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~--\ bstract 

This thesis looks at two types of problem. The first is that of pressure-inlpulse 
Inodelling of wave impact on structures, following on fronl "'ork carried out by 
Cooker and Peregrine (1990 a.b, 1992, 199,")). The second is that of the impact of a 
jet from a plunging breaker on the undisturbed water in front (if the waye. 

Chapter 1 is a brief summary of the work which will follow. Each chapter has a 
separate literature review. 

Chapter 2 looks at many impact problems using prf'sSUre-ilnpulse theory. ~Iodels 
of wave impact on a vertical wall and cylinder are developed in particular looking 
at more three-dimensional theoretical models than han' been prpyiousl~' exalnined. 
This work is of importance for the design of coastal structures, especiall~' break­
waters. The effect of having a porous berm in front of the wall and of hasing an 
air pocket trapped at the wall are examined. Experimental data from Hattori and 
Arami (1992 and private communication) and experiments in Edinburgh (Oulneraci. 
Bruce, Klammer and Easson (1995) and Oumeraci, Partenscky, Klammer and Ko­
rtenhaus (1997) and private communication) are used for comparison. 

Chapter 3 examines a wave impacting upwards on a deck jutting out frmIl a 
wall. Pressure-impulse theory is again used, and the effect of depth of water at the 
wall and length of deck are examined. The ilnplications for the design of coastal 
structures and off-shore platforms are discussed. 

Chapter 4 looks at what happens when a plunging waye jet ilnpacts on the water 
in front of itself. The inlpact is considered as the iIllpad of two jets, one of which 
is infinite in width. Two methods are put forward, the first of which is an extension 
of a solution presented in Milne-Thmnpson (1962) which looks at the inlpact of two 
finite jets, and we take the limit as one jet becomes infinite (a silnilar study is carried 
out in Frankel and Weihs (1990)). The second lIlethod produces an exact solution 
using complex analysis. 

Finally, the last chapter draws conclusions from the work in the preceding chap­
ters, and Inakes smne suggestions for future areas of work. 
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Chapter 1 

Introduction 

This thesis examines two types of water wave impact. The first is that of a \\'ater 

wave impacting on a rigid structure such as a spa wall, oil-rig leg or pier, and the 

second the impact of a plunging breaker on the undisturbed water in front of itself. 

The work is divided into three chapters: ycrtical structure impact. illlpact under a 

deck, and jet impact. Each chapter has a separatp literature review, but we begin 

with a brief summary of what will be covered in each chapter and SOllIe Illotivation 

for carrying out this work. In all the problems we discuss in this thesis we aSSlUIle 

that the fluid is inviscid, incompressible and that the motion is irrotational. All the 

plots shown in this thesis are for non-dimensional quantities, px('ppt where units arc 

given for the quantities plotted. 

1.1 Impacts on vertical structures. 

Research into wave impact on a vertical wall is of particular importance for the d('sign 

of sea walls and breakwaters. A wave which is breaking or near breaking when it 

hits a structure can cause large peaks in pressure. These pressures, though often of 

n'l'Y short duration (lms in the laboratory, lO-50IllS in prot()t~'IW), are sOllwtilll('S 

substantial enough to shift, or blow holes in, a coastal structure. Hellce, st rllctures 

such as a bn'akwater are built to reduce these iIllpad prpSSllres as llluch as possible. 

Bn'akwatel's COllle in nlan~' forms, shapes and sizes: rubble Illonnd, Y('rtical wall, 

l'ubbl(' lllound and \'('l'tical wall, with perforations. without perforations. r('cl allgular 
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caIssons, cylindrical caissons. and many other yariations on these. The choice of 

which type of breakwater is most suitable is complex. and depends on Inany factors 

such as position, tidal range. depth of water. ayailabilit\, of materials. and of course 

financial restrictions. In this thesis we consider primarily the yertical wall structure, 

and briefly that of a vertical wall with a berm. A. good sumIllary of the design of 

breakwaters, and how this has changed over the ~'('ars is giYen in Takahashi (1996). 

Experimental work on impacts on structures has concentrated on the Ineasure­

ment of the evolution in time of the pressures on the structure. If we consider a 

given wave impacting on a given structure and measure the pressures associated 

with this particular impact, then the pressures measured from one waye to the next, 

even with all the wave conditions remaining apparentl~' the saIne. lllay \';:ll'~' quite 

substantially. This makes analysis and prediction of quantities such as IllaxinnlIll 

pressure and the pressure distribution on the structure difficult. Howc\'er, Bagnold 

(1939) noted that if we instead consider the integral of pressure with resped to tiIllP, 

over the impact duration, this is a Illuch more repeatable quantity. The integral of 

pressure with respect to time over the impact is the quantity pressure impulse, P. 

Hence, we choose in chapters 2 and 3 to concentrate on the calculation of pressure 

impulse. A full description of this method, and the aSSllInptions used is giYen in 

chapter 2. 

Cooker and Peregrine (1990 b, 1992) used pressure-im pulse theory to develop a 

model for the pressure impulse caused by a wan' impacting on a vertical wall. In 

chapter :2 we re-examine and extend this model. The Cooker and Peregrine Ino<iel 

considers the impact to be the uppermost part of the water adjacent to the wall at 

iInpact, but with the same speed of impact occurring at eyery position alon~ the 

wall. i.e. the model is two-dinlensional. In both experimental alld field work of Wa\'P 

illlpad.s, but probabl~' more noticeabl~' in field studies. it is dear that thf' wan' llla~' 

only iInpad on a s('dion along the wall. Hence. the assuIllptioIl of two-<iiIllPllsiollal 

lwha\'iour IlWy often llot be reasonable, \ Ye begin by looking at iInpact OIl a fillit (~ 

patch of a wall, aIld lat ('r ('xtend this to iIllpart 011 a s(,llli-illfillitp patch of ;\ wall, 



This is of particular value for engineers examining the 'spread' of ilnpact of a wa\'(~. If 

the wave impacts on only the middle portion of a wall it is obyiousb" not reasonable 

to assume that the pressure impulse has the same distribution down the wall at 

every position along the wall. However, if the wm"C' impacts over a large region 

across the wall, it may be reasonable to assume that the impact is two-dinle11sional 

towards the centre of the impact region, and we inypstigate when we can make this 

assumption. 

One method of reducing the loads on a vertical wall breakwater structure is to put 

a rubble mound/berm in front of it. This can affect the wave reflection and breaking 

wave force on the vertical wall. We examine the effect of changes in porosit~" of a 

rubble berm, on the pressure impulse in the water and on the structure. \\"(, find 

that even varying the porosity quite considerabl)T onl~" changes the pressure inlpulse 

in the liquid by at most 20 %. In this case, those models \vhich have an impenneable 

bed can be used to approximately predict pressure impulse for structures even with 

a permeable berm. 

When a plunging breaker impacts on a vertical wall it often traps an air pocket. 

This air pocket can take the form of a large trapped bubble. The bubble first 

contracts in size and then expands. Hence at the surface of the bubble at iln­

pact the velocity of the body of water reverses in sign. This is as if the bubble 

'bounces' back. We make a simple model of this 'bounce-back' effect, and conlpare 

with experimental results from Hattori and Arami, and also PIV (Particle Inlage 

Velocimetry) experiments carried out at Edinburgh Universitv. This model can be 

used to predict pressure impulse down the wall and along the berm. The procedure 

for (,Olllparison wit h experimental data is far from straight forward and is discussed 

in this chapter. This lnodel assumes an impernleable berIn, but as st a ted earlier 

tIl(' penneability does not hay(' a great effect on t he pressure ilnpulse. so this lllOdel 

('()uld be used en'11 for experiments wit h a permeable berIn. Little research has lw('n 

done to IIlOdel tIl(' ('H'cd of ilupad with a trapped air bubble. wit h the ('xceptiolls uf 

I3agllold (1939). OUllH'raci and Part<'llsky (1991) and Topliss (199--1). The IHodel ill 
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this chapter, though very crude, goes some way to predict the pressure inlpubc dis­

tribution, usually to within 40 %, with more accurate prediction of the total irnpub(' 

on the wall. 

The second shape of structure we consider is that of a y('rtical cylinder. Thi~ is 

of particular importance when considering impact on an oil-rig leg or the circular 

head of a breakwater. We carry out the anal~'sis using pressure-impulse theory (as 

with the vertical wall) but this time using c~'lindrical co-ordinates. \Yhen a waye 

impacts on a cylindrical structure the impact region is usuall~r above the main body 

of the water. However, we consider firstly a wave impacting on a patch, below water 

level, on a cylinder and secondly of a wedge of water impacting on a ('~'linder. \ y(' 

discuss how this model can be simply adapted to allow for a rnore realistic frep­

surface. It is found, that the convex shape of the cylinder reduces the pressure 

impulse quite considerably compared with a fiat shape. This rnodel is sufficient to 

make a preliminary analysis of the effect of haying a three-dimensional irnpact, but 

more realistic/complex model geometries were not considered due to shortage of 

time. 

It should be noted that for many of the situations considered in this chapter and 

the next there are few previous theoretical fornlulae for prediction of the pressure 

iInpulse, hence even if these models give predictions within 50% of measurement. 

it is an improvement and useful for engineers. 

1.2 Impact under a deck. 

If w(' consider an oil-rig or a pier then it is not only the irnpact of the wan's on 

the Y('rtical supports or legs of the structure which can cause darnage. \ 'iolent 

way(' Inotion can occur when the wayp impacts upwards on a horizontal or sloping 

surface, such as the walkwa~' of a pier or platform of all oil-rig. Oftpn the saf(\st 

wa~' of designing an oil-rig is to build the platfonn part of t he rig so far alIt of t h( \ 

l"(\i\Ch of predirt(\d yioh'nt way(\s that w(' can be SlUT no or little damagp will OCCllr. 



However. every extra centimetre which is added on to the height of a rig C()~ts large 

amounts of money. Estimates of the magnitudes of pressures which occur when a 

wave impacts a horizontal surface can lead not only to increased safet~· but abo to 

decreased building and maintenance costs of a rig. 

Impact of waves on a horizontal surface is yer~' closely linked to that of ~hip­

slamming problems. The early work by Von Karman (1929) and ""agner (193:2) 

focused on predicting the stresses involved when a seaplane lands on water. Since 

then much work has been carried out on the ship-slamming problem. and a full 

review is given in chapter 3. 

In this chapter we discuss a flat deck, jutting out horizontall~' from a walL which 

is very close to the water level. We set up this problenl in a siIllilar Illanller to 

problems discussed in chapter 2, and solve using pressure-iIIlpu!sP t heOl'~', \ Ye begin 

by making some simplifications specific to this problem: that t he deck is horizont aI, 

the wall is vertical, and we have a horizontal bed. \Ye also aSSUIIle that the water 

surface is flat and level with the deck (though this can be adapted and is discussed 

further in chapter 3). 

Firstly we consider the two extreme cases of infinite depth of water and infinite 

length of deck. The first case is solved by considering the velocity potential of a plate 

rIloving in stationary liquid, and making a change of reference frame. The \"elocity 

potential for this fluid flow satisfies the same conditions as \\'(~ require pressure 

iUlpulse to satisfy. The infinite deck case can be written down b~' solving Laplac("s 

equation in the fluid just under the deck. 

The Illost general case is that of finite depth of water at the wall. At the posi t ion 

where the deck meets the free surface we find that there is a square root singulari t,'" 

in P. and hence singular fluid \"plocit~· components. Gnfortunatd~' this Illeans that 

m;lll\" of the usual solution lnethods are unsuitable so instead w(' llS(' a series of 

confonn;\l lnaps to Illap the probleIIl to a plane where the singularit~· is IlO lOIlg<'l' 

preS('llt, \ Ye can theIl llse standard solution lllethods in this plalH' and t lWIl IIlap back 



to the original plane. \Ye obtain an explicit Fourier series sulution to this problem. 

which can be used to predict the spatial distribution of the pressure inlpulse below 

the deck. In particular we note that the shallower the depth of water. the Inore 

confined the motion and hence the the more violent t he impact. 

This chapter is concluded with a brief analysis of the impact of an elliptic shape 

on a deck above an infinite depth of water. This is an estilnation of a t luee­

dimensional impact. 

Throughout chapters 2 and 3 the main method of solution is ,,'ith Fourier se­

ries. This method has the huge advantage that t he solutions are quick and cas\' to 

evaluate. 

1.3 Wave breaking and impinging Jets. 

If we were to spend some time watching Wa\'cs cOIning in and breaking on Cl beach. 

over rocks or near a structure, we would n'r~' quickl~r notice that each waye breaks in 

a slightly different manner. Some wan's appear to ahnost 'topple over' spilling watcr 

down the front of the wave, others break b~' forming a wcll developed jet frOIn the 

top of the wave, and others are somewhere in betwcCll. In chapter --1 we consider a 

'plunging' breaker where a jet at the top of the waye is wdl deyploped and 'plungcs' 

down to irnpact on the undisturbed water in front of the W(1\'e. Chapter·1 begins 

with a literature review of general wave breaking, and in particular the research 

which has been carried out on the ('\'olution of t he jet from a plunging breaker. 

\Vhen the jet impacts on the pr('yiousl~' undisturbed water in front of the wayc Cl 

'splash' occurs, and it is this splash which chapter 4 seeks to rHodel. The undisturbed 

water can be considered as an infinitel~' deep jet into which the plunging jt't inlpacts. 

:\n ilnportallt assllrnption (discussed later) is that wc consider the fiow to be ahnost 

st ('(\( l~'. \ Ye begin by Inodelling this ilnpact b~' extending a nlodel gi\"ell ill ~IiIIl('­

ThOlllpson (196:2), for illlpad of t,,'o jets of finite width. This lllociel is als() gi\"(,ll ill 

(;lllT\"ich (1965), which also rpfers back to luall\" old S()UITPS. induding Zhuko\"skii 



(1890), Voight (1886) and Cisotti (1921). We take the limit as one of the jets 

becomes infinitely wide, and find formulae for the free-streamlines of the flow. This 

model was found to be incomplete as to simplify the mathematics it is necessary to 

feed into the model the outgoing angle of the jet as it splashes up, as well as the 

ingoing angle and width of the plunging breaker jet. 

We then consider a second solution model, this time where the previously undis­

turbed water jet is taken to be infinitely deep from the start of the analysis. \Ye use 

two complex maps, to map the flow to a plane where the flow can be represented by 

a complex potential made up of a source, sink and uniform flow at infinity. Hence if 

we know the angle and thickness of both incoming jets we can predict the angle and 

thickness of the outgoing jets, and the free-streamlines associated with this flow. 

Some examples of free-streamline plots are given. 
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Chapter 2 

Impacts on vertical structures 

2.1 Background. 

Much research has been carried out on the impact of wan's on structures. The 

search for improvement in the design of coastal structures such as breakwaters and 

seawalls has often been the driving force for research in this area. 

In the late 1800's and early 1900's rnuch research on impacts was carried out 

by observational study. Stevenson (1864) made a detailed study of the design of 

harbours and included surveys of wave impact on structures. ?\Iolitor (1935) uses 

the results of some observational studies to provide formulae to calculate total W(1ve 

force on a structure. These measurements were inlportant for general conclusions 

abou t wave breaking, however, they were inaccurate because electrical recording was 

not available, hence the rapid changes in the pressure and the peak pressures could 

not be resolved. 

Following on from these papers further experimental and observational studies 

increased the knowledge of pressures occurring during irnpact. If a breaking or near­

breaking wave hits a structure a high pressure peak in the pressure-tinle plot occurs. 

This large pressure is of short duration and throughout this stud~' will be called t 11<' 

irnp;l("t pressure. Bagnold (1939) rnade a stud~' of the ir11pact pressures which OCCllr 

when (\ way(' hits a wall. In particular he noted t hat for llOIninall~' fixed wan' 

cOllditions the pr<'SSUr<'s occurring vary frOl11 one wan' to the llext. but ('xClrnillati(111 



of the integral of pressure, with respect to time, over the short duratioll of irllpact 

gives more repeatable results. The integral of pressure over the irnpact tirne i~ called 

the pressure impulse, and is a much more repeatable quantity from wave to wave 

than the pressures themselves. Bagnold noted the important role of the air pocket 

which sometimes occurs between the wave and structure. He d('y<'!oped a theory 

for the prediction of the maximum pressures occurring, by using a model ,,"here the 

water impacting on a structure is regarded as a piston which compresses a layer of 

trapped air. Denny (1951) carried out further impact experirnents (using Bagnold\ 

equipment) which gave more support to Bagnold's model. 

Hayashi and Hattori (1958) also investigated the wan) pressures of a breaker 

impacting on a vertical wall, both theoreticall~o and experimentall~o. The~o C0111-

mented, as Bagnold did, that the initial impact pressures Val'~O frOIn one wan-) to the 

next, even with nominally fixed wave conditions, but also noted that the rnaxinlurn 

pressure over the rest of the wave period (i.e. the rnaximum pressure o,oel" the inl­

pact, excluding the initial impact pressure peak) was much easier to predict. HCllce 

no theoretical prediction of impact pressures could be made but instead predictive 

methods for maximum pressure, excluding the irnpact pressure w('re put forward. 

One of the earlier studies of breaking wan)s on composite type breakwaters (a 

vertical wall with a rubble lnound in front) was Nagai (1960). Formulae were devel­

oped to predict both the maxinlum impact pressures and the rnaximurn resultallt 

pressure per unit length, for use in the design of breakwaters. The fonnulae we1"C 

established by looking at the momentum per unit area of a breaking ",ayc to gi,O(, 

pressure impulse. A sampling rate of 500Hz for the pressures and high speed video 

(3000 frames per second) meant the rneasurements were reasonably good at pick­

ing up the ilnpact pressures. For waY('s which are breaking the ernpirical fonnulae 

d<'ri'O(\d are rnuch better at predicting the peak pressures and irnpad duration than 

Bagnold's piston rnodd. 

H.ich('rt (1968) looked furtlwr at the trapped aIr cushion. He notf'd that thp 



maximum pressures always occur below still water leyel and that the irllpact prf'~­

sures never decrease to zero at the bottom. Howpn'r. this ~tud~' only looked at 

breaking waves preceded by non-breaking waves, hence the irnpact pressure~ pro­

duced are higher than if continual breaking wayes were used. This i~ becall~{, if 

continual breaking waves are used the residual spra~' and bubbl('s frorn the preyiOll~ 

breaking wave softens the impact. :\Ian~' of the theoretical studies of wa\'e irllpacts 

at this stage were adaptations of Bagnold's air pocket model. Howen'r. "Teggel 

and Maxwell (1970) developed a numerical model for wan' preSSllre distributions 

for impacts of waves on a wall. They used an approximation to Euler's equation, 

the continuity equation, and the equation of state, to sho'w that the pressure satis­

fies the wave equation. They solved this numerically, subject to artificial boundary 

conditions, to give a model which compared favourabl~' with experirnental results. 

Accurate field data for impacts on coastal structures is rnore difficul t to obtain 

than laboratory data. In addition to the work carried out b~' Stpycnson (rllentioned 

earlier), Hiroi (1920) and Sainfiou (1928) made meaSUrPllH'nts in the field. Hiroi and 

Sainfiou each produced formulae for the prediction of wan) pressures for breaking and 

non-breaking waves respectively. However, these studies were so earl~T in research 

history that the equipment used means the data can not be used for accurate data 

comparison. More recently Blackmore and Hewson (198~) carried out a scrips of 

studies of wave impacts on sea walls in the South and \Vest of England. Using 

rnodern measuring and recording techniques, waye impact pressures were considered 

and an expression to estimate these, related to the percentage of air entrainment, 

was obtained. In addition an ongoing i\IAST 3 project on 'Probabilistic design tools 

for \'(~rtical breakwaters' (PROVERBS), is a npw sourre of both laborator~' aIld field 

cia t a for impacts on vertical walls. 

The development of pressure gauges with a yer~' high frequ('nc~' response allowed 

1\ Ii tsuvaSll (1966) to look ill clet ail experirllentall~' at the preSSllr<'- tillH' hist orips of 

irllpact pn\SSllH\S .. \ npw air-cushion rnodel for the irllpact 1)\'('SSllr<\S was d('yl'iop<,d, 

irnpn)ying Bagnold's Illodel b~' allowillg for air lpakage. 
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In the late 1980's a series of experimental studies of \\'a\'es impacting on \yalls 

were carried out to improve the predictions of the impact pressures. In particular 

it was considered important to examine the impact pressure distribution over the 

structures and to investigate which waye conditions produce the highest pressures, 

Partensky (1988) commented that in the design of breakwaters the rnethods used for 

predicting the peak pressures and resulting forces consistentl~' gave underestirnates, 

This was often due to the lack of comparison of theoretical nlodels with protot~'pe 

measurements. He put forward a revised predicted pressure-distribution for coast;d 

structures which reduced the inaccuracies of force and peak pressure prediction. 

Chan and Melville (1988) claimed that in their experiments the trapped air during 

impact may contribute to both the higher pressures and pressure oscillations. In 

particular the location of the wall relative to the position of \\'an~-breaking had a 

significant effect on the distribution of the impact pressures. 'Yittc (1988) also car­

ried out detailed wave impact experiments on a vertical wall and a sloping surface. 

High peak pressures occurring over short periods were observed. I\Iost earlier inves­

tigations considered the local maximums of pressure of the inlpact, but in cOlltrast 

Witte also looked at time and space distributions of pressure. 

A more theoretical approach in the prediction of the impact pressures was takcn 

by Cooker and Peregrine (1990 a,b). They used the idea of pressure irnpulse (d('­

scribed later in section 2.2) and they developed a rnathernatical rnodel for thl' largc 

short-lived pressures which occur during impacts. Thc~' solved a 2D bouIldar~' \'ahU' 

problern, for a vertical wall being hit b~' an idealized wa\'p, C sing unstead~' poten­

tial How cornputations (Cooker and Peregrine 1990a), to evoh'p in time an irnpacting 

wayc, thc}' predicted unexpected, violent motion with ypry high pressuf('s. accelera­

tions and ydocitics. This was found to be due to the incident \\'m'l' IIH'eting t he wall 

with an alrnost Y('rtical front producing a \'cl'tical jet shooting up t hp wall. Ypr\ 

high prcssures wl're predict cd for the 'Hip through' cas(' where just 1)('fon' 'iUlpact' 

the \\'(\\'(' L\{'l' is parallel to the wall. Here the wan' surf(\c(' Hips upwards ra t her t hall 

undergoillg a direct irllpact. Cookpl' (1990) carried out a stud\' OIl thp illt('radioll 
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between steep water wayes and coastal structures. using the program based on a 

boundary-integral method. The pressures predicted in this study were of siIIlilar 

magnitude to those produced in experiment. Topliss (1994) continued these studies 

by exarnining impact pressures in containers, the effect of entrained air. and the 

associated oscillatory pressures which occur. 

Cooker and Peregrine (1992) noted that it was not only the high pressures on 

the structure itself that are important. In particular. bodies dose to a structure ran 

be moved away by the significant fluid pressure gradients which occur. The nett 

impulse is found to be large enough to propel a body in the direction of the pressure 

gradient, even when fluid drag is accounted for and acts in the opposite direction. 

A similar effect is described in chapter 3 of this thesis where waye irnpact under a 

deck causes a high pressure gradient away from the deck. 

Kirkgoz (1991) examined experimentally the iInpact pressures of regular breaking 

waves impacting on backward sloping walls. Both the impact pressures and the 

resulting forces were sometimes higher on the sloping walls than on the vertical walls. 

A statistical distribution method is used for the prediction of maximum impart 

pressures. Lundgren (1969, 1991) summarized the developnlents in the design of 

structural breakwaters and the methods which are used to reduce or in SOIIle cases 

elinlinate impact forces. 

