacting on a vertical cylinder on a sloping beach. The effect of
varying the position of the cylinder on the wave forces was examined. Relations
between the wave force and the relative depth of the water at the cvlinder, the deep
water steepness of the wave and the beach slope were found. Good predictions of
the wave forces for the cylinder in deep water were found, but not for shallow water.
Further experimental investigations were carried out including Dalton and Nash
(1976), Wiegel (1982) and Apelt and Piorewiz (1987). Dalton and Nash concluded
that further study of elements in offshore platforms which are in the splash zone
was necessary, as the forces/pressures which were involved were significant enough
to cause damage. Wiegel presents a method for analysing the forces exerted by
breaking waves on a circular pile. They comment on the difficulties of predicting
the forces on the cylinder as Morison’s equation is often used which is for prediction
of wave forces due to non-breaking waves whereas, for example, plunging breakers
are known to give much larger forces. Improvements on this model were thought
to be difficult to achiceve due to the impact forces being of such short duration that

the cquipment of the time was not sufficiently good to deal with this. Apelt and
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Piorewicz, using their own and previous experiments, found that the maximum force
for a breaking wave on a cylinder is dependent on the bottom slope. diameter to
height ratio of the cylinder, and the wave steepness. Thev summarized the existing
papers on impact forces on c¢vlinders and comment that very little research has been

carried out for breaking waves on cylinders.

Experimentalists have focused recently on looking at breaking waves. rather
than non-breaking waves, impacting on vertical cvlinders. Zhou, Chan and Melville
(1991) undertook laboratory measurements to obtain pressure distributions on sur-
face piercing vertical cylinders. They looked at ensemble averages of the pressure-
time histories and also looked at pressure plots round the cvlinder. They comment
that the extrapolation from present laboratory scale to prototvpe for the structural
response to wave impact may be achieved by using pressure-impulse theory.

The problem of scaling was further examined by Chaplin, Greated, Flintam and
Skyner (1992). Three widely different scales were used for the loading experienced
by a vertical cylinder in breaking and steep non-breaking waves. The results ob-
tained for the loading on the cylinders were found to be reasonably consistent with
the use of Froude Scaling (see Goda (1985) for details). The usual method for pre-
dicting loads (Morison’s equation) was found to be inadequate in the splash zone
of breaking waves. Extreme loading associated with severe particle velocities and
accelerations were experienced by structural members in the splash zone of break-
ing waves. High impact pressures of short duration were again experienced when
a member underwent rapid submergence by fast flowing water showing that it is

appropriate to use pressure-impulse theory for this impact problem.

2.6.1 Pressure-impulse method.

We now consider the pressure impulse of a wave impacting on a cvlindrical structure
in a similar manner to the method used for impacts on vertical walls. Ideally we
would consider a wave rising up out of the main bodyv of the water and impacting

on a cvlinder. or a breaking wave jet front impacting on the cvlinder. However. for
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simplicity we consider a cylinder with water surrounding it. and impact occurring
on a patch of the cylinder just below water level as shown in figure 2.39.

As previously mentioned, we can simplify the shape of the free surface without
too much effect on the solution of the impact problem. Hence, we take the shape of
water surface impact on a cylinder to be a horizontal free surface. Once the contours
of pressure impulse are plotted for the impact a more realistic free surface mayv be

taken by using any of the lines of constant pressure impulse.

2.6.2 Impact on a cylinder just below water level.

case of an infinite body of water with the impact on a patch of the c¢vlinder just
below the water level . This is similar to the 3D patch on a wall example of section
2.3.2. So we need to solve Laplace’s equation in cylindrical co-ordinates. (given by
(r,%, z), where r is in the radial direction, 1 is the angle round the cvlinder and 2z
is the vertical position) in the body of water. We take our length scale L to be the
radius of the cylinder. The patch is taken to be the arca =g <y <3, =< 2<0
on the cylinder at radius 7 = 1. On this patch of the cylinder the impact occurs and
we require OP/0r = —cos, corresponding to unit velocity in the -z direction.
On the rest of the cylinder no impact occurs so dP/0r = 0. At the free surface
P =0, and along the bottom rigid boundary 0P/0z = 0. We must also have that
P — 0 away from the cylinder. The boundary conditions are summarized in figure

2.39.

Laplace’s equation in cylindrical co-ordinates is given by:

. il - = 0. 251
RoR \"'or) TR ez T 8~ (2:51)

\We solve this by using separation of variables. Let P(r.¢,z) = Z(2)¥(v)R(r).

1 0P O*P
1 0 <R8P> 0

The problem we are solving has finite depth so we require a periodic condition in

the =~ direction. Hence the equations we need to solve are:

~
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Figure 2.39: Impact on a cylinder below water level.

A
52 T1Z=0, (2.52)
0%y
207 + p*¥ = 0, (2.53)
0*R 10R s P
52 T rar (q + T—2> R =0, (2.54)

where p and ¢ are to be found by imposing the boundary conditions. The boundary
conditions at the base and free surface imply that solutions to equation (2.52) are
given by Z = Asin(gqz) where A is a constant and ¢ = (n + 1/2)m/h. We wish
our solution to be symmetric about ¢ = 0 so solving equation (2.53) gives ¥ =
B cos(py) where p is an integer (as we require P to be periodicin % ). and Bis a
constant. Finally solution of equation (2.54) gives R = CK,(qr) + DI,(gr) where
I, and I, are modified Bessel functions. Using the condition that P — 0 as we

move away from the impact patch we obtain R = C'IK,(gr). where again C is a
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constant.

So the Fourier-Bessel series is found to be :

P =3 A,,Ky(q.r)sin(g,2) cos(my). (2.55)

Imposing the boundary condition on the cylinder., 7 = 1, we obtain expressions for

the A, :
2[1 — cos(gnl)] |sin(m + 1)8 N sin(1 — m).3
¢n2K! (qn)hm m+1 1—m

unless m = 0 when A,,, is half the above expression.

Amn —

(2.56)

However, great care is needed when evaluating the sum as convergence is poor.
We truncate the series at n = N and m = A . As ¢, gets large, I\, (¢,) — 0,
so 1/K! (¢gn,) — oo, whereas K,,(g,) — 0. This makes the terms in the sum
difficult to evaluate. If we take a Fourier series, f(¢), and truncate it to N terms
to give fy(t), and average it over the interval (t—n/N,t+7/N) then extra factors
appear. Convergence is aided by using these factors called Lanczos’ factors. i.c.
multiplying each term in the series in equation (2.55) by sin(g,7/qn)/(gnm/qn) and
sin(mn /M) /(mm /M) (except when m = 0, when only the first factor is needed)

(see Hamming 1973).

Figures 2.40 and 2.41 show the distribution of pressure impulse on a cyvlinder
(unwrapped) with the impact on half (i.e. 8 = 7/2) of the top 10 % and half of
the full water depth respectively. Total impulse for figures 2.40 and 2.41 are 1.010
and 23.370 respectively. Increasing the impact region greatly increases the pressure
impulse and hence the total impulse on the cylinder.

The maximum pressure for this impact occurs at roughly the same place as for
impact on a wall. If we examine pressure impulse along the line ¥ = 0 for this case
and for the two-dimensional impact on a wall (Cooker and Peregrine 1990 b). we
can see from figure 2.42 that the pressure impulse is less for the cvlinder than for
the wall. This is due to the convex three-dimensional nature of the c¢vlinder.

