
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Faculty Publications 

3-2-2011 

Determining Solution Space Characteristics for Real-Time Determining Solution Space Characteristics for Real-Time 

Strategy Games and Characterizing Winning Strategies Strategy Games and Characterizing Winning Strategies 

Gary B. Lamont 
Air Force Institute of Technology 

Kurt Weissgerber 

Brett J. Borghetti 
Air Force Institute of Technology 

Gilbert L. Peterson 
Air Force Institute of Technology 

Follow this and additional works at: https://scholar.afit.edu/facpub 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Lamont, Gary B.; Weissgerber, Kurt; Borghetti, Brett J.; and Peterson, Gilbert L., "Determining Solution 
Space Characteristics for Real-Time Strategy Games and Characterizing Winning Strategies" (2011). 
Faculty Publications. 52. 
https://scholar.afit.edu/facpub/52 

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in 
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact 
richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/facpub/52?utm_source=scholar.afit.edu%2Ffacpub%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2011, Article ID 834026, 17 pages
doi:10.1155/2011/834026

Research Article

Determining Solution Space Characteristics for Real-Time
Strategy Games and Characterizing Winning Strategies

Kurt Weissgerber, Gary B. Lamont, Brett J. Borghetti, and Gilbert L. Peterson

Department of Electrical and Computer Engineering, Graduate School of Engineering and Management,
Air Force Institute of Technology, Wright Patterson AFB, Dayton, OH 45433, USA

Correspondence should be addressed to Gary B. Lamont, cruisede@aol.com

Received 24 September 2010; Revised 7 January 2011; Accepted 2 March 2011

Academic Editor: Alexander Pasko

Copyright © 2011 Kurt Weissgerber et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The underlying goal of a competing agent in a discrete real-time strategy (RTS) game is to defeat an adversary. Strategic agents
or participants must define an a priori plan to maneuver their resources in order to destroy the adversary and the adversary’s
resources as well as secure physical regions of the environment. This a priori plan can be generated by leveraging collected historical
knowledge about the environment. This knowledge is then employed in the generation of a classification model for real-time
decision-making in the RTS domain. The best way to generate a classification model for a complex problem domain depends on
the characteristics of the solution space. An experimental method to determine solution space (search landscape) characteristics is
through analysis of historical algorithm performance for solving the specific problem. We select a deterministic search technique
and a stochastic search method for a priori classification model generation. These approaches are designed, implemented, and
tested for a specific complex RTS game, Bos Wars. Their performance allows us to draw various conclusions about applying a
competing agent in complex search landscapes associated with RTS games.

1. Introduction

The real-time strategy (RTS) domain [1] is of interest
because it relates to real world problems, for example, deter-
mining a “good” military battlefield strategy or defining the
“best” strategies for complex RTS video games. A partici-
pants/agent strategy is to develop a long-term plan using an
agent’s resources to win the game. Note that the RTS genre is
different than games requiring only real-time tactics (RTT)
which deal with making decisions on detailed resource use
at each iteration of the game. RTT sometimes are considered
a subgenus of real-time strategies. Another way of defining
an RTS structure is to consider the terms macro-management
referring to high-level strategic maneuvering and micro-
management referring to RTT game interaction.

The objective of a competing agent in an RTS game is to
defeat an adversary (or adversaries) by directly and indirectly
moving and maneuvering resources in order to destroy the
adversary’s resources, capture and destroy the adversary, and
secure physical regions of the environment [1]. In a gaming

situation, it is desired to gather or destroy resources, build
physical structures, improve technological development, and
control other agents. This is a daunting set of strategic tasks
for an RTS game player.

A comprehensive RTS game could include extensive models
of information availability, relations (espionage, diplomacy,
intrigue), politics, ingenuity, economics, control (stability),
logistics (scarcity), risk management, synchrony, and the scope
of complexity, space, and time (speed). To incorporate all
of these strategic models into an RTS game or simulation
is probably next to impossible! Thus, all may not be part
of a contemporary RTS game. For example, games such
as Ground Control or Company of Heroes do not require
resource-gathering. On the other hand, the scope of time
and space complexity for each RTS game characteristics
are generic areas of interest that may present very difficult
problem domains for a dynamic and adaptive RTS agent.

Nevertheless, an existing method for development of
a strategy-based agent is to employ Artificial Intelligence
(AI) techniques in learning while playing. Such an approach



2 International Journal of Computer Games Technology

can include genetic algorithms, coevolution, and scripts
via a variety of search techniques. Most such learning
approaches involve defining an agent architecture, decision
variable representation, explicit functional objectives, search
exploration and exploitation algorithms, information collec-
tion, and a simulation implementation. Any AI architecture
must permit an RTS agent to observe its environment and
make decisions based on what it observes. An adversarial
agent must take actions which allow it to defeat some
opponent(s). Many current RTS approaches use AI learning
agents, where the agent determines appropriate actions to
take in a particular state through trial and error; that is,
instantiating if-then-else rules or case-based reasoning [1].
The agent must determine some way to collect the required
information about the environment and the opponent and
then use this information effectively to “beat” the opponent
via an action sequence.

We present an AI strategy-based agent which collects
information and learns about an opponent by examining
its past performance. Past performance can be captured
through a collection of game trace records from the adver-
sarial agent’s state movements. Traces by definition consist
of a vector of snapshots and each snapshot also contains the
value of various types of features at a specific point in time.
A vector of snapshots which encompass an entire RTS game
can be used to reconstruct via search and learn the important
strategic features of the game which can lead to victory.

Before the subject of agent generation can be approached,
a reliable method of generating a classification model needs
to be created. The RTS domain is relatively new; while many
different AI search approaches have been applied to agent
generation, little research has been done into determining
the underlying characteristics of the domain. Are there
many different feature combinations which lead to victory?
Are they in close proximity to each other, or are they
spread out around the domain? Is the solution space (fitness
landscape) jagged, where good feature combinations are in
very close proximity to bad feature combinations, or are
the transitions between the two more gradual? By answering
these questions, we can determine an algorithm to use which
can leverage the characteristics of the domain to find the
better solutions in a reasonable amount of time.

In this paper, related RTS investigations including
RTS games are summarized in Section 2 which provides
a background for our method. Section 3 formulates the
RTS plan and the classification problem along with the
generic solution space analysis and the selected informa-
tion representation. Algorithmic learning techniques based
upon deterministic and stochastic search are developed in
Section 4 resulting in our AI strategy. The experimental
design is provided in Section 5 with results and analysis
reflected in Section 6. Conclusions and Future Work are
presented in Sections 7 and 8, respectively.

2. Related Work

Related to the development of RTS games are appropri-
ate contemporary RTS agent development methods, some

current applications, and supporting generic feature selec-
tion and class identification methods.

2.1. Current RTS Game Methods. Over the past three
decades, there have been a variety of imperfect information
(note that perfect information games include tic-tac-toe,
checkers, chess, backgammon, and Go. RTS and RTT ap-
proaches have been applied to these games with some success
depending upon depth of look-ahead search [2].) RTS games
including The Ancient Art of War, Cytron Masters, Utopia,
Supremacy, Carrier Command, SimAnt, Dune II. And then
Total Annihilation, Age of Empires, Homeworld Cataclysm,
Warcraft II & III, and Age of Mythology, Dragonshard,
Star Wars: Empire at War, and StarCraft evolved. Newer
strategy games include current versions of World in Conflict,
Company of Heroes, Civilization 4, Sins of a Solar Empire,
Medieval II, Supreme Commander, and the Rise of Nations.
Each limits the generic definition of a general RTS game
via the previous stated possible characteristic in Section 1.
Also, many incorporate RTT templates. Various action and
strategy games offer single and multiplayer options as
well. Always important are the issues of visualization and
animation features of each game regarding ease of use and
understanding along with the associated computational and
graphic requirements.

Distinct details of these games can usually be found
by name via the internet. We address specific RTS game
attributes that have a direct consideration in our “optimal”
agent algorithmic approach: Case-Based Reasoning, Rein-
forcement Learning, Dynamic Scripting, and Monte-Carlo
planning, along with available RTS software platforms.

A Case-Based Reasoning approach was used by Ontañón
et al. [3] in WARGUS, which is an open source implementa-
tion of the Blizzard RTS game WarCraft II. They define a state
as a 35-feature vector and execute the case in their database
closest to the current state. Cases are extracted from expert
game traces; humans that were proficient in WARGUS played
the game and then annotated each action they took with the
goal they were trying to achieve. Each goal is a case, and each
action taken to accomplish it is added to the script executed
when the case is selected. The AI approach was successful,
although on a small scale of only nine games. Note that Ahal
et al. [4] also used a Case-Based Reasoning technique for
WARGUS which generated successful results.

A Hybrid Case-Based Reasoning/Reinforcement Learn-
ing approach was used by Sharma et al. [5] to develop
an AI approach for a game called MadRTS, a “commercial
RTS game being developed for military simulations”. Their
technique uses a set of features to determine a game state,
such as the number of territories controlled by a given
player and the number of units still alive for a given
player. Additionally, they incorporate lessons learned from
similar tasks to increase learning speed. The developed agent
showed significant gains in achieving victory when allowed
to transfer knowledge from other domains.

