159 research outputs found

    Anisotropic Diffusion Partial Differential Equations in Multi-Channel Image Processing : Framework and Applications

    Get PDF
    We review recent methods based on diffusion PDE's (Partial Differential Equations) for the purpose of multi-channel image regularization. Such methods have the ability to smooth multi-channel images anisotropically and can preserve then image contours while removing noise or other undesired local artifacts. We point out the pros and cons of the existing equations, providing at each time a local geometric interpretation of the corresponding processes. We focus then on an alternate and generic tensor-driven formulation, able to regularize images while specifically taking the curvatures of local image structures into account. This particular diffusion PDE variant is actually well suited for the preservation of thin structures and gives regularization results where important image features can be particularly well preserved compared to its competitors. A direct link between this curvature-preserving equation and a continuous formulation of the Line Integral Convolution technique (Cabral and Leedom, 1993) is demonstrated. It allows the design of a very fast and stable numerical scheme which implements the multi-valued regularization method by successive integrations of the pixel values along curved integral lines. Besides, the proposed implementation, based on a fourth-order Runge Kutta numerical integration, can be applied with a subpixel accuracy and preserves then thin image structures much better than classical finite-differences discretizations, usually chosen to implement PDE-based diffusions. We finally illustrate the efficiency of this diffusion PDE's for multi-channel image regularization - in terms of speed and visual quality - with various applications and results on color images, including image denoising, inpainting and edge-preserving interpolation

    Variational Tensor-Based Models for Image Diffusion in Non-Linear Domains

    Full text link

    Introducing anisotropic tensor to high order variational model for image restoration

    Get PDF
    Second order total variation (SOTV) models have advantages for image restoration over their first order counterparts including their ability to remove the staircase artefact in the restored image. However, such models tend to blur the reconstructed image when discretised for numerical solution [1–5]. To overcome this drawback, we introduce a new tensor weighted second order (TWSO) model for image restoration. Specifically, we develop a novel regulariser for the SOTV model that uses the Frobenius norm of the product of the isotropic SOTV Hessian matrix and an anisotropic tensor. We then adapt the alternating direction method of multipliers (ADMM) to solve the proposed model by breaking down the original problem into several subproblems. All the subproblems have closed-forms and can be solved efficiently. The proposed method is compared with state-of-the-art approaches such as tensor-based anisotropic diffusion, total generalised variation, and Euler's elastica. We validate the proposed TWSO model using extensive experimental results on a large number of images from the Berkeley BSDS500. We also demonstrate that our method effectively reduces both the staircase and blurring effects and outperforms existing approaches for image inpainting and denoising applications

    Nonlocal smoothing and adaptive morphology for scalar- and matrix-valued images

    Get PDF
    In this work we deal with two classic degradation processes in image analysis, namely noise contamination and incomplete data. Standard greyscale and colour photographs as well as matrix-valued images, e.g. diffusion-tensor magnetic resonance imaging, may be corrupted by Gaussian or impulse noise, and may suffer from missing data. In this thesis we develop novel reconstruction approaches to image smoothing and image completion that are applicable to both scalar- and matrix-valued images. For the image smoothing problem, we propose discrete variational methods consisting of nonlocal data and smoothness constraints that penalise general dissimilarity measures. We obtain edge-preserving filters by the joint use of such measures rich in texture content together with robust non-convex penalisers. For the image completion problem, we introduce adaptive, anisotropic morphological partial differential equations modelling the dilation and erosion processes. They adjust themselves to the local geometry to adaptively fill in missing data, complete broken directional structures and even enhance flow-like patterns in an anisotropic manner. The excellent reconstruction capabilities of the proposed techniques are tested on various synthetic and real-world data sets.In dieser Arbeit beschäftigen wir uns mit zwei klassischen Störungsquellen in der Bildanalyse, nämlich mit Rauschen und unvollständigen Daten. Klassische Grauwert- und Farb-Fotografien wie auch matrixwertige Bilder, zum Beispiel Diffusionstensor-Magnetresonanz-Aufnahmen, können durch Gauß- oder Impulsrauschen gestört werden, oder können durch fehlende Daten gestört sein. In dieser Arbeit entwickeln wir neue Rekonstruktionsverfahren zum zur Bildglättung und zur Bildvervollständigung, die sowohl auf skalar- als auch auf matrixwertige Bilddaten anwendbar sind. Zur Lösung des Bildglättungsproblems schlagen wir diskrete Variationsverfahren vor, die aus nichtlokalen Daten- und Glattheitstermen bestehen und allgemeine auf Bildausschnitten definierte Unähnlichkeitsmaße bestrafen. Kantenerhaltende Filter werden durch die gemeinsame Verwendung solcher Maße in stark texturierten Regionen zusammen mit robusten nichtkonvexen Straffunktionen möglich. Für das Problem der Datenvervollständigung führen wir adaptive anisotrope morphologische partielle Differentialgleichungen ein, die Dilatations- und Erosionsprozesse modellieren. Diese passen sich der lokalen Geometrie an, um adaptiv fehlende Daten aufzufüllen, unterbrochene gerichtet Strukturen zu schließen und sogar flussartige Strukturen anisotrop zu verstärken. Die ausgezeichneten Rekonstruktionseigenschaften der vorgestellten Techniken werden anhand verschiedener synthetischer und realer Datensätze demonstriert