Continuing the historical review from 1991 onwards, experimental research now 

focused more on examination of the effect of the shape of the wave inlpacting on the 

resulting pressures, and also as a consequence on the effect of trapped or entrained 

air. Hattori and Arami (1992) examined the effect of waye shape and the role ()f the 

adiabatic processes of trapped air bubbles in the generation of iIIlpact pressures. The 

Illost s('v('re inlpact pressures tended to occur when a breaking wayE' hit, trapping 

ei ther lots of sIIlall air bubbles or a thin lens-sha ped pocket of air. These eXperillH'uts 

ind lldcd the use of high speed yideo as well as pressure IneaSllreIllents on tll(' wall. 

and ar(' used for cOInparison with the pressllre-iIllpulse Inodel uf a 'boun('(' back' 
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air pocket described later in this thesis. Schmidt. OUlneraci and Partensk\' (1992) 

carried out large scale model tests of impact loads on vertical walls. and classified 

different types of impact by breaker type. In particular plunging hreakers impacting 

on a vertical wall were examined and the impact pressure distributions. forces and 

force impulses which came from these wpre anal~'s(-'d. A statistical approach is taken 

to aid prediction of these quantities. 

Peregrine (1994) and Takahashi, Tanimoto and Shimosako (199..1) gaY{' reviews 

of impacts on structures. Peregrine (1994) gavp a summary and discussion of the 

current theoretical knowledge of wayes meeting bot h n~rtical and near-yertical walls. 

He classified the pressures which occur during impact into three categories given b~' 

peak, oscillatory and reflecting pressures, and discussed present theoretical IlH't h­

ods of predicting them. In contrast Takahashi, TaniIlloto and ShiIllosako (1994) 

looked at more practical methods to pstimate the ilnpulsiy(' pressures on COlIlposit(' 

breakwaters and reviews these. 

Recent experimental studies continue to examine the effect of trapped air. In 

particular Hattori, Arami and Yui (1994) observed in their experiments that the 

highest pressures (of very short duration) occurred when the vertical wave front 

strikes a wall with only a very small amount of air trapped. After the initial peak 

in the pressure, oscillations may be observed due to the trapping of air. If no air is 

trapped then 'flip through' (as predicted in Cooker and Peregrine (1990 a,b)) occurs 

which gives very high impulsive pressures. Hattori, Arami and Yui (1994) observed 

that the greatest illlpact pressure occurred where the crest tip impacts near the still 

water level on the wall. Chan (1994) also looked at a plunging wave illlpacting on 

a v('rtical wall in deep water. Again it was confirmed that the pressures could 1)(' 

decOlllposed roughl~' into the primary wave pvolution pressures (during the initial 

pC'riod of ilnpact) followed b~' pressures affected b~' trapped air d~·naIlli('s. 

1\ lore theoretical studies (Cooker and Peregrine (1995)) show that P was lll­

s('nsiti\'{' to the shapp of the rear part of the incident W(lve. Thp~' also noted that 
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the more confined the motion the higher the pressure impulse. Lusada. ~Iartin and 

:\I(~dina (1995) experimentally investigated a solitar~' waye incident on a refi('('ring 

structure. They computed the velocity field and the pressures along the wall and 

base using a boundary-integral method, and found that these quantities cOInpared 

well with the theoretical pressure-impulse approach used b~' Cooker and Peregrine. 

One recent study is that of Zhang, Yue and Tanizawa (1996) who cOIllputed a 

two-dimensional wave impacting on a rigid vertical wall using potential fiow theory 

and a boundary-integral method. TIlP~' looked at the jet impact on the wall and the 

pressures occurring due to this with an extension of the work in Cumberbatch (1960) 

(which modelled an impact of a wedge of water on a ,,·all). Their rnodel gan' pre­

dictions of both the maximum pressures and the rise time. TIw maximulll pressure 

from the model predicts a value about three times that of the Inean experirnental 

value, and reasons for this are discussed in their paper. 

Currently the experiments carried out in connection with the PRO\'ERBS project 

provide an ongoing source of data to be used as comparison with the theoretical 

models. In particular the Particle Irnage Yelocimetry (PIV) tests carried out at 

Edinburgh University in 1994 (data Inade available through PROVERBS, though 

experiments carried out prior to the project, s('(' section 2.5.--1 and Ourneraci, Bruce, 

Klarnmer and Easson (1995) and Oumeraci, Partenscky. Klammer and Kortenhans 

(1997)) and tests currently being done at Edinburgh LniYersit\' are particularl~' 

useful for comparison, as unlike all the previousl~r described experirnental inYestiga­

tions, velocity profiles, as well as pressure measurements are a\'ailable. A SUIIlInary 

of these experimental Inethods is given in section 2.5A together with cOInparisons 

betw('en the experimental data and the new theoretical models in this t lwsis. 

2.2 Pressure impulse. 

\ V;n'(' pn'ssulTS on structures occur In t 111'<'(' fOrIns. the 'ilupact' pressures which 

;\l'{' high but ad oyer it \'('r~' short period of tillH'. 'os('illat()r< preSSllres \yhich ;up 
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smaller in magnitude but act over a longer period of time, and finally the reflectiye 

pressures which occur until the wave crest has been fully reflected away from the 

wall. An example of a pressure-time curve (from Edinburgh PIV tests, see section 

2.5.4) for wave impact on a wall is given in figure 2.1. This particular profile is when 

3 

2 

p (KPa) 

o 

time (s) 

Figure 2.1: A 'typical' pressure-time curve for impact on a wall. (Edinburgh PIV 
data) 

a large air pocket becomes trapped at the wall, and is from a pressure-transducer 

close to the foot of the vertical wall. Here we can clearly see the three stages, the 

high peak corresponding to the impact pressure, the oscillations due to the air, and 

the second peak caused by the reflective pressures. The most severe impacts last 

only for about 1ms in the laboratory, and around 10-50ms in prototype. 

Cooker and Peregrine (1990 b) showed that the effect of the free surface, where 

the pressure is atmospheric, is to provide lower values than those predicted by a 

water-hammer pressure model. In creating approximate mathematical models for 

wave impact Cooker and Peregrine also noted that, except in the case where a thin 

layer of water undergoes impact, the shape of the wave away from the impact region 

is relatively unimportant. Hence the shape of a wave impacting on a structure llla~' 
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often be considered to have a flat free surface for simplicity. As a result of the 

boundary condition P = constant on the free surface the problenl is linear. and 

hence once the problem is solved: we can choose more realistic free surfaces to be 

any of the contours of pressure impulse. 

2.2.1 Governing equations. 

Let p be the excess pressure over atmospheric, and 9 be the acceleration duc to 

gravity. The pressure impulse P is defined by P = .r pdt, as gi\"cn in Lalllb (§ 11, 

1995) and Batchelor (§ 6.10, 1967). In our case the integration is oyer the short 

period of time during which the water and the structure collide. 

Let u be the velocity of the liquid. \Ve assume that the liquid is inyiscid. that 

IS that the ratio of the magnitude of the inertial forces to the Illagnitude of the 

viscous forces is large. We choose a velocity scale U (from experiments later we 

approximate this as 1.3m/s), a length scale L (again fronl later we usually choose 

the depth of water at the wall for which a suitable yalue is 0.2m) and let J-L and p 

be the viscosity and density of the fluid respecti\"ely. \Ve can assume the fluid is 

inviscid if the Reynolds number (pLU /11) is large. \Ve also assume that t 11('1"(' is 

no flow separation (around the body with which the wave ilnpacts), which we lllaY 

for the short times of impact. The density and viscosity of water are approxinlately 

1000kg/ rn3 and O.OOlkg/m s respectively. Hence the Reynolds number is 260000. 

which is sufficiently large to neglect viscous terms. 

We consider the Euler equation of motion: 

au 1 - + u.\7u = --\7p - g. at p 
(:2.1) 

For silHplicity we choose units such that p = 1 in the following. sin("(' only inCOlll­

pr('ssi ble flow is considered (as our Ydocity scale is llluch smaller than t IH' sl)('e<1 of 

sOllnd, 1500111/S in wat('r. ,wel we aSSllllle no sound wa\"('s are sd up). 

The tilHe ill which the y('locity changes during the illlPulsi\"(\ (\\'(lIlt is \"('l'~' short. 

The illlPulsiy(\ Illotion CH'at(\S larg(' pn\SSllre gradients. and a :-ill< Idell change ill t h(' 
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velocity in the fluid. However, the velocity of the fluid itself is not large. except 

perhaps in a small jet (which for this study we will ignore, but occurs during the 

case of 'flip through' discussed earlier). Hence g and the nonlinear term involying a 

spatial derivative of u (whose ratio with aul at is O( ~tU I L )) can be neglected, as 

they are small compared to the pressure gradient and aul at (in a similar manner 

to Cooker (1990)). Note that no assumption about vorticity has been made so we 

can have arbitrary vorticity. The equation of motion is approximated by: 

au 
at = -"Vp. (2.2) 

Integration with respect to time over the duration of the impact gives: 

u a - Ub = - "V P, (2.3) 

where U a and Ub are the velocities after and before impact respectively. Now 

we assume the water is incompressible before and after impact, and so we have 

"V,Ua = "V,Ub = o. Therefore we need to solve 

(2.4) 

in the fluid domain, subject to appropriate boundary conditions. The effects of 

allowing compressible flow due to dispersed bubbles are discussed in Peregrine and 

Thais (1996). 

2.2.2 Boundary conditions. 

The boundary conditions can be grouped into three different types: 

1) At the free surface the pressure is taken to be zero, so 

p=o, (2.5) 

since we consider pressures relative to atmospheric pressure. 

2)At a section of a rigid boundary where impact occurs the \"Plocity cOIllponent 

perpendicular to the boundary is taken to be zero after impact, and some fUllctioll 
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of position: F 1 before impact. "[sing the normal conlponent of equation (:2.3) we 

find: 

8Pj8n = ", (:2.6) 

where n is in the normal direction to the surface pointing into the fluid. \\Te often 

choose V to be uniform in space, for want of better information as a reasonable 

simplifying assumption. We often han' " = -1 , i.e. a \·elocit~· with magnitude 1 

in the direction towards the wall. Hence, equation (2.6) simplifies to give: 

8Pj8n = -l. (') -) _.1 

3)On a section of the rigid boundary where no impact occurs the n~locit~· nonnal 

to the boundary is zero both before and after ilnpact. and so taking the nonnal 

component of equation (2.3), we require: 

8Pj8n = o. (:2.8) 

We often impose a far-field condition that at an infinite distance a\\'a~' frOIn the 

impact region, P is zero. 

Hence, to find a pressure-impulse model for an inlpact problem w(' must soly(' 

Laplace's equation subject to these boundary conditions. 

2.2.3 Method of solution. 

For the impact problems in this thesis the main method of solution is that of ob­

taining a Fourier series which solves Laplace's equation subject to the appropriate 

boundary conditions. The great advantage of this method is that providing th(' 

Fourier series converges reasonably quickly it is eas~' to obtain dat a for the pressure 

illlpuise. Even when the Fourier series convergence is not quick, Inethods such as 

the use of Lallczos' factors (s{'(' spction :2.6.:2), can be used to illlprOYC the C011\"('r-

g<'nc('. The ('as(' with which the Fourier series ("all usuall~" be ('\"aluated Blakes this 

llH't hod of grC(l t pract iCed ilnport <111C(,. The silnpler the fOrIllula(' for ('st illla t ('s of the 
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pressure impulse, the more likely it is that they can be put t( ) use by engineers in 

their calculations. 

However, this does not mean that the use of Fourier series is the only wa~' forward. 

It is thought in particular that methods such as a boundar~'-integral Inethod would 

be more adaptable, especially for problems such as the inlpact on a cylinder. 

2.3 Pressure-impulse models for impact on a wall. 

Many of the studies of wave impact are for \'ertical walls or breakwaters. Ahnost all 

the theoretical models and experimental studies han' assumed that the Inotion is 

two-dimensional, i.e. that the motion is the same for p\'ery slice t akpll perpendicular 

to the wall or structure. Most experimental studies are set up so that the t hree-

dimensional effects are reduced as much as possible. HO\\,p\'('l' in the field it is 

obvious that three-dimensional effects are present. It is possible t hat using a t hr('('-

dimensional model may lead to a reduction in the pressures predicted. 

2.3.1 Two-dimensional impact on a wall. 

Cooker and Peregrine (1990 b, 1992) looked at the pressure-iIllpulse Inodel of two­

diInensional impact on a wall. For the study in this section w(' take L to equal the 

size of the impact region. All quantities are considered to be dimensionless unless 

otherwise stated. Using the notation in this thesis we consider impact on a wall 

which has water of depth D in front of it. \Ve assume the velocity and density 

of the liquid to be unitary. The impact is assunled to be two-dimensionaL and so 

Laplace's equation was solved in the fluid domain, with the boullclar~' coudition 

a P / Dn = -Ion the top depth 1 of the wall below water le\,(' 1. and [) P / J 1/ = 0 

on the rest of the wall and along the base of the fluid dOInain. P = 0 is required 

along the free-surfac('. The origin is takell to be on the walL at thp water le\'<'1 of 

the WCl\'(' at iInpad. with .'J taken in the direction perpendicular to th(' wall. and z 

\'('l't i('alh'. The boundar\' conditions an' as shown in figure 2.:!. . . 
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DPI8y = 0 

8PI8z = 0 

Figure 2.2: Boundary conditions for two-dimensional impact on a walL as shown in 
Cooker and Peregrine (1990 b). 

Hence the two-dimensional solution, giypn in Cooker and Peregrine (1990b). is: 

(:2.9) 

where An = (n + ~)1f I D. Note unless otherwise stated the sum in all future expres­

sions is taken to be from 0 to 00. This Fourier series is obtained using separation 

of variables and a similar rnethod of solution is described in nlOre detail in S('('tioll 

3.6. The exact sum is from n = 0 to 00, so we Inust truncate it. For most cases in 

this thesis inclusion of 50 terms is sufficient to give an accuracy of at least 4 deciInal 

places, but in the case of II D very small, many more terms are required. 

Cooker and Peregrine (1990b, 1992) looked at the effect of varying the impact 

region height, while keeping the depth of water D constant. \Yc now consider 

kC<'l>ing the size of the impact region constant, and looking at the effect of variation 

of water depth beneath the impact region. Figure 2.3 shows plots of pressure iInpulse 

dOWll a wall for different water depth at t he walL but keeping the iInpact region the 

S;llll(' height. ( a sinlilar stud~' is carried out in Chan (1994)) 

:\s the depth of watcr increases (i.('.the depth of water below the iInpad H'gion 

iWT(',lS('S) the pn'ssllr<'-ilnpulse plot has Inore of a ·tail' which giycs a larger total 

illlpllise valne. Figure :2.4 shows a plot of total illlpulsp against dcpth of wat('r. 

:2() 



z 

0.0 0.2 0.4 0.6 0.8 1.0 
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Figure 2.3: Pressure impulse on a wall, keeping the impact region the same height. 
z is the position on the wall. Each plot is labelled by the total depth of the wa­
ter.(impact region is z = -1 to 0 ) 

21 



(again keeping the height of impact region the same) The total impulse is given by 

integrating equation (2.9) over the depth of the water: 

I = ~ '"' 1 - COS(An) 
D~ A 3 . 

n n 
(2.10) 

Total Impulse 

2 4 6 8 10 

Depth of water at the wall, D. 

Figure 2.4: Total impulse against depth of water, keeping the impact area constant 
and varying the depth of water at the wall. 

We can see that as the depth of water below the impact region increases the total 

impulse increases. Of particular note is that the infinite depth solution shows that 

there is no limit to the increase in total impulse as the water at the wall becomes 

deeper. Cooker and Peregrine (1995) gives the pressure-impulse distribution on the 

wall for the infinite depth case, D ~ 00 : 

P(O, z) = -~ [z log 1 - ~ + log 1 + z ]. 
7r Z2 1 - z 

(2.11) 
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Indefinite integration o\"(-'r z (for Izl > 1 ) giyes: 

I P (0, z) dz = - ! [~ log ( 1 - :2) - ~ log( Z2 - 1) + (1 + :) log(1 + 0) 

-2 - (0 - 1) log(: - 1) ]. (2.12) 

When z is large the dominant term is log(z2) , which is divergent as :: --+ x:. Hence 

the total impulse is infinite. This shows that for deep water cctS('S this nlodel is in­

adequate. This emphasises the importance of examining either three-dir11ensional 

impact (not having the impact the same at ever~' position along the \\'all) or ('0111-

pressibility effects for impacts on walls in relativel~' deep water. (as also discussed 

in Chan (1994)) 

2.3.2 Three-dimensional impact on a wall. 

We now consider the impact of a body of water on a patch of a wall. \Ve let our 

length scale L equal the depth of water at the wall and again all quantities stated 

are dimensionless unless otherwise stated. Cooker and Peregrine (1995) noted that 

unless the width of the impacting \vater is quite small the actual shape of the wave 

away from the impact region is relatively unimportant. \Ve take the impact area to 

be a patch on the wall and the free surface to be simplified to a horizontal surface. 

Let A denote the area of the patch, and the depth of the wall be 1. \ Ye us(' 

the boundary conditions described in section :2.:2.2. On the free surface the usual 

condition of P = 0 is required. The patch is where impact takes place so we need 

DP / oy = ,. (x, z), where y is the direction normal to the patch, and .r and z 

are as shown in figure 2.5. On the rest of the wall no impact occurs so we require 

n P / uy = O. Along the bottom of the region of the fluid we have a solid boundar~' so 

f) P / u: = 0 is required. \ Ve also need P --+ 0 as WP IlI0ve far awa~' frOlll the irn pact 

pa teh. So a solution to Laplace's equation subject to the boundary conditions shown 

in figure :2.;) is required. 

\ \'(. ('all s()ln' this problerIl in tenns of a Fourier series expansion using (\ Fouripr 

integral. The bouIldar.\' conditions on tlH' plam's Z = 0 and Z = -1 pll(1bl<' 1 h(' 
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Figure 2.5: Impact on a patch of a wall. View facing wall. 
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separation of the z dependence giving an expression for P: 

(2.13) 
n 

where An = (n + 1/2)7r. A Fourier transform of the problem in the ~' direction is 

taken, where the Fourier cosine transform is given by equation (2.14). 

Pn(k, y) = i: Pn(x, y) cos(kx)dx. (2.L1) 

In using a cosine Fourier transform we must assume that the patch is symmetric 

about x = O. We consider first the condition on the impact patch, which from 

equation (2.13) on the patch we have: 

" 8Pn (x, 0) . ( ~ 8 SIn AnZ ) = V(x, z). 
n Y 

(2.15 ) 

Next we multiply by sin(Arz) and integrate with respect to z: 

aPr~~' 0) = 21 V{x, z) sin{Arz)dz, (2.16) 

where the integration in Z is, for a given x, over values of z on the patch. Finally 

we transform this equation in x to give: 

aPn~:' 0) = 2 L 1 V{x, z) sin{AnZ) cos{kx)dzdx, (2.17) 

where the integration is done over the patch area A. 

We next carry out the transform in x of Laplace's equation: 

(2.18) 

To make the notation simpler we use m2 = (k 2 + A;). In future expressions it must 

be remembered that m is dependent on k and n. We require P(x, y, z) ---t 0 as 

y -+ 00, which means that we need Pn(k, y) -+ 0 as y -+ 00 Solving equation 

(2.18), and using Pn(k, y) -+ 0 as y -+ 00 provides an expression for Pn(k~ y): 

(:2.19) 
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where An(k) are functions of k, to 1)(' found using the boundary condition at the 

wall. We use equations (2.17) and (2.19) to get: 

An(k) = - ~ i! ,"(x, z) sin(AnZ ) c:os(kx)d.rdz. (:2.20) 

The final step is to take the inverse transform of equation (2.19) and substitute into 

equation (2.13) to obtain the Fourier sum for P: 

1 j'oo P(x, y, z) = L - An (k )e-my sin(Aw?) cos(k.r)dk. 
n 7r 0 

(2.21) 

with An(k) given by equation (2.20). 

We next consider the specific case of a rectangular patch of depth and width d 

and 2a respectively (symmetric about x = 0). 1 r (:1:, z) = -Ion the patch. Hence, 

we can carry out the integration in equation (2,20) directly to obtain 

(2.22) 

Using (2.21), for this specific case, we obtain the Fourier sum for P: 

4 
P(:r, y, z) = - L ~ [1 - COS(And)] J(n, :1:, u) sin(Anz), 

n 7r /\n 

(2.23) 

where 
• :2 :2 1/2 _ /,00 sln(ka) Cos(kx)e-(k +An) Yr/k 

J(,,:, x, y) - io k(k2 + A~)l/2 . 
(2.24) 

To evaluate pressure impulse for this problern the Fourier series must be truncated. 

For a patch of height 0.1 the difference between taking 20 and 50 terms is onl.\' 

4% and for a patch of height 1, the difference is substantially less. The integration 

is carried out using NAG routine DOIASF, which treats the integral as a Fourier 

cosine transform. This particular integration method splits the integration dOlnain 

into subintervals and replaces the function to be integrated b~' a Cheb~'shey-series 

approxilnation. This enables us to plot contours of pressure ilnpulse for this problclIl, 

Of particular intercst are t he contours of pressure ilIlpulse on the wall its('lL as shown 

ill figlU(,S 2.6, '2.7 and 2.8. The patch is of height 0.2. 0.5 and 1.0 for figur('s 2.6. :2.7 

and 2.8 respe('ti\'('l~·. III all caSt'S the patch has width 2. 
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Figure 2.6: Pressure-impulse contours for impact on a patch of a wall where the 
patch covers the top 20 % of the wall below water level and is width 2. 
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Figure 2.7: Pressure-impulse contours for impact on a patch of a wall where the 
patch covers the top 50% of the wall below water level and is width 2. 
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Figure 2.8: Pressure-impulse contours for impact on a patch of a \Yall where the 
patch covers the full height of the wall below \Yatpl" len>l and is width 2. 



The total impulse for the full and top 20% irnpact are 1.085 and 0.08·) re:-;pec­

tively. If integration is only over the central width 2a then the corresponding yalues 

are 0.878 and 0.074. As expected the larger the area of impact the larger the total 

impulse. Figure 2.9 shows a plot of total impulse against depth of water (the total 

impulse has been temporarily been scaled to han' depth of impact 1 as our length 

scale L), where the integration is over the central width of 20. and the iInpact 

region is the top distance 1. We note that instead of the total impulse increasing 

with depth of water below the impact region, as predicted b~' the :2D Cooker and 

Peregrine model, it instead predicts that the total impulse tends to a finite \'alue. It 

is more realistic that as the depth of water at the wall becomes infinitely deep that 

the total impulse tends to a finite value. 

Figure 2.10 shows a comparison of the pressure impulse on the wall for the 2D 

impact model used in Cooker and Peregrine (1990b, 1992) and dowll the centre line 

of the 3D 'patch' model. For the comparison illlpact on the top 20 % of the depth of 

water is used for both models, and the length of the patch is taken to be twice the 

depth of the wall. Even though this patch is quite wide the . patch' Inodel shows a 

lower pressure impulse down the centre line than is found using the :2D rnodeI. The 

difference between the pressure impulse down the centre line for the 3D 'patch' and 

2D models is only slight but if we move away from the centre line the difference in 

the models increases rapidly. 

