1,227 research outputs found

    Online Human-Bot Interactions: Detection, Estimation, and Characterization

    Full text link
    Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark the classification framework by using a publicly available dataset of Twitter bots. This training data is enriched by a manually annotated collection of active Twitter users that include both humans and bots of varying sophistication. Our models yield high accuracy and agreement with each other and can detect bots of different nature. Our estimates suggest that between 9% and 15% of active Twitter accounts are bots. Characterizing ties among accounts, we observe that simple bots tend to interact with bots that exhibit more human-like behaviors. Analysis of content flows reveals retweet and mention strategies adopted by bots to interact with different target groups. Using clustering analysis, we characterize several subclasses of accounts, including spammers, self promoters, and accounts that post content from connected applications.Comment: Accepted paper for ICWSM'17, 10 pages, 8 figures, 1 tabl

    POISED: Spotting Twitter Spam Off the Beaten Paths

    Get PDF
    Cybercriminals have found in online social networks a propitious medium to spread spam and malicious content. Existing techniques for detecting spam include predicting the trustworthiness of accounts and analyzing the content of these messages. However, advanced attackers can still successfully evade these defenses. Online social networks bring people who have personal connections or share common interests to form communities. In this paper, we first show that users within a networked community share some topics of interest. Moreover, content shared on these social network tend to propagate according to the interests of people. Dissemination paths may emerge where some communities post similar messages, based on the interests of those communities. Spam and other malicious content, on the other hand, follow different spreading patterns. In this paper, we follow this insight and present POISED, a system that leverages the differences in propagation between benign and malicious messages on social networks to identify spam and other unwanted content. We test our system on a dataset of 1.3M tweets collected from 64K users, and we show that our approach is effective in detecting malicious messages, reaching 91% precision and 93% recall. We also show that POISED's detection is more comprehensive than previous systems, by comparing it to three state-of-the-art spam detection systems that have been proposed by the research community in the past. POISED significantly outperforms each of these systems. Moreover, through simulations, we show how POISED is effective in the early detection of spam messages and how it is resilient against two well-known adversarial machine learning attacks