The pressure-impulse contours. as we would expect. take the form of squashed el-

lipses. with the highest pressures on the impact region itself. The pressure impulse
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Figure 2.40: Distribution of pressure impulse on a cylinder (unwrapped) with the
wave impact on half (i.e. § = 7/2) of the top 10 % of the water depth. Total
impulse 1.010.
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Figure 2.41: Distribution of pressure impulse on a cylinder (unwrapped) with the
wave impact on the front half (i.e. 8 =7/2) of the cylinder. Total impulse 23.370
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reduces in value very rapidly going down the cylinder. At a distance of approxi-
mately 3 down a cylinder of depth 10, with impact on the top 10%, the pressure
impulse is less than 5% of its peak value. Note that the impact region is only on
the front 50 % of the cylinder and in the region at the back of the cvlinder where
no impact takes place there is a region of negative pressure impulse. This seems to
happen regardless of the percentage of impact area, however the negative pressures
are substantially bigger for the case of 10% impact when compared to 100% im-
pact. If we examine figure 2.40 we can see that the pressure-impulse contours are
very close together, hence we deduce there is a high pressure-impulse gradient. The
negative values at z = —0.5 at the back of the cylinder for the top 10% and full
Impact case are -0.048 and -0.033 respectively. Hence in the 10% impact case the
pressure impulse drops through zero quite quickly as we go round the cylinder and
continues to drop to significant negative values. For the full impact case the drop
off in pressure impulse is much more gentle hence only very small negative values

are present.

It is not thought that these negative values are caused by not taking enough terms
in the Fourier-Bessel series. If we consider, as in table 2.1, the case with impact on
the top 10%, the maximum negative value of P at position z = —0.59,9 = —7,
increases in magnitude as more terms are taken. In addition, the difference in the
terms is very small and reduces as the number of terms taken increases. The negative

values may be a symptom of the particular mathematical model used.

n =45 n = 50 n =255 n = 60
m = 16 | -0.0487228 | -0.0489856 | -0.0492012 | -0.0493464
m = 17 | -0.0487713 | -0.0490343 | -0.0492501 | -0.0493955
m = 18 | -0.0488126 | -0.0490757 | -0.0492917 | -0.0494372

Table 2.1: Values of P, at ¥ = —m, z = —0.59 (position of largest negative value of
P) for impact on a patch of a cylinder with the wave impact on half (i.e. 3 =7/2)
of the top 10 % of the water depth. Values of m and n used for truncation are

given.
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To begin with we assumed that the free surface was horizontal. The solution for
the problem with the contour of constant pressure impulse taken as the free surface
can be found by subtracting off that constant from the original solution. We also
note that we could take the zero pressure-impulse contour (particularly shown in
figure 2.40) as a more realistic wave free-surface. By taking a different contour as
the free surface the change in load can be found by multiplying the value of the

pressure-impulse contour by the cylinder surface area.

P along the centre line
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Figure 2.42: P along the centre line ¥ =0, against z. —down the wall (Cooker
and Peregrine (1990b) model) ,...down the cylinder. The impact is on the top 10%
of the water depth.
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2.6.3 Impact on a cylinder by a wedge of water.

When considering wave impact on a cylinder the impact region is often above the
level of the main body of the water where the wave has risen up to impact on the
cylinder. We begin by looking at a wedge (height «. impact between = +.3) of
water impacting on the cylinder with a rigid boundary at the base. The length scale
L is again the radius of the cylinder. The rigid boundary is required, for the present.
to make the mathematical model simpler. The water is trapped in the wedge. It
is hoped that eventually this model could be extended to have a bodyv of water
beneath the wedge rather than the rigid boundary, to make the model similar to a
wave rising up and hitting the cylinder. We take cyvlindrical co-ordinates similarly
to the previous cylinder model. The wedge of water must have a free surface along
the top and edges of the wedge, where we take P = 0. Where the impact region
occurs we require dP/0r = — cos ), where no impact occurs 0P/Jr = 0, and along
the base we take 0P/0n = 0, where n is the direction normal to the base. Again we
solve Laplace’s equation to obtain a Fourier-Bessel series for the pressure impulse.
The problem to be solved is shown in figure 2.43. We need to solve equations (2.52),

(2.53) and (2.54) with the boundary conditions for this new problem.

Again in the z direction the solution must be periodic. Imposing the conditions
from the base and the free surface gives Z = A cos(gz), where ¢ = (n +1/2)7/a.
In the radial direction, as before, R = BN ,(qr) because P — 0 as r — oo. We
require the solution to be periodic in % and that P = 0 at ¢ = +/3. Hence
W = C cos(py), where p= (n+1/2)r/5. So the solution to the impact of a wedge

of water on a cylinder 1s:

o
a
|

P =7 By, (gur) cos(qnz) cos(pmi) (2.

m,n
with the B, given by:

2=1)"*" [sin(pm +1)3  sin(p, — 1)
2 1.1 . 2 +
n [\pm(q”’l a3 P+ 1 Pm — 1

B”I”, =
except 1 the case when p,, = 1, then the square bracket in the above eXpression 1s
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OP/0r = — cos P ViP =0 ‘

P=0

Figure 2.43: Impact on a cylinder of a wedge of water.



|55in 28 + ﬁJ instead.
Figure 2.44 shows the distribution of pressure impulse on a cylinder (unwrapped)

with the wave impact from a plane wave’s front for a wedge of semi-infinite extent

(@ =1). However, this model has a solid boundary at the base. If we were to take
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Figure 2.44: Distribution of pressure impulse on a cylinder (unwrapped ) with the
wave impact from a wedge of water. The impact region is between the two dark
lines. 8 =m/2

the more realistic case of deep water the pressures would be somewhat lower than in
this example. Figure 2.45 is a plot of the pressure impulse down the centre line on
the cylinder for the ‘wedge’ of water impact and patch impact on a cylinder. The
‘wedge’ impact as expected has a lower pressure impulse, this is due to the imposition
of P = 0 along the edges of the wedge. The difference is most noticeable towards

the bottom of the cylinder where the difference between the two cases is about 15% .

2.6.4 Comparisons.

These results can be compared in two ways. The width of the patch on which the
impact occurs as seen by the approaching wave equals the diameter of the cylinder.
If we consider the 2D model of impact on a wall we can compare this with the two
cases described above if we let the impact on the wall be over the same length. The
total impulse then for impact on a wall (2D impact on a wall of length 2. height

10, impact on the top 10%) is 2.574, on a cylinder (of diameter 2. again height 10,
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Figure 2.45: P along the centre line ¢ = 0, against z. — for impact on a patch

below water level of a cylinder ,...for impact of a wedge of water on a cylinder. The
impact is on the full depth of the water.
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and impact on the top 10%) it is 1.010 when the impact is surrounded by water
and 0.604 for the ‘wedge’ of angle 7 (of diameter 2. height 1. impact over the full
depth) bounded below by a fixed bed. As expected the total impulse is largest for a
wall as there are no three-dimensional effects to attenuate the high pressures. The
impact of the ‘wedge’ of water has the least total impulse due to enforcing P = ()
down the edges of the wedge. Finallv we consider the ‘patch’ impact on a wall. the
total impulse for this for a patch of width 2, height 1, on a wall of height 10 (where
we sum the pressure impulse over width 2) is 1.242. As again we expected the total
impulse is not as much as for the 2D impact on a wall as the pressure impulse on the
patch model only reaches the peak 2D values at the centre of the patch. The patch
model, however, has a greater total impulse when compared with both the ¢vlinder
impacts, showing that the effect of having a cylindrical shape for the impact is very
strong.

Most of the horizontal component of the momentum is lost from a region close
to the wall during impact. The significant thickness of the fluid (i.c. the depth over
which the momentum is lost) can be calculated by equating the total impulse on the
impact region with the momentum lost from the volume of water of thickness L,
with the impact velocity. The momentum length for 2D impact on a wall is 2.574.
substantially larger than the value of 1.242 for impact on just a patch of wall and
0.980 for the impact on a patch of cvlinder. (These examples ave all having depth of
water 10, impact on the top 10%, and width 2, so that the projected area of impact
is the same for each.) As expected the cvlinder is affected by less of the fluid since

most of the momentum is related to oblique impact.