Figure 2.11 is a plot of pressure impulse at the base of the wall under the centre 

of the patch for varying values of d (the depth of t he patch). As expected illcreasing 

the height of impact increases the pressure impulse at the base of the wall. How('\,pl'. 

the height of the patch has relatively little effect on the diffeu'llcP lwtweell t 11<' :2D 

and 3D rnodeI, except when the patch is \'er~r small in height. As t he height of the 

pa teh illcreases from 0.6 the difference betweell t he two Inodels reInains ahnost the 

SallIe. Figure 2.12 shows the ratio of t he pressure iInpulse of t he 3D 'patch' 11lOdd 

and 2D (('oob'!' and Peregrinc) illodel of ilnpact on a walL \,(H~'ing the d<,pt h of 

the iIllpact region. The ratio does not \'ary \'('!'~' llluch but increases slightl\' as the 
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Figure 2.9: Total impulse against depth of water at the wall, for 3D impact on a 
patch of a wall, where the integration is over the central width of 2a (a = 1), 
and the impact region is the top portion of depth 1. The total impulse has been 
temporarily rescaled (for this diagram only) to have the unit length scale as the 
depth of impact, and D as the depth of water at the wall. 
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P along the centre line 
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Figure 2.10: Pressure impulse along the centre line for the 2D (Cooker and Peregrine) 
model and 3D 'patch' models of impact on a wall, with impact on the top 20 %. 
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depth of impact increases. 

P at the centre of the base 
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Figure 2.11: Pressure impulse at the base of the wall in line with the centre of the 
patch for the 2D (Cooker and Peregrine) model and 3D 'patch' rnodels of irnpact on 
a wall, varying the depth of the impact region. 

Figure 2.13 shows a plot of P / Pm offshore on the bed along the line of symmetry 

for a comparison of the Cooker and Peregrine 2D model, and the 'patch' model with 

a patch of length 1 and 2 all for d = 0.5 and depth of water 1. Pm is the yalue 

of P at the middle bottom of the wall. This shows that once the pressure irnpulse 

has been scaled by the value at the wall all the curves are yer~' similar in nature. 

How('\'('r, as expected once the patch length is 1 or smaller there is a significant 

difference between the values predicted b~' the Cooker and Peregrine rnodel and the 

·pc\t.('h' rHodel. 
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Figure 2.12: Pressure impulse at the base of the wall in line with the centre of the 
patch for the ratio of the 3D 'patch' model and 2D (Cooker and Peregrine) model 
of impact on a wall, varying the depth of the impact region, with patch width 2. 
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Figure 2.13: Plot of P / Pm offshore on the bed along the centre of the line of 
symmetry for a comparison of the Cooker and Peregrine 2D model, and the 'patch' 
model with a patch of length 1 and 2. d = 0.5, depth of water 1. Pm is the value 
of P at the middle bottom of the wall. 
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2.3.3 Semi-infinite patch of impact. 

We need to have a clearer way of comparing the 'patch' model and the two-dimensional 

Cooker and Peregrine model. If the patch is sufficiently long. at or towards t he cen­

tre of the patch the solution is the same as for the two-dimensional case. Hence. for 

a given length of patch, we need to estimate how far into the patch it is reasonable 

to assume that the solution has become two-dimensional. For a finite patch. this is 

difficult to assess as both ends of the patch have an effect on the solution. So we 

next consider a semi-infinite patch. 

Figure 2.14 shows the problem we need to solve for impact on a senli-infinite 

region of the wall. We again take our length scale L as tll<' depth of water at 

the wall, and work in dimensionless quantities. As we need to impose the forcing 

p=o 

oP =-1 oy 

-d 

-1 

z 
p=o 

:1: 

p=o p-+o 

Figure 2.1"-:!:: Impact on a semi-infinite patch of a wall. \'iew facing wall. 

condition on the patch oy('r a semi-infinite region we sol\'(' using a slightly different 

lllethod to that used for the finite patch. \Ye split th(' problerIl up into the two regions 

.r < 0 a.nd .r > 0, the sol1ltions to which ,,'(' will denote as Pl and Pr l'(\SI)(\cti\·(\ly. 

\\'(\ then 1lS(, (,()lltinuit~· of P and DP/D./' along the line .r = .IJ = 0, to find the 
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solution. We consider first the solution in the left hand region. As x --t -x the 

solution will tend to the two-dimensional Cooker and Peregrine solution for impact 

on a wall (denoted now by P2D ). If we subtract the solution for the 2D problem 

off Pz then the remaining problem whose solution is Pre is the same as in left hand 

region of figure 2.14 except that the condition over the patch is now 8Pj8y = o. 

So Pre = Pz - P2D . We can solve this problem for Pre and then find Pi using 

Pl = Pre + P2D · In a similar manner to the solution of the finite patch model we 

take a Fourier transform of the problem, to solve for Pre, but this time the Fourier 

transform is a Fourier-cosine transform in the y direction. 

Pre(x, k, z) = 2 10
00 

Pre(x, y, z) cos(ky)dy. (2.25) 

The solution is given by: 

(2.26) 

where An = (n + ~)7r, m2 = k2 + A;, and the An are obtained by the continuity 

conditions given at x = 0 . 

From equation (2.9) the solution to the two-dimensional problem (rescaled to 

have the length scale as the depth of water at the wall) is given by 

hence 

Pi = 2 roo 2: An(k)emX sin(Anz) cos(ky)dk 
io n 

- 2: ---;. [1 - COS(And)] sin(Anz)e-AnY
. 

n An 

(2.27) 

(2.28) 

Solution in the right hand region is the very similar to Pre· The conditions 

at z = 0, z = -1 and on the wall are the same. However we require Pr to be 

positive, and to decrease to zero as x --t 00 instead of being negative and increasing 

to zero as x --t -00 (as Pre). The change in sign of in front of the x is to satisfy 

the conditions at x = ±oo, and the negative in front of the whole expression is 
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to ensure continuity of pressure-impulse gradient at x = o. Hence Pr is giYen by 

-Pre ( -x, y, z) , hence 

Pr = -2 fo'X L.·t,(k)e-mXsin(Anz) cos(kU)dk. 
n 

(2.29 ) 

From the conditions at x = 0 we find that: 

k = O. (2.30) 

Integration is carried out in a similar manner to that used in the eyaluation of the 

pressure impulse for the finite patch impact. Figures 2.15 (a) and (b) show pressure 

impulse contours, for the semi-infinite patch, on the wall and 1 ),lSe r('spectin)l~' for 

a patch of depth 0.3. Figures 2.16 (a) and (b) are similar but this tiIllf' for a patch 

of depth 1. o. 

When the patch is of depth 0.3 and 1.0 the yalues only approxilnatp the yailles 

calculated by the two-dimensional model well at a distance into the patch of two 

times the depth of the water i.e. the depth of penetration of the boundary conditions 

outside of the patch is twice the depth of the water. Figure 2.1, is a plot of P along 

the bottom of the wall for different depths of patch (scaled by the 2D model value). 

If we examine this then we can see that the depth of impact has little effect on 

penetration distance of the three-dimensional boundary into the patch. If w(' look 

at a distance of 0.5 into the patch (along the bottom of the wall), w(' can se(' that 

the pressure impulse is only approximately O."j and 0.850 of the two-dinlensional 

value for patches of depth 0.2 and 1.0 respectivel~". 

2.4 Impact on a wall with a berm . 

. \ II ilnport ant featur(' of lllall~" \"crtical breakwaters is the bernl or rubbl(' IllOUIHI 

which sOlIwtinles forms the foundation for caissons or is placcd in front of tll<' n'rtical 

w;dl to IT<iUC(' wan' refieC'tion and breaking W(l\'(' f()rcp on t hp Y('rti('al wall. \ yp 
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Figure 2.15: (a) Pressure-impulse contours, for the semi-infinite patch, on the wall 
for a patch of depth 0.3. (b) Pressure-impulse contours, for the semi-infinite patch, 
on the bed in front of the wall for a patch of depth 0.3. 
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Figure 2.16: (a) Pressure-impulse contours, for the semi-infinite patch, on the wall 
for a patch of depth 1.0. (b) Pressure-impulse contours, for the semi-infinite patch, 
on the bed in front of the wall for a patch of depth 1.0. 
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Figure 2.17: P / (2D value) for the semi-infinite patch as a function of position along 
the base of the wall, for d = 0.2,0.4,0.6,0.8, 1.0 (from left to right in the top half 
of the graph). 
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extend the two-dimensional Cooker and Peregrine (1990 b~ 1 (J!):!. 1995) model for 

impact on a wall to include a region of porous material in front of the wall. It 

is assumed to be at a large scale such that all flow is at high Reynolds nUIllber. 

including that in the porous berm. Hence, with allowance for the added lnass of the 

porous structure, the same pressure-impulse approach used for open water can be 

applied. The berm is represented by a horizontal porous bed in front of a yertical 

wall. 

We split the problem into two regions as shown in figure :2 .18 where the top 

region is simply water and the bottom a rubble berm. \Ye take our length ~("ale 

L to be the depth of water above the berm and work in dimensionless parameters. 

P(x, y) is the pressure impulse. Note that for this and the following 'bounce back' 

model we now take y vertically, and x perpendicular to thE' wall. A bounded region 

of water of length c is used to simplify the analysis. A value of (' > :2 is adequate 

to model the region close to the wall for a semi-infinite region of water. Hence as 

long as the berm is horizontal for approximately twice the water depth, these results 

should give a fair indication of the pressure patterns. 

y = 1 t 
J-Lh 

! 

y=o 

y =-b 

8P/an = -1 

8P/DII = 0 

BERM 

x=o 

p=o 

(1) p=o 

(2) 

:1: = C 

aP/on = 0 

Fignre 2.18: Boundar~" conditiolls required for way(' irnpact 011 a \"prti('al wall with 
<l porOllS benn in front. (n'rti('al section) 
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For simplicit:v we use the condition P = 0 at a distance c (> :2) a\ya~' frOIn the 

wall. The other boundary conditions are similar to the conditions used before for 

irnpact on a wall. Let the top half be region 1. and region 2 the bottom half. and Pi 

and P2 the solutions in the respective regions. In region 1 we have silnilar condition~ 

to those of impact on the wall, with the exception of the condition between the two 

regions. In region 2 we have ap / an = 0 at the wall and base. Let S be the porosity 

of the berm, assumed to be uniform. Using the same notation as previously used. 

we have: 

(2.31) 

in region 1. In region 2 we not only have the water, but also rubble. Hence it is 

much harder to accelerate water in region 2 than in region 1 as the water Inus! be 

given extra acceleration to speed up around the pieces of rubble. To allow for this in 

region 2 we begin with the same equation as for region 1 (equation (:2.31)). HO\\,('\,('r, 

the fluid passing through a region with obstructions needs a greater velocity to pass 

the obstacles or restrictions. In general this leads to a greater resistance to the flow 

so, as equation (2.31) is linear, we have: 

(2.:32) 

where ILij is the resisitivity, and Uja and Ujb are the jth cOInponent of lia and 

lib respectively. For simplicity we assume isotrop~', so we let Mij = IL, where M is 

equivalent to the resistivity to the flow of electric current in a lnetal with insulatillg 

intrusions. We take PM equal to P + Pm, where Pm is the added Blass. Hence, in 

region 2 w(' have: 

(2.33) 

The divergence of equations (2.31) and (2.33) gi\'('s: 

(2.3.J) 

and 

( ')'3-) _ .. ;) 
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Along the line y = 0 we require the pressure: and hence the pressure impulse to be 

continuous, so along the boundary y = 0 : we require: 

(2.36) 

Let VI and V2 be the vertical velocities at the interface between the two regions. 

in region 1 and 2 respectively. At y = 0 there is no mass lost. hence the flow of 

mass is continuous across this boundary, so VI = SV2. S is a Ineasure of porosit~· 

and we assume that it is the fraction of the interface which has holes. The \'olume 

measure of porosity (percentage of holes) is equivalent to the surface porosity. This 

can be seen if we consider taking lots of thin slices to make up a volulne. each 

slice has porosity S, so the total volume must have porosity S. It is worth lloting 

that the equivalent velocity, mass flow per unit area = Stl is often used for porous 

media. Combining this with equations (2.31) and (2.33) we obtain the condition 

that BPI/By = (3BP2 /By, where (3 = pS/(p + Pm). So along y = 0 \\"f' also need: 

(2.37) 

We need to solve equations (2.34) and (2.35) with equations (2.36) and (2.37) holding 

along line y = 0 subject to the boundary conditions shown in figure 2.18. 

Let PI = Po+Q where Q satisfies the problem in region 1 except with BQ / un = 

o along the left hand wall, and where Po is the solution in region 1, with an 

impermeable bed, i.e. BPo/ By = 0 on y = O. Po and Cd both satisfy Laplace's 

equation. 

The solution to the impermeable bed problem (originally Cooker and Peregrine 

1990b), is given by: 

_ ~ sinh Arn(c - :1") cos(ArnY) 
Po - ~ Ern h( \) , 

rn cos Arne 

(2.38) 

with Am = (rn+ ~)7r and 

(2.39) 
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By satisfying the appropriate boundary conditions, Q and P2 are found to be 

of the form: 

Q - ~ B . k ( ) sinh kn (1 - y) 
- L- n SIn n e - x. . 

n sInh(kn) . (2AO) 

with kn = (n + 0.5)11" Ie and 

p. _ ~ A . k ( ) cosh kn (y + b) 
2 - L- n SIn n e - X ------.:.. 

n cosh(knb) . (2.41 ) 

We now impose the conditions given in equations (2.36) and (2.37) so that we 

have P continuous: 

L An sin kn(e - x) = Po(x, 0) + L Bn sin kn(e - x), (2.42) 
n n 

and the flux continuous: 

- L kn coth(kn)Bn sin kn(e - x) = (3 L kn tanh(knb)An sin kn(e - x) (2.43) 
n n 

respecti vely. 

Multiplying equation (2.42) by sin kr(e - x) and integrating with respect to x 

gIves: 

2 inc Ar - Br = - Po(x, 0) sin kr(e - x)dx = Dr, say. 
e 0 

(2.44) 

Next we substitute for Po(x,O) and carry out the integration to obtain an expression 

for Dn: 
4 ( -1) m [1 - cos (m + ~) 11" tL] n 

Dn = L A A 2 + k 2 (-1) . 
m e m m n 

(2.45) 

From equation (2.43) we have 

(2.46) 

hence 

(2.4 7) 

We can find expressions for An and Bn by using equations (2.44)~ (2.45) and 

(2.47). Thus pressure impulse can be calculated by evaluating the Fourier series 

(after truncation). Figure 2.19 shows a plot of pressure-impulse contours for tL = 
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Figure 2.19: Pressure-impulse contours for impact on a wall with a porous berm in 
front. J..l = 0.5, j3 = 0.3, b = 1.0, c = 2 
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0.5, j3 = 0.3, b = 1.0, c = 2. The top half of the graph is above the berm and the 

bottom half is the berm. Note the bending of the contours along the line y = 0 

caused by the discontinuity of the pressure-impulse gradient where the water and 

the water containing rubble meet. 

Let Pm be the value of pressure impulse at the bottom of the wall. Figures 2.20 

and 2.21 are plots of P and P / Pm respectively with J-L = 0.2, b = 1.0, c = 2.0. and 

j3 = 0.0,0.1,0.3. Figure 2.22 is a plot of P with J-L = 1.0, b = 1.0, c = 2.0. and 

j3 = 0.0,0.1,0.3 

P along porous berm 
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", ,", 
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- - {3 = 0.3 

..... 
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x 

Figure 2.20: Pressure impulse along the berm for impact on a wall with a porous 
berm in front. J-L = 0.2, b = 1.0, c = 2, {3 = 0.0,0.1,0.3 

Figures 2.20 and 2.22 show that the magnitude of the pressure impulse is reduced 

for a berm with higher porosity. The greatest difference in the predicted pressure 

impulse, from the models with differing porosity is closest to the wall. The larger 

the value of It, the greater the effect. However, even for J-L = 1.0, the effect is still 
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Figure 2.21: Pressure impulse/ Pm along the berm for impact on a wall with a 
porous berm in front. J.1 = 0.2, b = 1.0, c = 2, /3 = 0.0,0.1,0.3 
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P a long porous berm 
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Figure 2.22: Pressure impulse along the berm for impact on a wall with a porous 
berm in front. J.-l = l.0, b = l.0, c = 2, f3 = 0.0,0.1,0.3 
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quite small. So we examine the first of these plots but scaled by the ,"alue at the 

wall. Figure 2.21 shows that the distribution of pressure impulse oyer the bernl for 

this particular set of values (and similarly for other values) is not affected greatly 

by the porosity. If JL is larger then the effect of changing t he porosit~" was found 

to be greater. The reduction in pressure impulse on the wall is at nl0st 20 % and 

usually much less. Thus for practical purposes impact pressures in the free water 

above the berm are little affected by the berm's porosity. Thus impact pressures 

above the berm may be estimated by taking the pressure at the benn's surface to 

be the same as if the berm were impermeable. 

Of course for shallow water above a berm the propagation of wan's onto the wall 

is strongly affected by the berm. The above study onb" applies to the violent iInpact 

of a wave at the wall. 

2.5 Wave 'bounce back'. 

2.5.1 Theory. 

In experiments of waves impacting on vertical walls, in addition to the t hre(\­

dimensional effects being important, the effect of dispersed bubbles or trapped air is 

also important. In addition to the studies described in sectioll 2.1 some recent studies 

have been carried out in this area. If a wave is breaking, or near breaking, when it 

hits a wall often a large amount of air becomes trapped. The air can be in one of 

two forms: as a trapped bubble or as dispersed air, or most likely as a cOInbination 

of both. In particular Topliss (1994) looked at a theoretical model of a trapped 

air pocket. In this study the trapped air was taken to be an oscillatillg circular 

air bubble. The oscillations were modelled by the flow due to an oscillating line 

SOlll"(,(\ and the oscillations of the radius of the bubble were taken to be sInall. hence 

all equation for the cOInplex potential of the flow could be calculated. Topliss also 

de,"doped a Inode! for t he bubbl~' Inixture in the fiuid t hat a plullging wav(\ leaves 

behind after it has iInpacted on a structure. Peregrine (199~) gin\s a n'view of S()lll(' 
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of the methods used to model air entrainment/trapping during impact. Peregrine 

and Thais (1996) model scaling for entrained air in violent water wave inlpacts by 

using a 'filling flow' model (where a region is rapidly filled with liquid). following on 

from Peregrine and Kalliadasis (1996). This model has man~' silnilarities to the 'flip 

through' flow. Peregrine and Thais give an estimate of the reduction in pressure 

caused by the presence of the air. 

In this section we consider a large air bubble trapped at the walC which produces 

oscillatory pressures. The impulse due to the first oscillation instead of bringing the 

water to rest, may bounce the water backwards. So t he velo('it~· of the part of the 

wave impacting may reverse in sign. Cooker and Peregrine (1990 b) looked at a 

pressure impulse model for the 'flip through' conditions which corresponds to water 

motion normal to the wall ceasing on impact. If the compressed air causes the 

water to be pushed back, then boundary conditions corresponding to a H'\'ersal of 

the normal component of velocity, ma~· be more appropriate. 

We consider a plunging breaker impacting on a vertical wall, with our length scale 

L the water depth at the wall. As before we solv(' Laplace's equation subject to 

appropriate boundary conditions. In a similar wa~' to the model of impact on a wall 

we take the free surface to be horizontal and take P = 0 along it. Along the rigid 

bottom of the liquid region we have the usual boundary condition of ap / an = 0, 

where n is in the normal direction to the boundary. Section 2"~ showed that this 

assumption is reasonable even if a porous berm is present in front of the walL 

providing we have a reasonably large depth of water at the wall below the irnpact 

region. We assume the wave is moving towards the wall with a horizontal velocit\" 

cOlnponent of -U. The conditions on the wall can be split into threp separate 

regions. At the top of the wall we have a region where the.id part of the breakin~ 

way(' irnpacts with the wall, here there is a velocity cOlnponent perpendicular to th(' 

wall before irnpact but none after irnpact (sinlilar to the 'flip through' approach). 

lOsing ('quation (:2.3) ,,'(' find \\'(' need ap/ull = -C on the jet illlpact l'('giOll (lJ < 

.II < 1). :\t til(' other ('xtrelne, at tIl<' bottOlll of the wall is a H'gion wh('l'(' there 



is no impact (0 < Y < (j) so the \'elocity is zero perpendicular t() the wall both 

before and after impact so using equation (2.3) again we require DP/on = 0 on the 

no impact region. In between these two regions ((J < Y < b) we can ha\'e a region 

where there is a bubble. If there is no bounce back the boundary condition is thp 

same as at the top section of the walL Howeyer if we han' a region of 'bounce back' 

then the velocity perpendicular to the wall in this region is assumed for sinlplicit~· 

just to undergo a change in sign. Again we use the component of equation (2.3) 

normal to the wall and have op/an = -2U in this region. \Ye aSSUIIle that C 

is uniform and hence take U = 1. The boundary conditions for tlw 'no bounce 

back' and 'bounce back' cases are shown in figures 2.23 and 2.2-4 respectin'ly. \Ye 

p=o 
1 

ap/an = -1 

b 

op/an = -1 \12 P = 0 

a 

ap/an = 0 

Y 

o x ap/on = 0 

F · 2 23 B dary conditions required for wave iIllpact with 'no bounce Igure .: oun 
back' . (vertical section) 

solve Laplace's equation using separation of variables to get a Fourier series solutioll 

given in equation (2.48) where an = (n + ~)7r. The expressions for An are given in 

equations (2.-49) and (2.50) for 'no bounce back' and 'bounce back' resp('diy('l~·. 

P = L .-ille-n",l' ("os(nlly) (2.-18) 
n 

(2.-19) 



1 P=o 

DP/Dn =-1 

b 

DP/Dn =-2 ,lp = 0 

a 

DP/Dn = 0 

y 

o x 
8P/8n = 0 

Figure 2.24: Boundary conditions required for wa,"C' ilnpact with 'bounce 
back' . (vertical section) 

2 
With bounce back: An = ( 1)2 2 [sin( O!nb) + (_1)11 - :2 sin( On (])] . 

n + 2 7r 
(2.50) 

Figures 2.25 and 2.26 show the pressure impulse contours for 'no bounce back' 

and 'bounce back' respectively. The dark solid line shows the position of the Iniddle 

region (bounce back/no bounce back). 

Clearly a much bigger impulse arises from bounce back. If we examine figure 

2.27, which is a plot for pressure impulse down the wall, we can see that the peak 

P is almost twice as big for the bounce back situation as for the no boullcc back 

case. 

Pressure-impulse contours give a fair approximation to maximum pressure con-

tours if a good estimate of impact duration is available. HoweY('l' in the case of 

bounce back, the time scale is dependent on the compression of t he air, and hen("(' is 

longeI'. Since bounce back gives a longer duration the (>stinlated lnaximum pressures 

arc generally srnall(,L If the duration is too long the pressure-illlpulse approxirnatioll 

lW("()Ill('S kss appropriate. 
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Figure 2.25: Pressure-impulse contours without bounce back. 
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Figure 2.26: Pressure-impulse contours with bounce back. 

52 



0.8 

0.6 

0.4 

0.2 

- Normal bounce back 

... no bounce back 

O.O~~~~~~~~~~~~~~~~~~~~~~~LL~~~~ 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 

p 

Figure 2.27: Pressure impulse down the left hand wall. 
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2.5.2 Experimental comparison. 

In the next two sections we discuss the comparison of the 'bounce-back' Il10del 

with experiments. One problem which is discussed in Inore detail in section 2.;") ... 1, 

is that of the definition of pressure impulse when analysing pxperimental result~. 

In particular it is difficult to know which intprval of time we should integrate the 

pressure over to obtain an estimate of the pressure impulse from experilnent~. 