    ๊ฐœ์ธ ์‚ฌํšŒ๋ง ๋„คํŠธ์›Œํฌ ๋ถ„์„ ๊ธฐ๋ฐ˜ ์˜จ๋ผ์ธ ์‚ฌํšŒ ๊ณต๊ฒฉ์ž ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ๊น€์ข…๊ถŒ.In the last decade we have witnessed the explosive growth of online social networking services (SNSs) such as Facebook, Twitter, Weibo and LinkedIn. While SNSs provide diverse benefits โ€“ for example, fostering inter-personal relationships, community formations and news propagation, they also attracted uninvited nuiance. Spammers abuse SNSs as vehicles to spread spams rapidly and widely. Spams, unsolicited or inappropriate messages, significantly impair the credibility and reliability of services. Therefore, detecting spammers has become an urgent and critical issue in SNSs. This paper deals with spamming in Twitter and Weibo. Instead of spreading annoying messages to the public, a spammer follows (subscribes to) normal users, and followed a normal user. Sometimes a spammer makes link farm to increase target accounts explicit influence. Based on the assumption that the online relationships of spammers are different from those of normal users, I proposed classification schemes that detect online social attackers including spammers. I firstly focused on ego-network social relations and devised two features, structural features based on Triad Significance Profile (TSP) and relational semantic features based on hierarchical homophily in an ego-network. Experiments on real Twitter and Weibo datasets demonstrated that the proposed approach is very practical. The proposed features are scalable because instead of analyzing the whole network, they inspect user-centered ego-networks. My performance study showed that proposed methods yield significantly better performance than prior scheme in terms of true positives and false positives.์ตœ๊ทผ ์šฐ๋ฆฌ๋Š” Facebook, Twitter, Weibo, LinkedIn ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๊ฐ€ ํญ๋ฐœ์ ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ํ˜„์ƒ์„ ๋ชฉ๊ฒฉํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๊ฐ€ ๊ฐœ์ธ๊ณผ ๊ฐœ์ธ๊ฐ„์˜ ๊ด€๊ณ„ ๋ฐ ์ปค๋ฎค๋‹ˆํ‹ฐ ํ˜•์„ฑ๊ณผ ๋‰ด์Šค ์ „ํŒŒ ๋“ฑ์˜ ์—ฌ๋Ÿฌ ์ด์ ์„ ์ œ๊ณตํ•ด ์ฃผ๊ณ  ์žˆ๋Š”๋ฐ ๋ฐ˜ํ•ด ๋ฐ˜๊ฐ‘์ง€ ์•Š์€ ํ˜„์ƒ ์—ญ์‹œ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ŠคํŒจ๋จธ๋“ค์€ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๋ฅผ ๋™๋ ฅ ์‚ผ์•„ ์ŠคํŒธ์„ ๋งค์šฐ ๋น ๋ฅด๊ณ  ๋„“๊ฒŒ ์ „ํŒŒํ•˜๋Š” ์‹์œผ๋กœ ์•…์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ŠคํŒธ์€ ์ˆ˜์‹ ์ž๊ฐ€ ์›์น˜ ์•Š๋Š” ๋ฉ”์‹œ์ง€๋“ค์„ ์ผ์ปฝ๋Š”๋ฐ ์ด๋Š” ์„œ๋น„์Šค์˜ ์‹ ๋ขฐ๋„์™€ ์•ˆ์ •์„ฑ์„ ํฌ๊ฒŒ ์†์ƒ์‹œํ‚จ๋‹ค. ๋”ฐ๋ผ์„œ, ์ŠคํŒจ๋จธ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์ด ํ˜„์žฌ ์†Œ์…œ ๋ฏธ๋””์–ด์—์„œ ๋งค์šฐ ๊ธด๊ธ‰ํ•˜๊ณ  ์ค‘์š”ํ•œ ๋ฌธ์ œ๊ฐ€ ๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ‘œ์ ์ธ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๋“ค ์ค‘ Twitter์™€ Weibo์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ŠคํŒจ๋ฐ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ํ˜•์˜ ์ŠคํŒจ๋ฐ๋“ค์€ ๋ถˆํŠน์ • ๋‹ค์ˆ˜์—๊ฒŒ ๋ฉ”์‹œ์ง€๋ฅผ ์ „ํŒŒํ•˜๋Š” ๋Œ€์‹ ์—, ๋งŽ์€ ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž๋“ค์„ 'ํŒ”๋กœ์šฐ(๊ตฌ๋…)'ํ•˜๊ณ  ์ด๋“ค๋กœ๋ถ€ํ„ฐ '๋งž ํŒ”๋กœ์ž‰(๋งž ๊ตฌ๋…)'์„ ์ด๋Œ์–ด ๋‚ด๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๋•Œ๋กœ๋Š” link farm์„ ์ด์šฉํ•ด ํŠน์ • ๊ณ„์ •์˜ ํŒ”๋กœ์›Œ ์ˆ˜๋ฅผ ๋†’์ด๊ณ  ๋ช…์‹œ์  ์˜ํ–ฅ๋ ฅ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ๋„ ํ•œ๋‹ค. ์ŠคํŒจ๋จธ์˜ ์˜จ๋ผ์ธ ๊ด€๊ณ„๋ง์ด ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž์˜ ์˜จ๋ผ์ธ ์‚ฌํšŒ๋ง๊ณผ ๋‹ค๋ฅผ ๊ฒƒ์ด๋ผ๋Š” ๊ฐ€์ • ํ•˜์—, ๋‚˜๋Š” ์ŠคํŒจ๋จธ๋“ค์„ ํฌํ•จํ•œ ์ผ๋ฐ˜์ ์ธ ์˜จ๋ผ์ธ ์‚ฌํšŒ๋ง ๊ณต๊ฒฉ์ž๋“ค์„ ํƒ์ง€ํ•˜๋Š” ๋ถ„๋ฅ˜ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋‚˜๋Š” ๋จผ์ € ๊ฐœ์ธ ์‚ฌํšŒ๋ง ๋‚ด ์‚ฌํšŒ ๊ด€๊ณ„์— ์ฃผ๋ชฉํ•˜๊ณ  ๋‘ ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ๋ถ„๋ฅ˜ ํŠน์„ฑ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋“ค์€ ๊ฐœ์ธ ์‚ฌํšŒ๋ง์˜ Triad Significance Profile (TSP)์— ๊ธฐ๋ฐ˜ํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ๊ณผ Hierarchical homophily์— ๊ธฐ๋ฐ˜ํ•œ ๊ด€๊ณ„ ์˜๋ฏธ์  ํŠน์„ฑ์ด๋‹ค. ์‹ค์ œ Twitter์™€ Weibo ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๋งค์šฐ ์‹ค์šฉ์ ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ œ์•ˆํ•œ ํŠน์„ฑ๋“ค์€ ์ „์ฒด ๋„คํŠธ์›Œํฌ๋ฅผ ๋ถ„์„ํ•˜์ง€ ์•Š์•„๋„ ๊ฐœ์ธ ์‚ฌํšŒ๋ง๋งŒ ๋ถ„์„ํ•˜๋ฉด ๋˜๊ธฐ ๋•Œ๋ฌธ์— scalableํ•˜๊ฒŒ ์ธก์ •๋  ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ๋น„ํ•ด true positive์™€ false positive ์ธก๋ฉด์—์„œ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.1 Introduction 1 2 Related Work 6 2.1 OSN Spammer Detection Approaches 6 2.1.1 Contents-based Approach 6 2.1.2 Social Network-based Approach 7 2.1.3 Subnetwork-based Approach 8 2.1.4 Behavior-based Approach 9 2.2 Link Spam Detection 10 2.3 Data mining schemes for Spammer Detection 10 2.4 Sybil Detection 12 3 Triad Significance Profile Analysis 14 3.1 Motivation 14 3.2 Twitter Dataset 18 3.3 Indegree and Outdegree of Dataset 20 3.4 Twitter spammer Detection with TSP 22 3.5 TSP-Filtering 27 3.6 Performance Evaluation of TSP-Filtering 29 4 Hierarchical Homophily Analysis 33 4.1 Motivation 33 4.2 Hierarchical Homophily in OSN 37 4.2.1 Basic Analysis of Datasets 39 4.2.2 Status gap distribution and Assortativity 44 4.2.3 Hierarchical gap distribution 49 4.3 Performance Evaluation of HH-Filtering 53 5 Overall Performance Evaluation 58 6 Conclusion 63 Bibliography 65Docto