Graepel et al. apply extended Q-learning reinforcement
in order to find “good” Markov decision policies for a
fighting agent game [6]. The agents are trained using an
on-policy algorithm (an on-policy learning algorithm for



International Journal of Computer Games Technology 3

an agent interacts with the environment and updates the
agent’s policy based on current actions taken) for temporal
difference learning that employs linear and neural network
function approximators. Various selected rewards encourage
aggressive or defensive agent behavior. Some acceptable
agent policies using these reward functions are found for the
author’s particular AI game.

Continuous action model-learning in an RTS environ-
ment was addressed by Molineaux et al. [7]. They develop
the Continuous Action and State Space Learner (CASSL).
Their approach is an integrated Case-Based Reasoning/
Reinforcement Learning algorithm. Testing indicated that
CASSL significantly outperformed two baseline approaches
for selecting agent actions on a task from an RTS gaming
environment.

Dynamic Scripting is a method developed by Spronck
et al. [8] for third person role-playing games. The generic
technique uses a set of rules to define a game state, and
the value of these rules determines what actions are added
to the script at each turn. This is a way of dealing with
the huge decision space of RTS games. However, it prevents
this approach from reasoning on actual game conditions.
This research was extended to the RTS domain by Kok [9].
Reinforcement learning was used to determine appropriate
actions based on states. Instead of using only rule values, the
approach allowed use of some knowledge of the actual state
which generally leads to success.

A Monte-Carlo planning approach was used by Chung
et al. [10] in “Capture the Flag” (CTF) games. In a CTF
game, the agent’s objective is to obtain the opponent’s flag
and return it to its base before the opponent is able to do the
same. Using a CTF game reduced the complexity of the state;
resource collection was unnecessary, and complex strategic
level plans were not required. At each step of the game, the
designed agent would generate a number of plans (parameter
passed to the function), evaluate their performance against
the possible actions the opponent could take, and execute the
best plan. The success of this approach of course was highly
linked to the specific game conditions.

In general, these approaches for solving RTS games
do generate acceptable nonoptimal but not robust RTS
solutions. This situation is generally due to the characteristics
of the highly dimensional RTS search space being jagged and
very rough. Moreover, we show this characteristic empirically
via more appropriate stochastic search.

Note that contemporary AI techniques in RTS games
continue to be in the development stage but with limited
implementation. Observe that currently all such RTS games
can be beaten by a knowledgeable human opponent, thus,
making RTS games quite interesting and one would hope
playable. Also, no single AI or human approach has been
shown to be better or show more promise than others;
therefore, there probably is no generic robust RTS game
strategy-based agent that leads to victory in all cases! One
can think of this situation as a reflection of the no-free-lunch
theorem [11].

2.2. Some Current RTS Platforms. There are a number of
RTS platforms on which to implement an RTS game along

with collection of algorithmic game data. For example, Bos
Wars [12] which is an open-source RTS developed as a no-
cost alternative to commercial RTS games. Another is Spring
Engine [13] where perfect knowledge of the environment is
not available so a temporal difference learning technique is
employed. A physics engine called Havok Game Dynamics
SDK is used in some other RTS games such Age of Empires
III and Company of Heroes for realism. Another platform
is the NERO game [14], which stands for Neuro-Evolving
Robotic Operatives. For the NERO project, a specific neural-
net evolutionary algorithm is designed called rtNEAT, real-
time Neuro-Evolution of Augmenting Topologies. These RTS
platforms operate under Windows or Linux and require
high-speed CPUs and extensive graphical interfaces. which
stands for Neuro-Evolving Robotic Operatives.

We choose to use the Bos Wars platform for determining
general RTS search space characteristics. This choice provides
an efficient and effective computational platform for gaining
initial insight to the RTS search space. Knowing these
characteristics, generic RTS platforms can be used later to
explicitly search for RTS strategic solutions using appropriate
stochastic AI algorithms.

2.3. General Feature Selection. The goal of generic feature
selection is to find a subset of features from a data domain
(game traces) in order to maximize some identification
function a priori. This subset of features can then be used
to classify given date at some epoch (snapshot). In the RTS
Feature Selection problem, the goal is to classify game states
via this feature subset at each snapshot. An initial execution
of a selected number of the same RTS game can determine
the feature subset. The RTS optimization identification
function is derived from a general classification problem;
once the appropriate RTS subset features are determined
through the RTS training data, game playing state data can
be separated quickly with this subset into classes at each
snapshot. Note that a method to generalize each class must be
determined, so all game states can be classified as well. Those
states classified as winning strategies are sought out of course.
This is in general a very difficult computational problem. Of
course, Generic Feature Selection and Classification continue
to be open research areas in engineering and science.

A general overview of feature selection and classification
methods is given by Blum and Langley [15]. Although the
others listed would also be appropriate, Bos Wars was chosen
for ease of analysis. Different ways of defining a relevant
feature are discussed. One of the most basic is “feature xi is
relevant if there exists some example in the instance space
for which twiddling the value of xi affects the classification.”
For the remainder of this paper, the term “important” is used
synonymously with the definition of relevant.

Blum and Langley [15] also discuss three different
general methods of feature selection and classification: filter,
wrapper, and embedded. In filtering methods, features are
selected and then passed to a classification algorithm. This
solves the entire problem as a two-step process. In a wrapper
approach, the two problems are still separate, but multiple
solutions are explored. A subset of features is chosen and
passed to a classification algorithm, then a different subset is



4 International Journal of Computer Games Technology

chosen and its performance in the classification algorithm is
compared. This process is repeated many times leading to an
acceptable classification. In an embedded approach, the two
problems are solved concurrently via parallel interaction.

The algorithm designed in this paper takes an embedded
approach to a priori feature selection and classification.
In each method, possible class separability and clustering
functions are based upon a distance function. Such met-
rics include error probability, interclass distance, k-means
clustering, entropy, consistency-based feature selection, and
correlation-based feature selection.

A good overview of the feature selection problem domain
is presented by Jain et al. [16] in which they define some per-
tinent terms. “Pattern representation” refers to the number
of classes, the number of available patterns, and the number,
type, and scale of the features available to the clustering
algorithm. Again, the goal of feature selection/classification
is to find the specific pattern representation which maximizes
(optimizes) the performance of a classifier, in our case, win-
ning game strategies.

Collections of RTS game traces can be used to construct
a generalization of a particular game given many runs. By
using machine learning techniques, specifically the genera-
tion of classification models for the game traces, the feature
value combinations which tend to lead to victory and the
feature value combinations which tend to lead to defeat can
be determined. These good and bad feature values can then
be given to an agent that would seek to avoid the bad feature
combinations and approach the use of good combinations in
the temporal decision process of the game.

There are numerous approaches to feature selection,
using many different algorithms and heuristics. For example,
search algorithms include deterministic depth-first search
and breath-first search (best-first search), and stochastic
simulated annealing and genetic algorithm techniques. The
Feature Selection problem is known to be NP-Complete [17],
with a solution space of O(nn), where n is the number of
possible features which could be selected. Thus, in large
feature spaces, stochastic approaches are preferred generating
acceptable solutions relatively quickly.

For example, to reduce the problem search space, Somol
et al. [18] used heuristics to prevent the expansion of un-
productive nodes. By predicting the value of a node instead
of computing its actual value, they were able to reduce the
amount of time spent evaluating each node. This led to
reduced time spent on a search, as well as pruning off non-
productive areas of the search space.

As an example in the marketing domain, feature selection
is used to determine customers who are likely to buy a
product, based on the other products they have bought.
Genetic algorithms were used by Jarmulak and Craw [19]
to solve this problem. They assigned weights to each feature
selected to take advantage of the relative importance of
each feature. Simulated annealing was used by Meiri and
Zahavi [20] to solve a similar marketing problem. Feature
identification results in both cases were deemed acceptable.
Historical motivation for simulated annealing use in opti-
mization problems is discussed by Kirkpatrick et al. [21].

There are numerous examples of feature selection meth-
ods, in many different domains. However, feature selection
is usually a domain specific problem; a feature selection
algorithm which gives a good solution in one problem
domain does not necessarily give the same quality of solution
in a different domain. Our embedded algorithm uses a priori
stochastic feature selection as motivated in the following
sections.

2.4. Classification Methods. A classifier is a system created
from quantitative labeled data which can then be used to
generalize qualitative data. In a more general sense, building
a classifier is the process of learning a set of rules from
instances. These rules can be used to assign new samples to
classes. In an AI taxonomy, classification falls into the realm
of supervised machine learning [22]. Note that our percep-
tion is the process of attaining awareness or understanding of
sensory information via classification.

A classifier is often generated from an initial dataset,
called the training set. This training set is a series of samples
of feature values, where a feature is some measurable aspect
of a specific problem domain. Each sample has values for all
the features and is labeled as to what class in the problem
domain it came from.