To analyse the data from Hattori and Arami (1992 and private COIl1Il1unication) 

a very simple analysis procedure was used. A simple isoceles triangular distribution 

of pressure against time was chosen. Hence the pressure impulse was calculated b~' 

lnultiplying the rise time (the time taken for the pressure to rise frOln zero to it~ 

first peak value) by the first peak in pressure. 

For the Edinburgh PIV data, the measurements are available, and so a Il10H' 

detailed analysis procedure could be applied and is d('scri bed in <let ail ill section 

2.5.4. 

2.5.3 Comparison with Hattori experiments. 

Hattori and Arami (1992 and private communication) carried out (lXperilnents to 

analyse the effect of entrained air. An estimate of the position of the bubble (values 

of a and b) and the velocity of the wan' was obtained from 'snapshots' frorn a vidpo 

taken of the experiments. Figure 2.28 shows a cOInparison of the pressure inlpuls(' 

down the wall obtained in these experiments with the pressure ilnpulse predicted b~' 

the Cooker and Peregrine 2D wall impact model and the 'bouncp back' Il1odel. The 

bubble position is denoted by a dark line. The 'bounce back' and 'no bounce back 

arc o\'('r and under predictions in comparison with some of the ('xperilnental data. 

The lnagnitude of the pressure iInpulse is predicted n\asonabl~' well. but t 11(' shape 

of the pressure-ilnpulse distribution is not reflect cd in the t hcol"etical \·alu('~. Tot al 

ilnpulse for th(\ 'boullcc hack' 1 no bounce back and Hattori <ia t a ar(' 1.7-16:'\ S/Ill. 

1.()7~Ns/In and 1.1-1~Ns/lll resp('div('l~·. So the 'bounce back' nlOdd is bettcr. The 



value of total impulse is predicted \Yell by using the' bounce back' method. whereas 

t he 'no bounce back method under predicts. 

The distribution of the pressure impulse down the ,vall for t he experimental data 

is quite an evenly spread distribution with a peak pressure lower than that predicted 

by the 'bounce back' model. Both these inadequacies of the nlodel can probably be 

explained by not having a very realistic boundar~' condition at the position of the 

bubble. The boundary condition is inadequate in at least two respects. The first is 

the assumption that the water is bounced back with the same yelocity \Yith \Yhich 

it began. It is likely that the velocity of bounce back is less than the incOIning 

velocity, which would make the peak in pressure smaller. Secondl~' in taking th(' 

boundary condition as being 8Pj8n = -2 at the position of the bubble, w(' hay(' 

taken no account of the shape of the bubble. \V(' have assumed a unifornl \'docity 

distribution and imposed the corresponding boundal'~' condition fiat on th(' wall. 

A more realistic boundary condition could b(' obtained by considering t h(' ydod ty 

distribution around the bubble after the impact to be normal to. for Inathematical 

simplicity, a semi-circle. This would soften the boundary condition and lead to ;1 

lllOre widely spread pressure-impulse distribution. HO\\,pycr, in rnost experinlents the 

velocity distribution is not measured, so it is difficult to obtain a good approximation 

of a non-uniform velocity distribution from experilnent, though a boulldal'~r-integral 

lllethod as used in section 3.S could be used. \Ve also note that in these experirnents 

the size of the transducers are approximately Inll in diarneter and the wave height 

is only about Scm, so one source of error could be that t h(' transducers are n()t 

localized enough. This together with the crude method of analysing the data Ineans 

that we ('ould be as Inuch as 30 % out when evaluating the pressure irnpulse frOIn 

the experimental data. 

2.5.4 Comparison with Edinburgh PIV experiments. 

Onc of the llwjor problclns wit h comparing experinl<'ntal dat a with t heoreticalrlloci­

(' Is, is tha t Oft('ll the infoflllCl t ion required for t h£' t h('orpt ical rnodel is difficult to 



0.06 

- Normal bounce back·. 

... no bounce back 
>. 0.04 

(m) x Hattori's experiments 

0.02 

o 10 

Hattori 

x 

20 

x 

x 

x 

x 

x 

30 40 

Figure 2.28: Pressure impulse along the left hand wall, for 'bounce back', 'no bounce 
back' and Hattori's experiments (1992). Error in the evaluation of pressure impulse 
from the experimental data could be as much as 30 % . 

56 



measure experimentally. In these theoretical models ""P need to feed in not only the 

height of the wave, and position of the air pocket at impact but also a measure of 

velocity at impact. Most experiments concentrate on the llwasurement of pressures. 

but no measurements of velocity are made. It is sometimes possible to nlake esti­

mates of the velocity of the wave if high speed video is available as we did for the 

Hattori and Arami experiments. 

A relatively new method of experimentally obtaining a y('locity profile for an 

impact is Particle Image Velocimetry (PIV). Oumeraci, Bruce, Klammer and Easson 

(1995) and Oumeraci, Partenscky, Klammer and Kortenhaus (1991) describe PlY 

measurements made at the University of Edinburgh. The measurements in these 

papers together with further data and an analysis program from Bruce (PriYatp 

communication) and Kortenhaus (Private communication) respectively are used in 

this chapter to further compare the 'bounce back'/ no 'bounce back' models with 

experimental data. PIV works by seeding the wave with till~' reflective particles 

which are then stroboscopically illuminated, i.e. subjecting the wave to flashes of 

light, interspersed with dark periods at a known frequency. At a particular time 

when the velocity profile is required a photograph with a long shutter speed is taken 

which includes at least two times when the wave is illuminated. Hence the velocity 

at a local point can be determined by looking at the sets of images. A velocity map 

can then be built up. 

We examine the data from a test where an impacting plunging breaker is wdl 

developed, and which traps a large pocket of air and an air-water mixture. FrOln 

Figure B-5 of Oumeraci, Partenscky, Klammer and Kortenhaus (1997) (reproduced 

in figure 2.29 by using the analysis program), a plot of horizontal force against tillie. 

we rnake a choice of the period of integration for the calculation of the pressun' 

irnpulse. The choice of start time is when the force graph cuts the axis: tb = 8.07 

seconds (the start of the rise in force). The choice of where to integrate up to 

is ('OlIIplex. Firstl~". w(' must consider for what lengt h of tilIH' prcssur<,-iIllpulse 

(,Cliculat iOlls ar<' ,,;did for. \Y<, can llS(' pressllre-irnplllse caIeulat ions OIlI~" if IIf » 



UU x , U is the velocit~·. That is the ratio of the nonlinear term to the au/at tenn. 

(O(b.tU/ L) )), is small. So we require '::::'t « L/e. In this particular experiment 

we have a velocity (U) of 1.3m/s (see later) ~ and a length (height of the ,yater at 

the wall at impact~ L) of 0.2m (see later), hence the time scale IllUSt be Ilmch less 

than 0.15s. So we choose to integrate up to ta = 8.16 s, which is the point where r he 

plot starts to flatten off a bit. This makes the duration of t h(' impact to be 0.09s, 

which is about as large as we can make it before our assuIllptions become really 

questionable. 

From Figure B-1 (c) of Oumeraci, Partenscky, Klammer and Kortenhaus (1991). 

reproduced in figure 2.30, which is a profile of the wayp a short tiIHe before impact. 

we estimate that the height of the wave is 0.235rH, and the position of t he top and 

bottom of the bubble are 0.194m, and 0.073m respecti\'el~' (the height of the wall is 

0.316m). 

We also need an estimate of the velocity of the wan'. Using figures 6 and, frOIIl 

Oumeraci, Bruce, Klammer and Easson, we s('e that (height)/(watel" depth at the 

wall) of the underside of the jet from the plunging breaker is appr()Xilllatd~' 1.4. 

Here the horizontal velocity does not change much in time and can be estilllatpd as 

1.3m/s. Feeding these into the 'bounce back' and Cooker and Peregrine rHodel \\'(' 

obtain the plots shown in figure 2.31. 

Here it is clear that the profile is reasonably t he same shapp, but the theoretical 

predictions have the maximum pressure impulse too far down the wall. The Cook<T 

and Peregrine model under predicts the pressure impulse and the 'bounce back 1 

over predicts it. As Inentioned in the analysis of Hattori's experiIllental YahH's, 

the 'bounce back' model produces values of pressure impulse which are too high 

\)('cans(' we assume that the bubble bounces back with the opposite of the incident 

Y('locity cornponent normal to the wall. A more realistic approach is t() consider t IH' 

bu bble bouncing back with a cosine yelocit~· profile, i.e. that t hpI'(' is IlO 'bOllW'(' 

back' at the pdg('s of the bubble and the lllaxiIlnlIIl 'bOUllC(, back' is at the ("(llltn' of 
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Figure 2.29: Horizontal force on the wall, for impact of a plunging breaker trapping a 
large air pocket. Edinburgh PlV data. (Plotted using analysis program Kortenhaus 
(private communication)) 
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Figure 2.30: Profile of a wave used in Edinburgh PI\' tests, trapping a large air 
bubble at a time just before impact, from Oumeraci, Part(,llscky, Klanuner and 
Kortenhaus (1997). 

X 
- bounce back 

... no bounce back 

X PIV data 
0.2 

0.1 . X 

X 

o 50 100 150 200 250 300 

Fip;ure 2.31: Pressure iInpulse on the walL for impact of a plunging breaker trapping 
a Lll'g(' air po('k<'t 
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the bubble. This is similar to considering the bubble as being cylindrical and just 

'bouncing back' with the component of the radial velocity (of the bubble) in the 

direction normal to the wall. This gives a slightly better prediction of the pressure 

impulse as shown in figure 2.32. 

x Large air bubble:p10/26059420 
0.3~~~~~~~,-~~~~~~~~~~~ 

- bounce back with cos 
... no bounce back 

x X PlV data 

0.2 

>-

(m) 

0.1 . x 

x 

o 50 100 150 200 250 

Figure 2.32: Pressure impulse on the wall, for impact of a plunging breaker trapping 
a large air pocket 

However, we still have two further adjustments to our model. Firstly, the 'snap 

shot' picture from which we estimated the position of the bubble and height of 

the wave is at a time before the actual impact, on examination of a video of the 

experiments it is clear that the top of the wave drops a few centimetres, and the 

bubble moves up and decreases in size slightly before it impacts. Hence a better 

estimation for the height of the wave, bottom and top of the bubble are O.195m, 

O.08m and O.17m respectively. Using these values we obtain figure 2.33. However, 

the pressure impulse from the experimental data is much larger than both theoretical 
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Figure 2.33: Pressure impulse on the wall, for impact of a plunging breaker trapping 
a large air pocket 
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predictions. This means we require one more st age of analysis. Figure :2 .34 is a plot 

of the pressure from the transducers on the benn in front of the yertical structure. 

Here channel 6 is the reading of the pressure transducer alnlost at the leyel of the 

berm, at the wall, and channel 1 is at the edge of the bernl furthest away fom 

the wall. Channels 2-5 are on the berm in between 1 and 6. The distance of the 

transducers 6 to 1, from the wall, are O.OOOm, 0.120m. 0.240m, 0.350In, 0.516111 and 

0.662m respectively. If we look at the pressure plots we can see that often the il11pact 

pressure peak occurs on top of a background pressure. \ \ Te now exanline figure 2.1 

specifically to look at the reflective pressures. The pressure-ilnpulse model \ye llS(' in 

this chapter takes no account of gravity. The second peak in the profile. the reflectin' 

pressure, is caused by the wave motion of the water being accelerated/decelerated 

by the wall. So, when we compare our theoretical model wit h experilnent al results 

we should subtract off a profile that the reflective preSSllres would haye if there were 

no high peak impact pressure distribution on top of this. The Inost accurate wa~' of 

doing this would be to reflect the shape of the reflective pressure peak in the local 

minimum at about 8.325s to give the reflective pressure distribution below the high 

pressure peak caused by impact. However this is complex, and would be difficult 

to do for large amounts of data. Hence we approxilnate this 'background' pressure 

caused by gravity as a triangular or trapezoidal distribution and subtract this off 

our calculation of pressure impulse. If at t=8.07s the pressure plot is below zero 

then a triangular shape is subtracted off, as shown in figure 2.35. If the pressure 

plot is above zero at t=8.07s, then we subtract off a trapezoidal shape as ShOWIl 

in figure 2.36. This makes the procedure for calculating the 'background pressure' 

silnple and therefore could be applied to large alnounts of data. This is based on a 

suggestion in Walkden, Hewson and Bullock (1997). 

Figure 2.37 shows the pressure ilnpulse on the wall for the ilnpact of a plunging 

br<'Clker trapping a large air pocket, for the two theoretical Illodels and the PIV dat a. 

when' the PI\' da t a has had the ba(,kground pressure n'IllOved. 

The distribution prpdiction is far frOlll perfect but adequa t ('. TIl{' pressllres on 
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Figure 2.3-1: Pressure against time for transducers on the berm with impact of a 
plunging breaker trapping a large air pocket. Edinburgh PI\' data. (Plotted using 
anal~'sis prograIIl Kort()nhaus ( pri\'atr communication)) 
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Figure'2.35: Pressure against time for transducer 6 (almost at the base of the wall), 
showing the triangular background pressure to be removed. (Edinburgh PlV data) 
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Figure 2.36: Pressure against time for transducer 5 (on the berm), showing the 
trapezoidal background pressure to be removed. (Edinburgh PlY data) 
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Figure 2.37: Pressure impulse on the wall, for impact of a plunging breaker trapping 
a large air pocket 
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the berm are reasonably predicted using this model, as shown in figure 2.38. 
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Figure 2.38: Pressure impulse along the berm, for impact of a plunging breaker 
trapping a large air pocket 

2.5.5 Experimental conclusions. 

The 'bounce back' model could not predict the distribution of the pressure impulse 

down the wall for the Hattori and Arami experiments. However the total impulse 

could be quite accurately predicted. Two reasons for the inadequacy of the pre­

diction of the pressure-impulse distribution could be the simple way in which the 

pressure impulse was calculated from the experimental data, and also the difficulties 

in estimating the velocity of the wave and the position and size of the air bubble. 

The Edinburgh PIV data compared well with the 'bounce back' model which also 

predicted the distribution of pressure impulse along the berm well. In particular 

the cosine distribution for the velocity seemed most appropriat('. The preSSUH' 
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impulse was calculated by integrating from the st art in the rise in force, to t he hr~t 

'ftat~ part of the force graph after the peak keeping within the time lirnit within 

which pressure-impulse theory is ,"alid. A triangular (or trapezoidal) distribution 

of pressure was subtracted off the pressure impulse so as to rernoye the effect of a 

background pressure. 

Theoretical work on the prediction of pressures, forces or pressure irnpulse for 

impacts with large air pockets, where the air bubble is taken account of is yery 

scarce. With the exception of the work carried out by Topliss (199-1). Rarnkema 

(1978) and Bagnold (1939), virtually no theoretical work exists for the prediction 

of pressure impulse for impact on a wall with any sort of model for the trapped air. 

Our model, predicts the distribution of the pressure impulse to within about -10 % . 

Although far from perfect these predictions are at least a start. The prediction of 

the total impulse (as demonstrated with the Hattori and Arami data, section :2.;:).3) 

is much better. 

There are many difficulties in building into a model of impact the effect of the 

pocket of air. The biggest is that of the choice of boundary condition at the position 

of the air pocket. Ideally the shape of the bubble should be taken into account. \ \"e 

only made a very simple approximation to this by using a cosine distribution for 

the 'bounce back' velocity. If we imposed boundary conditions on the surface of 

the bubble (assuming the bubble has the same shape before and after bounce-back) 

then the problem solution domain becomes more complicated. This model IIla~" be 

(\xt<'IHied to allow for this, using for exalIlple. boundary-integral methods. AnotllPr 

problem is that even if we can allow for the shape of the bubble, it is difficult to 

know what boundary condition we should irnpose on it. The pressure on the Imbble 

boundary rnust be ow' constant before and another after impact but it is not dear 

wha t the change in this ('Olist ant should be, or how to ('stilIlate it. This problelll 

n('(\ds further inYestigation, 

Illa('('uraci('s ill our ability to estiruatc paralIlPters sHch as the y{'l()city, way<, 
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height and bubble position (PIV 'snapshots: are not taken at impact but a sh()rt 

time before) are also a source of error. This is because PI\' analysis is difficult at 

the time of impact due to the air entrainment which occurs. 

2.6 Impact on cylinders. 

Although the study of wave impact has mainly concentrated on yertical wall or 

breakwater structures it is also useful to study impacts on other geOInetrical shapes. 

In particular we consider impact on a circular cylinder, representing an oil rig leg, 

a pile, or the circular head of a breakwater. 

Many experimental and theoretical studies have been carried out for impacts on 

cylinders. In particular most have focused on non-breaking wan's. HowcH'r, Honda 

and Mitsuyasu (1974) carried out an experimental investigation into waH' forccs of 

breaking waves impacting on a vertical cylinder on a sloping beach. The effect of 

varying the position of the cylinder on the wave forces was exalnined. Relations 

between the wave force and the relative depth of the water at the cylinder, the deep 

water steepness of the wave and the beach slope wen' found. Good predictions of 

the wave forces for the cylinder in deep water were found, but not for shallow water. 

Further experimental investigations were carried out including Dalton and Nash 

(1976), Wiegel (1982) and Apelt and Piorewiz (198,). Dalton and Nash concluded 

that further study of elements in offshore platforms \vhich are in the splash zone 

was necessary, as the forces/pressures which were involved were significant enough 

to cause damage. Wiegel presents a method for analysing the forces exerted by 

breaking waves on a circular pile. They comment on the difficulties of predicting 

the forces on the cylinder as Morison's equation is often used which is for prediction 

of W(1\'(' forces due to non-breaking wayes whereas. for example, plunging breakers 

ill"{' known to giH' IIllH'h larger forces. hnproVCInents on this Blodel wer<' thought 

to be difficult to <whiCH' due to the iln pact forc(,s lwing of such short d llra hon t ha t 

the cqUiPlllellt of the t illlC was not sufficicntly good to deal with this. Apelt and 
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Piorewicz, using their own and previous experiments~ found that the Inaximum force 

for a breaking wave on a cylinder is dependent on the bottonl slope. diameter to 

height ratio of the cylinder, and the wave steepness. The~' sUInmarized the existing 

papers on impact forces on cylinders and comment that very little research has been 

carried out for breaking waves on cylinders. 

Experimentalists have focused recently on looking at breaking waves. rather 

than non-breaking waves, impacting on vertical cylinders. Zhou, Chan and :\Ielville 

(1991) undertook laboratory measurements to obtain pressure distributions on sur­

face piercing vertical cylinders. They looked at ensemble an'l'ages of the pressure­

time histories and also looked at pressure plots round t he ('~·linder. They COlIlnlellt 

that the extrapolation from present laboratory scale to pr()t()t~'pe for the structural 

response to wave impact may be achieved by using pressure-impulse theory. 

The problem of scaling was further examined by Chaplin, Created, Flintam and 

Skyner (1992). Three widely different scales were used for the loading experienced 

by a vertical cylinder in breaking and steep non-breaking wan's. The results ob­

tained for the loading on the cylinders were found to be reasollabl\' consistent with 

the use of Froude Scaling (see Coda (1985) for details). The usual method for pre­

dicting loads (Morison's equation) was found to be inadequate in the splash zone 

of breaking waves. Extreme loading associated with severe particle velocities and 

accelerations were experienced by structural members in the splash zone of break­

ing waves. High impact pressures of short duration were again experienced when 

a melilber underwent rapid submergence by fast flowing water showing that it is 

appropriate to use pressure-impulse theory for this iInpact probleIn. 

2.6.1 Pressure-impulse method. 

\ Y<, now consider the pressure iInpulse of a wave inlpacting on a c~'lindrical st rllcturp 

ill a silnilar lIlanller to the Inethod llsed for ilnpacts OIl ,'prtical walls. Ideall.\' W(' 

would consider a wave rising up out of the nlain bod~' of t}l(' \\'ater and ilnpactillp; 

OIl a ('~·lind(\r. or a breaking wm'e jd fr()nt iIllpading on tIl{' ('~'lilldpr. H()\\'('V('L for 
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simplicity we consider a cylinder with water surrounding it. and inlpact occurring 

on a patch of the cylinder just below water level as shown in figure 2.39. 

As previously mentioned, we can simplify the shape of the free surface without 

too much effect on the solution of the impact problem. Hence, we take the shape of 

water surface impact on a cylinder to be a horizontal free surface. Once the contollr~ 

of pressure impulse are plotted for the impact a more realistic free surface rnay be 

taken by using any of the lines of constant pressure impulse. 

2.6.2 Impact on a cylinder just below water level. 

U sing boundary conditions described in section 2.:2.:? we begin b~' examining the 

case of an infinite body of water with the impact on a patch of the ('~'linder jll~t 

below the water level. This is similar to the 3D patch on a \yall ('x(llllple of section 

2.3.2. So we need to solve Laplace's equation in c~Tlindrical co-ordinates. (giY(,1l b~' 

(T, 'ljJ, z) , where r is in the radial direction, 'ljJ is the angle round the c~'linder and z 

is the vertical position) in the body of water. We take our length scale L to be the 

radius of the cylinder. The patch is taken to be the area - {3 < '~) < /3 1 -l < z < 0 

on the cylinder at radius T = 1. On this patch of the cylinder the impact occurs and 

we require ap / aT = - cos 'ljJ, corresponding to unit velocity in the - x direction. 

On the rest of the cylinder no impact occurs so ap I aT = O. At the free surface 

p = 0, and along the bottom rigid boundary apia:: = O. \Ve must also hayp that 

p ~ 0 away from the cylinder. The boundary conditions are summarized in figure 

:2.39. 

Laplace's equation in cylindrical co-ordinates is given b~': 

(2.51) 

\Ve sol\"{, this by using separation of yariables. Let P(r, 'ljJ, z) z ( :: ) \lJ ( u: ) R ( r) . 

The problenl we are soh'ing has finite depth so \\"{' require a periodic condition in 

the :: direction. Hence the equations \\"{' Heed to soly(' are: 

-.) 
1-



P=O 

h 
o P / or = - cos 'l/J 

oP/or = 0 
oP/oz = 0 

Figure 2.39: Impact on a cylinder below water level. 

0
2 
RIo R (2 p2 ) -+--- q +- R=O, or2 r or r2 

(2.52) 

(2.53) 

(2.54) 

where p and q are to be found by imposing the boundary conditions. The boundary 

conditions at the base and free surface imply that solutions to equation (2.52) are 

given by Z = Asin(qz) where A is a constant and q = (n + 1/2)7r/h. We wish 

our solution to be symmetric about 'l/J = 0 so solving equation (2.53) gives W = 

B cos (p'l/J) where p is an integer (as we require P to be periodic in 'l/J), and B is a 

constant. Finally solution of equation (2.54) gives R = CI\p(qr) + Dlp(qr) where 

I\p and Ip are modified Bessel functions. Using the condition that P ---t 0 as w(' 

move away from the impact patch we obtain R = C I\"p(qr). where again C is a 
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constant. 

So the Fourier-Bessel series is found to be : 

m,n 

Imposing the boundary condition on the cylinder, T = 1 ~ ,,'e obtain expressions for 

the Amn: 

A - 2[1 - cos(qnl)] [sin(m + 1)/3 sin(l - Tn}3] 
mn- +-----.......:..-

qn 2 K:n(qn)h7r m + 1 1 - m . 

unless m = 0 when Amn is half the above expression. 

However, great care is needed when evaluating the sum as convergence is poor. 