2.6.5 Conclusions.

Wave impact on a vertical cylinder has been analyvsed for two simple cases. As
expected the model shows that the resulting pressure impulse is lower for impact on
a evlinder than on a wall. The peak pressure on the cylinder occurs at approximately

the same distance (relative to the height of the patch) below the free surface as for
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impact on a wall.

For impact on a patch on the cylinder a negative pressure impulse is experienced
at the opposite side of the cylinder to the impact. It is a possibility that it is a fault

in the mathematical model chosen for the problem.
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Chapter 3

Impact under a deck.

3.1 Introduction.

Many coastal structures and natural coasts have openings, overhangs and projections
which are open to impact by incident water waves. The sudden impact of a wave on
a rigid surface leads to a rapid rise of pressure and consequent violent water motions.
We consider the wave impact on the underside of a projecting surface. The example
discussed 1s that of a flat deck close to the mean water level. A pressure-impulse
approach is used, which has the advantage that given a solution for one problem
it is possible to select pressure-impulse contours which give the solution to related
problems. The pressure gradient on the underside of the deck is especially strong
near the seaward edge of the impact region, so this is a region where anyv projections
on the structure’s surface may be subject to strong forces. On the other hand the
maximum pressure impulse is at the landward end of the impact zone, it is here that

the deck is most likely to be ‘blown’ upward.

There are a number of circumstances in which the effect of the upward impact of
a wave beneath a rigid horizontal surface needs to be estimated. For offshore oil-rigs
the lack of good estimates of such upward impacts leads to designs where the main
platform of rigs is built to be out of reach of ‘green water’. This may not be an
option for some coastal structures, including piers and jetties. and temporary works
in inter-tidal zones. Here we present pressure-impulse calculations for an impact on

2 horizontal surface in finite depth. For convenience we refer to the rigid surface as
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a deck.

3.2 Background.

The study of a wave impacting on the underside of a deck is mathematically very
similar to the slamming of a body into a liquid. In the first case it is the solid that i
fixed and the liquid which is in motion and in the second case the other wav round.

Hence it is only the frame of reference which differs.

Improvements in the design of sea-planes inspired much research in the area of
ship-slamming, with early simple models given by Von Karman (1929) and Wagner
(1932). Von Karman analysed the stresses which occur when a seaplane float impacts
with the sea. He developed an impact formula for a wedge penetrating a liquid
surface, by looking at conservation of momentum. The liquid is assumed to be
incompressible. For the limiting case of a flat plate, Von Karman predicts pressures
of infinite magnitude. Wagner adapted Von Karman’s formulac to allow for a ‘piling’
up of the liquid along the sloping edges of the wedge. However, both of these

approaches take no account of the initial air cushion which is present.

Keldysh (1935) developed expressions for the total impulse for a plate dropping
on finite depth. However no expression for the pressure-impulse distribution on or
below the plate was given. Similarly an expression for the total impulse on a deck.
with only a very shallow body of water below it, was given in Veklich and Malvkh

(1984), but again no distribution was given.

Further experiments in the area of slamming were carried out by Verhagen
(1967), who also introduced a more theoretical approach. When a plate impacts
on a body of water a laver of air becomes trapped. Verhagen assumed that this
laver of trapped air is released sideways as the impact occurs. and an equation for
the release of the air was developed. The model treats the water as incompressibe
and uses the method of characteristics to solve the equations. The model predicts the

shape and magnitude of the pressure-time history of the impact quite successtully
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and focuses on prediction of maximum impact pressures instead of the distribution
of the pressure along the plate. A model for a flat plate dropping verticallyv onto a
body of water, dealing mainly with the trapped air, was presented in Whitman and
Pancione (1973). They built up a model of a plate falling within a "leaky’ cylinder.
and considered this as a piston. Plots of pressure change in terms of size of plate
are shown, which compare well with experimental data. However, both Verhagen

(1967) and Whitman and Pancione (1973) only looked at the plate dropping onto
infinite depth of water.

Extensions of Von Karman’s and Wagner’s formulae have been developed, in
particular by Cointe and Armand (1987) and Cointe (1989). The former being for
vertical entry of a rigid cylinder (where the direction of motion is radial) into an
incompressible inviscid fluid, with the formula differing from Von Karman’s by just
a wetting corrective term (similar to Wagner’s). The second paper uses asymptotic
expansions to extend the formulae for non-normal impact and initially curved free
surfaces. Again these studies are for infinite depth of water. Korobkin and Pukna-
chov (1988) give a good review of the numerical and analytical methods which have

been used to look at the initial stage of impact of solid bodies with water.

When two equal progressive waves travel in opposite directions they can produce
a standing wave, and the wave height of this standing wave is, according to linear
theory, twice the height of each progressive wave. Hence standing waves can occur at
a wall where the original wave and its reflection interact. The peak in the standing
wave can only be sustained if the depth of water is twice the height of the original
progressive wave. So if this condition is satisfied then it is possible to have a standing
wave which occurs at a wall which impacts upwards onto an overhang. Furudoi and
Murota (1966) and the later study of Ramkema (1978) both examined the uplift
forces caused by standing waves impacting upwards on protrusions. Furudoi and
Murota developed empirical formulae for the uplift forces in terms of the water depth
and the standing wave properties. Ramkema extended Bagnold’s piston model for

impacts (as discussed in chapter 2), to include adiabatic and isothermal compression
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of the air cushion. The model allowed for the compression of the liquid and predicted

the spatial pressure distribution. He also reviewed wave impact and ship-slamming

literature.

French (1969) performed experiments to investigate uplift pressures on a plat-
form. This was carried out by having a platform fixed a short distance above the
still water level, and sending waves along to impact first on the edge of the plate and
then to continue to travel under the plate. The peak pressures and the reflective
pressures were found to be related to the wave celerity under the platform, and a
simple theoretical formula was developed. Negative pressures were also observed as
the wave became detached from the platform. French gives a review of previous
similar experimental investigations. Following on from French's and other exper-
imental studies, Lai and Lee (1989) developed a Galerkin finite element method.,
for this problem, the predictions of which compare well with experiment. However,
these studies are for a wave travelling horizontally, with the top of the wave above

the height of the deck, and hence are not comparable with our theoretical results.

When designing marine structures, thev are often built out of reach of potentially
destructive waves, however this is expensive, especially if the structure could be built
to withstand some wave impacts more cheaply than to build it high enough to be
away from the wave impact region. A study by Dalton and Nash (1976) looked at
impacts on a cylindrical member and concluded that it is possible to scale model
tests to give predictions for full scale impacts. Massel, Oleskiewicz, and Trapp(1978)
studied the impact wave forces on a horizontal plate, but give no pressure-time plots.
They suggested that both the peak and slowly varying pressures are functions of the
Ursell number. These experimental studies all treat the impact as though it were
two-dimensional, ignoring end effects due to the finite width of the plate. Shih and
Anastasiou (1992) looked experimentally at the vertical loading on a platform. and
in particular examined the cffect of the width of the plate, and scale effects. Thev
concluded that the platform width has no effect on the impact pressures. Theyv also

concluded that Froude's scaling law was inappropriate. However the distribution
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of duration and impulse characteristics could be well described by Rayleigh and

exponential distributions respectively. Again though this was for a horizontal wave

similar to those studied in French (1969).

Howison, Ockendon and Wilson (1991) carried out a theoretical examination of
wave impact of an impacting body nearlv parallel to the undisturbed liquid sur-
face. They obtained explicit solutions for the two-dimensional case and a numerical

algorithm for the three-dimensional case.