There are numerous methods of generating classifiers.
Logic-based algorithms construct decision trees or rule-based
classifiers for games [23]. New data can be classified by
following the decision tree from the root to a leaf node
and classifying appropriately. Perceptron-based techniques
(neural net) learn weights for each feature value and then
compute a function value for all the training data. Instances
are classified based on this function value. Statistical learning
and Probabilistic learning algorithms generate probabilities
that a sample belongs to a specific class, instead of a simple
classification. Common examples of these techniques are
linear discriminant analysis [24] and Bayesian networks,
which were first used in a machine learning context in 1987
[25]. Note that various classifiers can come under a variety of
learning algorithm definitions.

The family of instance-based learning algorithms are the
most useful when developing an agent [26]. Instance based
learning (IBL) algorithms assume that similar samples have
similar classifications. They derive from the k-Nearest Neigh-
bor (k-NN) classifier, which classifies a sample based on the k
closest samples to it in the classifier. IBL algorithms represent
each class as a set of exemplars, where each exemplar may
be an instance of the class or a more generalized abstraction
[27].

Two basic IBL exemplar models are proximity and best-
example. A proximity model stores all the training instances
with no abstraction, so each new instance is classified based
on its proximity to all the samples in the training data.
Best-example models only store the typical instances of each
concept [28]. Best-example models can greatly reduce the
subset size of features.

Another classification method based upon the K-
NN approach is the K-winner machine (KWM) model
[29]. KWM training uses unsupervised vector quantization
and subsequent calibration to label data-space partitions.



International Journal of Computer Games Technology 5

A K-winner classifier seeks the largest set of best-matching
prototypes agreeing on a test pattern and provides a local-
level estimate of confidence. The result leads to tight bounds
to generalization performance. The method maybe suit-
able for high-dimensional multiclass problems with large
amounts of data. Experimental results on both synthetic and
real domains confirm the approach’s effectiveness.

One method of creating a best-example model from the
training set is the K-means clustering algorithm. K-means is a
two-step algorithm which takes N samples and assigns them
to K clusters. Each cluster is represented by a vector over all
the features called its mean. K-means is a two-step process:
in the assignment step, each data point n ∈ N is assigned to
the nearest mean. In the update step, the means are adjusted
to match the sample means of all the data points which
are assigned to them. This process repeats until the change
in the clusters approaches zero or some defined threshold
[30]. Although a spectrum of classification techniques have
been introduced for clarification, the classification method
selected in the following sections is motivated by the desired
to provide insight to RTS search space characteristics. In
developing an efficient and effective classification process for
a specific RTS game, consideration of the above approaches
should be addressed.

3. The Problem

Our Real-Time Strategy Prediction Problem (RTSPP) is
a classification problem which is formulated as a basic
search problem. Any search problem definition including
the RTSPP can be defined by its input, output, and fitness
function.

3.1. Problem Definition. The input to the RTSPP is a set
of game traces from RTS games. Each game trace consists
of “snapshots” taken at constant intervals or epochs. Each
snapshot contains the value of all the possible features which
an agent can observe. In the RTS domain, features could be
the number and type of units, the amount of energy or fuel,
or the rate at which energy and fuel are collected or used.
Features could also be the rate of change of any of the static
features across some time interval. Each snapshot is labeled
as to whether it came from a game which was won or lost
from player one’s perspective.

All features are defined as the difference between player
one’s value and player two’s value. For example, if at some
point in a game player one has two infantry units and player
two has three, then the value of the infantry unit feature
is negative one. Expressing features as a difference cuts the
space required to store game traces in half.

The output (solution) of the RTSPP is a classifier: a subset
of features, a set of winning centers, and a set of losing centers.
The set of features determines which features are used in the
classifier. Each center in the set of winning centers gives a
set of values across the features which generally result in a
winning game. The set of losing centers is the same concept,
only from losing games.

The classifier is then used to predict the outcome of a
game based on only the current state. During a game, the

values for the features in the solution are measured. Then,
the distance to each center in the sets of centers is measured.
The closest center is determined. If this center is a winning
center, then the game state is predicted to result in a win. If it
is a losing center, then the game state should result in a loss.

The quality of a solution to the RTSPP can be measured
by testing its classification performance. Classification perfor-
mance is measured as a percentage of right answers to total
samples over various games.

3.2. Formal Problem Definition. The RTSPP is formally
defined to remove any ambiguity of understanding. There
is a set F of features and a set S of snapshots. The input to
the problem is a set of n ×m data, where n is the number of
features and m is the number of snapshots.

The output of the problem is a set of features F′, where
F′ ⊆ F, and a set of centers C, where the winning centers are
Cw and the losing centers Cl, so Cw∪Cl = C and Cw∩Cl = �.
Each center is a representative sample of a snapshot that is a
mean of a cluster of minimizing samples.

The fitness of a solution can be determined by using it to
classify all the samples in S. The function dist(s, c) returns the
Euclidean distance for example from a sample s to a center c,
so the value of a prediction function P(s) is

P(s) =
⎧
⎪⎨

⎪⎩

1 min
c∈C

(dist(s, c))∩ Cw = c,

0 min
c∈C

(dist(s, c))∩ Cw = �.
(1)

Next, a function which determines the accuracy of a
prediction is needed. The function g(s) returns one if the
prediction is correct, zero if it is not. For ease of notation,
the actual classification value of sample s is denoted by P∗(s).
g(s) is formally defined as

g(s) =
⎧
⎨

⎩

1 P(s) = P∗(s),

0 P(s) /=P∗(s).
(2)

Total fitness G(S) is just the sum of g over all samples
s ∈ S divided by the number of samples:

G(S) =
∑m

i=1 g(si)
m

. (3)

The objective of the RTSPP is to find F′ and C for which
G(S) is maximum.

3.3. RTSPP Solution Space Analysis. The concluding step
in the problem definition is an analysis of the number of
possible RTSPP solutions. This information is important
because it determines the difficulty of the search.

In the RTSPP, there are two components to a solution:
the features in the set F′ and the centers in C. The number of
possible feature subsets is O(n!) ≈ O(nn).

Center solution space analysis is more complicated. If
centers are restricted to being a sample s ∈ S, then the
number of possible centers is O(m!) ≈ O(mm). However,
if center values are not restricted, then the solution space is
much larger. If each feature is split into 1,000 possible values,



6 International Journal of Computer Games Technology

then there are O(1000n) possible values for a single center.
Since there is no reason to have more than m centers, the
solution space for real valued centers is of order O(1000n ×
m).

Combining the two solution spaces leads to a total solu-
tion space of O(nn × 1000n ×m).

One of the easiest reductions to the problem domain
is to reduce the number of features in F′ and centers in
C. An overall objective of the RTSPP solution is to reduce
the decision space for an agent. While keeping all the
features/samples in a solution may lead to high fitness values,
it does not accomplish this objective. Accordingly, the size of
F′ is limited to some constant j and the size of C is limited to
some constant k, leading to these two formal constraints on
a solution:

∣
∣F′
∣
∣ < j,

|C| < k.
(4)

The two constraints significantly reduce the size of the
solution space. The feature selection portion is now O(nk).
The center portion is O(1000 j × j) for real-valued centers
and O(mj) when centers are subject to C ⊂ S. Total solution
space size is O(nk × 1000 j × j) or O(nk ×mj).

With the reduction based on the constraints, the solution
space is polynomial in the number of features and samples in
the input data.

4. Feature Subset Search Methods

Any search problem can be solved using one of two
general search types: deterministic and stochastic [31]. A
deterministic algorithm is not probabilistic. The next search
state is only determined from the current search state (partial
solution) and the chosen search algorithm. To generate an
optimal solution via expanding partial solutions, the entire
search space must be searched either explicitly or implicitly.
This means that the problem domain could be relaxed to
decrease the size of the search space so it can be searched
in a reasonable amount of time. Thus, relaxing the problem
domain dimensionally yields an optimal solution to a smaller
problem.

In a stochastic search, the algorithm is a probabilistic
search over the solution space. The next state (solution) of a
stochastic search algorithm is not always the same. Instead,
the search is guided towards profitable areas using some
heuristic. A stochastic algorithm does not search the entire
solution space; instead, it seeks to exploit characteristics
of the problem domain to find good solutions. Stochastic
search algorithms require the assumption that the search is
allowed to run forever to guarantee optimality. This is clearly
unrealistic. However, the solution yielded by a stochastic
algorithm is a solution in the original problem domain which
may be near optimal or at least acceptable.

In some problem domains, a near optimal solution to
the original problem is better than an optimal solution.
In others, the converse is true. One way to determine this
is to test both approaches on the problem domain. To do
this, the problem domain must be explicitly defined. Next,

a specific search algorithm can be developed and tailored
to the problem. In this chapter, both deterministic and
stochastic search algorithms are developed to solve the RTS
classification problem. They are tested on a data set from an
RTS application, and their performance is compared. Finally,
a selection is made between the deterministic and stochastic
families for further development. To appreciate the subtle
aspects of these feature selection search techniques for RTS
games, the following sections are provided.