We truncate the series at n = Nand m = !II. As qn gets large, !\'-:n(qn) ---1 0, 

so II K:n(qn) ~ ()(), whereas Km(qn) ---1 O. This makes the terms in the stUll 

difficult to evaluate. If we take a Fourier series, f(t), and truncate it to .LV terms 

to give fN(t) , and average it over the interval (t-7rIN, t+7rrV) then extra factors 

appear, Convergence is aided by using these factors called Lanczos' factors. I.e. 

multiplying each term in the series in equation (2.55) by sin(qn7rlqN)/(qn7rlqN) and 

sin( m7r 1M) I (m7r 1M) (except when m = 0, when only the first factor is needed) 

(see Hamming 1973). 

Figures 2.40 and 2.41 show the distribution of pressure inlpulse on a cylinder 

(unwrapped) with the impact on half (i.e. /3 = 7r 12) of the top 10 % and half of 

the full water depth respectively. Total impulse for figures 2.~() and 2.41 are 1.010 

and 23.370 respectively. Increasing the impact region greatly increases the pressure 

iIllpulse and hence the total impulse on the cylinder. 

The maximum pressure for this impact occurs at roughly the same place as for 

impact on a wall. If we examine pressure impulse along the line 'ljJ = 0 for this case 

and for the two-diIllensional impact on a wall (Cooker and Peregrine 1990 b L we 

call see frOlIl figure 2 .~2 that the pressure impulse is less for t he c~'linder t hall for 

the WillI. This is due to the conyex threc-diIllensional nature of t he ('~·linder. 

The pressure-illlpuisc coutours. as we would expect. take the fonn of squashed <'1-

lips(ls. with the higlH'st pressures Oil the ilnpact regioll its('lf. The pn'ssun' illlpuis(' 
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Figure 2.40: Distribution of pressure impulse on a cylinder (unwrapped) with the 
wa\'(' irnpact on half (i.e. (3 = 7r /2) of the top 10 % of the water depth. Total 
iIllpulse 1.010. 
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Figure 2.41: Distribution of pressure impulse on a cylinder (unwrapped) with the 
wave impact on the front half (i.e. f3 = 7r /2) of the cylinder. Total impulse 23.370 
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reduces in value very rapidly going down the cylinder. At a distance of approxi­

mately 3 down a cylinder of depth 10, with impact on the top 10%, the pressure 

impulse is less than 5% of its peak value. Note that the impact region is only on 

the front 50 % of the cylinder and in the region at the back of the cylinder where 

no impact takes place there is a region of negative pressure impulse. This seems to 

happen regardless of the percentage of impact area, however the negative pressures 

are substantially bigger for the case of 10% impact when compared to 100% im­

pact. If we examine figure 2.40 we can see that the pressure-impulse contours are 

very close together, hence we deduce there is a high pressure-impulse gradient. ThE' 

negative values at z = -0.5 at the back of the cylinder for the top 10% and full 

impact case are -0.048 and -0.033 respectively. Hence in the 10% impact case the 

pressure impulse drops through zero quite quickly as we go round the cylinder and 

continues to drop to significant negative values. For the full impact case the drop 

off in pressure impulse is much more gentle hence only very small negative values 

are present. 

It is not thought that these negative values are caused by not taking enough terms 

in the Fourier-Bessel series. If we consider, as in table 2.1, the case with impact on 

the top 10%, the maximum negative value of P at position z = -0.59, 'ljJ = -7r , 

increases in magnitude as more terms are taken. In addition, the difference in the 

terms is very small and reduces as the number of terms taken increases. The negative 

values may be a symptom of the particular mathematical model used. 

n = 45 n = 50 n = 55 n = 60 
m= 16 -0.0487228 -0.0489856 -0.0492012 -0.0493464 
m = 17 -0.0487713 -0.0490343 -0.0492501 -0.0493955 
m= 18 -0.0488126 -0.0490757 -0.0492917 -0.0494372 

Table 2.1: Values of P, at 'ljJ = -7r, Z = -0.59 (position of largest negatin' yalue of 
P) for impact on a patch of a cylinder with the wave impact on half (i.e..) . 7r /2) 
of the top 10 % of the water depth. Values of m and n used for truncatIOn an' 

gIven. 
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To begin with we assumed that the free surface was horizontal. The solution for 

the problem with the contour of constant pressure impulse taken as the free surface 

can be found by subtracting off that constant from the original solution. \Ye also 

note that we could take the zero pressure-impulse contour (particularly shown in 

figure 2.40) as a more realistic wave free-surface. By taking a different contour as 

the free surface the change in load can be found by multiplying the value of the 

pressure-impulse contour by the cylinder surface area. 

P along the centre line 
0l~~"~'~' ~"l-' ~~~~~~~~~~~~~~======~==~~~ ...... _------ -------. ..... -....... . 

-2 

N 

-10~:~~~~~~~~~~~~ww~~~~~~~~~~~~ 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 

Figure 2.42: P along the centre line 'ljJ = 0, against z. .- down. the wall (Cooker 
and Peregrine (1990b) model) , ... down the cylinder. The Impact IS on the top 10% 

of the water depth. 
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2.6.3 Impact on a cylinder by a wedge of water. 

When considering wave impact on a cylinder the impact region is often above the 

level of the main body of the water where the wa\'e hiis risen up to impact on the 

cylinder. We begin by looking at a wedge (height (l, impact between l' = ±3) of 

water impacting on the cylinder with a rigid boundary at the base. The length scale 

L is again the radius of the cylinder. The rigid boundar~' is required, for the present. 

to make the mathematical model simpler. The water is trapped in the wedge. It 

is hoped that eventually this model could be extended to han-' a bod~' of watpr 

beneath the wedge rather than the rigid boundary, to make the model similar to a 

wave rising up and hitting the cylinder. We take c~'lindrical co-ordinates silnilarly 

to the previous cylinder model. The wedge of water must han' a free surface along 

the top and edges of the wedge, where we take P = O. \\'here the impact region 

occurs we require ap / or = - cos 'l/J , where no impact occurs oP / Dr = O,and along 

the base we take ap / an = 0, where n is the direction normal to the base. Again we 

solve Laplace's equation to obtain a Fourier-Bessel series for t he pressure ilnpulse. 

The problem to be solved is shown in figure 2.43. \Ve need to solve equations (2.S:2), 

(2.53) and (2.54) with the boundary conditions for this new problem. 

Again in the z direction the solution must be periodic. IInposing the conditions 

from the base and the free surface gives Z = A cos(qz) , where q = (n + 1/2)7r /a. 

In the radial direction, as before, R = BI\p(qr) because P ---+ 0 as r ---+ 00. \Ve 

require the solution to be periodic in 'l/J and that P = 0 at 'l/J = ±/:i. Hence 

W = C cos(p'l/J) , where p = (n + 1/2)7r / f3. So the solution to the impact of a wedge 

of water on a cylinder is: 

m,n 

with the Bmll gin'Il b~': 

('x('('pt ill the case whell Pm = 1 , then thp squiirp bracket ill the above eXIH'('ssioll is 

-C) 
I L 



8P/8T = - cos 
P=O-~---

Figure 2.43: Impact on a cylinder of a wedge of water. 



l~ sin 2!3 +!3J instead. 

Figure 2.44 shows the distribution of pressure impulse on a cylinder (unwrapped) 

with the wave impact from a plane wave's front for a wedge of semi-infinite extent 

(a = 1). However, this model has a solid boundary at the base. If we were to take 

1.0 

0.8 

0.6 

Z 0.4 
o 

0.2 o 
""" 

0.0 ~I 

-2 -1 a 2 

Angle in radians 

Figure 2.44: Distribution of pressure impulse on a cylinder (unwrapped ) with the 
wave impact from a wedge of water. The impact region is between the two dark 
lines. !3 = 7r /2 

the more realistic case of deep water the pressures would be somewhat lower than in 

this example. Figure 2.45 is a plot of the pressure impulse down the centre line on 

the cylinder for the 'wedge' of water impact and patch impact on a cylinder. The 

'wedge' impact as expected has a lower pressure impulse, this is due to the imposition 

of P = a along the edges of the wedge. The difference is most noticeable towards 

the bottom of the cylinder where the difference between the two cases is about 15 % . 

2.6.4 Comparisons. 

These results can be compared in two ways. The width of the patch on which the 

impact occurs as seen by the approaching wave equals the diameter of the cylinder. 

If we consider the 2D model of impact on a wall we can compare this with the two 

cases described above if we let the impact on the wall be over the same length. The 

total impulse then for impact on a wall (2D impact on a wall of length 2. height 

10, impact on the top 10 %) is 2.574, on a cylinder (of diameter 2. again height 10, 
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Figure 2.45: P along the centre line 'ljJ = 0, against z. - for impact on a patch 
below water level of a cylinder , .. .for impact of a wedge of water on a cylinder. The 
impact is on the full depth of the water. 
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and impact on the top 10 %) it is 1.010 when the impact is surrounded by water 

and 0.604 for the 'wedge' of angle 7r (of diameter 2. height 1. iInpact oYer the full 

depth) bounded below by a fixed bed. As expected the total impulse is largest for a 

wall as there are no three-dimensional effects to attenuate the high pressures. The 

impact of the 'wedge' of water has the least total impulse due to enforcing P = 0 

down the edges of the wedge. Finally we consider the 'patch' iInpact on a wall. the 

total impulse for this for a patch of width 2, height 1, on a wall of height 10 (where 

we sum the pressure impulse over width 2) is 1.242. As again we expected the total 

impulse is not as much as for the 2D impact on a wall as the pressure iInpulse on the 

patch model only reaches the peak 2D values at the centre of the patch. The patch 

model, however, has a greater total impulse when cornpared with both the c~'linder 

impacts, showing that the effect of having a cylindrical shape for the ilnpact is \"(T~' 

strong. 

Most of the horizontal component of the mornentum is lost fronl a region closp 

to the wall during impact. The significant thickness of the fluid (i.e. the depth oY('r 

which the momentum is lost) can be calculated b~' equating the total impulse on the 

impact region with the momentum lost from the yolume of water of thickness Lm 

with the impact velocity. The momentum length for 2D impact on a wall is 2.574. 

substantially larger than the value of 1.242 for ilnpact on just a patch of wall and 

0.980 for the impact on a patch of cylinder. (These exaulples arc all having depth of 

water 10, impact on the top 10%, and width 2, so that the projected area of ilnpact 

is the same for each.) As expected the cylinder is affected b~' less of t he fluid sinc(' 

lllOst of the momentum is related to oblique impact. 

2.6.5 Conclusions. 

\ Yan' iInpad on a ycrtical ('~'linder has bccn anal~'sed for two simple cas('s. .\s 

('Xl H'deci the Inode! shows t ha t thc resulting prcssure iIll pulse is lower for iIll pact on 

,1 cdindpr than 011 a wall. The peak pressure on the cylinder occurs at approxiIlllltd~' 

the sallle distance (rdatiY(' to the height of thp patch) below the fn'p surfacE' as for 



"ill» ,"'- o~o TITI 

impact on a wall. 

For impact on a patch on the cylinder a negative pressure impulse is experienced 

at the opposite side of the cylinder to the impact. It is a possibility that it is a fault 

in the mathematical model chosen for the problem. 

8.J 

I .. l.; 



Chapter 3 

Impact under a deck. 

3.1 Introduction. 

Many coastal structures and natural coasts have openings, overhangs and projections 

which are open to impact by incident water waves. The sudden impact of a wan' on 

a rigid surface leads to a rapid rise of pressure and consequent violent water motions. 

We consider the wave impact on the underside of a projecting surface. The eXaIuple 

discussed is that of a flat deck close to the mean water level. A pressure-iIIlpulse 

approach is used, which has the advantage that given a solution for one problem 

it is possible to select pressure-impulse contours which give the solution to related 

problems. The pressure gradient on the underside of the deck is especiall~" strong 

near the seaward edge of the impact region, so this is a region where ,Hl\ projections 

on the structure's surface may be subject to strong forces. On the other hand the 

lllaximum pressure impulse is at the landward end of the impact zone, it is here that 

the deck is most likely to be 'blown' upward. 

There are a number of circumstances in which the effect of the upward ilnpact of 

a wave beneath a rigid horizontal surface needs to be estiInated. For offshore oil-rigs 

the lack of good estimates of such upward impacts leads to designs ,,"here thl' Blain 

pLltfonn of rigs is built to be out of reach of 'green water'. This Illa~" not be all 

option for SOlIle coast al st l'uctul'es, includillg piers and jetti('s. and temporary works 

ill illt<'r-tidal zones. Hpre w(' pn'S('Ilt pressure-impulse calculations for an ilIlpact on 

a horizontal surfac(, ill fillite depth. For ('Oll\"('nienc(' we refer to thp rigid surfacp as 



a deck. 

3.2 Background. 

The study of a wave impacting on the underside of a deck is mathematically yery . , 

similar to the slamming of a body into a liquid. In the first casp it is the solid that is 

fixed and the liquid which is in motion and in the second case the other way round. 

Hence it is only the frame of reference which differs. 

Improvements in the design of sea-planes inspired much research in the area of 

ship-slamming, with early simple models given by Von Karman (1929) and \ragner 

(1932). Von Karman analysed the stresses which occur when a seaplane float impacts 

with the sea. He developed an impact formula for a wedge penetrating a liquid 

surface, by looking at conservation of momentum. The liquid is assumed to 1w 

incompressible. For the limiting case of a flat plate, Von Karnlan predicts pressures 

of infinite magnitude. Wagner adapted Von Karman's formulae to allow for a 'piling' 

up of the liquid along the sloping edges of the wedge. However, both of these 

approaches take no account of the initial air cushion which is present. 

Keldysh (1935) developed expressions for the total impulse for apIa t e dropping 

on finite depth. However no expression for the pressure-impulse distribution on or 

below the plate was given. Similarly an expression for the total impulse on a deck. 

with only a very shallow body of water below it, was given in Veklich and T\Ial~'kh 

(1984), but again no distribution was given. 

Further experiments in the area of slamnling were carried out by \'prhagen 

(1967), who also introduced a more theoretical approach. \rhen a plate ilnpacts 

on a body of water a la~'('l' of air becomes trapped. \'erhagen assulned that this 

layer of trapped air is released sideways as the ilnpact occurs. and an equation for 

the r('lease of the air was dPYeloped. The model treats the water as incOInpressibe 

alld lISPS the Inethocl of characteristics to soh'(' the equations. The IIlOdel predicts tlH' 

shape and Illagnitude of the pressure-tilne histOl'Y of the iIllpact quite sllc('Pssfllll~' 
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and focuses on prediction of maximum impact pressures instead of the distribution 

of the pressure along the plate. A model for a flat plate dropping yertically onto a 

body of water, dealing mainly with the trapped air, was presented in \Yhitman and 

Pancione (1973). They built up a model of a plate falling within a 'leaky' cylinder. 

and considered this as a piston. Plots of pressure change in terms of size of plate 

are shown, which compare well with experimental data. However, both Yerhagen 

(1967) and Whitman and Pancione (1973) only looked at the plate dropping onto 

infinite depth of water. 

Extensions of Von Karman's and Wagner's formulae have been developed, In 

particular by Cointe and Armand (1987) and Cointe (1989). The former being for 

vertical entry of a rigid cylinder (where the direction of motion is radial) into an 

incompressible inviscid fluid, with the formula differing from Von Karman's by just 

a wetting corrective term (similar to Wagner's). The second paper uses asymptotic 

expansions to extend the formulae for non-normal impact and initially curved free 

surfaces. Again these studies are for infinite depth of water. Korobkin and Pukna­

chov (1988) give a good review of the numerical and analytical methods which have 

been used to look at the initial stage of impact of solid bodies with water. 

When two equal progressive waves travel in opposite directions they can produce 

a standing wave, and the wave height of this standing wave is, according to linear 

theory, twice the height of each progressive wave. Hence standing waves can occur at 

a wall where the original wave and its reflection interact. The peak in the standing 

wave can only be sustained if the depth of water is twice the height of the original 

progressive wave. So if this condition is satisfied then it is possible to have a standing 

wave which occurs at a wall which impacts upwards onto an overhang. Furudoi and 

Murota (1966) and the later study of Ramkema (1978) both examined the uplift 

forces caused by standing waves impacting upwards on protrusions. Furudoi and 

Murota developed empirical formulae for the uplift forces in terms of the water depth 

and the standing wave properties. Ramkema extended Bagnold's piston model for 

impacts (as discussed in chapter 2), to include adiabatic and isotlH'rmal compression 
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of the air cushion. The model allowed for the compression of the liquid and predicted 

the spatial pressure distribution. He also reviewed "omoe impact and ship-slaIllIning 

literature. 

French (1969) performed experiments to in,opstigate uplift pressures on a plat­

form. This was carried out by having a platform fixed a short distance abon' the 

still water level, and sending waves along to impact first on the edge of the plate and 

then to continue to travel under the plate. The peak pressures and t he reflect i H"' 

pressures were found to be related to the wave celerit~o under the platfonn, and a 

simple theoretical formula was developed. Negative pressures were also observed as 

the wave became detached from the platform. French gin's a re,oiew of previous 

similar experimental investigations. Following on from French's and other exper­

imental studies, Lai and Lee (1989) developed a Galerkin finite element rnethocl, 

for this problem, the predictions of which compare well with experiment. HOW('HT. 

these studies are for a wave travelling horizontally, with the top of the waH' a bo,O(, 

the height of the deck, and hence are not ('oIllparable with our theoretical results. 

When designing marine structures, they are often built out of reach of potentiall~' 

destructive waves, however this is expensive, especiall~o if the structure could be built 

to withstand some wave impacts more cheaply than to build it high enough to 1)(, 

away from the wave impact region. A study by Dalton and l\ash (1976) looked at 

irnpacts on a cylindrical meInber and concluded that it is possible to scale rnodel 

tests to give predictions for full scale impacts. Massel, Oleskiewicz, and Trapp(1978) 

studied the impact wave forces on a horizontal plate, but give no pressure-time plots. 

They suggested that both the peak and slowly varying pressures are functions of the 

U rsell nUInber. These experimental studies all treat the impact as though it were 

two-diInensional, ignoring end effects due to the finite width of the plate. Shih awl 

:-\nastasiou (1992) looked experillH'ntally at the ,o('rticalloading on a platforIn. alld 

in particular ('xiullined the ('ffed of the width of tIl(' plate, and seak effpds. Th('~' 

concluded that the platfonn width has no ('H'pct 011 tlIP irnpact PITSSUH'S. Ihp.\· also 

('oncluded that Froude's scaling law was inappropriate. Ho\\'('v('r tIl<' distributioll 



of duration and impulse characteristics could be well described by Rayleigh and 

exponential distributions respectively. Again t hough this was for a horizontal wave 

sirnilar to those studied in French (1969). 

Howison, Ockendon and Wilson (1991) carried out a theoretical exalnination of 

\Vav(~ impact of an impacting body nearly parallel to the undisturbed liquid sur­

face. They obtained explicit solutions for the two-dimensional case and a numerical 

algorithm for the three-dimensional case. 

Another theoretical method for estimating forces on the underside of a lnarine 

structure is given in Peregrine and Kalliadasis (1996). They looked at the filling 

up of a container or a confined region. The solution is found b~' looking at nlaSS 

and momentum conservation, and free-streamline theory. The flow invoh'cd is v('r~' 

similar in nature to that described in some of the more experilnental papers such as 

French (1969), where the wave impacts on the edge of a horizontal platf' and then 

travels under the plate. 

Takagi (1997) used a matched asymptotic expansion method to look at a three 

dimensional plate impacting on a body of water. The inlpact force is stronger when 

air becomes trapped between the plate and the water. This study is again for the 

infini te depth case. 

Finally, some recent experimental work described in Smith and Stansby (1991) 

looks at the vertical force on a plate in free flight impacting on a wave. Thev 

obtain a formula for the general slam coefficient by dilnensional analysis and physi('al 

reasoning. This experimental investigation is ver~' sinlilar to the model described in 

this thesis. However, in this thesis we assume that the deck is hit b~' a wave whose 

1I1Otion is primarily n\rtical at impact, but in the ('xperimental stud~' the plate 

drops at an angle on to the top of the wan', making comparison difficult. H('nc('. 

for the experilnental work the plate has both a horizont al and \'ert i('al ('olllpon('nt of 

vdocity, wherells in the lllOdd considered later the plate has Old~' a \'('rtical v<'io('it\"" 

It lll<l~'l)(' possible to tn'at th(' two velocity cOlllponents independently as the Illodel 



is for inviscid fluid. Further experiments are being undertaken by Staw·;])\· and it 

may be reasonable to use these as a comparison. 

3.3 Mathematical model. 

We now consider the specific case of impact of a bod!" of water upwards on to a deck. 

The geometrical simplifications we make may be seen in figure 3.l. The water is 

taken to be of finite depth CD = a, and to impact the horizontal deck BC of length 

L with an upward velocity V. The free surface not hitting the deck is taken to 

be flat, as BA, and to stretch to infinity. However, as indicated below alternatin' 

surface shapes are easily found by choosing different contours of pressure ilnpulse. 

The boundary conditions on CD given in figure 3.1 indicate that the problenl ('all 

be reflected in the vertical plane of CD, corresponding to impact on a horizontal 

surface of length 2L with a central plane of symmetry. 

c oP/oy = 1 
B 

P= 0 A 
~------------------

........................................................ >- . 

L .. 

oP/ox = 0 a \72p = 0 P-+O 

y 

D 
:1: oP/oy = 0 

E 

Figure 3.1: Irnpact under a deck: the problem to be solved. 

The boundary condition at the free surface is that the pressure must be constallt 

and continuous therefore P = O. At the walls and on the bed. the nornlal \·docit~· 

HUlst be zero before and after impact. therefore using equation (:2.3). up/an = O. 

where II is the nOrInal direction. As the water Ineets the deck Be, the \\"at('r 

has \"('rtical yel()('it~" \ r. which could 1)(' any function of :r. alld after iInpact th(' 

Wc\t(T has z(,ro Y('rtical yplocitY. TIH'refor('. again using ('quiltioll (:2.3), w(' hay(\ 
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fJP/fJn = V. For simplicity, we again choose ,. to be constant. \Ye make the 

problem dimensionless by choosing units for which ,. = 1 and L = 1 . 

We begin by considering the two extreme cases first. where the ratio of deck 

length to water depth is firstly ,"ery small and secondly ,"er~' large. \Ye then discuss 

and solve the more general case. 

3.4 Infinite depth solution. 

The problem of a wave hitting upwards under a deck jutting out frorll a ,,'all. is 

mathematically equivalent to a plate dropping onto a body of water and setting the 

water in motion. Also when considering solving Laplace's equation we can use the 

direct analogy with the velocity potential of irrotational flm\,. \ Ye tenlporaril~' t ab\ 

the origin to be at the centre of the plate, with :r along the plate. and .'J downwards 

perpendicular to the plate. If we consider the complex potential for a fiow past a 

plate then we just need a change of reference frame to find the complex potential of 

a moving plate in a stationary fluid. With a complex potential 'W = ¢ + i'~), then 

a¢ / ax = 0 on x = 0, and 8¢ / 8y = -1 along the plate. These are the conditions 

that are required by P, and so the lines of constant pressure impulse are gi\'ell b~' 

lines of constant ¢. The solution may be found in Lamb (1932. section 71), and in 

Milne-Thompson (1962, section 6.3), for a fiuid flowing past an ellipse. If we allow 

one of the semi-axes to shrink to zero then we ha\'(' a plate instead of an ellipse 

in the flow. Finally choosing the plate to be perpendicular to the fiow, the length 

of the plate to be 2, and the velocit~" -1. we get an expression for the cornplex 

potential of a uniform stream flowing past a plate: 

'W = vI - Z2. (1.1 ) 

where the origin is takell to be tIl(' centre of the plate. 

