
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

5-31-2021

Eigenvalue problems for fully nonlinear elliptic partial differential Eigenvalue problems for fully nonlinear elliptic partial differential

equations with transport boundary conditions equations with transport boundary conditions

Jacob Lesniewski
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Applied Mathematics Commons

Recommended Citation Recommended Citation
Lesniewski, Jacob, "Eigenvalue problems for fully nonlinear elliptic partial differential equations with
transport boundary conditions" (2021). Dissertations. 1519.
https://digitalcommons.njit.edu/dissertations/1519

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1519?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

EIGENVALUE PROBLEMS FOR FULLY NONLINEAR ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS WITH TRANSPORT

BOUNDARY CONDITIONS

by
Jacob Lesniewski

Fully nonlinear elliptic partial differential equations (PDEs) arise in a number of

applications. From mathematical finance to astrophysics, there is a great deal of

interest in solving them. Eigenvalue problems for fully nonlinear PDEs with transport

boundary conditions are of particular interest as alternative formulations of PDEs that

require data to satisfy a solvability condition, which may not be known explicitly or

may be polluted by noisy data. Nevertheless, these have not yet been well-explored in

the literature. In this dissertation, a convergence framework for numerically solving

eigenvalue problems for fully nonlinear PDEs is introduced. In addition, existing

two-dimensional methods for nonlinear equations are extended to handle transport

boundary conditions and eigenvalue problems. Finally, new techniques are designed to

enable appropriate discretization of a large range of fully nonlinear three-dimensional

equations.

EIGENVALUE PROBLEMS FOR FULLY NONLINEAR ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS WITH TRANSPORT

BOUNDARY CONDITIONS

by
Jacob Lesniewski

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
Rutgers, The State University of New Jersey – Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences
Department of Mathematics and Computer Science, Rutgers-Newark

May 2021

Copyright c⃝ 2021 by Jacob Lesniewski

ALL RIGHTS RESERVED

APPROVAL PAGE

EIGENVALUE PROBLEMS FOR FULLY NONLINEAR ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS WITH TRANSPORT

BOUNDARY CONDITIONS

Jacob Lesniewski

Dr. Brittany D. Froese Hamfeldt, Dissertation Advisor Date
Associate Professor of Mathematics, New Jersey Institute of Technology

Dr. David G. Shirokoff, Committee Member Date
Associate Professor of Mathematics, New Jersey Institute of Technology

Dr. Michael S. Siegel, Committee Member Date
Professor of Mathematics, New Jersey Institute of Technology

Dr. Travis L. Askham, Committee Member Date
Assistant Professor of Mathematics, New Jersey Institute of Technology

Dr. Thomas L. Lewis, Committee Member Date
Associate Professor of Mathematics, The University of North Carolina at
Greensboro

BIOGRAPHICAL SKETCH

Author: Jacob Lesniewski

Degree: Doctor of Philosophy

Date: May 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mathematical Sciences,
New Jersey Institute of Technology, Newark, NJ, 2021

• Master of Science in Applied Mathematics,
New Jersey Institute of Technology, Newark, NJ, 2018

• Bachelor of Arts in Mathematics,
Caldwell University, Caldwell, NJ, 2016

Major: Mathematical Sciences

Publications:

J. Lesniewski and B.F. Hamfeldt, “A convergent finite difference method for
computing minimal Lagrangian graphs,” Submitted.

J. Lesniewski and B.F. Hamfeldt, “Convergent finite difference methods for fully
nonlinear elliptic equations in three dimensions,” Submitted.

iv

I dedicate my dissertation work to my family and friends,
living and deceased.

v

ACKNOWLEDGMENT

There are many people to thank for this work since I could not have done it without

their support.

First, I am very grateful to my advisor, Dr. Brittany Hamfeldt for her patience,

enthusiasm, and guidance. From the first year qualifying exams through all five years

of my time here, she has always provided me ideas, inspiration, and encouragement.

Without her, I could not have completed this work.

Next, I would like to thank Doctors David Shirokoff, Michael Siegel, Travis

Askham and Thomas Lewis for being on my dissertation committee. Dr. Shirokoff

taught me an excellent course in Convex Optimization which has been very helpful

for this dissertation work. I would also like to thank the entire committee for their

feedback throughout my time here.

I am also grateful to the Department of Mathematical Sciences for the teaching

assistantship and the opportunity to pursue my Ph.D. at NJIT. This research was

partially supported by the National Science Foundation under NSF DMS-1619807. I

am thankful for the financial support which has allowed me to spend more time on

this work.