4.1. Deterministic Feature Subset Search. In general, features
work in combinations to determine the fitness of a given
RTS state. To find a subset of features, deterministic search
in the RTS domain faces an immediate problem because of
the complexity and roughness of the solution space. There is
no way to search the entire problem space in a reasonable
amount of time, which would be required to guarantee
an optimal classification solution. Moreover, classification,
when conducted on a problem with dependent variables,
does not lend itself to implicit searching. The RTSPP for
example probably has dependent variables.

In problems with independent variables, a solution can
be constructed by adding features to a solution one by one,
adding the feature at each level which has the greatest positive
effect on the classification accuracy of the model. Dependent
variables provide no such guarantee; because they work in
combinations, the addition or deletion of a feature from
a solution can have a large and unpredictable effect on
classification model accuracy.

Basically, this means there is no admissible heuristic [31]
which can be used to trim the search space. An admissible
heuristic by definition always generates an optimal solution.
However, there are nonadmissible ways which can be used
to guide the search. We present one such method, which
we use to achieve two different goals: it decreases the
solution space so that every possible solution can be tested
in a reasonable amount of time, and it guides the search
towards profitable areas of the search space. By examining
the solutions generated through the use of a heuristic, we can
determine characteristics of the solution space, which is one
of our objectives. Of course, an admissible heuristic would
be more appropriate, but for RTS games, good admissible
heuristics are yet to be generated.

When reducing the size of the solution space via clas-
sification, we need to find a heuristic which preserves the
high fitness solutions of the entire space, while discarding
the solutions with low fitness. If we start with the solution
space in Figure 1, we would like to find a heuristic which
transforms this into the solution space in Figure 2, a desired
relaxed or reduced dimensionally problem domain solu-
tion space (fitness landscape). The undesired transformed
solution space in Figure 3 reflects the removal of some low
fitness solutions, but the high fitness solutions have not been
retained.

4.1.1. The Heuristic. One of the easiest ways to reduce
solution space size is to determine a way to pair features
with centers. If at each step a triple could be selected



International Journal of Computer Games Technology 7

2000 4000 6000 8000 10000 12000 14000

Solution

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

RTSPP solution space

Figure 1: A hypothetical solution space.

20 40 60 80 100 120 140

Solution

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

RTSPP solution space

Figure 2: A hypothetical solution space which has been pruned
through the use of a heuristic.

20 40 60 80 100 120 140

Solution

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

RTSPP solution space

Figure 3: Another hypothetical solution space which has been
pruned through the use of a heuristic.

which consisted of one feature, one winning center and one
losing center, the number of combinations would be greatly
reduced. This requires a means of determining good feature
values when features are selected.

One way of determining good features involves the use of
the Bhattacharyya Coefficient (BC) [32]. The BC can be used
to determine the separability of two data sets. It computes the
separability of two classes of data, based on a histogram of
the data. Values for the coefficient for a feature are between
0 and 1, where values close to zero show the feature is very
separable between the two classes, while values close to one
show the feature is not very separable for these two classes.
Therefore, the BC heuristic can be used to choose the feature
with the most separability at each step. Each feature can be
paired with a sample in its histogram. The BC finds data
distributions that are as far apart as possible; centers should
be chosen that best generalize each distribution. Therefore,
the median sample of the winning/losing distribution is chosen
as the center for each feature.

The BC is calculated by taking a histogram of all the
data and determining the probability of a sample falling in
a bin for both classes. The two probabilities for each bin are
multiplied together and summed over the entire histogram.
Formally, this is

BC =
I∑

i=1

P(Wi)× P(Li), (5)

where I is the number of bins in the histogram, Wi is the set
of winning samples, Li is the set of losing samples, and P()
is the probability of the samples being in the bin. Figure 4 is
a visualization of this idea. The two curves are distributions
over the winning and losing samples. The BC is a number
between one and zero, expressing the amount of “overlap”
of the two distributions; zero represents no overlap, while
one represents complete overlap. On this graph, it is the
space bounded by both curves. To pair a feature with a
winning and losing center, we take the sample at the median
of the respective distributions, symbolized by the lines Wi

and Li. We have expressed the win/loss samples for feature
Fi as Gaussian distributions, but the BC can use any type of
distribution.

The BC pairs each feature with two centers (one winning,
one losing), so at each step of the depth-first-search with back-
tracking (DFS-BT) algorithm, the set of candidates contains
a set of triples, each containing one feature and two centers.
Because the BC drives a particular choice of center for each
feature, the maximum size of the set of candidates is |F|.

Of course, BC is not an admissible heuristic. The opti-
mization function (percent classified correctly) is not directly
related to the BC. However, if the triple with the lowest BC is
chosen at each step, it should drive the greatest improvement
in classification accuracy because the overlap between the
winning/losing sets is as small as possible. If the feature with
the lowest BC remaining is selected and it does not improve
the value of the optimization function, the next one picked
should not do any better; the solution samples are close
together.



8 International Journal of Computer Games Technology

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

Sa
m

pl
es

(%
)

Bhattacharyya examples

Li Wi

Losing samples
Winning samples

Value Fi

Figure 4: A visualization of the Bhattacharyya coefficient (BC) on
feature Fi.

Search depth
(without greedy start)

Search depth
(with greedy start)

Figure 5: The increased space searchable with greedy search por-
tion.

4.1.2. Choosing a Deterministic Search Algorithm. When
choosing a search algorithm, we must keep in mind our
goal: to determine the characteristics of the RTSPP solution
space. We have a heuristic which we would like to test, the
BC. A best-first algorithm would allow us to determine the
effectiveness of the heuristic, as long as we search the entire
domain. If the best solution found by the algorithm is found
at the beginning, then the heuristic is good; it guided the
search in a profitable direction. However, if the solution
found is near the end of the search, then the heuristic is
guiding us towards nonoptimal space.

Another way to test the effectiveness of the heuristic is
to use a greedy (DFS) portion in our overall search. If this
greedy portion is at the beginning of the search, then it allows
us to increase the depth of our global search, as depicted in
Figure 5. Again, the performance of this greedy search can
be used to gauge the effectiveness of our heuristic. If better
solutions are found when increasing the greedy search depth,
then the heuristic guides us towards profitable areas of the
search space.

The BC heuristic also prunes the search space. The BC
pairs each feature with a center, as described. This signifi-
cantly reduces the space, allowing us to completely search the
space in a reasonable amount of time. However, we eliminate
many possible combinations. To test the effectiveness of the
heuristic from this perspective, some other method of search
must be used which searches other possibilities missed by the
deterministic search.

The best choice for a deterministic search algorithm is to
begin with a greedy search which chooses some number of
feature/center triples for a partial solution. Then, we begin a
best first search which tries all the possible combinations of
triples which can be used to form a solution, subject to the
constraints on the number of features in a solution.

These algorithm choices lead to two different search
parameters: the depth of the greedy search and the total
number of features in a solution. By varying these param-
eters, we can gauge the effectiveness of the heuristic, as
well as determine some characteristics of the solution space.
But, because of the deterministic algorithm computational
characteristics, a stochastic local search algorithm is selected.

4.2. Stochastic Feature Subset Search. It is assumed because
of the combinatorics that the solution landscape of the
RTSPP has many local maximum and minimum points.
Most of these would exist in close proximity to each other;
some features should be more closely related to the eventual
outcome of a game. For instance, the total number of units
for one player compared to the units for another player
is one feature which would probably give good prediction
accuracies, while the total amount of money or fuel which
could possibly be stored is probably not in a solution. Local
maxima should be near the global maximum, while local
minima should be near the global minimum. As a result of
these search landscape characteristics, a stochastic algorithm
that is initially biased towards exploration, but then tends to
exploitation is suggested.

This tentative analysis of the solution space shows the
RTSPP may be responsive to a relatively simple stochastic
algorithm like simulated annealing (SA) [33]. Simulated
annealing is very similar to the deterministic search algo-
rithm hill-climbing [31]. Hill-climbing starts with a solution
and generates another solution in the neighborhood. If
the fitness of this new solution is better, it becomes the
solution and the algorithm repeats. If it is not better, then
the generated solution is discarded and another solution is
generated and tested.

In simulated annealing, the same approach is taken, but
worse solutions can be accepted with some probability. Hill-
climbing is subject to getting caught in a local maximum
since it has no way of escaping. The probabilistic acceptance
provided by simulated annealing allows the algorithm to
possibly escape from a local maximum. The probability of
selecting a worse solution is based on the current tem-
perature, which changes based on a cooling parameter. At
the beginning of the algorithm, the temperature is high so
almost all solutions are accepted. As the search continues,
the temperature falls such that lower quality solutions are



International Journal of Computer Games Technology 9

accepted less frequently. By the end of the algorithm, SA
becomes hill climbing.

Simulated annealing is easy to implement and runs
quickly. It is a good choice to test the performance of a
stochastic algorithm on the RTSPP.