If w(' subtract the ('OlllpleX potelltial for a strealll frOlll t his expression \\'(\ ha\'(\ 

tlH' potClltial for a lllOvillg plate. As the velocity of th(' stn\Cllll is (0. -1. 0), \\'{' 
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must therefore subtract -IZ to get: 

w = iz + vI - Z2. (3.2) 

This solution is symmetric about the centre of the plate. This means that we can 

consider a line drawn perpendicular to the plate from the centre of the plate, to be 

a wall, bringing us back to the original problem of the water hitting a deck jutting 

out from a wall. Hence we have an expression for the pressure impulse: 

P = Re(iz + VI - Z2). (3.3) 

This is the infinite depth solution. Figure 3.2 shows contours of pressure impulse. 

The total impulse on the deck is 7r / 4, in dimensional terms 7r p V L / 4 . 

0.167 

.-
Q 

4 

o· 
,00 

-4 -2 0 2 4 

Figure 3.2: Infinite depth solution. Total impulse on deck (0,1) is 7r /4. 

3.5 Infinitely long deck. 

We next consider the other limiting case where the deck is infinite in length, or in 

our units a becomes small. As a becomes small the effect of the free surface on 

the solution under the deck becornes small. This means it is possible to soln' in 

that region by neglecting the condition at the free surface. \ r(' now return to the 
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co-ordinates used in figure 3.1. Hence we solve Laplace's equation on a strip where 

ap / ay = 1 along the top, ap / an = 0, where n is the normal direction~ along the 

left-hand edge and bottom. 

The solution is given by: 

1 
P = - [y2 _ X2] + K 

2a ' (3 . .1) 

where K is a constant which depends on the behaviour of P near x = 1.0, where 

this approximation fails. Figure 3.3 shows the case when a = 0.1, and K = 

(1/2a) - (a/2). This choice of K forces the pressure impulse to be zero at the edge 

of the deck. This is is probably too harsh a condition, leading to the prediction of 

the pressure impulse being too low. In practice the 'filling flow' solution of Peregrine 

Figure 3.3: Analytic solution when a is small. ( a = 0.1, K=4.95) 

and Kalliadasis (1996) may be more relevant to this case. 

3.6 More general solution. 

Consideration of the boundary conditions in Figure 3.1, or the solution (3.3) shows 

that at B there is a square root singularity. This singularity causes problems for 

many numerical solution methods. The singularity is due to the abrupt change in the 

boundary conditions due to the particular mathematical model chosen. However, 

one way to eliminate the problem of the singularity is to map the original prob­

lem using conformal maps as follows. First map to a half-space, then use another 

conformal map to perform a shift and stretch so that by using a final conformal 

map we can bend the problem back to a semi-infinite strip but with the boundar~' 

conditions shifted round to a convenient position, i.e. shift the boundary conditions 
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on the deck round to the vertical wall. The singularity is no longer a problem as it 

is contained within the complex map, and so no longer exists in the solution plane. 

That is, that the problem in the final plane which we actually solve has the change 

in boundary conditions at the corner and so is no problem to solve. 

Let the original plane in which the problem is posed be the z plane. The first 

map we need is w = u + iv = cosh(7rz/a). This gives the problem shown in figure 

3.4. As we only use conformal maps P continues to satisfy Laplace's equation 

throughout. 

\72p = 0 

- cosh ( 7r a ) -1 vi u. 1 
E I I -. I ~ 

ABC D E 

\J\""'-----..,, ________ A'----..........--," 
p=o oP _ 

ov 
a 

7r sinh( 7rX / a) 
oP = 0 ov 

Figure 3.4: The problem in the w -plane after the first complex map. 

ap/a~ = F(ry) 

p=o 
B A 

c 

·r····················································...... .... 

a 

D 

apIary = 0 

E 

p -+ 0 

Figure 3.5: The final problem to be solved in the (-plane, where F( ry) 
_ sin(7rry/a)/(M.Jb2 - 1) with b = [cos(7rry) - N] /A!. 

We then use a translation and magnification to shift B to -1 1 and C to 1. 

94 



The map required is h = I + ig = Mw + N where ~~f = 2/(cosh(7r fa) - 1) and 

N = M + 1. The last step is to map this problem back to the strip. The final map 

required is ( = f, + i1] = a COSh-l (h)/7r . This gives the problem as shown in figure 

3.5. We note here that F(1]) is zero at the two corners of the box so the square root 

singularity is eliminated. 

We solve Laplace's equation in this region by separation of variables. Let P = 

1(1])g(f,) , giving I" = -0.21 and gil = a 2g, where a is a constant. Solving for I, 

using the boundary condition that 1=0 at 1] = a, and al/aTJ = 0 at TJ = 0, gives 

I = A cos(anTJ) where an = (n+ 1/2)7r /a. We now solve for g, using the condition 

that P ~ 0 as f, ~ 00. This gives 9 = Re-ant:.. Hence we have an expression for 

the pressure impulse: 

(3.5) 
n 

Finally we use the condition that ap/af, = - sin(7r1]/a)/(Mv'b2 
- 1), where b = 

[cos ( 7r1]) - N] / M along f, = 0 to get expressions for the An· Using this condition 

we get: 

sin( 7rTJ / a) 
- ~ Anan cos(anTJ) = - M v'b2 - l' (3.6) 

The final step is to multiply both sides by cos( a m 1]) , and integrate along the line 

f, = 0 to get: 

__ 2_ fa ~ sin (7r1]/a) cos(amTJ) d 
Am - ama 10 M v'b2 _ 1 TJ· 

(3.7) 

Similar results can be found for any velocity distribution V = V(x) . 

3.7 Results and discussion. 

The integral in (3.7) is evaluated by using a NAG numerical routine, D01ARF. 

The positioning of the division by am in the expression for Am was found to be 
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important. For a < 0.5 the division by Q m was included in the integrand, but 

not for Q > 0.5. This 'cutoff' was chosen purely so that the numerical routine was 

able to evaluate the integral to an accuracy of 10-10 . For the cases of a = 0.5 and 

a = 2.0 taking thirty terms in the sum, gives an accuracy of -! and 12 decimal places 

respectively in P. The distribution of pressure impulse in the water beneath the 

deck is shown for water depth to deck length ratios of 2.0, 1.0 and 0.5 in figures 3.6, 

3.7 and 3.8 respectively. The values of the total impulse on the deck and on the wall 

beneath each deck are given in each caption. 

2. a ~""'..""" 

1.5 

1.0 

a 2 3 4 5 

Figure 3.6: Pressure-impulse contours with a = 2.0. Total pressure impulse on the 
deck and wall respectively are 0.81 and 1.12 

O.B 

0.6 

0.4 

0.2 

0.0 L....!-.....!.......I....:.....:.......:...:.....:.....:....:....:.....:-.:.......:........:._ ......... ___ ---:-
0.0 0.5 1.0 1.5 2.5 

Figure 3.7: Pressure-impulse contours with a = 1.0. Total pressure impulse on the 
deck and wall respectively are 0.92 and 0.87. 

In figures 3.6, 3,7, and 3.8 note the differing contour intervals, and the increasing 

impulse on the deck as the water depth a is decreased. The YaItH' of tot al iIllpulse 
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Figure 3.8: Pressure-impulse contours with a = 0.5. Total pressure impulse on the 
deck and wall respectively are 1.193 and 0.7. 

on the deck is given as a function of a in figure 3.9. This trend is for the iInpuls(' 

from impact of a given velocity and area to increase as the bod~r of iInpacting water 

becomes more confined. The same trend is described b~r Cooker and Peregrine 

(1995) for impact on an interior wall of a rectangular box and by Topliss (1994) 

for impact within a circular cylinder. Consideration of flow in the Inost confined 

circumstances, as a becomes small, leads us to the 'filling flows' (Peregrine and 

Kalliadasis, 1996). Further, an estimate of how the compressibilit~r of dispersed air 

bubbles, such as those entrained in waves during breaking, ma~r soften wave impact 

is given in Peregrine and Thais (1996). 

The results are in dimensionless units, for practical use the dimensional pressure 

iInpulse is needed; that is 

P*(x*, y*) = p1 r LP(Lx, Ly), (3.8) 

where * denotes only some dimensional quantities. \\Thilst p and L will generally be 

known, 1 r the vertical velocit~r of impact needs to be estimated. A simple lllet hod of 

('stimating 1 r is first to estimate how high a wave would be in the absence of the deck. 

Suppose it would have a height ~H abmre the deck level. In siInple projection of a 

particle this would require a vdocity of y'2g.6.H. This is a reasonable. sOlnewhat 

conservative, ('st illlatc for ,r. 

It is useful to think of the sanle probleIIl but fixing the d<'pth of ,,"ater at 1 
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Totol pressure impulse 
2. 5 r--'""--r---r--r--r--r---.---~,.......,...'-.-=-:.;...:::...~~:.:,:..:~~~~_---.---. 

2.0 

1.5 

1.0 

0.5 

Depth of box. 

Figure 3.9: Total impulse on deck against depth a. 

and calculating quantities such as total impulse as we increase the length of the 

deck. This is obtained by simply scaling the previous results. \\Tp present plots of 

maximum pressure impulse (figure 3.10), total impulse on the left hand wall (figure 

3.11), total moment on the left hand wall (figure 3.12) and total impulse on the deck 

(figure 3.13). 

First we consider figure 3.10. We note that increasing the length of the deck 

increases the maximum pressure impulse. Similarly in examining figures 3.11 and 

3.12, increasing the length of the the deck increases the total irnpulse and impulsive 

Inoment along the left hand wall. 

Note, the above solutions are not appropriate for impact from jets, e.g. s('(' 

Cooker and Peregrine (1995), where the semi-infinite rectangular impact on a wall 

is (·quivalent to half of a plane jet and section 3.5 gives the solution for a circular jd. 

However the solutions can be used for waves which are not nearly level wit 11 the deck , . 

as follows. By subtracting the appropriate constant frmn P. all~" of t he contours 

of P ("all be chosen as an alternatin' frep surfac(,. A.lthough such a surfa('(l t ('11<1.-; 

dowllward ratlwr than towards a horizontal h'\"pl, this is not of grpat significan("(' as 

long as t}w shape r('asonabl~" dose to the ilupa('t region is appropriat('. S('(l Cooker 
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Figure 3.10: Maximum pressure impulse against length of deck. 
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Total impulse along left hand wall 
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Figure 3.11: Total impulse on the wall due to impact of given length on the free­
surface. 
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Total moment along left hand wall 
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Figure 3.12: The impulsive moment on a wall as a function of impact length. 
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Figure 3.13: The total impulse on the deck as a function of impact length. 
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P differentiated w.r.t. x along the plate. 
or-~~-~.-~-~_~._~.~;. .. ~~.~~.~~._~r .. ~~. __ ~ ___ ~ .. __ ~_.~~ __ ~~ __ ~~._~~_.~~._~~~~~~ 

"-.~ -

-5 

-10 

-- a=2.0 
.... a=1.0 
- a=0.5 

x 

Figure 3.14: ~~ along the deck. 

and Peregrine (1995) for some examples. 

-' ...... -....... .... , 
---' -.:-

-·.1 
-~ 

Clearly the results presented here can be used to estimate the impulse and the 

spatial distribution of a wave impact. In addition, as shown by Cooker and Peregrine 

(1992) it is possible to estimate the impulse on bodies (which are small compared 

with the water depth) on and near the wave impact area. The impulse on the body 

may be estimated from the local pressure-impulse gradient and a boundary-value 

problem posed in the vicinity of the body. Figure 3.14 shows the local gradient 

along the surface of the deck, and figures 3.15 and 3.16 show the gradient down the 

wall and along the bed respectively for a selection of values of a. On the wall and 

the bed the pressure gradient is tangential since a p / an = o. However, on the deck 

where the impact occurs ap / an =I 0 so that there is also a component of impulse 

perpendicular to the deck and downward. This could be particularly dangerous for a 

fixture on the lower surface of the deck, for example a pipe. The upward impact on 

the pipe due to direct impact from the wave is accompanied by a downward impulse 

when the wave hits the deck above. The direction of pressure-impulse gradient can 

be found from the contour diagrams since it is perpendicular to the contours in the 

direction of decreasing pressure impulse. 

101 



P differentiated w.r.t. y along the LH edge. 
1.0 I-r--r--.---r---r----.-,....._,--r-~~.:..:.,..:~-=-,;:.:....:......:.:~:....----,..-~~ 
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Figure 3.15: ~~ along the left hand wall. 

P differentiated w.r.t. x along the bottom. 
0.0 ~=-r--,....._--.--r__-.-.,__~--,--__,_~.-~--r---r---.----, 

--- ---
----------------
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Figure 3.16: ~= along the bottom. 
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Gonslderation of the gradient of pressure impulse near the edge of the deck shows 

alarmingly high values because the mathematical solution has a singularity at the 

edge of the deck. Clearly a better approximation is needed there. One sirllple wa:' 

of obtaining more realistic values is to consider how the solution is obtained for the 

infinite-depth case, a = 00. There, the solution for the flow past a plate is used, 

This solution is a limit of flow past an ellipse. Thus a somewhat better solution could 

be obtained from the flow past a slender ellipse. In any case, it seems reasonable to 

conclude that attachments beneath a deck are vulnerable to PSIH'('iall~' large impact 

forces if they are near the edge of the deck, or the edge of the illlpact zone. 

3.8 Estimation of velocity of impact. 

We note that throughout this account we have taken the vertical velocity of impact 

to be uniform and of magnitude one. In this section we make a lllore realistic 

approximation for the magnitude and distribution of the impact velocity and also 

for the impact width. As a standing wave evolves in time a peak in the free surfac(, 

evolves. It is therefore a reasonable approximation to consider the evolution of a 

standing wave, and estimate the pressure impulse involved in the impact of th(' 

standing wave under a deck. We make an estimate of the Y(,ltical velocity of the 

standing wave and the approximate width of the wave which undergoes irnpact with 

the deck. So, we can then feed these parainetcrs into the general impact on a 

deck model to calculate the appropriate pressure impulse. \Ve need the width and 

velocity of the standing wave at still water level because, in the deck impact rllodel, 

W(' assume that impact occurs at water level. 

Many studies have been carried out on the approximation of standing wm'{' 

profiles, for ('xalllple :l\Iercer and Roberts (1992, 199c!) and Tsai and Jeng (199-1). 

FraIn :l\ I ('r('('r and Roberts (PriY<l te COllllllunica tion) W(' 0 bt ain a profile for <l st <lllding 

way(' on finitp depth, The profile used in this section has initial (lccpleration -O,S,->. 

depth l.(), Gc! surfac{' points, period 1,:tiS. and stpppn{'ss 0.16/". ill units with .lJ = 1 . 
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The initial wave profile and velocity profile are shown in figure 3.1-:. 

1.0 I-~t~ ---•• -•• ·S:--:;u~r~f~a~Cf;C:-' ~p--=r-=-()fi~Il::e~---~-----

05~ -
. r - Velocity distribution .' 

0.0 r- 1 
-0.5 -

-1.0 ____ ~ ____ ~ ___ ~ ___ ~ 

o 2 4 6 8 

Figure 3.17: Initial surface and velocity profiles for a standing ,\"aye: depth 1.0, 
Initial acc. -0.85, period 7.275, steepness 0.167.(:\Iercer and Rob('rts (Private ('0111-

munication) ) 

We then use a periodic version of a numerical boundar~'-integral method (de-

scribed very briefly here, see Dold (1992), Dold and Peregrine (1986), Cooker (1990) 

for further details) to calculate the surface profiles and vertical velocity as the way(' 

evolves. Let (x, y) = (X(s, t), Y(s, t)) be a point on the free surface, where t 

is time, and s is a time independent parameter. The fluid is incompressible and 

irrotational so there is a velocity potential, ¢, which satisfies Laplace's equation: 

(3.9) 

On the impermeable bed we require: 

a¢ = 0 
an ' (3.10) 

where 'TL is normal to the bed. We also need to impose the free surface kineIllati(' 

and dynamic boundary conditions: 

(3.11) 

and 

a¢ 1 [(a¢)2 (a¢) '2] "\' _ 0 - + - - + - + (jl - . at 2 ax ay . (:3.1 ~) 

\ y<, us(' a periodic y(,l"siOll of the bounclar~' integral Ilwthocl, which soln's Laplac(" s 

('<illation sub.i('d to the aboy(' boundar~' conditiolls. but also k('('ps the ftllX of til<' 

fluid going in and out of the fluid region as i\ constant. 
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vve neea to nna tne velocity distribution of the wave when the surface profile is 

almost fiat at water level. This is achieved at time 0.067 as shown in figure 3.18. 

1.0r---~---r-~---~-~-~---_ 

0.5 

0.0 ............. ; ............................. .;.; ....... . 
...... - ...... . ... Surface profile' , ......... . 

-0.5 - - - - - -

-1.0 - Velocity distribution 
o 2 4 6 8 

Figure 3.18: Surface and velocity profiles for a standing wave at time t=0.067 : 
depth 1.0, Initial acc. -0.85, period 7.275, steepness 0.167, evolved using a boundary 
integral method program. 

The plot is obviously symmetric about 7r so we take this to be the position of 

the wall, and take the length of the deck to be half the length of the 'fiat' part of the 

surface profile: 1.46. On examination of figure 3.18, we see that the velocity profile 

is approximately sinusoidal over the region where the impact would occur. If we feed 

in this velocity profile (V = 0.48 cos(1.15x)), and the length of the deck into the 

general deck impact program we can obtain the pressure impulse contours shown 

in figure 3.19. The dashed line in figure 3.18 shows the cosine velocity distribution 

used for figure 3 .19. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 

Figure 3.19: Dimensional pressure-impulse / p contours for a deck of length l.--1G, 
and velocity profile from a standing wave. 

Hence the contours plotted in figure 3.19 gin' more realistic pressure-ilnpulse 
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contours. It may be more appropriate to choose the contour of 0.0:2 as the free­

surface, hence we would subtract 0.02 from the pressure-inlpulse ,'alues in the figure. 

3.9 Three-dimensional effects. 

All the above work assumes uniformity perpendicular to the (x. y) plane. or SOIne 

rigid boundaries parallel to that plane. In practice this is unlikel~'. and t hree­

dimensional effects may be important. That is the impact area on the deck rather 

than being a long strip of finite width L, should be taken as a finite area of an ap­

propriate shape. A simple approach to looking at a more three-dimensional solution 

is to examine infinite depth solutions. A solution for impact on an elliptic area can 

be found from the potential flow round an ellipsoid. 

3.10 Impact of an elliptic plate on infinite depth 
of water. 

If we consider the impact of an elliptic plate on infinite depth of water, this is 

equivalent to elliptic impact on a deck. Consider as in Lamb (1995, section 11-1) and 

Milne-Thompson (1963, section 16.50) an ellipsoid given by equation (3.13), where 

a, band c are the lengths of the semi-axes. We take our length scale L to be semi 

axis b, which we set to be l. 

(3.13) 

The velocity potential for the motion of a fluid at rest with a solid ellipsoid passing 

through it with velocity U(= 1) in the x direction is given by: 

wh('r(', 

and 00 and ~ a1"C gin'Il h~': 

ac 
L= --­

:2 - no 
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1 

~ = [(a 2 + A)( 1 + A)( c2 + A) ] 2 . (3.17) 

A is given by the positive root of the following cubic equation: 

x
2
(1 + A)(C

2 + A) +y2(C2 + A)(a2 + A) + z2(a2 + A)(l +,X) - (a2 + 'x)(1 + ,X)(c2 +,X) = 0, 

(3.18) 

where the positive root is taken, as then A = constant corresponds to ellipsoids. 

NAG routine C02AEF was used to solve the cubic for 'x. 

To obtain the velocity potential for an elliptic plate moving through the liquid 

we need to take a --+ O. However if we take a --+ 0 directly then the integraL 0:0. 

becomes singular, so we begin by making a change of variables u = A + a2 . 

(3.19) 

We denote the integral (or ¢/Cx) as J. Hence, 

(3.20) 

Integration by parts gives: 

With some rearrangement and taking A --+ 0 we have: 

2 100 2u + 1 + c2 
- 2a

2 

J(A = 0) = - - 1 3 ~ duo 
ac a 2 U 2 ( U + 1 - a 2) "2 (U + C2 - a 2) 2 

(3.22) 

From equation (3.16) and (3.22), we get an expression for 0:0 as a --+ 0: 

(3.23) 

Hence C is given by: 

(3.2.1) 
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WIlen a = U. ;::'0, trom equations (3.14) and (3.24)~ with a = 0 in equation (3.14). 

we can find values for ¢ for an elliptic plate moving with yelocity 1 in a stationary 
, ~ 

liquid. ¢ satisfies the same conditions we require P to satisf~·. Hence we can get 

plots for the pressure impulse for an elliptic plate dropping onto an infinite body of 

liquid. Integration is carried out using NAG routine D01AMF. Figure 3.20 shows 

the pressure-impulse contours when c = 100.0. Here the ellipse is so long that it is 

the same as the infinite depth solution shown in figure 3.2. Figure 3.21 shows the 

x 

y 

Figure 3.20: Pressure impulse for impact of an elliptic plate on an infinite body of 
water. c = 100.0 and z = O. Maximum P is 0.99973. 

pressure-impulse distribution below a circular plate of radius 1. Figures 3.22 and 

3.23 show two more examples of elliptic plate impact. Figure 3.24 shows a plot of 

pressure impulse down the line from the centre of the ellipse perpendicular to the 

plate. 

Near the plate the pressure impulse is at its largest for the larger values of c. 

The larger the value of c the deeper the impact penetrates the liquid. 

Care must be taken in evaluating pressure impulse on the plate itself. In par­

ticular in evaluating the integral (3.19). From equation (3.18), w(' obtain on the 

plate: 
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Figure 3.21: Pressure impulse for impact of a circular plate on an infinite body of 
water. c = 1.0 and z = O. Maximum P is 0.63662. 
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Figure 3.22: Pressure impulse for impact of an elliptic plate on an infinite body of 
water. c = 2.0 and y = O. Maximum P is 0.82573. 
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Figure 3.23: Pressure impulse for impact of an elliptic plate on an infinite body of 
water. c = 2.0 and z = O. Maximum P is 0.82573. 
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Figure 3.24: Pressure impulse for impact of an elliptic plate. Plots are down the 
line from the centre of the ellipse, perpendicular to the plate. 
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vve alSO nOte tnat: 

! d~ r--J -~~ (3.26) 
u"2 3u"2 

near the origin. Hence the integral in equation (3.19) is dominated by 2/[3c(a2 + 
1 

A)"2] , as a ---t 0, which equals: 2(1-y2-z2 Ic2)t Icx. Hence the x in equation (3.19) 

cancels with the x from the approximation of the integral, and we can evaluate P 

on the plate using: 

P = _2C----.:....( 1_--=y_2 __ z2.....:.../_c--=2 )_t , 
c 

(3.27) 

where C is still given by equation (3.24). Figure 3.25 shows a plot of pressure­

impulse contours on the plate for an elliptic plate, e = 2. We note that the total 

impulse is given by 47rC 13. Note the closeness of the contours towards the edge 

of the plate. This high pressure-impulse gradient again indicates that attachments 

at the edges of the impact region, i.e. the edges of the ellipse, would be subject to 

alarmingly high velocity components. Finally, we examine how C varies with lie, 

y 0 

-1 

-2~~~~~~~~~~~~~~~~~~ 

-3 -2 -1 o 2 3 

z 

Figure 3.25: Pressure impulse for impact of an elliptic plate, c = 2, with contours 

on the plate. 

which is plotted in figure 3.26. We see that as lie increases C increases linearl~·. 

If we look at figure 3.27 which is a plot of Cc, we see that C diyided by the asp('d 

ratio of the ellipse tends to 0.5 as lie becomes vpr~' large. Thp significanc(' of this 

is unclear. This is what we would expect from the infinite depth solution. 
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Figure 3.26: C against 1/ e, for impact of an elliptic patch. 
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Figure 3.27: Cc against 1/(', for impact of an elliptic patch. 
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IVletnoa of solution. 