I would also like to thank my family and friends at home, especially my wife

Beth, for all of their support during my Ph.D. at NJIT. In addition, I would like to

thank all of the friends and colleagues I met at NJIT, especially Tensae Andargachew,

Yixuan Sun, and Guangyuan Liao, whose advice and collaboration helped me get

through the most difficult times.

Finally, I am deeply grateful to God, since all of my accomplishments are only

through His grace.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Outline of this Dissertation . 3

2 BACKGROUND . 5

2.1 Elliptic Equations . 5

2.2 Viscosity Solutions . 6

2.3 Optimal Transport Boundary Conditions 10

2.4 Theory of Convergence . 14

2.5 Numerical Methods for Nonlinear PDEs 16

2.5.1 Existing Methods . 17

3 NONLINEAR EIGENVALUE PROBLEMS 21

3.1 Example Problems . 21

3.2 Eigenvalue Problem for a PDE . 22

3.2.1 The Equation for the Minimal Lagrangian Submanifold 26

3.2.2 Reformulation of the PDE . 26

3.3 Numerical Approach . 30

3.4 Convergence Analysis . 33

3.4.1 Convergence of the Eigenvalue 33

3.4.2 Convergence of the Grid Function 37

4 NUMERICAL METHODS IN TWO DIMENSIONS 43

4.1 Wide Stencil Methods . 43

4.2 Meshfree (Generalized) Finite Difference Methods 45

4.3 Quadtree Methods . 51

4.3.1 Building the Quadtree . 51

4.4 Discretization in the Interior . 52

4.4.1 Second Order Operators . 53

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.4.2 Discretization of Functions of the Gradient 55