Another theoretical method for estimating forces on the underside of a marine
structure is given in Peregrine and Kalliadasis (1996). They looked at the filling
up of a container or a confined region. The solution is found by looking at mass
and momentum conservation, and free-streamline theory. The flow involved is very
similar in nature to that described in some of the more experimental papers such as
French (1969), where the wave impacts on the edge of a horizontal plate and then

travels under the plate.

Takagi (1997) used a matched asymptotic expansion method to look at a three
dimensional plate impacting on a body of water. The impact force is stronger when
alr becomes trapped between the plate and the water. This study is again for the

infinite depth case.

Finally, some recent experimental work described in Smith and Stansby (1997)
looks at the vertical force on a plate in free flight impacting on a wave. They
obtain a formula for the general slam coefficient by dimensional analysis and physical
reasoning. This experimental investigation is very similar to the model described in
this thesis. However, in this thesis we assume that the deck is hit by a wave whose
motion is primarily vertical at impact, but in the experimental study the plate
drops at an angle on to the top of the wave, making comparison difficult. Hence.
for the experimental work the plate has both a horizontal and vertical component of
velocity, whereas in the model considered later the plate has only a vertical velocity.,

It mav be possible to treat the two velocity components independently as the model
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1s for inviscid fluid. Further experiments are being undertaken by Stansbv and it

may be reasonable to use these as a comparison.

3.3 Mathematical model.

We now consider the specific case of impact of a bodv of water upwards on to a deck.
The geometrical simplifications we make may be seen in figure 3.1. The water is
taken to be of finite depth CD = a, and to impact the horizontal deck BC of length
L with an upward velocity V. The free surface not hitting the deck is taken to
be flat, as BA, and to stretch to infinity. However, as indicated below alternative
surface shapes are easily found by choosing different contours of pressure impulse.
The boundary conditions on CD given in figure 3.1 indicate that the problem can
be reflected in the vertical plane of CD, corresponding to impact on a horizontal

surface of length 2L with a central plane of symmetry.

oP/0y =1 P=0
C SAD - S A
L
oP/oz =0 |a V2P =0 P—0
A
)
D E
x OP/oy =0

Figure 3.1: Impact under a deck: the problem to be solved.

The boundary condition at the free surface is that the pressure must be constant
and continuous therefore P = 0. At the walls and on the bed. the normal velocity
must be zero before and after impact. therefore using equation (2.3), OP/0n = 0.
where n is the normal direction. As the water meets the deck BC', the water
has vertical velocity 17, which could be any function of r, and after impact the

water has zero vertical velocity.  Therefore. again using equation (2.3), we have
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JdP/On = V. For simplicity, we again choose 1" to be constant. We make the
problem dimensionless by choosing units for which 1"=1 and L = 1.
We begin by considering the two extreme cases first. where the ratio of deck

length to water depth is firstly verv small and secondly verv large. We then discuss

and solve the more general case.

3.4 Infinite depth solution.

The problem of a wave hitting upwards under a deck jutting out from a wall, is
mathematically equivalent to a plate dropping onto a body of water and setting the
water in motion. Also when considering solving Laplace’s equation we can use the
direct analogy with the velocity potential of irrotational flow. We temporarily take
the origin to be at the centre of the plate, with r along the plate. and ¢y downwards
perpendicular to the plate. If we consider the complex potential for a flow past a
plate then we just need a change of reference frame to find the complex potential of
a moving plate in a stationary fluid. With a complex potential w = ¢ + 1, then
dp/0x =0 on =z =0, and 0¢/0y = —1 along the plate. These are the conditions
that are required by P, and so the lines of constant pressure impulse are given by
lines of constant ¢. The solution may be found in Lamb (1932, scction 71), and in
Milne-Thompson (1962, section 6.3), for a fluid flowing past an ellipse. If we allow
one of the semi-axes to shrink to zero then we have a plate instead of an ellipse
in the flow. Finally choosing the plate to be perpendicular to the flow, the length
of the plate to be 2, and the velocity —1. we get an expression for the complex

potential of a uniform stream flowing past a plate:

w=1- 2% (3.1)

where the origin is taken to be the centre of the plate.
If we subtract the complex potential for a stream from this expression we have

the potential for a moving plate.  As the velocity of the stream is (0. —1.0), we
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must therefore subtract —iz to get:

w=1z+ V1 — 22 (3.2)

.

This solution is symmetric about the centre of the plate. This means that we can
consider a line drawn perpendicular to the plate from the centre of the plate, to be
a wall, bringing us back to the original problem of the water hitting a deck jutting

out from a wall. Hence we have an expression for the pressure impulse:

P = Re(iz + V1 — 22). (3.3)

This is the infinite depth solution. Figure 3.2 shows contours of pressure impulse.

The total impulse on the deck is 7/4, in dimensional terms mpV L/4.

Figure 3.2: Infinite depth solution. Total impulse on deck (0,1) is /4.

3.5 Infinitely long deck.

We next consider the other limiting case where the deck is infinite in length, or in
our units a becomes small. As a becomes small the effect of the free surface on
the solution under the deck becomes small. This means it is possible to solve in

that region by neglecting the condition at the free surface. We now return to the
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co-ordinates used in figure 3.1. Hence we solve Laplace’s equation on a strip where
OP/0y =1 along the top, OP/dn = 0, where n is the normal direction, along the
left-hand edge and bottom.

The solution is given by:

P = % [y2 — :1:2] + K, (3.4)

where K is a constant which depends on the behaviour of P near £ = 1.0. where
this approximation fails. Figure 3.3 shows the case when a = 0.1, and K =
(1/2a) — (a/2) . This choice of K forces the pressure impulse to be zero at the edge
of the deck. This is is probably too harsh a condition, leading to the prediction of

the pressure impulse being too low. In practice the ‘filling flow’ solution of Peregrine

sme ([ CTTTITITTTATIm

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 3.3: Analytic solution when a is small.(a = 0.1, K=4.95)

and Kalliadasis (1996) may be more relevant to this case.

3.6 More general solution.

Consideration of the boundary conditions in Figure 3.1, or the solution (3.3) shows
that at B there is a square root singularity. This singularity causes problems for
many numerical solution methods. The singularity is due to the abrupt change in the
boundary conditions due to the particular mathematical model chosen. However,
one way to eliminate the problem of the singularity is to map the original prob-
lem using conformal maps as follows. First map to a half-space, then use another
conformal map to perform a shift and stretch so that by using a final conformal
map we can bend the problem back to a semi-infinite strip but with the boundary

conditions shifted round to a convenient position. i.e. shift the boundary conditions
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on the deck round to the vertical wall. The singularity is no longer a problem as it
is contained within the complex map, and so no longer exists in the solution plane.

That is, that the problem in the final plane which we actually solve has the change

in boundary conditions at the corner and so is no problem to solve.

Let the original plane in which the problem is posed be the z plane. The first
map we need is w = u +iv = cosh(nz/a). This gives the problem shown in figure

3.4. As we only use conformal maps P continues to satisfy Laplace’s equation

throughout.
ViP =0
— cosh(ma) —1 y l1
| | u
A <% /C\ + -
o°P __ 7 a oP __
P =0 v —  wsinh(rz/a) ov 0

Figure 3.4: The problem in the w-plane after the first complex map.

B F=0 A

e

a

OP/0¢ = F(n) P—0
n
g E
C e D
OP/don =0

Figure 3.5: The final problem to be solved in the (-plane, where F(n) =
—sin(mn/a)/(MVb? — 1) with b= [cos(rn) — N] /M .

We then use a translation and magnification to shift B to —1, and C to 1.
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The map required is h = f +ig = Mw + N where M = 2/(cosh(w/a) — 1) and
N = M + 1. The last step is to map this problem back to the strip. The final map
required is ¢ = £ +in = acosh™'(h)/7. This gives the problem as shown in figure
3.5. We note here that F'(n) is zero at the two corners of the box so the square root
singularity is eliminated.