Whilst the method used in this thesis for this problenl is complex Inap~ and Fourier 

series there are many other methods which could haye been used. Other rnethod~ 

include: 1) Boundary-integral method and 2) Finite element or difference~. Both 

of these methods would work well for the problems in both this and the preyiOll~ 

chapter. Both methods are more easily adapted to different geometries than the 

method in this chapter. The second method would be more appropriate for ex­

tensions to three-dimensional models. However for both of these Illethods rather 

complex computations are required. The advantage of the methods used in this and 

the preceding chapter is the very simple formulae which arise. In addition as we 

are only evaluating a Fourier series each time, most of the problems take yer~' short 

periods of time on a computer to evaluate. 

3.12 Conclusions. 

A readily evaluated 2D solution is presented for the pressure impulse frOIn wan's 

hitting a deck from below. It is found that, for a fixed impact velocity, the irnpulse 

is greater if the water is shallower. The same results may be useful for estimating 

the effects of upward impact by liquid confined within a container. 

If we consider the problem in terms of keeping the depth of water constant and 

varying the length of deck we find that the maximum pressure impulse, the tot.al 

irnpulse, total moment along the left hand wall, and the total ilnpulse al{)ng the 

deck all increase, as we would expect, with increase of the length of deck. 

It is also important to notice that there is a downward impulse awa~' frOln the 

deck, hence anything attached beneath it, such as a pipe, experiences a downwards 

[urC(' which Illay be substantial enough to pull it awa~' from the IIlain deck. 

A three-dilnensional solutioll for impact on an elliptic dcck i~ also giY('Il. Again 

there is a high pressllre-irnpllise gradient at the edge of a dcck. Ph~'sicall~' a splash 

llHl~' OCCllr at the cdge of the plate. 



Chapter 4 

Impinging jets. 

4.1 Introduction. 

A wave begins to break when the wave crest begins to overturn. However, the specific 

way a wave breaks can vary greatly from one wave to the next. Classification of 

waves is largely dependent on the form of the front of the wan'. Peregrine (1991) 

gave a review of wave breaking, and described these classifications. Breaking way('s 

can be grouped into two categories: plunging and spilling breakers. \Yhen a wan' 

begins to break a well-defined jet of water may plunge forward from the front of the 

wave (a plunging breaker), or alternatively the water at the top of the wave crest 

may come 'spilling' down the front of the wave (a spilling breaker). Of course in 

practice it is not so easy to classify waves into clearly defined categories, as often 

the waves are somewhere in between these two categories. In addition, if the W<1.'"(, 

is breaking on a beach, instead of just the crest of the waye being involved in the 

breaking process, it may be that a high proportion of the wave front collapses leading 

to another category of 'collapsing' or 'surging' breakers. 

In this chapter we look in particular at the case of a plunging breaker. In the 

casp of a well developed plunging breaker a well developed jet of watel' is projcctpd 

frOln the front of the waye. i\Iall~" studies hayp been carried out t () pxaIllinc the 

plunging breaker Illotion. H()\\,ey('l', eY{'n in the cases where til(' lllOdel is capable of 

COlllPUt ing t h{' {',"olution of t he jet. the Illodplling tprInillat('s once the jPt iInpads 

OIl the ulldisturbt'd water in front of til<' WClY('. \Y}l<'ll the jet illlpacts 011 the sllrfac(' 
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a ~VIC:USll un;uns, ano n IS tlllS 'splashing' that we attempt to model later in this 

chapter. The jet impacting on the undisturbed surface is similar to a jet impacting 

on an infinitely wide jet. To make a start we investigate steady flow problems. For 

a thin jet there may be value in this since jet properties may change little while a 

water particle passes into the splash. Two methods are examined. First we model 

two finite jets impacting, and taking the limit as one jet becomes infinitely wide (an 

extension of a model described in Milne-Thompson (1962) ). Secondly we assume 

that one jet is infinitely thick from the start of the calculation. 

4.2 Evolution of the jet from a plunging breaker. 

It is difficult to compute wave breaking. The first numerical models of the evolution 

of a plunging wave broke down when the wave began to overturn. Longuet-Higgins 

and Cokelet (1976) was the first numerical study which could accurately continue 

the calculation even after the wave had begun to break. They used a boundary­

integral technique to compute breaking waves in deep water which nicely showed 

the formation of the jet during the plunging motion. However, once the curvature of 

the wave near the jet tip becomes too high the model of the jet is no longer reliable. 

That paper looked largely at the surface profile of the wave, however, Cokelet (1979) 

extended the method and reported the fluid velocities and accelerations below the 

surface. These values were calculated using Cauchy's theorem which meant only the 

values at the free surface needed to be known. This method was used by Peregrine, 

Cokelet and McIver (1980), to look again at the velocities and accelerations below 

the wave. They identified a region of high particle acceleration at the front of the 

wave, and a region of low acceleration at the rear of the wave. It was suggested that 

this area of low acceleration gave support to the high pressure gradients at the front 

of the wave which were required to accelerate the fluid particles into the jet. 

Peregrine (1983) gave a review of wave breaking which in particular described 

the background to classification of waves, their instabilities, the Inechanism of over-
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turnIng arid the evohltion of a plunging breaker. He also gave some description 

(and photographs) of what occurs when the jet of water from the plunging breaker 

impacts on the free surface in front of the wave. (see later) 

New, McIver and Peregrine (1985) extended the work of Longuet-Higgins and 

Cokelet (1976) to account for finite uniform depth. This was done by adjusting the 

Green's function in the boundary-integral method to plot breaking waves on a finite 

depth of water. This study included a look at the projection of a small-scale jet at 

the wave crest, and presents calculations of the evolution of the jet up to the time 

the jet almost reaches the water surface again. 

As an alternative to these numerical methods more analytical methods were also 

developed. Longuet-Higgins (1982) looked in particular at the forward face of the 

wave. He did this by examining a series of time-dependent flows given in parametric 

form. In particular he examined the flow of a decelerating liquid flowing upwards 

with a surface of zero pressure above it. This particular flow could be solved using 

these parametric methods, and was found to be part of a family of complementary 

solutions. One of this family of curves was found to have many similarities to the 

flow at the forward face of a plunging breaker. The paper also included some good 

photographs of plunging jets impacting on water. 

New (1983) examined the profile of a wave with a plunging jet in front, concen­

trating on the loop below the jet. By noticing that the shape below the jet was 

often an ellipse he obtained some exact solutions for the free-surface under the jet. 

In particular these solutions continued to give reasonable approximations to 'real 

life' even after the jet had hit the free surface in front. However, no model of the 

actual impact of the jet was put forward. 

New's solution was for the loop under the jet, whereas Longuet-Higgins' Inodel 

was for the forward face of the plunging wave. Greenhow (1983) noted that they 

were both in fact complementary solutions of the same equation. By examining this 

equation further he combined and extended the two solutions to gin' an approximat(' 
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solution which -p~iedicts the profile of the forward face. loop and rear of the waye all 

in one model. 

Another approach was to look at the vortex motion which occurs during wan~ 

breaking. Basco (1985) has both descriptions and some photographs of the jeh 

from the plunging breakers impacting on water and concentrated on the yortex 

motion involved in the splash process. He commented that there are two ,'ortex 

motions, one caused by the jet 'splashing up' and another surface vortex (a silllilar 

mechanism to that involved in a hydraulic jump). A similar approach was taken in 

Tallent, Yamashita, & Tsuchiya (1990), where the importance of the '"ortex nlotioll 

in the impact of the jet of water from a plunging breaker was iIlH'stigated. He 

comments that when the jet first impacts down, the high acceleration of the fluid. 

which accelerates the fluid particles towards the wan' crest. causes t hp liquid in the 

jet to be swept towards the wave crest. However, as the wan' continues to propagate 

a 'splash-up' occurs. Tallent, Yamashita, & Tsuchiya (1990) note that the splash 

up occurs in almost the vertical direction with a slight tenden("~" to splash backwards 

on to the incoming plunging jet. 

Dommermuth, Yue, Lin, Rapp, Chan and Melville (1988) also developed a nlOdel 

by using potential flow theory for steep gravity w;n"es. Their nlodel, which used a 

mixed Eulerian-Lagrangian method, gave good predictions of plunging wa"e profiles 

which compared well with experiment. 

Peregrine (1991) gave a general discussion of the position of breaking wm"p re­

search. He summarized the current thinking on the rnechanism behind hreakillg 

waves and their instabilities. 

A recent study, Jenkins (199-1), uses a reference frarne rnoving with t he wan' crest 

to represent the flow in a breaking-wan' crest b~' a cOlnplex "<'iocit," potent ial OIl a 

Ricrnann surface. The interaction of the jet with the rest of tIl<' fluid is ll('glected, 

:\ confonnal transfonnatioll is used and the Bernouilli condit iOIl is forced t() hold 

on the boundary, and the resulting equatioIls are soh"cd IlUlll(Ticall~r. Plots ()f .ids 
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frorn1JleoreaKing-wave crests are shown, falling past the free -",urface on a different 

sheet of the Riemann surface. In this chapter we similarly choose a reference frame 

moving with the impact, and seek a steady solution. \Ye also use one of the plub in 

Jenkins (1994) to obtain a feasible breaking W(lYf> jet angle to feed into our Illodel. 

4.3 Jets and splashes. 

We now look at the plunging wave jet impacting on a body of water as an extrenH' 

case of two impinging jets. In the 18th and 19th centur~' Borda, Helmholz and 

Kirchoff all examined flows of jets, in particular the flow of a jet from an orifice. The 

use of complex analysis to study these types of free-streamline flows was developed. 

Milne-Thompson (1962) used these methods, which we will extend, in his discussion 

of two jets impacting. This model is also given in Gurevich (1965), which also refers 

back to many old sources, including Zhukovskii (1890), \'oight (1886) and Cisotti 

(1921). An important assumption is that we have stead~T flow and hence a stagnation 

point. Milne-Thompson's conclusion is that if we just state the width and angle of 

the incoming jets, in general, a unique solution is not possible. However, in the cas(' 

of symmetric jets, or where another piece of information is given, the solution Illa,\' 

be forced to be unique. 

More recently the importance of studying jet impact to aid understanding of 

wave breaking has been recognized. Peregrine (1983) described how when a plung­

ing breaker impacts on water a 'splash-up' occurs. He included some photographs 

showing the occurrence of the splash. He asked where does the water in the splash-up 

COlll('S from? Among other possibilities he concluded that the splash-up. or outgoing 

jet, nlay consist partl~' of water from the inconling jet and partl~' of the fluid froIll 

the undisturbed water. He noted that this proc('ss of splashing ("all be repeated 

s('Y<'ral tinH~s, where the outgoing jet (or splash) next 1 WCOllWS t IH' incOIlling .i<'t alld 

the splashing continues in a c~Tlp. H()\\'(,H)r, other effects lW(,OIllP iIllport ant soon 

aft(T iInpact 1 such as air. surface t('llsioll. drops. bubbles and yorticit.\·. Basco (1<)S.-») 
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mentioned this splash up, and discussed the yortex which is produced beneath the 

jet. Peregrine (1981) carried out anal~'sis for a 'splash~ on yer~' shallow water. Csillg 

the Bernoulli equation, and conservation of mass and momentum a simple lllOdel 

for the 'splash' was found. 

Impact of jets was further investigated by Keller (1990) and Frankel and \Ycihs 

(1990). Keller extended Milne-Thompson's the()r~' b~' introducing a pararneter for 

the lateral offset positions of the two jets in the far-field. Prodding this piece of 

information is enough to provide a unique solution to the problem. Keller showed 

many plots of jets impacting. Frankel and Weiss looked at glancing impact of two 

jets. They considered a change in reference frame for the glancing irnpact casp which 

then allowed them to consider the impact as impinging jets. The~' too extended 

Milne-Thompson's method, but as they assume that one jet is infinite in depth t h('~' 

do not require Keller's fourth condition. Hence, a solution to the impinging jd 

problem where one jet is infinite is given, however it is an asymptotic solutioll. and 

is only used as a way to examine glancing impact and it not investigated furtll<'L 

Work on splashes in general is very closely linked with the irnpact of the plunging 

breaker. Dias and Christodoulides (1991) examined a two-dimensional jet emerging 

from a nozzle using the Bernoulli equation and cOInplex analysis. In particular they 

examined the case of the bow splash which was found to involve similar mathenlatics. 

Here the water on the bow of a ship splashes back on itself, however the calculation 

stops when the jet impacts on the water, unless it is taken to be on another Rienlann 

surface. 

4.4 Milne-Thompson model. 

4.4.1 General model. 

COllsider a plunging breaker. where the jet is well developed. E\'('lltuaUy the j<'t will 

irllpad with the undisturbed water ill front of the W;lY('. Figun' 4.1 shows a sketch 

of il possible plunging breaker with a ",PII d('vdopt'd jet irn}>actillg 011 undisturbed 
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water In front of tile wave. The dotted lines shows where the '~plash up' nlay occur. 

. , , , , , , , , , , , , , , , , , , , , 

'- \\ , , , , , , , , , , , , , , , , , , , 

.. 

, , 

Figure 4.1 : Plunging breaker with a well developed jet impact ing on undist ur bed 
water in front of the wave. The dotted lines shows where the 'splash up' may occur. 

Where the jet from the breaker impacts on the undisturbed water it is n'r~' 

similar to a jet of water impacting on an infinitel~' thick jet of water. \Y<, choose 

a reference frame moving with the impact. Milne-Thompson (1962) examined the 

case of two finite impinging jets. We follow this analysis at first and extend it by 

looking at what occurs if one of the jets is infinitely thick. We aim to consider two 

impinging jets which undergo steady motion, as shown in figure 4.2. We note that 

this model is the simplest possible where we ignore any vortex sheets which arc 

generated and assume steady motion. We assume inviscid, two-dimensional motion 

and that the splash is so quick we can neglect gravity. 

On a free streamline 'lj; (the streamfunction), speed, and pressure are constallts. 

If at 00 one of the incoming jets has speed U, then as the edges of the jets are free 

streamlines, and so have constant speed, all four jets must han' speed [. at x. 

\Yithout loss of generality U can be chosen to be 1. The four jets are assulIlPd to 

undergo steady motion, and hencE' where the jets llH)ct a stagnation point is likely 

(and is assulned) to exist, and contillues to exist throughout the Illation. The origin 

is taken to be at thr st agna t ion point. Axes are as shown in figure -1.2. Thr 1 WO 

incOluing jds are of widt hIll and II-!. and t he two out going jds cUP of widt h kl 
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'l/J=o 

------

Figure 4.2: Two finite impinging jets undergoing steady motion 

and k2. Values of hI, h2' and the angle at which the jet of width h2 impinges, 

are assumed to be given. Note that the angles are defined to be between -7r and 

7r , this is because it it easier to envisage angles of impact which are less than 7r In 

magnitude. 

Next, let us consider a jet of width h. In time 8t, the mass of flow in from 

this jet is, h8xp, where 8x is the distance a portion of fluid has travelled in 8t. 

Therefore in unit time, the mass flowing in from this jet is h(8x/8t)p = hp (as 

8x/8t = U = 1 at 00). The mass of fluid entering the system must be the same 

as that leaving it, therefore, using the notation shown in figure 4.2 (and dividing by 

p ): 

(.t.1) 

The components of momentum are conserved in the x and y directions. ~lo­

mentum = mass x velocity. Mass flux= hp. Therefore flux of momentum= hp in 

the direction of flow. (velocity taken to be one.) Conservation of rnornentulIl flux 
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in the x direction (after dividing by p) gives: 

( .!.:?) 

Conservation of momentum flux in the y direction (after dividing by p) giyf's: 

( ·4.3) 

These equations (4.1-4.3), are three equations for the four unknowns. ~ ow cOllsider 

the complex velocity, w, which can be written as w = qe- i8 , where e is the angle 

of the velocity to the positive x -axis, and q is the speed. To be consistent wit h 

Milne-Thompson we take e to be between -2'if and O. Hence the values for H (the 

direction of the velocity), at positions AI, B 1 , ..12 , and B2 are 0, -6, -'if + n 

and -7r - r respectively. Figure 4.3 shows a plot of qe- i8
. I\ ote that the angles 

shown are -e. 

Figure -1.3: The w plane, angles of -H are mark<'d. 

. t t 1. ,'111(1 S() Il' = <,-iO , wh('n' -{} lips On the free streanllinE's, q IS a ("ons an . 



oetween values which may be deduced from figure 4.3. The flux at 00 of each of 

the four jets is hI, kI' h2 and k2. One can choose a position for 'ljJ = ° arbitrarily. 

and so we choose 'ljJ =0 on the upper surface of the incoming left hand jet. Flux of 

fluid crossing a line from Xo to Xl is 'ljJ(xo) - 'ljJ(xd. 'ljJ therefore has the values 

shown in figure 4.2. We use the fact that 'ljJ is the imaginary part of f to find f 

(the complex potential). 

We now need to use the formula of Schwarz as given in Milne-Thompson: Given 

a circle, centre z =0, radius R, the function g (z), which is holomorphic within the 

circle and whose real part takes the value 4>(B) on the circumference, is given, save 

for an imaginary constant, by 

10
21T Rei() + z 

211"g(z) = 4>(B) R O() dB 
o el 

- z 
( 4.4) 

We know that 'ljJ = - Re(if). So in equation 4.4 we take 'g' as -if, and 

so '4>' takes the values of 'ljJ on the free-streamlines. Integrating around the free 

streamline, in the w plane, consisting of a circle of radius U=l, gives: 

(4.5) 

However, we know that: 

J ei() + w . ( w ) 
o dB = B - 21 log 1 - ~ , 

el () - w el 
(4.6) 

and so using this and equation (4.1) we have: 

1f f = h2 log (1 - ei(~"») - kl log (1 - ;) - k2 log (1 - ei(::~») + hi log( 1 - w) 

(4.7) 

We know that w = df / dz, so we also know that wdz = (df / dw )dw . Hence, 

differentiating equation (4.7), and simplifying using the conservation of momentum 

equations, (4.2) and (4.3), we obtain: 

_ 1 [ki 1 k2 1 _ hI _ h~ 0 1 ] dw (.t08) 
dz - 11" ei() ei8 _ w + ei-r ei-r + w 1 - w e-10 e-10 + w 
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From integration and using z = 0 when w = 0: we get an expression for the 

position of the streamlines: 

1 [ h2 W A:1 U' A:. U' 1 z = - h1Iog(1- w) - ~log(l + -. ) - -. log(l- -. ) + ~log(l + -. ) 
7r e I(}: p-)Q: ellS elb ('I)' (,1-. 

( 4.9) 

It is important to remember that when we evaluate the log ternls, a suitable 

cut must be chosen. As the angles in the original probleln in figure -1.:2 range frOlIl 

-7r to 7r, the imaginary part of the complex log evaluation was chosen to also lie 

between -7r and 7r to be consistent. 

As Milne-Thompson commented, we now have an equation for the strealnlines, 

however we have four unknowns: k1' k2' <5 and "( and yet we han> onl~' three equa­

tions to solve for these: (4.1-4.3). So we need to specif\ another piece of information. 

Keller (1990) introduces Yl, where Yl is the vertical offset from the stagnation point 

to the asymptote of the upper surface of the jet coming in frOln the left (as showll 

in figure 4.2). Provided this fourth quantity is given the equations raIl in t h('()r~' be 

solved. A fourth equation in terms of Yl is obtained from taking the imaginar~' part 

of equation (4.9) as e ~ -21f from above. The equation in Keller (1990) for //" 

using the angle notation in this thesis, is: 

. a k . 5:1 . <5 k . I "( 
1fYl = -h2 SIn a log cos - + I SIn u og SIn - - '2 SIn "( og COS -2 

2 2 
1 + - [h2 (1f - a) cos a + k1 <5 cos <5 - k2 (1f + "() cos "(] 
2 

( 4.10) 

Hence if we give a value for Yl then we have four equations in four unknowns. 

However, at this stage we still have finite widths of jets. 

4.4.2 Approximations. 

For the (";lS(' of a plunging breaker jet we need to consider Inakilli2, hI large compared 

with h2 . So we let h2/111 = 77, where 77 is sInall. \Ye also nlake tIl(' aSslllllpti()Il 

that the large jet is lIot deflected n\r~' llluch fronl t he horizontaL i.p. <5 is (lSSlllll('d 

1:24 
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Dividing equation (4.1) by hI gives the following equation: 

kI k2 
1+1]=-+-

hI hI 
(4.11 ) 

Dividing equation (4.2) by hI, and using equation (4.11) gives: 

k2 k2 
1 - 1] cos a = (1 + 1] - -) cos 5 - - cos, 

hI hI 
( 4.12) 

Now let k2/hl be denoted by A. So we have now effectively taken the width of the 

large ingoing jet as our length scale. Using the fact that 5 is small to make the 

approximation cos 5 :::::: 1 - ~52 gives: 

1 
1 - 1] cos a = (1 + 1] - A)( 1 - - 52) - A cos, 

2 
( .t.13) 

Next we rearrange this equation, and neglect small terms to obtain an expression 

for A: 

A = 1](cos a + 1) - ~52 
1 - ~ 52 + cos, 

Dividing equation (4.3) by hI, and using equation (4.11) gives: 

-1]sina = -(1 + 1] - A)<5 + Asin, 

Rearranging this equation we obtain another expression for A: 

A = -1](sin a - 5) + 5 
sin'Y + <5 

(4.14) 

(4.15) 

( 4.16) 

Equating the two expressions for A ((4.14) and (4.16)), rearranging, and neglecting 

terms smaller than 1] and 52 we obtain: 

1] = cos a sin f + sin f + sin a + sin a cos f 
5 (1 + cos f + ~ 5 sin f) ( 4.17) 

From this equation we can see that 1] rv <5 , so we can neglect the 52 terms for a 

first approximation, which transforms equation (4.14) to: 

A = _1](...:....-c_os_a_+_1_) 
1 + cos, 
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Now let K = (cos~ + l)/(cos, + 1). Using equations (4.15) and (4.18) gives: 

1] = sin Q' + K sin f (4.19) 

We now have four equations (4.10,4.11,4.18 and 4.19) for the four unknowns. 

However, given a value for Yl it is difficult to use equation (4.10) to solve for the 

other parameters. So, instead we provide values of 1], Q' and,. We then calculate 

{) using equation (4.19) and then obtain A and kl from equations (4.18) and (4.11) 

respectively, and finally Yl from equation (4.10). 

Figures 4.4, 4.5 and 4.6 are examples of the free-streamlines obtained by using 

this method. 

0.2 

0.0 x 

-0.2 

-o.~ 

7 
-0.6 

-0.8 

-1.0 

-1.2 

-1.0 -0.5 0.0 0.5 1.0 

Figure 4.4: Free-streamlines using the extension of the Milne-Thompson/Keller 
method, for Q' = 450 , ,= 450 and 1] = 0.1, giving 8 = 8.10, kl = 1, k2 = 0.1 

and Yl = -0.13. 

However, this method is unsatisfactory as it is difficult when given values for Q' 

and 1] to choose a realistic value for ,. 
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Figure 4.5: Free-streamlines using the extension of the Milne-Thompson/Keller 
method, for a = 22.5°, 'Y = 67.5° and TJ = 0.1, giving fJ = 9.6°, kl = 0.961, 
k2 = 0.139 and Yl = -0.110. 
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Figure 4.6: Free-streamlines using the extension of the Milne-Thompson/Keller 
method, for a = 22.5°, 'Y = 112.5° and TJ = 0.1, giving fJ = 18.7°, kl = 0.789. 
k2 = 0.311 and Yl = 0.058. 
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ZI.a 
Itu:nnnrmn ~~2 i I 

Iliiiiiit~ aepth from the start. 