4.3. SA Algorithm Domain Refinement. In order to appreciate
the important design evolution of our SA method, the
SA algorithm refinement is presented. Initially, we need to
consider a complete formal SA specification, which requires a
solution form, fitness function, neighborhood function, and
cooling function for the problem domain.

A solution to the RTSPP is a set of features along with a
set of centers. There are n = |F| features, so a solution to the
feature selection portion of the RTSPP is an n-length binary
string, where each feature is represented by a location in the
string. A zero in the f th position of the string means feature
f is not in the solution; a one means it is in the solution.
Similarly, a solution to the center selection portion of the
RTSPP is a binary string of length |S|, where a one in the
sth position of the string means sample s is a center, while a
zero means it is not. A total chromosome solution is a binary
string of length |F| + |S|.

The fitness function is determined by the chromosome
string representing the current solution z. The fitness value
is of course G(z), from (3).

To generate the next solution, the current solution may
be mutated in two different ways. Either a bit in the solution
is flipped or two bits of opposite value (a zero and a one) are
swapped. The generic neighborhood function permits a slow
exploration of the solution space (landscape) with the use of
this mutation operator.

The cooling function is a geometric decreasing function
defined by a parameter 0 < α < 1, where Tn+1 = α × Tn.
The probability of choosing a solution with lower fitness is
the current temperature divided by the original temperature:
Tn/T0. Termination is when Tn reaches zero.

4.4. Program Specification. The combination of the algo-
rithm constructs and specification generates the program
specification in Algorithm 1.

The algorithm complexity depends on the time it takes
to compute the fitness function G(). As in the deterministic
solution, this takes O(k × |S|2). The stochastic algorithm
examines a new solution at each step. Since the termination
condition is Tn = 0, and the current temperature is selected
to be a geometric cooling function based on α, SA tests
ln(ε)/ ln(α) solutions, where ε is a very small number, say
0001. The overall problem solution space, from the problem
definition, is O(|F|k × |S| j). The stochastic algorithm is
not able to explore the entire solution space, but the SA
initialization of solutions should “cover” all the various
search space regions. The SA implementation should guide
the search in good directions so the unexplored portions of
the space should be uninteresting ones.

4.5. Program Specification Refinement. The problem with
the program as currently designed is in the neighborhood

Do= � “String Solution Domain”
x = x0 “initial string”
n = 0
while Tn > 0 do

Select z ∈ N(x) “Select string in ngbr of x via mutation”
if g(z) > g(x) OR random > (Tn/T0) then

x = z
end if
Tn+1 = Tn × α
n = n + 1

end while
Do = x “Final string solution”

Algorithm 1: SA RTSPP Initial Specification.

s = F1 · · ·FN | S1 · · · SM
x = 0110 | 10010110

z1 = 0101 | 10100101

z2 = 1001 | 01101001

Figure 6: Proximity in solution space.

function. Allowing flipped bit s can potentially change the
number of features/centers in a solution. Since the two
constraints are limits on the number of features and centers,
this means the algorithm may generate infeasible solutions.
To deal with this problem, a repair function could be
introduced to “fix” infeasible solutions, or the neighborhood
function could be changed. Since one of the main concerns
with the search is complexity, and introducing a repair
function increases complexity, changing the neighborhood
function is the best course.

Instead of allowing “flipped” bits, only swaps are allowed,
and bits must be swapped in the same portion of the binary
solution so a bit in the feature portion of the solution is
not swapped with a bit in the center portion. Three swaps
are made based upon problem insight: one in the feature
portion and two in the center portion of the solution. For
ease of notation, this function is called swap(). It takes the
current solution x and returns a new solution z. An example
of this swap is in Figure 6. s is a general solution; the first
|N| numbers are features, the next |M| are samples. x is a
possible solution; there are four features and eight samples in
this example. The first four samples are winning; the last four
are losing. z1 is a possible nearby solution; one sample and
two centers have been swapped. z2 is not a nearby solution,
two samples and four centers have been swapped out.

As already stated, the solution x is a binary string of
length |F| + |S|. However, this is used to compute the fitness
functionG(x). To reduce the complexity of this computation,
there is a secondary implementation of the solution as three
arrays of integers, one of l features and two of k centers. The
feature array is F′, the winning centers array is Cw, and the
losing centers array is Cl. When a new solution is accepted,
these three sets are updated in constant time by removing
the value swapped out and adding the value swapped in.



10 International Journal of Computer Games Technology

xbest = 0 “Initial Best String Solution”
x =random
step = 0
while Tstep > ε do

if fitness(x) > fitness(xbest) then
xbest = x
z = swap(x)

end if
if fitness(z) > fitness(x) OR random < (Tstep/T0)
then

x = z
end if
Tstep+1 = Tstep × α
step + +

end while
xbest = x “Final Best String Solution”

Algorithm 2: SA RTSPP Final Specification.

Additionally, the data array is used to compute the entire
fitness function. Like in the deterministic solution, the data
is stored in an array for fast access, the array data.

The best solution is xbest, and its value is G(xbest). As in
the partial solution, this is a binary array of length |F| + |S|.
In order to quickly print the best solution at the end of the
program, the features and centers are stored in integer arrays
like in the current solution: F′best, C

best
w , and Cbest

l .
Instead of having the user specify the initial solution,

it is generated randomly by picking l features, k/2 winning
centers, and k/2 losing centers.

The data structures lead to the final program refinement
in Algorithm 2. The details of the integer array solutions,
F′, Cw, Cl, and their respective best values are left out;
implementation can be done easily inside the swap() func-
tion. The algorithm is implemented, tested, and analyzed via
experimental design.

5. Experimental Setup

RTS problem domain data is used to test the two designed
classification search algorithms, the parameters used in each
algorithm, and the performance metrics used to gauge their
performance.

5.1. Data: Bos Wars Game. The algorithms are tested on data
from the RTS platform Bos Wars [12]. Bos Wars is an open
source RTS developed as a no-cost alternative to commercial
RTS games. There are eight maps or game environments
packaged with the game. In most maps, starting conditions
for both players are similar. Each player has the same resource
amount and the same access to resources and starts with
the same number and type of units. Three different two-
player maps are used: two have similar starting conditions
and one had a line of cannons (defensive buildings) for
one player. Bos Wars has a “dynamic, rate-based economy”,
making it somewhat different than most other RTS games.
Energy (money) and magma (fuel) are consumed at a rate
based on the number of units and buildings a player owns. As

the size of the player’s army increases, more resources must
be allocated to sustaining infrastructure. Additionally, Bos
Wars has no “tech-tree”, so all unit and building types can
be created at the beginning of any game.

There are three scripted AI search techniques packaged
with the development version of the game: Blitz, Tank Rush,
and Rush. Blitz creates as many buildings and units as
possible in the hopes of overwhelming the opponent. Tank
Rush tries to create tanks as quickly as possible, using a
strong unit to beat the weaker units normally created at the
beginning of a game. Rush creates as many units as quickly
as it can and attacks as soon as possible in order to catch the
enemy off guard.

Additionally, there are three different difficulty levels for
the game: Easy, Normal, and Hard. Changing the difficulty
level allows the AI search to execute its script faster, so it
progresses farther in its strategy in a given time period during
a Hard game than a Normal game and Normal progresses
further than Easy. As indicated, three Bos Wars maps or
different environmental games are executed and evaluated:
Battlefield, Island Warfare, and Wetlands.

To collect data, the Bos Wars source code is modified
to take a snapshot of the game state at intervals of five
seconds and output the feature values to a text file. Each
snapshot consists of thirty different statistics: including Energy
Rate, Magma Rate, Stored Energy, Stored Magma, Energy
Capacity, Magma Capacity, Unit Limit, Building Limit, Total
Units, Total Buildings, Total Razings, Total Kills, Engineers,
Assault Units, Grenadiers, Medics, Rocket Tanks, Tanks,
Harvesters, Training Camps, Vehicle Factories, Gun Turrets,
Big Gun Turrets, Cameras, Vaults, Magma Pumps, Power
Plants, and Nuclear Power Plants. Additionally, thirty delta
values for all the features based on the snapshot taken 25
seconds before are created, so there are sixty features.

Altogether, eighty-one games are recorded. For the three
maps, three iterations are run for selected combinations of
the Bos Wars AI search techniques (Tank Rush Rush, Tank
Rush Blitz, Rush versus Blitz) at each difficulty level, so each
map has twenty-seven game traces.

Win/loss prediction is easier: the closer one gets to the
end of the game, and almost impossible at the beginning.
The goal of the RTSPP is to capture the important part of
a game, where one player obtains an advantage over the
other. To facilitate this, only game states in the third quarter
of a game, the ones starting after 50% of the game had
elapsed and before 75% of the game had elapsed, are used
as input. The shortest game was about ten minutes long,
while the longest was more than forty minutes. Predictions
ranged from samples 2.5 minutes from the end of the game
to 20 minutes from the end of the game. Table 1 gives the
records of each scripted agent match on a specific map.
Results are summed for each agent, no matter what difficulty
level, since both agents have the same advantage. Table 2
shows the average standard deviation in game length for a
specific agent combination at a specific difficulty level on
a specific map. This standard deviation is an average of
the standard deviation across the three difficulty settings.
These statistics show the deterministic nature of the Bos Wars
scripts. In a given agent combination on a given map, the



International Journal of Computer Games Technology 11

Table 1: Records for each agent combination on listed map (1st
agent wins—2nd agent wins).