We solve Laplace’s equation in this region by separation of variables. Let P =
f(n)g(é), giving f" = —a?f and g” = &g, where « is a constant. Solving for f.
using the boundary condition that f =0 at n =a, and 8f/0n =0 at n =0, gives
f = Acos(ann) where o, = (n+1/2)7/a. We now solve for g, using the condition
that P — 0 as € — oco. This gives g = Re™*¢. Hence we have an expression for

the pressure impulse:

P =3 A,e " cos(ann). (3.5)

Finally we use the condition that 0P/8¢ = —sin(nn/a)/(M+/b* — 1), where b =
[cos(mn) — N] /M along £ =0 to get expressions for the A, . Using this condition

we get:

sin(7n/a)

MV —1

The final step is to multiply both sides by cos(amn), and integrate along the line

— Y Apaycos(ann) = — (3.6)

£ =0 to get:

4 = 2 e _1_sin(7rn/a) cos(amn)
™ amaldo M Vb —1

Similar results can be found for any velocity distribution V' = V(z).

dn. (3.7)

3.7 Results and discussion.

The integral in (3.7) is evaluated by using a NAG numerical routine, DOIARF.

The positioning of the division by a,, in the expression for 4,, was found to be
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important. For a < 0.5 the division by o, was included in the integrand, but
not for o > 0.5. This ‘cutoff’ was chosen purely so that the numerical routine was
able to evaluate the integral to an accuracy of 10~1°. For the cases of @ = 0.5 and
a = 2.0 taking thirty terms in the sum, gives an accuracy of 4 and 12 decimal places
respectively in P. The distribution of pressure impulse in the water beneath the
deck is shown for water depth to deck length ratios of 2.0, 1.0 and 0.5 in figures 3.6.
3.7 and 3.8 respectively. The values of the total impulse on the deck and on the wall

beneath each deck are given in each caption.

Figure 3.6: Pressure-impulse contours with a = 2.0. Total pressure impulse on the
deck and wall respectively are 0.81 and 1.12

lll,LJl 1 1

Figure 3.7: Pressure-impulse contours with @ = 1.0. Total pressure impulse on the
deck and wall respectively are 0.92 and 0.87.

In figures 3.6, 3.7. and 3.8 note the differing contour intervals, and the increasing

impulse on the deck as the water depth a is decreased. The value of total impulse

96



0.50
0.40

0.30
0.20

0.10

0.00
0.0

2.0

Figure 3.8: Pressure-impulse contours with a = 0.5. Total pressure impulsc on the
deck and wall respectively are 1.193 and 0.7.

on the deck is given as a function of a in figure 3.9. This trend is for the impulse
from impact of a given velocity and area to increase as the body of impacting water
becomes more confined. The same trend is described by Cooker and Peregrine
(1995) for impact on an interior wall of a rectangular box and by Topliss (1994)
for impact within a circular cylinder. Consideration of flow in the most confined
circumstances, as a becomes small, leads us to the ‘filling flows’ (Peregrine and
Kalliadasis, 1996). Further, an estimate of how the compressibility of dispersed air
bubbles, such as those entrained in waves during breaking, may soften wave impact

is given in Peregrine and Thais (1996).

The results are in dimensionless units, for practical use the dimensional pressure

impulse is needed; that is

P*(z*,y*) = p\'LP(Lx, Ly), (3.8)

where * denotes only some dimensional quantities. \Whilst p and L will generally be
known, 1" the vertical velocity of impact needs to be estimated. A simple method of
ostimating 17 is first to estimate how high a wave would be in the absence of the deck.
Suppose it would have a height AH above the deck level. In simple projection of a
particle this would require a velocity of /2¢gAH . This is a reasonable. somewhat
conservative, estimate for 17

It is useful to think of the same problem but fixing the depth of water at 1

97



Total pressure impulse
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colL . . . 0.0y

0.0 0.5 1.0 1.5 2.0 2.5
Depth of box.

Figure 3.9: Total impulse on deck against depth a.

and calculating quantities such as total impulse as we increase the length of the
deck. This is obtained by simply scaling the previous results. We present plots of
maximum pressure impulse (figure 3.10), total impulse on the left hand wall (figure
3.11), total moment on the left hand wall (figure 3.12) and total impulse on the deck
(figure 3.13).

First we consider figure 3.10. We note that increasing the length of the deck
increases the maximum pressure impulse. Similarly in examining figures 3.11 and
3.12, increasing the length of the the deck increases the total impulse and impulsive

moment along the left hand wall.

Note, the above solutions are not appropriate for impact from jets, e.g. sce
Cooker and Peregrine (1995), where the semi-infinite rectangular impact on a wall
is cquivalent to half of a plane jet and section 3.5 gives the solution for a circular jet.
However, the solutions can be used for waves which are not nearly level with the deck
as follows. By subtracting the appropriate constant from P. any of the contours
of P can be chosen as an alternative free surface. Although such a surface tends
downward rather than towards a horizontal level, this is not of great significance as

long as the shape reasonably close to the impact region is appropriate. See Cooker
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Figure 3.10: Maximum pressure impulse against length of deck.

Total impulse along left hand wall
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Figure 3.11: Total impulse on the wall due to impact of given length on the free-
surface.
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Figure 3.12: The impulsive moment on a wall as a function of impact length.
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Figure 3.13: The total impulse on the deck as a function of impact length.
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Figure 3.14: %g along the deck.

and Peregrine (1995) for some examples.

Clearly the results presented here can be used to estimate the impulse and the
spatial distribution of a wave impact. In addition, as shown by Cooker and Peregrine
(1992) it is possible to estimate the impulse on bodies (which are small compared
with the water depth) on and near the wave impact area. The impulse on the body
may be estimated from the local pressure-impulse gradient and a boundary-value
problem posed in the vicinity of the body. Figure 3.14 shows the local gradient
along the surface of the deck, and figures 3.15 and 3.16 show the gradient down the
wall and along the bed respectively for a selection of values of a. On the wall and
the bed the pressure gradient is tangential since dP/0n = 0. However, on the deck
where the impact occurs OP/0n # 0 so that there is also a component of impulse
perpendicular to the deck and downward. This could be particularly dangerous for a
fixture on the lower surface of the deck, for example a pipe. The upward impact on
the pipe due to direct impact from the wave is accompanied by a downward impulse
when the wave hits the deck above. The direction of pressure-impulse gradient can
be found from the contour diagrams since it is perpendicular to the contours in the

direction of decreasing pressure impulse.
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Figure 3.15: ?9—1; along the left hand wall.

P differentiated w.r.t. x along the bottom.
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Figure 3.16: g—’: along the bottom.
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Consideration of the gradient of pressure impulse near the edge of the deck shows
alarmingly high values because the mathematical solution has a singularity at the
edge of the deck. Clearly a better approximation is needed there. One simple way
of obtaining more realistic values is to consider how the solution is obtained for the
infinite-depth case, @ = co. There, the solution for the flow past a plate is used.
This solution is a limit of flow past an ellipse. Thus a somewhat better solution could
be obtained from the flow past a slender ellipse. In anv case, it seems reasonable to
conclude that attachments beneath a deck are vulnerable to especially large impact

forces if they are near the edge of the deck, or the edge of the impact zone.

3.8 Estimation of velocity of impact.

We note that throughout this account we have taken the vertical velocity of impact
to be uniform and of magnitude one. In this section we make a more realistic
approximation for the magnitude and distribution of the impact velocity and also
for the impact width. As a standing wave evolves in time a peak in the free surface
evolves. It is therefore a reasonable approximation to consider the evolution of a
standing wave, and estimate the pressure impulse involved in the impact of the
standing wave under a deck. We make an estimate of the vertical velocity of the
standing wave and the approximate width of the wave which undergoes impact with
the deck. So, we can then feed these parameters into the general impact on a
deck model to calculate the appropriate pressure impulse. We need the width and
velocity of the standing wave at still water level because, in the deck impact model,
we assume that impact occurs at water level.