We next reconsider the model and assume that one of the incoming jets is of infinite 

depth from the start of the calculation. This is equivalent to having the streamline 

AIBI (in figure 4.2 ) down at y = -00. The new problem we are solving is shown 

in figure 4.7. Note again that the angles are originally defined as between -7r and 

7r. We begin as in section 4.4.1, by mapping to the w plane, where w = qe- iO , with 
B 

~ .................. . 

A 
.• i·i/········ 

....... ) 
.......... ls······:· 

························ ........ L ....... . F 

Figure 4.7: Two impinging jets, one of which has infinite width, undergoing steady 
motion. x is horizontal, and y vertical. 

q and () as the magnitude and angle of the velocity respectively. To be consistent 

with Milne-Thompson, we now use angles such that () is between -27r and O. 

Hence (), the angles of the velocity, at A, B, C, D, E and F are given by -27r, 

-7r - 'Y, -7r, -7r + 0:', -7r /2 , and 0 respectively. Figure 4.8 shows a plot of the w 

plane. Note again that as we plot qe- iO values of -() are shown in brackets. The 

circle corresponds to the free streamlines, and the other lines are some of the other 

streamlines. The arrows mark the direction of the streamlines. 

We next map to a half plane, the ~ plane, using the following map: 

l+w 
~ = ti , 

1- w 
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Figure 4.8: The w plane. -0 is given in brackets. The shaded region is fluid brlow 

AOF in Figure 4.1 . 

. ", 



\\'h(~r(' t is a constant. 

_F D c B .-\.-

Figure 4.9: The ~ plane.The shaded region is fluid below AOF in Figure --1.7. 

Figure 4.9 shows the stream-lines in the ~ plane. The stagnation point in the 1/' 

plane is mapped to ti in the ~ plane. Enforcing the stagnation point to be along 

the imaginary axis provides one of the equations to be solved later. 

The points on the circle w = e- iO are mapped to ~ = t cot( e /2). Hence, tIl(' 

position of B is b = t tan( r /2) , and D is d = -t tan( (\ /2). As e --t 0 ~ h'llcis 

to ±oo, depending on whether 0 is approached frOIn above or below. This shows 

that A is mapped to 00 and F is mapped to -00. 

Conservation of momentum in the horizontal direction giy('s from figure ~.I: 

but we know from conservation of mass that 

COIIlbining equations (~. 21) and (~. 22). and rearranging \\"(' )2;('t: 
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r~ote tnat 0 nas cancellea out. By extending figure 4.9, by a reflection in the 

horizontal axis, we can make B a sink and D a source. \Ye also have negatiye 

uniform flow at 00. Let mi and m2 be the total outward/inward flux of fluid vol­

ume across any closed contour surrounding the point of the source/sink respectiyely. 

Considering the flux of fluid volume we obtain (in the top half plane only): 

and ( .1.2.1) 

Hence we can write down the complex potential, using the standard expressions for 

a source, sink and uniform flow: 

(.1.25) 

Note that the velocity of the flow at 00 in the ~ plane is -1, because the velocity 

in the original plane at - 00 is 1. 

We now need to enforce the condition that there is a stagnation point at ~ = ti. 

So we need df /d~I~=ti = o. So, 

df mi m2 
=-1+ - =0 

d~. it - d it - b 
~ ~=tl 

( 4.26) 

Taking the imaginary part of equation (4.26): 

( 4.27) 

substituting for band d gives: 

( 4.28) 

which is already satisfied by conservation of momentum. Now we look at the real 

part of equation (4.26): 
mId m2b - 0 

1 + t2 + d2 - t2 + b2 -
(.J.29) 

If we substitute for band d we obtain an equation relating Q, , and h2 : 

, 21ft Q 

tan - = - tan-
2 h2 (1 + cos Q) 2 

( 4.30) 

131 



... ,/ 
'Fience n we specIfy h2 and a we can calculate rand k2 from equations (4.30) 

and (4.28) respectively. 

t is now seen to be intrinsically linked with the length scales of the problem. 

Since it does not appear to have a simple interpretation, we choose to set t = 1 , for 

simplicity. This choice has the advantage that only the lengths of interest appear 

in the diagrams and discussions. In section 4.4 we did not haye this length, instead 

we had the apparently irrelevant thickness of the main jet (infinitely thick incoming 

jet). Other choices for this unit of length are possible, though less simple. e.g. the 

width of the incoming jet could be chosen to be unity. The solutions could then be, 

in principle, treated as functions of two parameters: (a, t) is the most convenient 

pair, (a, /)'h) is a pair that is easier to interpret. (where 6.h = k2 - h2 is the 

difference in height of the main jet at x = ±oo ) 

N ext we need an expression for z, so use: 

1 df dz 
(4.31 ) 

wdw dw 

and so, by use of the chain rule (and cancelling d€ / dw ): 

1 df dz 

wd€ d€ 
( 4.32) 

Differentiating equation (4.25) we obtain: 

df ml m2 
d€ = -1 + € - d € - b 

( 4.33) 

Combining equations (4.32) and (4.33), and writing w in terms of € we get: 

dz 1 - i€ [ ml m2 ] ( 4.34) 
d€ = 1 + i€ 1 - € - d + € - b 

Rearrangement gives: 

dz 2 [ m1i m2i 1 ml(id-l) _ m2(ib-l) (4.35) 
d€ = -1 + 1 + i€ 1 + 1 + id - 1 + ib + (1 + id) (€ - d) (1 + ib) (€ - b) 

However, the term in the square brackets in equation 4.35 is from equation 4.26. 

To find an equation for z we now integrate equation (4.35). 

id - 1 ib - 1 ( I ) /" z = - C + m log( € - d) - m2 . log € - ) - \. 
~ 11 + id 1 + lb 

( 4.36) 
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K Is given by using z = 0 at ~ = i, so 

_ c. id - 1 ( i - d ) ib - 1 ( i - b ) 
z - -~ + I - mIl + id log ~ _ d + nl2 1 + ib log ~ _ b . (--1.37) 

To plot the free-streamlines we take real ~ E (-x, x) and find the yal ues for ::; 

from the above equation. When we evaluate z, the argument of z is chosen l() 1w 

between -7r and 7r so we must choose the branch cut for log appropriatel~·. \ Ye 

now know how to calculate all the unknowns and we hayp an expression for t he free 

streamlines, which we can now plot. Figures --1.10, --1.1L --1.12 and --1.13 gi,'e examples 

of impinging jets, using this method, with a = 7r / --1 fixed, and increasing yalnes 

for h2 . As h2 increases in width the outgoing jet becomes slnaller in width. and 

gamma Increases. We write equation (4.30), in terms of half angles: 

I 7r 0 
tan - = - tall -

2 h2 cos2 
( ~ ) 2 

(--1.38) 

If h2 is substantially smaller than 7r, as in figures -1. 10 and --1.1 L then the inc01ning 

jet is smaller than order one and hence 'peels' off a large section of water fr01n the 

infinitely large jet.i.e. that the so called 'small' outgoing jet (of width k'2) is actuall~' 

quite large and I is larger than 7r /2. As h2 increases to approximatel~' 7r or larger. 

the jet of width k2 has an angle of less than 7r /2 and a width c01nparable to 1t'2' 

Figures 4.14, 4.15, --1.16, 4.17 and --1.18 are also plots of the impinging j(ts, but 

this time keeping the width constant (h2 = 7r /2), and increasing values of n. As 

a Increases I and k2 both show either a decrease then an increase or a continual 

decrease. 

Note that we can find Rand S if required by the following process. \ Y(' could 

find the value of the streamfunction of the streanlline which passes through the 

stagnation point, band d, using equation (--1.25). \Ye then look at this strealnline 

as the real part of ~ tends to ±oo, to find the imaginar~' part of ~ on this st re(lllllinp 

at t}}('S(' limits. As the maps used in this anal~'sis are all confonnal these two yahl<'s 

will giy(' the values for Rand S. 

Figure -1.19 is a plot of I against (\ , for fixed 11 2 , \Yc consider onl~' (\ < 7r /2. 

as tlH's(' are the "alu('s consistent with our geOllH't r~' as Shm\'11 ill nguH' .1.:- (t he 
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Figure 4.10: Impact of two jets, one of which is infinite. n = _l;j°,! = 168.io, 11.2 = 
0.351, k2 = 30.691. The height of the surface of the main jet at x = ±oo are -9.1~;-) 

and 20.889. 
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Figure 4.11: Impact of two jets, one of which is infinite. Q = 45°, , = 133.0°, h2 = 
1.357, k2 = 7.275. The height of the surface of the main jet at x = ±oo are -12.486 
and -6.600. 
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Figure 4.12: Impact of two jets, one of which is infinite. a = 45°, f = 89.7°, h2 = 
2.613, k2 = 4.436. The height of the surface of the main jet at x = ±oo are -13.433 

and -11.608. 
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Figure 4.13: Impact of two jets, one of which is infinite. a = 45°, 'Y = 56.4°, h2 = 
3.870, k2 = 4.256. The height of the surface of the main jet at x = ±oo are -13.508 

and -13.121. 
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Figure 4.14: Impact of two jets, one of which is infinite. a = 8.10, , = 125.40, h2 = 
7r /2, k2 = 7.439. The height of the surface of the main jet at x = ±oo are -12.780 
and -6.905. 
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Figure 4.15: Impact of two jets, one of which is infinite. Q = 15.5°" = 124.5°, h2 = 
7r /2, k2 = 7.1165. The height of the surface of the main jet at x = ±oo are -12.834 

and -7.281. 
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Figure 4.16: Impact of two jets, one of which is infinite. a = 30.10, l' = 123.9
0
, h2 = 

1r /2, k2 = 6.619. The height of the surface of the main jet at x = ±oo are -12.859 

and -7.804. 
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Figure 4.17: Impact of two jets, one of which is infinite. a = 42.2°, "I = 124.8°, h2 = 
1f /2, k2 = 6.365. The height of the surface of the main jet at x = ±oo are -12.791 
and -7.990. 
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Figure 4.18: Impact of two jets, one of which is infinite. a = 66.5°, 'Y = 131.2°, h2 = 
7r /2, k2 = 6.434. The height of the surface of the main jet at x = ±oo are -12.379 
and -7.509. 
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two Incoming Jets come trom opposing directions). The parameter range where we 

have a self-intersecting jet surface is marked. If h2 is greater than 7r then ! is 

less than 7r /2 regardless of the choice of a. If h2 is smaller than 7r then there is 

a restriction on suitable a to avoid self intersection. If h2 is smaller than 37r / -1 

then I is always greater than 7r /2. Increasing h2 increases ~,. Figure -1.20 is a 

plot of k2 against a, for fixed h2 . For h2 = 7r /2 the value of k2 decreases then 

increases, as a increases. When h2 = 7r or 37r /2, as a increases k2 decreases. 

Figure 4.21 is a plot of the parameter space showing which values of h2 and (1 

produce a jet which deflects the infinite depth jet in a forwards or ongoing splash, 

or alternatively splashes back in the same direction from which it came producing 

a backwards splash. Figure 4.22 shows a plot of the parameter space, but this time 

showing when k2' the width of the smaller outgoing jet, is larger or smaller than 

the incoming jet of width h2 . 

4.5.1 Choice of a. 

Jenkins (1994) looks at a potential-flow approximation to breaking waves, in partic­

ular he looks at the evolution of the jet from the wave crest. He gives an example 

of a jet in figure 3, where the angle that the jet hits the free surface is 40°. This 

suggests that a reasonable choice of a would be 40°. It is not clear what value of 

h2 would be suitable, so an example for h2 = 37r /4 is shown in figure 4.23. We note 

that a different orientation of the x axis relative to the rest of the free-surface may 

give a more realistic breaking wave splash profile. 

4.5.2 Conclusions. 

As a increases, for a given h2' gamma first decreases then increases. The larger 

the value of h2 the smaller the value of 'Y. If we take h2 to be less than 37r /-1 

then the small incoming jet 'peels' off part of the larger jet. This means that the 

jets of width h2 and k2 lie within the same quarter plane that it call1E' in froIll. 

The results of Tallent, Yamashita, & Tsuchiya (1990) suggest that for a plunging 
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Figure 4.19: Impact of two jets, one of which is infinite. Graph showing change ill 
7 with a for a given h2 . Above the diagonal line is where there is self-illt('rs('dillg 
of the jet surface. Angles in radians. 
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Figure 4.20: Impact of two jets, one of which is infinite. Graph showing change in 
k2 with a for a given h2 · Angles in radians. 
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Figure 4.21: Impact of two jets, one of which IS infinite. Graph show for­
wards/backwards splash. Angles in radians. 
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Figure 4.22: Impact of two jets, one of which is infinite. Graph to show where k~ 
is greater than h2 . Angles in radians. 
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Figure 4.23: Impact of two jets, one of which is infinite. a = 40°, r = 97.4°, h2 = 
37(/4, k2 = 4.8. The height of the surface of the main jet at x = ±oo are -13.401 
and -10.994. 
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~~~lt;; E;pl~;hj th~ 'peeling' off is quite realistic. 

The method in section 4.5 is better than both the methods in section 4.4 and 

Frankel and Weihs (1990) as it is an exact solution to the steady flow approximation, 

and does not involve any asymptotics. However it is difficult to draw an~' further 

conclusions without having more detailed experimental data for splashes. 
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Chapter 5 

Conclusion. 

5.1 Impacts on vertical structures. 

The Cooker and Peregrine (1990 b, 1992) model for ilnpact on a wall was rcyipwed 

in chapter 2. It was found that when the impact is on the top of the dept h of watt'!'. 

with infinite depth of water below the impact, the tot al iInpulse <,valuated using this 

model tends to infinity. This particular case is ilnportant whcn considering way(' 

impact on a breakwater in deep water, so we considered ways in which tll(' model 

could be improved. The Cooker and Peregrine nlOdel asslllued two-dilllensional 

im pact and took no account of the effect of trapped air. \ rhell a wa\,(' ilIl}>acts on 

a wall, especially in the field, the impact is oftcll just on a patch of t 11<' wall. It 

was thought that having impact on just a patch of t he wall rather thall along t h(' 

whole width of the wall would lead to a reduction in the total ilIlpulse. Chapter :2 

extended the two-dimensional model to the iIupact of a wa\,(' on a pa t eh of t h(' wall 

and a reduction in the pressure impulse was found. The reduction is ('no ugh t hat it 

keeps the total impulse finite en'll when the water 1w("OIues inhnitel~" ciccp. 

We then sought to exanline how wide the patch needed to 1w l)('for(' we could 

aSSUIue that the pressure inlpulse at the centre of the patch could 1)(' (\("("ll1'at('\,\" 

predict('d by the two-diIuensional Iuodel. To do t his it \\"as us('ful to consider t h(' 

iInpact of a wan' on a senli-infinite patch of a wall. Th(' adYalltap;e of this 11lOdd 

was that the patch had onl~" OIlC ('<ig(l. and S() til(' depth of IH'Il<'tration of til<' <'I1"('("t 

of just one pdge of the patch ("ould 1)(' found. Th(' l)('nptratioll lellgth was found 
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wice that of the height of the water at the wall. Interestingly this 

'penetration' distance was little affected by the percentage of the depth of the water 

on which impact occurred. 

Two more areas which were investigated, were the effect on the impact of having 

a berm in front of the breakwater, and secondly the effect of having a pocket of air 

which 'bounces back' when the wave impacts on the wall. 

For a porous berm in front of the wall the pressure-impulse contours are kinked 

at the boundary between the porous mound below and the water above. This is 

due to a difference in pressure-impulse gradient between the mound and the water. 

An increase in porosity is associated with an increase in the fraction of the interface 

between the two regions with holes. An increase in the porosity of the berm leads 

to a reduction in the pressure impulse in the region above the berm. The effect 

of increasing the porosity was found to be greatest at the wall, and the larger the 

proportion of wall struck by the wave the greater the effect of any change in porosity. 

In the case of deep water below the impact region the effect of having a porous berm 

in front of the wall was found to be negligible. 

When a wave impacts on a structure often an air bubble becomes trapped. This 

bubble first contracts then expands and in doing this pushes the water behind it 

backwards. We call this effect 'bounce back' and adapt the Cooker and Peregrine 

impact on a wall model to allow for this effect. The simplest model was to al­

low the velocity of the fluid behind the bubble to undergo a change in sign at 

impact. The 'bounce-back' model was compared with experimental data (Hattori 

and Arami (1992 and private communication)) in section 2.5.3, and although the 

pressure-impulse distribution down the wall was not well predicted, the total im­

pulse on the wall was predicted quite accurately. Two reasons were put forward 

for the discrepancy in the prediction of the pressure-impulse distribution. First l~· 

we assumed the bounce-back velocity was of the saIne magnitude as the incoming 

velocity of the wave. This meant that the model did not take into account t he shape 
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ot the bubble. The second reason for the discrepancies was thought to be that the 

crude method of calculating the pressure impulse, from the experimental data, was 

inadequate. 

The 'bounce-back' model was then adapted by allowing the velocity of the waw' 

at the bubble after impact to have a cosine distribution. This meant that at the 

edges of the bubble no 'bounce back' occurred whereas at the centre of the bubble 

the 'bounce-back' velocity is equal to, but opposite in sign, to the ingoing YE'locity. 

This was equivalent to considering the bubble to be cylindrical and the velocit~· of 

bounce back to be perpendicular to the cylinder's surface. Hence by using a cosine 

distribution we have taken the horizontal component of the velocity at the surface 

of the bubble. A comparison in section 2.5.4 with PIV experiments carried out at 

Edinburgh University gave good results. A method for calculation of the pressure 

impulse from experimental data was discussed, and it was found that the subtraction 

of a 'background' reflective pressure was req~ired. The prediction of the pressure 

impulse down the wall and on the berm was found to be quite good. The prediction 

was within about 40% which, as few theoretical models for this type of impact exist, 

was a significant step forward. From the work with the porous berm, the effect of 

changing the porosity was found to be small, so even though the 'bounce-back' 

model assumed an impermeable berm, predictions of pressure-impulse distribution 

along the berm (even for a permeable berm) should be possible using this model. 

The bounce-back effect influences the peak pressures more than the porosity of the 

berm. 

Finally, three-dimensional effects are very important to consider when the wave 

impact is not on a flat wall. In this chapter we considered the impact of a waw' on a 

cylindrical structure, which has importance when considering impact of wan's onto 

oil-rig legs and circular heads of breakwaters. Two models weH' considered, firstl~' 

that of impact on a cylinder on a patch just below water len'l, and st'colldl~' t IH' 

impact of a wedge of water on a cylinder. If wt' compare the iInpact on a patch of a 

cylinder and a flat vertical wall (both impacts on the top 101ft of tht' watpr depth) 
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,here IS a reduction of approximately 23% of the maximum pressure impulse. This 

;hows that the three-dimensional convex nature of the cylinder has a yery strong 

~ffect on the pressure impulse distribution. The impact of a wedge of water on a 

~ylinder led to a further reduction in the predicted pressure impulse. The reduction 

)f the pressure impulse between the two cylinder models was most noticeable at the 

base of the cylinder. For the impact on the cylinder on the patch below water leveL 

negative pressures were calculated on the side of the cylinder opposite to the impact 

region. These negative pressures could be due to not taking enough terms in the 

Fourier series, or due to the particular mathematical model used for the inlpact. 

5.2 Impact under a deck. 

Chapter 3 examines pressure impulse for a wave impacting upwards on a deck. The 

two extreme cases of infinite depth and infinite length of deck are examined first, and 

then a more general solution is found. The problem of a square root singularity in 

the mathematical model of the impact is eliminated by using a sequence of conformal 

maps, which implicitly contain the singularity, and so the problem can be solved in 

the final complex plane using standard solution methods. 

Contours of constant pressure impulse are plotted. We confirmed that increasing 

the length of deck (with fixed depth of water) increases the pressure impulse and total 

impulse. It is clear that increasing the length of the deck makes the fluid motion more 

constrained, and hence the impulse involved is much larger. Similar results were 

found in Cooker and Peregrine (1995) and Topliss (1994). Whilst the original free­

surface is horizontal it is noted that any of the pressure-impulse contours, P = Po 

can be taken as a free-surface, by subtracting off Po from P, which can Ipad to 

more realistic wave-like free-surfaces. High gradients of pressure ilnpulse dire("t('d 

away from the deck mean that any body attached to the underside of the d('("k is 

subject to high forces pulling it away from the deck. This llla~· be highl~· dang('fOUS 

for example, an oil pipe beneath the (iP("k could b(' pulled a\\'a~' b~' this iInpulsi\"(l 
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ore'e. "'Orne ellttic patch impact model also had these high gradients of pressure 

mpulse directed away from the edges of the patch. 

5.3 Wave breaking and impinging jets. 

rwo methods are put forward for a simple model of a splash on undisturbed water 

:rom the plunging jet of a breaking wave. 

The first method is an asymptotic extension of the impact of two finite jets. 

where the width of one of the jets tends to infinity. However. this method requires 

the feeding in of both the ingoing and outgoing jet angles. Giving the widths of the 

ingoing jets, and the angles of the ingoing and outgoing jets, enables plots of the 

free streamlines. 

The second method is by far the most superior of the two methods given in 

chapter 4. It involves a map to the hodograph plane followed by a conformal Inap. 

The complex potential for the flow in the final plane can be written down as that 

of the sum of a source, sink and uniform flow at infinity. An equation for the 

free-streamlines can be obtained from this combined with conservation of horizontal 

momentum and mass. 

Plots for the free-streamlines of the jets were found and many examples are given 

in chapter 4. It is noted that the most realistic free-surface profiles are obtained 

when the width for the incoming jet h2 is taken to be just less than 7r. This leads 

to a geometry where the small jet 'peels off' or divides the infinite jet. Here the jets 

of width h2 and k2 lie within the same quarter plane. Unless the incoming jet of 

width h2 is very much smaller than 7r /2, the outgoing jet turns to a near Y('rtical 

direction as described by Tallent, Yamashita & Tsuchiya (1990). 

5.4 Future work. 

In chapter 2, for wayf'S impacting on a wall, it was shown that the 'bounce-back' 

model can be used to predict pressure-impulse distributions hot h down t IH' wall alld 
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Llongthe berm. The way in which pressure impulse should be calculated from exper-

mental data needs much more investigation. In particular the lack of dependence on 

,he porosity of the berm means that these models could be used in future to aid in 

;he prediction of pressure-impulse distribution, in particular to predict the distance 

llong the berm which the pressure impulse penetrates. Further inYestigation on the 

)oundary conditions used in both the 'bounce-back' and berm models would bring 

:tbout great improvements to the models. Specifically the shape of the bubble in 

the 'bounce-back' method should be better accounted for. and inYestigation of the 

appropriateness of the continuity conditions used in the berm model. 

It is also hoped that the 'patch' model impact could be used to compare with 

experimental analysis of the spread of wave impact. In particular three-dimensional 

wave impact tests are being carried out in connection with the PROVERBS project. 

Similarly experimental comparisons with the cylinder problem would be beneficial. 

Impact under a deck was primarily a two-dimensional study, with a brief look 

at the impact of an elliptic plate for infinite depth of water. An extension of this 

would be to investigate more three-dimensional impacts, such as impact on just a 

small region of a deck. It would be interesting to also include the effect of the air 

trapped beneath the deck. 

Experimental comparison of the impact of the plunging jet impact would be 

advantageous in analysing the usefulness of this model. It would also be of interest to 

investigate a solution which does not assume steady motion, and make comparisons. 
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