4.5 Discretization of the Boundary Condition 59

4.5.1 Discretization of the Boundary Condition 60

4.6 Solving the Eigenvalue Problem . 62

4.7 Higher Order Implementation . 64

4.7.1 Filtered Schemes . 64

4.7.2 Accurate Approximation of Distance Functions for Target Sets 68

4.8 Solution Methods . 70

4.9 Computational Results, Examples, and Figures 73

4.9.1 Circle to Circle . 73

4.9.2 Circle to Ellipse . 73

4.9.3 Ellipse to Circle . 77

4.9.4 Ellipse to Skewed Ellipse . 77

4.9.5 Other Maps . 78

4.9.6 Non-Constant f . 82

4.9.7 Functions of the Gradient . 84

5 NUMERICAL METHODS IN THREE DIMENSIONS 86

5.1 Approach . 86

5.2 Building the Point Cloud . 87

5.3 Three-Dimensional Monotone Schemes 92

5.4 Grid Aligned Approximation Scheme 92

5.5 Generalized Finite Difference Approximation Scheme 94

5.5.1 Farkas’ Lemma . 97

5.5.2 Existence of a Positive Solution 98

5.6 Approximating Eigenvalues in Three Dimensions 104

5.6.1 Monotonicity . 107

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

5.6.2 Consistency . 108

5.7 Construction of Orthogonal Frames 108

5.8 Neumann Boundary Conditions . 112

5.8.1 Selection of Neighbors . 113

5.9 Transport Boundary Conditions . 114

5.10 Parallelization . 115

5.11 Solution Methods . 115

5.12 Eigenvalue Problems . 118

5.13 Computational Results, Examples, and Figures 118

5.13.1 Linear Degenerate Equation 118

5.13.2 Two Operators . 120

5.13.3 Convex Envelope Equation . 121

5.13.4 Poisson’s Equation . 124

5.13.5 Monge-Ampére Equation . 124

5.13.6 Lagrangian Curvature Problem 128

5.13.7 Neumann Boundary Conditions 131

5.13.8 Transport Boundary Conditions 133

6 CONCLUSIONS . 136

6.1 Summary . 136

6.2 Future Work . 137

REFERENCES . 139

ix

List of Tables

Table Page

4.1 Circle to Circle Error Table . 74

4.2 Circle to Ellipse Error Table . 76

4.3 Ellipse to Circle Error Table . 77

4.4 Ellipse to Skewed Ellipse Convergence 79

4.5 Circle to Circle (Non-Constant f(x)) Convergence 83

4.6 Circle to Circle (Non-Constant f (x,∇u)) Convergence 84

5.1 Example ν1 Directions (k = 2) . 109

5.2 Linear Degenerate Equation Error Table 120

5.3 Two-Operator Error Table . 122

5.4 Convex Envelope Error Table . 123

5.5 Poisson’s Equation Error Table . 125

5.6 Monge-Ampére Equation Error Table 127

5.7 Lagrangian Curvature Error Table . 129

5.8 Lagrangian Curvature Filtered Error Table 130

5.9 Lagrangian Curvature with Neumann Boundary Conditions Error Table 132

5.10 Poisson’s Equation Neumann Boundary Conditions Error Table 134

5.11 Lagrangian Curvature with Transport Boundary Conditions Error Table 135

x

List of Figures

Figure Page

2.1 u(x) (supersolution) is touched below by a smooth test function ϕ. . . . 9

2.2 An example polyhedral target set with outward normal and (some)
supporting hyperplanes. 13

3.1 Discrete solution to Poisson’s equation when viewed as an eigenvalue
problem. 25

4.1 An example wide stencil finite difference approximation. 44

4.2 Finding appropriate points in a search radius (interior). 47

4.3 Angular resolution of the selected points. 47

4.4 Finding appropriate points in a search radius (boundary). 48

4.5 Existence of a boundary neighbor. 48

4.6 A quadtree and its corresponding subdivision. Internal nodes are
represented by circles and leaves are represented with squares. 51

4.7 Potential neighbors are circled in gray. Examples of selected neighbors
are circled in black. Gray squares are considered in Algorithm 4.1. . . 54

4.8 Blacked out squares are part of the quadtree but not used since they are
not inside the domain. White squares are inside the domain, while gray
squares intersect the boundary. 55

4.9 An example set of neighbors (in red) for the boundary point (in green)
with points in the cloud labeled in blue and the points in the quadtree
but not the point cloud labeled in black. The eight regions partition
the h,k plane. Not all regions need to be represented. 61

4.10 The filter function, a continuous function that is the identity near the
origin, and decays to zero outside. 65

4.11 An example of selected neighbors for the higher order approximation to
the x derivative. 67

4.12 H (x, y) for the skewed ellipse. 70

4.13 An example where ∇u maps a circle into another circle. 74

4.14 A convergence plot for the example mapping a circle into another circle. 74

4.15 An example where ∇u maps an ellipse into a circle. 75

xi

List of Figures
(Continued)

Figure Page

4.16 An example where ∇u maps a circle into an ellipse. 76

4.17 A convergence plot for the example mapping a circle into an ellipse. . . . 76

4.18 A convergence plot for the example mapping an ellipse into a circle. . . . 77

4.19 A convergence plot for the example mapping an ellipse into a skewed ellipse. 79

4.20 An example where ∇u maps an ellipse into a skewed ellipse. 79

4.21 An example where ∇u maps a square into a bowl. 80

4.22 An example where ∇u maps a square into an ice cream cone. 80

4.23 An example where ∇u maps a square into a pentagon. 81

4.24 An example where ∇u maps a square into a circle. 81

4.25 An example where ∇u maps a circle into a square. 81

4.26 An example where ∇u maps a circle into a line segment. 82

4.27 An example where ∇u maps a circle into a circle with a non-constant
function f(x). 83

4.28 A convergence plot for the map from a circle to another circle with a
non-constant function f(x). 83

4.29 A convergence plot for the map from a circle to another circle with a
non-constant function f (x,∇u). 85

5.1 The z = 0 level set for the sphere. Only the points at least h
2

from the
boundary are kept in the point cloud. 88

5.2 The candidate boundary points being considered for the z = 0 level set
of the sphere example. 89

5.3 The candidate boundary points being considered for the z = 0 level set
of the sphere example, zoomed in. 90

5.4 The chosen boundary points for the z = 0 level set of the sphere example. 91

5.5 The chosen boundary points for the z = 0 level set of the sphere example,
zoomed in. 91

5.6 (Left) An example of a perfectly aligned neighbor. (Right) An example
of four non-perfectly aligned neighbors. 93

xii

List of Figures
(Continued)

Figure Page

5.7 A two-dimensional illustration of the multi-level process for one direction
ν1 in the orthogonal frame. The true eigenvector direction is given
by the black line. In the first level, we maximize over all the nearest
(red dot) neighbors. We then identify the five (black plus) neighbors
of stencil width two most closely aligned with the maximizer. After
maximizing over these five neighbors, we continue the procedure by
identifying the best five (yellow diamond) neighbors of stencil width
three. 111