    Denoising and enhancement of digital images : variational methods, integrodifferential equations, and wavelets

    Get PDF
    The topics of this thesis are methods for denoising, enhancement, and simplification of digital image data. Special emphasis lies on the relations and structural similarities between several classes of methods which are motivated from different contexts. In particular, one can distinguish the methods treated in this thesis in three classes: For variational approaches and partial differential equations, the notion of the derivative is the tool of choice to model regularity of the data and the desired result. A general framework for such approaches is proposed that involve all partial derivatives of a prescribed order and experimentally are capable of leading to piecewise polynomial approximations of the given data. The second class of methods uses wavelets to represent the data which makes it possible to understand the filtering as very simple pointwise application of a nonlinear function. To view these wavelets as derivatives of smoothing kernels is the basis for relating these methods to integrodifferential equations which are investigated here. In the third case, values of the image in a neighbourhood are averaged where the weights of this averaging can be adapted respecting different criteria. By refinement of the pixel grid and transfer to scaling limits, connections to partial differential equations become visible here, too. They are described in the framework explained before. Numerical aspects of the simplification of images are presented with respect to the NDS energy function, a unifying approach that allows to model many of the aforementioned methods. The behaviour of the filtering methods is documented with numerical examples.Gegenstand der vorliegenden Arbeit sind Verfahren zum Entrauschen, qualitativen Verbessern und Vereinfachen digitaler Bilddaten. Besonderes Augenmerk liegt dabei auf den Beziehungen und der strukturellen Ähnlichkeit zwischen unterschiedlich motivierten Verfahrensklassen. Insbesondere lassen sich die hier behandelten Methoden in drei Klassen einordnen: Bei den Variationsansätzen und partiellen Differentialgleichungen steht der Begriff der Ableitung im Mittelpunkt, um Regularität der Daten und des gewünschten Resultats zu modellieren. Hier wird ein einheitlicher Rahmen für solche Ansätze angegeben, die alle partiellen Ableitungen einer vorgegebenen Ordnung involvieren und experimentell auf stückweise polynomielle Approximationen der gegebenen Daten führen können. Die zweite Klasse von Methoden nutzt Wavelets zur Repräsentation von Daten, mit deren Hilfe sich Filterung als sehr einfache punktweise Anwendung einer nichtlinearen Funktion verstehen lässt. Diese Wavelets als Ableitungen von Glättungskernen aufzufassen bildet die Grundlage für die hier untersuchte Verbindung dieser Verfahren zu Integrodifferentialgleichungen. Im dritten Fall werden Werte des Bildes in einer Nachbarschaft gemittelt, wobei die Gewichtung bei dieser Mittelung adaptiv nach verschiedenen Kriterien angepasst werden kann. Durch Verfeinern des Pixelgitters und Übergang zu Skalierungslimites werden auch hier Verbindungen zu partiellen Differentialgleichungen sichtbar, die in den vorher dargestellten Rahmen eingeordnet werden. Numerische Aspekte beim Vereinfachen von Bildern werden anhand der NDS-Energiefunktion dargestellt, eines einheitlichen Ansatzes, mit dessen Hilfe sich viele der vorgenannten Methoden realisieren lassen. Das Verhalten der einzelnen Filtermethoden wird dabei jeweils durch numerische Beispiele dokumentiert
    corecore