    On designing large, secure and resilient networked systems

    Get PDF
    2019 Summer.Includes bibliographical references.Defending large networked systems against rapidly evolving cyber attacks is challenging. This is because of several factors. First, cyber defenders are always fighting an asymmetric warfare: While the attacker needs to find just a single security vulnerability that is unprotected to launch an attack, the defender needs to identify and protect against all possible avenues of attacks to the system. Various types of cost factors, such as, but not limited to, costs related to identifying and installing defenses, costs related to security management, costs related to manpower training and development, costs related to system availability, etc., make this asymmetric warfare even challenging. Second, newer and newer cyber threats are always emerging - the so called zero-day attacks. It is not possible for a cyber defender to defend against an attack for which defenses are yet unknown. In this work, we investigate the problem of designing large and complex networks that are secure and resilient. There are two specific aspects of the problem that we look into. First is the problem of detecting anomalous activities in the network. While this problem has been variously investigated, we address the problem differently. We posit that anomalous activities are the result of mal-actors interacting with non mal-actors, and such anomalous activities are reflected in changes to the topological structure (in a mathematical sense) of the network. We formulate this problem as that of Sybil detection in networks. For our experimentation and hypothesis testing we instantiate the problem as that of Sybil detection in on-line social networks (OSNs). Sybil attacks involve one or more attackers creating and introducing several mal-actors (fake identities in on-line social networks), called Sybils, into a complex network. Depending on the nature of the network system, the goal of the mal-actors can be to unlawfully access data, to forge another user's identity and activity, or to influence and disrupt the normal behavior of the system. The second aspect that we look into is that of building resiliency in a large network that consists of several machines that collectively provide a single service to the outside world. Such networks are particularly vulnerable to Sybil attacks. While our Sybil detection algorithms achieve very high levels of accuracy, they cannot guarantee that all Sybils will be detected. Thus, to protect against such "residual" Sybils (that is, those that remain potentially undetected and continue to attack the network services), we propose a novel Moving Target Defense (MTD) paradigm to build resilient networks. The core idea is that for large enterprise level networks, the survivability of the network's mission is more important than the security of one or more of the servers. We develop protocols to re-locate services from server to server in a random way such that before an attacker has an opportunity to target a specific server and disrupt itโ€™s services, the services will migrate to another non-malicious server. The continuity of the service of the large network is thus sustained. We evaluate the effectiveness of our proposed protocols using theoretical analysis, simulations, and experimentation. For the Sybil detection problem we use both synthetic and real-world data sets. We evaluate the algorithms for accuracy of Sybil detection. For the moving target defense protocols we implement a proof-of-concept in the context of access control as a service, and run several large scale simulations. The proof-of- concept demonstrates the effectiveness of the MTD paradigm. We evaluate the computation and communication complexity of the protocols as we scale up to larger and larger networks
    • โ€ฆ
    corecore