Many studies have been carried out on the approximation of standing wave
profiles, for example Mercer and Roberts (1992, 1994) and Tsai and Jeng (1994).
From Mercer and Roberts (Private communication) we obtain a profile for a standing
wave on finite depth. The profile used in this section has initial acceleration -0.85.

depth 1.0, 64 surface points, period 7.275. and steepness 0.167. in units with g = 1.
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‘L'he initial wave profile and velocity profile are shown in figure 3.17.

.... ourtace profile j
— Velocity distribution .-~

| |
- O o
o o o
‘ T
@ IR RENTY FURRY VO

Figure 3.17: Initial surface and velocity profiles for a standing wave: depth 1.0,
Initial acc. -0.83, period 7.275, steepness 0.167.(NMercer and Roberts (Private com-
munication))

We then use a periodic version of a numerical boundary-integral method (de-
scribed very briefly here, see Dold (1992), Dold and Peregrine (1986), Cooker (1990)
for further details) to calculate the surface profiles and vertical velocity as the wave
evolves. Let (z,y) = (X(s,t),Y(s,t)) be a point on the free surface, where ¢
is time, and s is a time independent parameter. The fluid is incompressible and

irrotational so there is a velocity potential, ¢, which satisfies Laplace’s equation:
V¢ = 0. (3.9)
On the impermeable bed we require:

0¢
— = 3.10
on g ( )

where n is normal to the bed. We also need to impose the free surface kinematic

and dynamic boundary conditions:

X oY

o6 1[[(00\* (08
ot 2 [(5‘) * (ay>

We use a periodic version of the boundary integral method. which solves Laplace’s

and

+gY = 0. (3.12)

cquation subject to the above boundary conditions. but also keeps the flux of the

fluid going in and out of the fluid region as a constant.
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vve need to nnd the velocity distribution of the wave when the surface profile is

almost flat at water level. This is achieved at time 0.067 as shown in figure 3.18.

1.0F .

0.5 i— _5

o_of— T N e j
os :__ —~-" ... Surface profile ~T—= E
10k — Velocity distribution

0 2 4 6 8

Figure 3.18: Surface and velocity profiles for a standing wave at time t=0.067 :
depth 1.0, Initial acc. -0.85, period 7.275, steepness 0.167, evolved using a boundary
integral method program.

'The plot is obviously symmetric about 7 so we take this to be the position of
the wall, and take the length of the deck to be half the length of the ‘flat’ part of the
surface profile: 1.46. On examination of figure 3.18, we see that the velocity profile
is approximately sinusoidal over the region where the impact would occur. If we feed
in this velocity profile (V = 0.48 cos(1.15z) ), and the length of the deck into the
general deck impact program we can obtain the pressure impulse contours shown
in figure 3.19. The dashed line in figure 3.18 shows the cosine velocity distribution

used for figure 3.19.

1.0
0.8}
0.6}
0.4}

0.2

0.0L

Figure 3.19: Dimensional pressure-impulse /p contours for a deck of length 1.46.
and velocity profile from a standing wave.

Hence the contours plotted in figure 3.19 give more realistic pressure-impulse
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contours. Tt may be more appropriate to choose the contour of 0.02 as the free-

surface, hence we would subtract 0.02 from the pressure-impulse values in the figure.

3.9 Three-dimensional effects.

All the above work assumes uniformity perpendicular to the (z.y) plane. or some
rigid boundaries parallel to that plane. In practice this is unlikelv. and three-
dimensional effects may be important. That is the impact area on the deck, rather
than being a long strip of finite width L, should be taken as a finite area of an ap-
propriate shape. A simple approach to looking at a more three-dimensional solution
1s to examine infinite depth solutions. A solution for impact on an elliptic area can

be found from the potential low round an ellipsoid.

3.10 Impact of an elliptic plate on infinite depth
of water.

If we consider the impact of an elliptic plate on infinite depth of water, this is
equivalent to elliptic impact on a deck. Consider as in Lamb (1995, section 114) and
Milne-Thompson (1963, section 16.50) an ellipsoid given by equation (3.13), where
a, b and c are the lengths of the semi-axes. We take our length scale L to be semi

axis b, which we set to be 1.

IEQ 22
;1,—2+y2+E§:1 (313)

The velocity potential for the motion of a fluid at rest with a solid ellipsoid passing

through it with velocity U(= 1) in the x direction is given by

00 dA
¢ = C.I’/)\ @ (3.14)
where,
=3 fc(m (3.15)
and o, and A\ are given by:
Gy = (,(./:o T i/\A)_\.' (3.16)
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A= [(a2+/\)(1+)\)(c2+/\)]%. (3.17)

A is given by the positive root of the following cubic equation:

x2(1+)\)(c2+)\)+y2(c2+/\)(a2+)\)+z2(a2+)\)(1+)\) —(@®+2) (14X (c*+ ) =0,
(3.18)
where the positive root is taken, as then A\ = constant corresponds to ellipsoids.

NAG routine C02AEF was used to solve the cubic for ).

To obtain the velocity potential for an elliptic plate moving through the liquid
we need to take a — 0. However if we take a — 0 directly then the integral. ay.

becomes singular, so we begin by making a change of variables u = \ + a2 .

0o du

=Cxz / 3.19
¢ A+a? u%(u—i—l—a?)%(u—}—cz—a?)% ( )
We denote the integral (or ¢/Cxz) as J. Hence,
0 d(1/uz
J=-2 (1/u?) . (3.20)
Ma? (u+1—a?)?(u+c?—a?)2
Integration by parts gives:
J= 2 i (3.21)
[(A+a?2)(A+ 1) (A +c?))?
o -] 1 1
+ du.
2 Ma? y3 [2(u +1-a?)i(u+c—a?)?r  2u+1-a2)2(u+c—a?)?
With some rearrangement and taking A — 0 we have:
2 o0 2u + 1+ ¢? — 2a?
Jn=0==-[ " ; s du. (3.22)
ac o> u(u+1—a?)z(u+c?—a?)2
From equation (3.16) and (3.22), we get an expression for oy as a = 0:
00 2u+1+c?
oy =2—a c/ : u+3+c zdu| + O(a®). (3.23)
0 wu2(u+1)2(u+c?)?
Hence C' is given by:
2
2u+1l+c (3.24)

C:]_ > 7 3 3du,
//0 u?(u+1)2(u+c?)?2
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WHEL @ = V. >0, trom equations (3.14) and (3.24), with a = 0 in equation (3.14).
we can find values for ¢ for an elliptic plate moving with velocity 1 in a stationary
liquid. ¢ satisfies the same conditions we require P to satisfv. Hence we can get
plots for the pressure impulse for an elliptic plate dropping onto an infinite body of
liquid. Integration is carried out using NAG routine DO1AMF. Figure 3.20 shows
the pressure-impulse contours when ¢ = 100.0. Here the ellipse is so long that it is

the same as the infinite depth solution shown in figure 3.2. Figure 3.21 shows the

llﬁj1ll||

Figure 3.20: Pressure impulse for impact of an elliptic plate on an infinite body of
water. ¢ = 100.0 and z = 0. Maximum P is 0.99973.
pressure-impulse distribution below a circular plate of radius 1. Figures 3.22 and
3.23 show two more examples of elliptic plate impact. Figure 3.24 shows a plot of
pressure impulse down the line from the centre of the ellipse perpendicular to the
plate.

Near the plate the pressure impulse is at its largest for the larger values of c.