Map/Agent combination Battlefield Island Warfare Wetlands

Rush versus Blitz 6–3 9–0 9–0

Tank Rush versus Blitz 9–0 9–0 9–0

Rush versus Tank Rush 0–9 2–7 9–0

Table 2: Average standard deviation in game length (seconds) for
agent combinations on specific maps.

Map/Agent combination Battlefield Island Warfare Wetlands

Rush versus Blitz 0.00 31.30 38.10

Tank Rush versus Blitz 0.00 0.00 34.78

Rush versus Tank Rush 0.77 30.41 0.26

Table 3: Number of winning samples for each fold of the Bos Wars
Training Set and the number of winning samples in the Bos Wars
Test Set.

Data set Winning samples Samples Percentage

Fold One 311 998 31.2%

Fold Two 311 998 31.2%

Fold Three 310 997 31.1%

Bos Wars Test Set 452 1463 30.9%

same agent tends to win every time. The game length is
almost the same every time.

Extracting all the third quarter samples from the game
leads to a sample size of about 4500. This data is split into
two portions: the first, of around 3000 samples, is used by
both algorithms to develop classifiers. This data is referred to
as the Bos Wars Training Set. The remaining 1500 samples
are held out and used to compare the best classifiers found
by the two algorithms. This data is referred to as the Bos
Wars Testing Set. Holding out a portion of the data so
neither algorithm is allowed to train on it leads to a fair
comparison. The percentage of winning samples in each data
set is presented in Table 3. When analyzing results, the win/
loss bias of the data determines how good the accuracy is
when compared to an uninformed algorithm which simply
assigns the majority label to every sample.

When generating classifiers, both algorithms use 3-fold
cross validation to develop their classifiers. In 3-fold cross
validation, the data is split into three sections. The algorithm
takes two of these sections to train a classifier and then uses
the final third to test the performance of the classifier.

The Bos Wars Training Set is used to determine the best
search parameters for each algorithm. Solutions obtained
using the best search parameters on the Training Set are then
tested on the Bos Wars Testing Set.

5.2. Deterministic Search Parameters. The developed deter-
ministic algorithm is a greedy, depth-first search with back-
tracking combined search. It has two search parameters
which could be varied: the depth of the greedy jump start
(i) and the max depth of the search ( j). At each level, the

Table 4: Parameter combinations for testing of the stochastic search
algorithm.

Parameter Range Step Unique values

T0 50–200 25 7

α 0.2–0.8 0.1 7

l 2–8 1 7

search adds a feature/center triple, created using a BC, to the
solution. At the beginning of the DFS portion of the search,
the solution contains i feature/center triples. At the end of the
DFS, a full solution has j = k feature/center triples, where j
and k are the constraints set out in (4) and j is also the max
depth of the search.

The depth of the DFS portion of the search is limited to
values less than or equal to four because of computational
complexity, or the constraint j − i ≤ 4. Additionally, the
goal of a solution to the RTSPP is to reduce the number of
features in a solution, leading to the additional constraint
j ≤ 8. To test the performance of the algorithm, the search
is run with all possible parameter combinations subject to
these constraints, a total of 34 different test combinations.

5.3. Stochastic Search Parameters. The chosen stochastic
search algorithm is simulated annealing. The SA algorithm
has three search parameters: the initial temperature T0, the
cooling parameter α, and the number of features in a solution
l. In the developed SA algorithm, the total number of centers
in a solution is equal to the number of features.

Table 4 gives the parameter combinations for the SA tests.
Because this is a stochastic algorithm, performance is aver-
aged across fifty runs for each parameter combination. The
experimental setup is a full factorial design (every parameter
combination is tested) across the three parameters, so there
are 343 runs × 50 iterations × 3 folds = 51450 experiments
for SA.

5.4. Performance Metrics. To assess the performance of each
classification algorithm, two metrics are used: the fitness of
the generated classifiers and the time to complete a search.
The fitness of a classifier is its classification accuracy on the
test set.

For the deterministic solution, every time the algorithm
is run with the same parameter settings on the same data
set, it finishes with the same solution. Repeated iterations
are not required. For each parameter setting, the algorithm
is run on each of the three folds in the data set. The best
classifier found is tested on the appropriate fold, and the
fitness across all three folds is averaged, giving an average
classification accuracy for the parameter setting. The time
to complete each search is expressed in seconds required for
the search; this is also averaged across all three folds for the
specific parameter setting.

In the stochastic search, subsequent runs of the algorithm
do not necessarily result in the same answer, so one hundred
iterations are run for each parameter combination on each
fold. The average time required to complete one iteration is
computed for each fold.



12 International Journal of Computer Games Technology

Finally, to compare the two algorithms, the classifiers
for the top five parameter settings are tested on the Bos
Wars Test Set. The average fitness for each parameter setting
is computed and can be used for comparison of the per-
formance of the two algorithms, along with the average time
to complete a search.

6. Results and Analysis

This section displays the results of the deterministic and
stochastic search algorithms and compares their perfor-
mance. First, the best performing deterministic search pa-
rameters are determined by examining algorithm perfor-
mance on the Bos Wars Training Set. The process is repeated
for the stochastic search algorithm. Next, the classifiers gen-
erated using the best performing parameters are compared
on the Bos Wars Training Set.

6.1. Deterministic Search. Deterministic search algorithm
performance is measured in terms of time to search and
classification performance. The chosen deterministic search
algorithm was a Depth First Search with Backtracking (DFS-
BT). 3-fold cross validation was used on the Bos Wars data
set. Table 5 shows an average and a standard deviation for
search time and classification accuracy across all the folds.
i is the greedy search depth and j is the full search depth.
Fitness is the average classification accuracy for the solution
found in the training data on the appropriate test set for each
fold. Time is the average length of the search rounded to the
nearest second. St Dev is the standard deviation for the three
measurements which are averaged.

6.2. Effect of Deterministic Search Parameters. In the deter-
ministic search, there are two parameters: the greedy search
depth and the total search depth, i and j, respectively. DFS
depth is equal to j − i. The two graphs in Figure 7 show the
effect of the two search parameters on classifier performance.

In the first, the direct relationship between classification
accuracy and DFS depth j − i can be clearly observed.
No matter what the greedy search depth, the classification
accuracy of the solution increases when the DFS is allowed to
search deeper.

However, the greedy search portion, which is reflected in
the second graph, is not as effective. Although not as defini-
tive, the trend in the classification accuracy as i increases but
j − i is held constant appears to be downward. This can be
validated by looking at the best performing parameter sets,
as determined by mean classification accuracy: the top four
parameter sets are where the greedy search depth is zero or
one.

The solutions with the best fitness are generated for the
parameter values j − i = 4 and i = 0. The results of
the classifiers determined with these parameter values are
compared to the best stochastic algorithm solutions on a
novel data set in Section 6.5.

6.3. The Bhattacharyya Metric. The Bhattacharyya Metric
(BC) is computed for each training set in the Bos Wars

Table 5: Results for the DFS-BT across all folds on the Bos Wars
Training Set.

i j Fitness St Dev Time (s) St Dev

0 1 73.6% 0.039 <1 0.00

0 2 80.5% 0.050 1.33 0.58

0 3 86.7% 0.027 46.67 0.58

0 4 90.0% 0.004 1013.00 5.29

1 2 70.7% 0.060 <1 0.00

1 3 83.1% 0.046 3.00 0.00

1 4 85.6% 0.039 69.33 1.16

1 5 89.0% 0.019 1345.33 17.79

2 3 67.8% 0.060 <1 0.58

2 4 80.5% 0.040 3.33 0.58

2 5 83.6% 0.036 90.67 0.58

2 6 84.7% 0.008 1673.00 51.18

3 4 65.2% 0.050 <1 0.58

3 5 77.5% 0.020 4.67 0.58

3 6 80.9% 0.023 113.00 1.00

3 7 85.5% 0.022 1962.33 15.54

4 5 67.5% 0.010 <1 0.58

4 6 75.9% 0.031 6.00 0.00

4 7 83.4% 0.019 141.67 0.58

4 8 85.5% 0.009 2279.00 6.56

5 6 73.0% 0.017 1.00 0.00

5 7 83.4% 0.019 7.00 0.00

5 8 85.5% 0.009 164.00 0.00

6 7 72.9% 0.016 <1 0.58

6 8 83.1% 0.009 9.00 0.00

7 8 75.7% 0.082 <1 0.57

Data before beginning the deterministic search. In Figure 8,
the value of the BC for each feature in the training set is
displayed, in order of lowest to highest. The best BC for
any set is 37%, which quickly rises. The BC determines
separability of a feature: its high values lead to the conclusion
that the Bos Wars data is not very separable.

