40 research outputs found

    Discretization of the 3D Monge-Ampere operator, between Wide Stencils and Power Diagrams

    Get PDF
    We introduce a monotone (degenerate elliptic) discretization of the Monge-Ampere operator, on domains discretized on cartesian grids. The scheme is consistent provided the solution hessian condition number is uniformly bounded. Our approach enjoys the simplicity of the Wide Stencil method, but significantly improves its accuracy using ideas from discretizations of optimal transport based on power diagrams. We establish the global convergence of a damped Newton solver for the discrete system of equations. Numerical experiments, in three dimensions, illustrate the scheme efficiency

    Minimal convex extensions and finite difference discretization of the quadratic Monge-Kantorovich problem

    Get PDF
    We present an adaptation of the MA-LBR scheme to the Monge-Amp{\`e}re equation with second boundary value condition, provided the target is a convex set. This yields a fast adaptive method to numerically solve the Optimal Transport problem between two absolutely continuous measures, the second of which has convex support. The proposed numerical method actually captures a specific Brenier solution which is minimal in some sense. We prove the convergence of the method as the grid stepsize vanishes and we show with numerical experiments that it is able to reproduce subtle properties of the Optimal Transport problem

    Monotone and Consistent discretization of the Monge-Ampere operator

    Full text link
    We introduce a novel discretization of the Monge-Ampere operator, simultaneously consistent and degenerate elliptic, hence accurate and robust in applications. These properties are achieved by exploiting the arithmetic structure of the discrete domain, assumed to be a two dimensional cartesian grid. The construction of our scheme is simple, but its analysis relies on original tools seldom encountered in numerical analysis, such as the geometry of two dimensional lattices, and an arithmetic structure called the Stern-Brocot tree. Numerical experiments illustrate the method's efficiency

    Convergent approaches for the Dirichlet Monge amp\`ere problem

    Full text link
    In this article, we introduce and study three numerical methods for the Dirichlet Monge Amp\`ere equation in two dimensions. The approaches consist in considering new equivalent problems. The latter are discretized by a wide stencil finite difference discretization and monotone schemes are obtained. Hence, we apply the Barles-Souganidis theory to prove the convergence of the schemes and the Damped Newtons method is used to compute the solutions of the schemes. Finally, some numerical results are illustrated.Comment: 14pages, 7figure

    Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations

    Get PDF
    This paper develops a new framework for designing and analyzing convergent finite difference methods for approximating both classical and viscosity solutions of second order fully nonlinear partial differential equations (PDEs) in 1-D. The goal of the paper is to extend the successful framework of monotone, consistent, and stable finite difference methods for first order fully nonlinear Hamilton–Jacobi equations to second order fully nonlinear PDEs such as Monge–Ampère and Bellman type equations. New concepts of consistency, generalized monotonicity, and stability are introduced; among them, the generalized monotonicity and consistency, which are easier to verify in practice, are natural extensions of the corresponding notions of finite difference methods for first order fully nonlinear Hamilton–Jacobi equations. The main component of the proposed framework is the concept of a “numerical operator”, and the main idea used to design consistent, generalized monotone and stable finite difference methods is the concept of a “numerical moment”. These two new concepts play the same roles the “numerical Hamiltonian” and the “numerical viscosity” play in the finite difference framework for first order fully nonlinear Hamilton–Jacobi equations. In the paper, two classes of consistent and monotone finite difference methods are proposed for second order fully nonlinear PDEs. The first class contains Lax–Friedrichs-like methods which also are proved to be stable, and the second class contains Godunov-like methods. Numerical results are also presented to gauge the performance of the proposed finite difference methods and to validate the theoretical results of the paper

    The Sinkhorn algorithm, parabolic optimal transport and geometric Monge–Amp\ue8re equations

    Get PDF
    We show that the discrete Sinkhorn algorithm—as applied in the setting of Optimal Transport on a compact manifold—converges to the solution of a fully non-linear parabolic PDE of Monge–Amp\ue8re type, in a large-scale limit. The latter evolution equation has previously appeared in different contexts (e.g. on the torus it can be be identified with the Ricci flow). This leads to algorithmic approximations of the potential of the Optimal Transport map, as well as the Optimal Transport distance, with explicit bounds on the arithmetic complexity of the construction and the approximation errors. As applications we obtain explicit schemes of nearly linear complexity, at each iteration, for optimal transport on the torus and the two-sphere, as well as the far-field antenna problem. Connections to Quasi-Monte Carlo methods are exploited

    Eigenvalue problems for fully nonlinear elliptic partial differential equations with transport boundary conditions

    Get PDF
    Fully nonlinear elliptic partial differential equations (PDEs) arise in a number of applications. From mathematical finance to astrophysics, there is a great deal of interest in solving them. Eigenvalue problems for fully nonlinear PDEs with transport boundary conditions are of particular interest as alternative formulations of PDEs that require data to satisfy a solvability condition, which may not be known explicitly or may be polluted by noisy data. Nevertheless, these have not yet been well-explored in the literature. In this dissertation, a convergence framework for numerically solving eigenvalue problems for fully nonlinear PDEs is introduced. In addition, existing two-dimensional methods for nonlinear equations are extended to handle transport boundary conditions and eigenvalue problems. Finally, new techniques are designed to enable appropriate discretization of a large range of fully nonlinear three-dimensional equations

    Mixed Interior Penalty Discontinuous Galerkin Methods for Fully Nonlinear Second Order Elliptic and Parabolic Equations in High Dimensions

    Get PDF
    This article is concerned with developing efficient discontinuous Galerkin methods for approximating viscosity (and classical) solutions of fully nonlinear second-order elliptic and parabolic partial differential equations (PDEs) including the Monge–Ampère equation and the Hamilton–Jacobi–Bellman equation. A general framework for constructing interior penalty discontinuous Galerkin (IP-DG) methods for these PDEs is presented. The key idea is to introduce multiple discrete Hessians for the viscosity solution as a means to characterize the behavior of the function. The PDE is rewritten in a mixed form composed of a single nonlinear equation paired with a system of linear equations that defines multiple Hessian approximations. To form the single nonlinear equation, the nonlinear PDE operator is replaced by the projection of a numerical operator into the discontinuous Galerkin test space. The numerical operator uses the multiple Hessian approximations to form a numerical moment which fulfills consistency and g-monotonicity requirements of the framework. The numerical moment will be used to design solvers that will be shown to help the IP-DG methods select the “correct” solution that corresponds to the unique viscosity solution. Numerical experiments are also presented to gauge the effectiveness and accuracy of the proposed mixed IP-DG methods
    corecore