1,259 research outputs found

    Inhibition in multiclass classification

    Get PDF
    The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems. These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches

    Inhibition in multiclass classification

    Get PDF
    The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems. These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches

    Determining Solution Space Characteristics for Real-Time Strategy Games and Characterizing Winning Strategies

    Get PDF
    The underlying goal of a competing agent in a discrete real-time strategy (RTS) game is to defeat an adversary. Strategic agents or participants must define an a priori plan to maneuver their resources in order to destroy the adversary and the adversary\u27s resources as well as secure physical regions of the environment. This a priori plan can be generated by leveraging collected historical knowledge about the environment. This knowledge is then employed in the generation of a classification model for real-time decision-making in the RTS domain. The best way to generate a classification model for a complex problem domain depends on the characteristics of the solution space. An experimental method to determine solution space (search landscape) characteristics is through analysis of historical algorithm performance for solving the specific problem. We select a deterministic search technique and a stochastic search method for a priori classification model generation. These approaches are designed, implemented, and tested for a specific complex RTS game, Bos Wars. Their performance allows us to draw various conclusions about applying a competing agent in complex search landscapes associated with RTS games

    Learning with Scalability and Compactness

    Get PDF
    Artificial Intelligence has been thriving for decades since its birth. Traditional AI features heuristic search and planning, providing good strategy for tasks that are inherently search-based problems, such as games and GPS searching. In the meantime, machine learning, arguably the hottest subfield of AI, embraces data-driven methodology with great success in a wide range of applications such as computer vision and speech recognition. As a new trend, the applications of both learning and search have shifted toward mobile and embedded devices which entails not only scalability but also compactness of the models. Under this general paradigm, we propose a series of work to address the issues of scalability and compactness within machine learning and its applications on heuristic search. We first focus on the scalability issue of memory-based heuristic search which is recently ameliorated by Maximum Variance Unfolding (MVU), a manifold learning algorithm capable of learning state embeddings as effective heuristics to speed up AA^* search. Though achieving unprecedented online search performance with constraints on memory footprint, MVU is notoriously slow on offline training. To address this problem, we introduce Maximum Variance Correction (MVC), which finds large-scale feasible solutions to MVU by post-processing embeddings from any manifold learning algorithm. It increases the scale of MVU embeddings by several orders of magnitude and is naturally parallel. We further propose Goal-oriented Euclidean Heuristic (GOEH), a variant to MVU embeddings, which preferably optimizes the heuristics associated with goals in the embedding while maintaining their admissibility. We demonstrate unmatched reductions in search time across several non-trivial AA^* benchmark search problems. Through these work, we bridge the gap between the manifold learning literature and heuristic search which have been regarded as fundamentally different, leading to cross-fertilization for both fields. Deep learning has made a big splash in the machine learning community with its superior accuracy performance. However, it comes at a price of huge model size that might involves billions of parameters, which poses great challenges for its use on mobile and embedded devices. To achieve the compactness, we propose HashedNets, a general approach to compressing neural network models leveraging feature hashing. At its core, HashedNets randomly group parameters using a low-cost hash function, and share parameter value within the group. According to our empirical results, a neural network could be 32x smaller with little drop in accuracy performance. We further introduce Frequency-Sensitive Hashed Nets (FreshNets) to extend this hashing technique to convolutional neural network by compressing parameters in the frequency domain. Compared with many AI applications, neural networks seem not graining as much popularity as it should be in traditional data mining tasks. For these tasks, categorical features need to be first converted to numerical representation in advance in order for neural networks to process them. We show that a na\ {i}ve use of the classic one-hot encoding may result in gigantic weight matrices and therefore lead to prohibitively expensive memory cost in neural networks. Inspired by word embedding, we advocate a compellingly simple, yet effective neural network architecture with category embedding. It is capable of directly handling both numerical and categorical features as well as providing visual insights on feature similarities. At the end, we conduct comprehensive empirical evaluation which showcases the efficacy and practicality of our approach, and provides surprisingly good visualization and clustering for categorical features

    Cardinality-Minimal Explanations for Monotonic Neural Networks

    Full text link
    In recent years, there has been increasing interest in explanation methods for neural model predictions that offer precise formal guarantees. These include abductive (respectively, contrastive) methods, which aim to compute minimal subsets of input features that are sufficient for a given prediction to hold (respectively, to change a given prediction). The corresponding decision problems are, however, known to be intractable. In this paper, we investigate whether tractability can be regained by focusing on neural models implementing a monotonic function. Although the relevant decision problems remain intractable, we can show that they become solvable in polynomial time by means of greedy algorithms if we additionally assume that the activation functions are continuous everywhere and differentiable almost everywhere. Our experiments suggest favourable performance of our algorithms
    corecore