As a heuristic for the greedy search portion of the deter-
ministic algorithm, the BC is ineffective. In almost all cases,
adding more levels to the greedy search decreased perfor-
mance. However, using the BC to pair features with centers is
effective: using these triples, the deterministic search is able
to attain accuracies over 90% in some cases.

6.4. Stochastic Search. To fine-tune the simulated annealing
stochastic algorithm, the effects of various parameters on
solution fitness are explored. Figure 9 depicts the effect of the
number of features in the solution l, the cooling parameter α
and the initial temperature T0 on both solution fitness and
search time across all three folds of the Bos Wars data.

Both the number of features in a solution and the cooling
parameter have a direct relationship with both classification
accuracy and search time. For alpha values, the relationship
appears to be linear. An increase of 0.1 in α results in
an average fitness increase of 2%. Two-sample t-tests for



International Journal of Computer Games Technology 13

1 1.5 2 2.5 3 3.5 4

DFS depth

65

70

75

80

85

90

A
cc

u
ra

cy
(%

)

Mean accuracy as DFS depth rises

Greedy depth 0
Greedy depth 1
Greedy depth 2

Greedy depth 3
Greedy depth 4

(a) Effect of DFS depth on classification accuracy

60

65

70

75

80

85

90

95

A
cc

u
ra

cy
(%

)

Greedy search depth

DFS depth 1
DFS depth 2

DFS depth 3
DFS depth 4

Mean accuracy as greedy search depth rises

0 0.5 1 1.5 2 2.5 3 3.5 4

(b) Effect of greedy search depth on classification accuracy

Figure 7: Effect of search depth on classification accuracy, (a) and
(b).

comparisons of the average fitness values for different
alpha values all yield very small P values, giving significant
statistical evidence that these averages are different. However,
the increase in search time looks exponential. Increasing
alpha exponentially increases the number of iterations for the
simulated annealing algorithm. In Section 4.4, the number of
simulated annealing iterations is derived as ln(ε)/ ln(α), so
the exponential relationship was to be expected.

The number of features in a solution has a large impact
on fitness at the low ends, but less at the high ends. Again,
two-sample t-tests yield P values of .000, giving significant
statistical evidence of a difference in average fitness value
for different feature values. The effect on search time is

5 10 15 20 25 30 35 40 45 50 55 60

Feature

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
h

at
ta

ch
ar

yy
a

co
effi

ci
en

t

Fold one
Fold two
Fold three

Bhattacharyya coefficient for features in Bos Wars data

Figure 8: The BC for the features in the Bos Wars training sets.

linear. This was also expected. The complexity of the fitness
computation is linear in the number of features, so an
increase has a linear effect on complexity.

The starting temperature has a negligible effect on classifi-
cation accuracy and search time due to α. Two-sample t-tests
for the difference in average fitness are less definitive, with P
values ranging from .6 to .000. The largest difference between
average fitness is <3%, showing the starting temperature has
little effect on overall fitness. This is because of the cooling
function, which multiplies the current temperature by α to
get the next temperature. For temperature to have a larger
effect, the steps between values would have to be much larger.
Basically, this would increase the number of iterations for the
search. Since changing the value of α already does this, there
is no real reason to adjust the starting temperature as well.

The detailed analysis of the effect of the parameter values
leads to a selection of the best values for the Bos Wars data
set. In this case, those values are T0 = 200, α = 0.8, and
l = 8. In the next section, the results of the stochastic and
deterministic algorithms are compared on the Bos Wars Test
Set.

6.5. Comparing Deterministic and Stochastic Search. To
choose whether to develop a deterministic or stochastic
algorithm, we must compare the solutions found by each. For
each algorithm, the best performing search parameters are
determined. In the deterministic algorithm, these parameters
are i = 0 (greedy search depth) and j = 4 (total search
depth). For the stochastic algorithm, the parameters are T0 =
200 (starting temperature), α = 0.8 (cooling parameter), and
l = 8 (number of features in solution).

Instead of comparing the results of the algorithms on
the data sets already observed, they are tested on a different
Bos Wars data set on which neither was allowed to train.
The deterministic algorithm uses the three different solutions



14 International Journal of Computer Games Technology

2 3 4 5 6 7

Number of features

0.7

0.72

0.74

0.76

0.8

0.82

0.84

0.86

0.88

A
cc

u
ra

cy
Average fitness for different numbers of features

0.78

(a)

2 3 4 5 6 7
Number of features

8
0

10

20

30

40

50

60

70

80

90

T
im

e
(s

)

Average search time for different features numbers

(b)

α (tenths)

Average fitness for different α values

2 3 4 5 6 7
0.7

0.72

0.74

0.76

0.8

0.82

0.84

0.86

0.88

A
cc

u
ra

cy

0.78

(c)

α (tenths)

2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

T
im

e
(s

)

Average search time for different α values

(d)

50 75 100 125 150 175

Starting temperature

Fold one
Fold two
Fold three

Average fitness for different starting temperatures

0.7

0.72

0.74

0.76

0.8

0.82

0.84

0.86

0.88

A
cc

u
ra

cy

0.78

(e)

Starting temperature

0

10

20

30

40

50

60

70

80

90

T
im

e
(s

)

Hardware A
Hardware B

Average search time for different starting temperatures

50 75 100 125 150 175 200

(f)

Figure 9: Effect of different parameter settings on overall classification accuracy and search time for Simulated Annealing on the Bos Wars
data set.



International Journal of Computer Games Technology 15

5 10 15 20 25 30 35 40 45 50 55 60

Feature

Feature solution frequency

0

10

20

30

40

50

60

70

80

C
ou

n
t

Figure 10: The frequency of each feature in the 150 SA solutions
evaluated on the Bos Wars Test Set.

Table 6: Results for the solutions found with the best parameters
by the deterministic and stochastic algorithms.

Algorithm Accuracy Search time

Deterministic 91.4% 1013.0

Stochastic 96.2% 75.0

developed for the parameter settings. Each solution is the
result of a DFS on a different fold of the Bos Wars training
set. The stochastic algorithm is run fifty times on each fold,
so there are 150 different solutions for the best parameter set.
All these solutions are tested on the novel data set.

The classification accuracy, along with the time which is
required to generate each solution from the training data,
is presented in Table 6. Accuracy is the average accuracy
on the Bos Wars test data, on which neither algorithm is
allowed to train. Search Time is the average time in seconds
of an average search with the best performing parameters on
Hardware Configuration A.

7. Conclusion

The results are unequivocal: the stochastic algorithm out-
performs the deterministic algorithm on both performance
metrics. In the RTSPP domain, a near-optimal solution to
the original problem is better than an optimal solution to the
reduced-dimension problem.

The simulated annealing solution gives good perfor-
mance on this data set. However, simulated annealing is a
simple stochastic search algorithm which was chosen for the
ease with which it could be implemented. It would be more
complicated to refine or tune the algorithm for a specific
RTSPP search landscape.

On the other hand, the SA solution exposes information
about the problem domain. Figure 10 shows the number of
times each feature appears in one of the 150 SA solutions
tested on the Bos Wars Test Set. Although some features are
clearly used more than others, no single subset of features
appears to dominate all the solutions. The standard deviation

of the fitness for each iteration is 0.000197, showing all the
solutions found have similar fitness values.

We conclude there is no single feature representation which
is obviously better. Good feature representations are spread
out around the space, with many different local maximums
which appear to have similar accuracy. While the exact
difference between the fitness of these solutions and the
fitness of the optimal solution is unknown, the max fitness
is 100%, so they cannot be more than 5% below this value.
Good solutions can be found in many different sections of
the solution space since the RTSPP solution space landscape
is jagged.

The failure of the BC metric to generate good classifica-
tion accuracies for the deterministic solution indicates that
the features are dependent. Features work in combinations
to determine the outcome of an RTS game.

This study was conducted to determine the characteris-
tics of the RTSPP. While the stochastic search method was
able to find good classification accuracies that was not our
main objective, instead, we used the results to determine the
characteristics of the space, which allows us to develop a
search algorithm tailored to our specific RTSPP problem.

The deterministic search tries to find a heuristic. In many
searches, a heuristic is used to guide the search in profitable
directions. If admissible, it can also be used to implicitly
search much of the domain, using a best-first search strategy
like A∗ or Z∗ [31]. The heuristic could reduce search time,
allowing the entire domain to be explored in a reasonable
amount of time through pruning.

In the RTSPP, we do not have that luxury. No admissible
heuristic could be found. Instead, we used a heuristic to
reduce the size of the solution space. Our hope was the
heuristic would preserve the high fitness solutions in the
space, while discarding the lower fitness solutions. For
example, if the entire problem domain looked as in Figure 1,
then the reduced solution space looks as in Figure 2. In this
pedagogical example, we accomplish our goal. The heuristic
makes it so the reduced solution space can be completely
explored, and the reduced solution space retains all the high
fitness solutions from the original solution space.