The larger the value of ¢ the deeper the impact penetrates the liquid.

Care must be taken in evaluating pressure impulse on the plate itself. In par-

ticular in evaluating the integral (3.19). From equation (3.18), we obtain on the

plate:
a?+ A= ad . (3.25)




Figure 3.21: Pressure impulse for impact of a circular plate on an infinite body of
water. ¢=1.0 and z =0. Maximum P is 0.63662.
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Figure 3.22: Pressure impulse for impact of an elliptic plate on an infinite body of
water. ¢ = 2.0 and y = 0. Maximum P is 0.82573.
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Figure 3.23: Pressure impulse for impact of an elliptic plate on an infinite body of
water. ¢ = 2.0 and z = 0. Maximum P is 0.82573.

Figure 3.24: Pressure impulse for impact of an elliptic plate. Plots are down the
line from the centre of the ellipse, perpendicular to the plate.
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vve alsO note that:

du 2

3 ™~

u? 3uz’
near the origin. Hence the integral in equation (3.19) is dominated by 2/[3c(a2 +

(3.26)

1 .
A)z],as a — 0, which equals: 2(1—y%>—22/c?)%/cz. Hence the z in equation (3.19)
cancels with the = from the approximation of the integral, and we can evaluate P

on the plate using:
20(1 — 3% — 22/c?)3
c

where C' is still given by equation (3.24). Figure 3.25 shows a plot of pressure-

P =

, (3.27)

impulse contours on the plate for an elliptic plate, ¢ = 2. We note that the total
impulse is given by 47C/3. Note the closeness of the contours towards the edge
of the plate. This high pressure-impulse gradient again indicates that attachments
at the edges of the impact region, i.e. the edges of the ellipse, would be subject to

alarmingly high velocity components. Finally, we examine how C varies with 1/c,

Figure 3.25: Pressure impulse for impact of an elliptic plate, ¢ = 2, with contours
on the plate.

which is plotted in figure 3.26. We see that as 1 /c increases C increases linearly.
If we look at figure 3.27 which is a plot of Cc, we see that C divided by the aspect
ratio of the ellipse tends to 0.5 as 1/c becomes very large. The significance of this

s unclear. This is what we would expect from the infinite depth solution.
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Figure 3.26: C against 1/c, for impact of an elliptic patch.
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o.11 1vietnod of solution.

Whilst the method used in this thesis for this problem is complex maps and Fourier
series there are many other methods which could have been used. Other methods
include: 1) Boundary-integral method and 2) Finite element or differences. Both
of these methods would work well for the problems in both this and the previous
chapter. Both methods are more easily adapted to different geometries than the
method in this chapter. The second method would be more appropriate for ex-
tensions to three-dimensional models. However for both of these methods rather
complex computations are required. The advantage of the methods used in this and
the preceding chapter is the very simple formulae which arise. In addition as we
are only evaluating a Fourier series each time, most of the problems take very short

periods of time on a computer to evaluate.

3.12 Conclusions.

A readily evaluated 2D solution is presented for the pressure impulse from waves
hitting a deck from below. It is found that, for a fixed impact velocity, the impulse
is greater if the water is shallower. The same results may be useful for estimating

the effects of upward impact by liquid confined within a container.

If we consider the problem in terms of keeping the depth of water constant and
varying the length of deck we find that the maximum pressure impulse, the total
impulse, total moment along the left hand wall, and the total impulse along the
deck all increase, as we would expect, with increase of the length of deck.

It is also important to notice that there is a downward impulse away from the
deck, hence anything attached beneath it, such as a pipe, experiences a downwards
force which may be substantial enough to pull it awav from the main deck.

A three-dimensional solution for impact on an elliptic deck is also given. Again
there is a high pressure-impulse gradient at the edge of a deck. Physically a splash

mayv occur at the edge of the plate.
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Chapter 4

Impinging jets.

4.1 Introduction.

A wave begins to break when the wave crest begins to overturn. However, the specific
way a wave breaks can vary greatly from one wave to the next. Classification of
waves 1s largely dependent on the form of the front of the wave. Peregrine (1991)
gave a review of wave breaking, and described these classifications. Breaking waves
can be grouped into two categories: plunging and spilling breakers. When a wave
begins to break a well-defined jet of water may plunge forward from the front of the
wave (a plunging breaker), or alternatively the water at the top of the wave crest
may come ‘spilling’ down the front of the wave (a spilling breaker). Of course in
practice it is not so easy to classify waves into clearly defined categories, as often
the waves are somewhere in between these two categories. In addition, if the wave
is breaking on a beach, instead of just the crest of the wave being involved in the
breaking process, it may be that a high proportion of the wave front collapses leading
to another category of ‘collapsing’ or ‘surging’ breakers.

In this chapter we look in particular at the case of a plunging breaker. In the
case of a well developed plunging breaker a well developed jet of water is projected
from the front of the wave. Manyv studies have been carried out to examine the
plunging breaker motion. However, even in the cases where the model 1s capable of
computing the evolution of the jet. the modelling terminates once the jet impacts

on the undisturbed water in front of the wave. When the jet impacts on the surface
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@ splasit occurs, ana 1v 18 tnis ‘splashing’ that we attempt to model later in this
chapter. The jet impacting on the undisturbed surface is similar to a jet impacting
on an infinitely wide jet. To make a start we investigate steady flow problems. For
a thin jet there may be value in this since jet properties may change little while a
water particle passes into the splash. Two methods are examined. First we model
two finite jets impacting, and taking the limit as one jet becomes infinitely wide (an
extension of a model described in Milne-Thompson (1962) ). Secondly we assume

that one jet is infinitely thick from the start of the calculation.

4.2 Evolution of the jet from a plunging breaker.

It is difficult to compute wave breaking. The first numerical models of the evolution
of a plunging wave broke down when the wave began to overturn. Longuet-Higgins
and Cokelet (1976) was the first numerical study which could accurately continue
the calculation even after the wave had begun to break. They used a boundary-
integral technique to compute breaking waves in deep water which nicely showed
the formation of the jet during the plunging motion. However, once the curvature of
the wave near the jet tip becomes too high the model of the jet is no longer reliable.
That paper looked largely at the surface profile of the wave, however, Cokelet (1979)
extended the method and reported the fluid velocities and accelerations below the
surface. These values were calculated using Cauchy’s theorem which meant only the
values at the free surface needed to be known. This method was used by Peregrine,
Cokelet and Mclver (1980), to look again at the velocities and accelerations below
the wave. They identified a region of high particle acceleration at the front of the
wave, and a region of low acceleration at the rear of the wave. It was suggested that
this area of low acceleration gave support to the high pressure gradients at the front

of the wave which were required to accelerate the fluid particles into the jet.

Peregrine (1983) gave a review of wave breaking which in particular described

the background to classification of waves, their instabilities, the mechanism of over-
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turning and the evolution of a plunging breaker. He also gave some description
(and photographs) of what occurs when the jet of water from the plunging breaker

impacts on the free surface in front of the wave. (see later)

New, Mclver and Peregrine (1985) extended the work of Longuet-Higgins and
Cokelet (1976) to account for finite uniform depth. This was done by adjusting the
Green’s function in the boundary-integral method to plot breaking waves on a finite
depth of water. This study included a look at the projection of a small-scale jet at
the wave crest, and presents calculations of the evolution of the jet up to the time
the jet almost reaches the water surface again.

As an alternative to these numerical methods more analytical methods were also
developed. Longuet-Higgins (1982) looked in particular at the forward face of the
wave. He did this by examining a series of time-dependent flows given in parametric
form. In particular he examined the flow of a decelerating liquid flowing upwards
with a surface of zero pressure above it. This particular flow could be solved using
these parametric methods, and was found to be part of a family of complementary
solutions. One of this family of curves was found to have many similarities to the
flow at the forward face of a plunging breaker. The paper also included some good
photographs of plunging jets impacting on water.

New (1983) examined the profile of a wave with a plunging jet in front, concen-
trating on the loop below the jet. By noticing that the shape below the jet was
often an ellipse he obtained some exact solutions for the free-surface under the jet.
In particular these solutions continued to give reasonable approximations to ‘real
life’ even after the jet had hit the free surface in front. However, no model of the
actual impact of the jet was put forward.

New’s solution was for the loop under the jet, whereas Longuet-Higgins’ model
was for the forward face of the plunging wave. Greenhow (1983) noted that they
were both in fact complementary solutions of the same equation. By examining this

equation further he combined and extended the two solutions to give an approximate
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solution which predicts the profile of the forward face. loop and rear of the wave all

in one model.

Another approach was to look at the vortex motion which occurs during wave
breaking. Basco (1985) has both descriptions and some photographs of the jots
from the plunging breakers impacting on water and concentrated on the vortex
motion involved in the splash process. He commented that there are two vortex
motions, one caused by the jet ‘splashing up’ and another surface vortex (a similar
mechanism to that involved in a hydraulic jump). A similar approach was taken in
Tallent, Yamashita, & Tsuchiya (1990), where the importance of the vortex motion
in the impact of the jet of water from a plunging breaker was investigated. He
comments that when the jet first impacts down, the high acceleration of the fluid.
which accelerates the fluid particles towards the wave crest. causes the liquid in the
jet to be swept towards the wave crest. However, as the wave continues to propagate
a ‘splash-up’ occurs. Tallent, Yamashita, & Tsuchiva (1990) note that the splash
up occurs in almost the vertical direction with a slight tendency to splash backwards
on to the incoming plunging jet.

Dommermuth, Yue, Lin, Rapp, Chan and Melville (1988) also developed a model
by using potential flow theory for steep gravity waves. Their model, which used a
mixed Eulerian-Lagrangian method, gave good predictions of plunging wave profiles
which compared well with experiment.

Peregrine (1991) gave a general discussion of the position of breaking wave re-
search. He summarized the current thinking on the mechanism behind breaking
waves and their instabilities.

A recent study, Jenkins (1994), uses a reference frame moving with the wave crest
to represent the flow in a breaking-wave crest by a complex velocity potential on a
Riemann surface. The interaction of the jet with the rest of the fluid is neglected.
A conformal transformation is used and the Bernouilli condition is forced to hold

on the boundary, and the resulting equations are solved numerically. Plots of jets
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from the breaking wave crests are shown, falling past the free surface on a different
sheet of the Riemann surface. In this chapter we similarly choose a reference frame
moving with the impact, and seek a steady solution. We also use one of the plots in

Jenkins (1994) to obtain a feasible breaking wave jet angle to feed into our model.

4.3 Jets and splashes.

We now look at the plunging wave jet impacting on a bodyv of water as an extreme
case of two impinging jets. In the 18th and 19th centurv Borda, Helmholz and
Kirchoftf all examined flows of jets, in particular the flow of a jet from an orifice. The
use of complex analysis to study these types of free-streamline flows was developed.
Milne-Thompson (1962) used these methods, which we will extend, in his discussion
of two jets impacting. This model is also given in Gurevich (1965), which also refers
back to many old sources, including Zhukovskii (1890), Voight (1886) and Cisotti
(1921). An important assumption is that we have steadv flow and hence a stagnation
point. Milne-Thompson’s conclusion is that if we just state the width and angle of
the incoming jets, in general, a unique solution is not possible. However, in the casc
of symmetric jets, or where another piece of information is given, the solution may

be forced to be unique.

More recently the importance of studying jet impact to aid understanding of
wave breaking has been recognized. Peregrine (1983) described how when a plung-
ing breaker impacts on water a ‘splash-up’ occurs. He included some photographs
showing the occurrence of the splash. He asked where does the water in the splash-up
comes from? Among other possibilities he concluded that the splash-up. or outgoing
jet. may consist partly of water from the incoming jet and partly of the fluid from
the undisturbed water. He noted that this process of splashing can be repeated
soveral times. where the outgoing jet (or splash) next hecomes the incoming jet and
the splashing continues in a cvcle. However, other effects become important soon

after impact. such as air. surface tension. drops. bubbles and vorticity. Basco (1985)
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mentioned this splash up, and discussed the vortex which is produced beneath the
jet. Peregrine (1981) carried out analvsis for a 'splash’ on very shallow water. Using
the Bernoulli equation, and conservation of mass and momentum a simple model

for the ‘splash’ was found.

Impact of jets was further investigated by Keller (1990) and Frankel and Weihs
(1990). Keller extended Milne-Thompson’s theory by introducing a parameter for
the lateral offset positions of the two jets in the far-field. Providing this piece of
information is enough to provide a unique solution to the problem. Keller showed
many plots of jets impacting. Frankel and Weiss looked at glancing impact of two
jets. They considered a change in reference frame for the glancing impact case which
then allowed them to consider the impact as impinging jets. Thev too extended
Milne-Thompson’s method, but as they assume that one jet is infinite in depth thev
do not require Keller’s fourth condition. Hence, a solution to the impinging jct
problem where one jet is infinite is given, however it is an asvmptotic solution. and
is only used as a way to examine glancing impact and it not investigated further.

Work on splashes in general is very closely linked with the impact of the plunging
breaker. Dias and Christodoulides (1991) examined a two-dimensional jet emerging
from a nozzle using the Bernoulli equation and complex analysis. In particular they
examined the case of the bow splash which was found to involve similar mathematics.
Here the water on the bow of a ship splashes back on itself, however the calculation
stops when the jet impacts on the water, unless it is taken to be on another Riemann

surface.

4.4 Milne-Thompson model.
4.4.1 General model.

C'onsider a plunging breaker. where the jet is well developed. Eventually the jet will
impact with the undisturbed water in front of the wave. Figure 4.1 shows a sketch

of a possible plunging breaker with a well developed jet impacting on undisturbed
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water In front of the wave. The dotted lines shows where the splash up” may occur.

Figure 4.1: Plunging breaker with a well developed jet impacting on undisturbed
water in front of the wave. The dotted lines shows where the ‘splash up’ mav occur.

Where the jet from the breaker impacts on the undisturbed water it is verv
similar to a jet of water impacting on an infinitelv thick jet of water. We choose
a reference frame moving with the impact. Milne-Thompson (1962) examined the
case of two finite impinging jets. We follow this analysis at first and extend it by
looking at what occurs if one of the jets is infinitely thick. We aim to consider two
impinging jets which undergo steady motion, as shown in figure 4.2. We note that
this model is the simplest possible where we ignore any vortex sheets which arc
generated and assume steady motion. We assume inviscid, two-dimensional motion

and that the splash is so quick we can neglect gravity.

On a free streamline v (the streamfunction). speed, and pressure are constants.
If at co one of the incoming jets has speed U, then as the edges of the jets are free
streamlines, and so have constant speed, all four jets must have speed [ at .
Without loss of generalitv U can be chosen to be 1. The four jets are assumed to
undergo steady motion, and hence where the jets mect a stagnation point is likely
(and is assumed) to exist, and continucs to exist throughout the motion. The origin
is taken to be at the stagnation point. Axes are as shown in figure 4.2. The two

incoming jets are of width /p and /1, and the two outgoing jets are of width &
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Figure 4.2: Two finite impinging jets undergoing steady motion

and k,. Values of h;, hy, and the angle at which the jet of width h, impinges,
are assumed to be given. Note that the angles are defined to be between —7 and
7, this is because it it easier to envisage angles of impact which are less than 7 in
magnitude.

Next, let us consider a jet of width A. In time ¢, th