Our results show this does not work for the RTSPP. The
stochastic algorithm is allowed to search the entire space.
Even though it is only able to explore a small portion of
solutions on each run, it finds solutions superior to those
from the deterministic solution. Instead of the ideal reduced
solution space, we have found a space looking more like
Figure 3. We have removed some of the low fitness solutions,
but have not retained the high fitness solutions.

The stochastic search results tell us the solution space is
quite jagged and rough. However, it also tells us the fitness of
the solution at the top of each ridge is similar. While we do
not know the fitness of the optimal solution in the domain,
we know we can use a simple hill climbing approach to
find a high fitness solution. The solution found is composed
of different features and centers on every iteration, but
has a similar fitness, as demonstrated by the low standard
deviation between the fitness of the SA solutions. In the RTS
domain, this is an intuitive result: there are many different



16 International Journal of Computer Games Technology

strategies which can be pursued to win an RTS game, each
one equally valid!

8. Future Work

Our goal is to use the understanding of the solution space
characteristics determined in this study and develop a more
complicated RTSPP algorithm. This innovative generic
RTSPP method would employ a hybrid genetic algorithm/
evolutionary strategy [34, 35]. This algorithm would be
tested on the Bos Wars data as well as data obtained from the
more complicated RTS game platform called Spring [13] or
another available platform.

Specific to the RTS game domain, Bakkes et al. [13]
created an evaluation function for the RTS platform called
Spring Engine, where perfect knowledge of the environment
is not available. Temporal difference learning is used to create
an appropriate weighting for two features, “number of units
observed of each type” and “safety of tactical positions”.
In [36], the same authors used five different features to
accomplish the same basic goal. Like us, they hope to use
their evaluation function to help drive improvements in
adaptive RTS games. We hope to develop a more formal
method of feature selection and allow this feature selection
to correctly determine an appropriate strategy for an RTS
game. Additionally, instead of temporal difference learning
to determine appropriate weights for the features discovered,
we desire to characterize winning/losing game states in
terms of their location in n-space, where n is the number
of features selected: a strategic approach. We would take
classifiers generated for the Spring platform and use them
as the foundation for a strategy-based agent which would
generate and execute counter-strategies for a given opponent.
Also, using a time-delay window of the past n snapshots
should be address instead of the single snapshot.

Acknowledgment

This investigation is a research effort of the AFIT Center for
Cyberspace Research (CCR), Director: Dr. Rick Raines.

References

[1] B. Geryk, A History of Real-Time Strategy Games, GameSpot,
2008.

[2] S. M. Lucas and G. Kendall, “Evolutionary computation and
games,” IEEE Computational Intelligence Magazine, vol. 1, no.
1, pp. 10–18, 2006.

[3] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-
based planning and execution for real-time strategy games,” in
Proceedings of the 7th International Conference on Case-Based
Reasoning, vol. 4626 of Lecture Notes in Computer Science, pp.
164–178, Springer, Berlin, Germany, 2007.

[4] D. W. Aha1, M. Molineaux, and M. Ponsen, “Learning to win:
casebased plan selection in a RTS game,” in Proceedings of the
6th International Conference on Case-Based Reasoning (ICCBR
’05), H. Muoz-Avila and F. Ricci, Eds., pp. 5–20, Springer,
2005.

[5] M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell, and
A. Ram, “Transfer learning in real-time strategy games using

hybrid CBR/RL,” in International Joint Conference on Artificial
Intelligence, 2007.

[6] T. Graepel, R. Herbrich, and J. Gold, “Learning to fight,” in
Proceedings of Computer Games: Artificial Intelligence, Design
and Education (CGAIDE ’04), Q. Mehdi, N. Gough, and D.
Al-Dabass, Eds., pp. 193–200, 2004.

[7] M. Molineaux, D. W. Aha, and P. Moore, “Learning con-
tinuous action models in a real-time strategy environment,”
in Proceedings of the 21th International Florida Artificial
Intelligence Research Society Conference (FLAIRS ’08), pp. 257–
262, AAAI Press, May 2008.

[8] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E.
Postma, “Adaptive game AI with dynamic scripting,” Machine
Learning, vol. 63, no. 3, pp. 217–248, 2006.

[9] E. Kok, Adaptive reinforcement learning agents in RTS games,
M.S. thesis, University Utrecht, Utrecht, The Netherlands,
2008.

[10] M. Chung, M. Buro, and J. Schaeffer, “Monte Carlo planning
in rts games,” in Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2005.

[11] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 1, no. 1, pp. 67–82, 1997.

[12] F. Beerten, J. Salmon, L. Taulelle, F. Loeffler, N. Mistry, and
T. Penfold, “Bos wars. Open Source Software,” 2008, http://
www.boswars.org/.

[13] S. Bakkes, P. Kerbusch, P. Spronck, and J. van den Herik,
“Automatically evaluating the status of an rts game,” in
Proceedings of the Workshop on Reasoning, Representation, and
Learning in Computer Games (IJCAI ’05), 2005.

[14] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K.
O. Stanley, and C. H. Yong, “Computational intelligence in
games,” in Computational Intelligence: Principles and Practice,
G. Y. Yen and D. B. Fogel, Eds., IEEE Computational
Intelligence Society, Piscataway, NJ, USA, 2006.

[15] A. L. Blum and P. Langley, “Selection of relevant features and
examples in machine learning,” Artificial Intelligence, vol. 97,
no. 1-2, pp. 245–271, 1997.

[16] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a
review,” ACM Computing Surveys, vol. 31, no. 3, pp. 316–323,
1999.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, New
York, NY, USA, 1979.

[18] P. Somol, P. Pudil, and J. Kittler, “Fast branch & bound
algorithms for optimal feature selection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 7, pp.
900–912, 2004.

[19] J. Jarmulak and S. Craw, “Genetic algorithms for feature
selection and weighting,” in Proceedings of the Workshop on
Automating the Construction of Case Based Reasoners (IJCAI
’99), 1999.

[20] R. Meiri and J. Zahavi, “Using simulated annealing to optimize
the feature selection problem in marketing applications,”
European Journal of Operational Research, vol. 171, no. 3, pp.
842–858, 2006.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–
680, 1983.

[22] S. B. Kotsiantis, “Supervised machine learning: a review of
classification techniques,” Informatica, vol. 31, no. 3, pp. 249–
268, 2007.



International Journal of Computer Games Technology 17

[23] A. Champandard, AI Game Development: Synthetic Creatures
with Learning and Reactive Behaviors, New Riders, 2003.

[24] J. H. Friedman, “Regularized discriminant analysis,” Journal of
the American Statistical Association, vol. 84, no. 405, pp. 165–
175, 1989.

[25] B. Cestnik, I. Kononenko, and I. Bratko, “Assistant 86: a know-
ledgeelicitation tool for sophisticated users,” in Proceedings
of the 2nd European Working Session on Learning, pp. 31–45,
1987.

[26] E. Larry Bull, Advances in Learning Classifier Systems, Springer,
New York, NY, USA, 2004.

[27] R. L. de Mantaras and E. Armengol, “Machine learning from
examples: inductive and lazy methods,” Data & Knowledge
Engineering, vol. 25, no. 1-2, pp. 99–123, 1998.

[28] E. E. Smith and D. Medin, Categories and Concepts, Harvard
University Press, Cambridge, Mass, USA, 1981.

[29] S. Ridella, S. Rovetta, and R. Zunino, “K-winner machines for
pattern classification,” IEEE Transactions on Neural Networks,
vol. 12, no. 2, pp. 371–385, 2001.

[30] D. J. C. MacKay, Information Theory, Inference, and Learning
Algorithms, Cambridge University Press, Cambridge, UK,
2003.

[31] J. Pearl, Heuristics, Addison-Wesley, New York, NY, USA, 1984.
[32] F. J. Aherne, N. A. Thacker, and P. I. Rockett, “The

Bhattacharyya metric as an absolute similarity measure for
frequency coded data,” Kybernetika, vol. 34, no. 4, pp. 363–
368, 1998.

[33] E. Aarts and J. K. Lenstra, Local Seach in Combinatorial Opti-
mization, Wiley, New York, NY, USA, 1997.

[34] K. Weissgerber, B. Borghetti, G. Lamont, and M. Mendenhall,
“Towards automated feature selection in real time strategy
games,” in GAMEON-NA Conference, August 2009.

[35] K. Weissgerber, B. J. Borghetti, and G. L. Peterson, “An
effective and efficient real time strategy agent,” in Proceedings
of the 23rd Annual Florida Artificial Intelligence Research Society
Conference, 2010.

[36] S. Bakkes, P. Spronck, and J. van den Herik, “Phase-dependent
evaluation in RTS games,” in Proceedings of the 19th Belgian-
Dutch Conference on Artificial Intelligence, pp. 3–10, 2007.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


	Determining Solution Space Characteristics for Real-Time Strategy Games and Characterizing Winning Strategies
	Recommended Citation

	tmp.1576608318.pdf.s8iUH