5.8 A convergence plot for the Linear Degenerate Equation on a sphere. . . 119

5.9 A convergence plot for the two-operator problem on a sphere. 121

5.10 A convergence plot for the Convex Envelope Equation on a sphere. . . . 123

5.11 A convergence plot for Poisson’s Equation on a sphere. 125

5.12 A convergence plot for the Monge-Ampére Equation on a sphere. 127

5.13 A convergence plot for the Lagrangian Curvature Equation. 129

5.14 A convergence plot for the Lagrangian Curvature Equation with Dirichlet
boundary conditions using filtered schemes. 130

5.15 A convergence plot for the Lagrangian Curvature Equation with Neumann
boundary conditions. 132

5.16 A convergence plot for Poisson’s Equation with Neumann boundary
conditions. 133

5.17 A convergence plot for the Lagrangian Curvature Equation with transport
boundary conditions. 135

xiii

CHAPTER 1

INTRODUCTION

There has been a rising interest in numerical techniques for solving fully nonlinear

elliptic partial differential equations (PDEs) because of the frequency of their

appearance in applications [33]. For example, they appear in optimal transport,

meteorology [12], differential geometry [10], reflector/refractor design [28], seismology

[17], astrophysics [23], mathematical finance [22], computer graphics [47], and mesh

generation [8, 33]. When these problems arise in applications, they often include

discontinuous or sharp jumps in the data and involve intricate domains. Many fully

nonlinear elliptic PDEs can be expressed as eigenvalue problems, which have not yet

been well-studied in this context.

The general form of the problem is

F
(
D2u(x)

)
= c, x ∈ X (1.1)

∇u (X) ⊂ Ȳ (1.2)

where c is an unknown eigenvalue and (5.9) corresponds to a transport boundary

condition. Here ∇u(X) is the image of the domain X under the mapping ∇u.

Some examples include curvature equations used to construct minimal surfaces,

the Monge-Ampére equation, and generated Jacobian equations arising in more

general optimal transport problems [45, 26, 7]. We will focus on a particular example,

a PDE for the computation of minimal Lagrangian graphs, with the goal of developing

techniques that can be applied to more complicated PDEs:
d∑

j=1

(
tan−1 (λj)

)
= c (1.3)

where λj are the eigenvalues of the Hessian matrix and d is the number of dimensions.

1

The problem of constructing minimal surfaces is important in applications

such as materials science [49] and molecular engineering [2]. There has also been

recent interest in the use of mean curvature flows to generate minimal Lagrangian

submanifolds of Calabi-Yau manifolds [48, 50].

Here the problem is solved with unusual implicit transport type boundary

conditions which require the gradient to map one set into another. From this and the

nature of the domains in practice, there is a need for efficient methods on non-uniform

grids. Ultimately, the techniques demonstrated on the Lagrange curvature problem

will be adapted to solve and analyze other more challenging PDEs.

Because of the interest in fully nonlinear elliptic PDEs, there have been many

techniques developed for numerically solving them. These techniques include finite

difference methods [19, 45], finite element methods [5, 35], and even least squares

methods [9, 13]. However, simple implementations of these methods can fail to

converge when ellipticity of the PDE degenerates or when the equation does not

have a smooth solution. Simple extensions of standard methods usually break down

when used on a degenerate elliptic PDE, or if a smooth solution does not exist. Those

that have convergence guarantees are generally restricted to uniform Cartesian grids

and find difficulty dealing with complex geometries.

Two frameworks for proving the convergence of numerical methods have been

proposed in recent years [1, 20]. The results of this dissertation are motivated by the

work of Barles and Souganidis, who were able to prove the convergence of monotone

methods for fully nonlinear elliptic PDEs for which a comparison principle exists [1].

Since then, many techniques have been developed and improved upon such as wide

stencil methods [45], meshfree methods [26], and filtered schemes [24]. Recently, the

stencils required for these schemes have been made more accurate and more efficient

by the introduction of modified piecewise Cartesian grids [33], but little has been

done to address the solutions of eigenvalue problems with transport type boundary

2

conditions. In general, these problems do not come with a comparison principle, so

more analysis is needed to establish convergence for this boundary condition and the

related eigenvalue problems.

In this dissertation, techniques for solving eigenvalue problems for fully

nonlinear elliptic PDEs are presented. In particular, we propose a framework

for discretizing and solving these problems, along with a proof of convergence.

Additionally, we adapt existing methods to produce an efficient two-dimensional

implementation which allows for weak solutions and complicated geometries. Finally,

we present new monotone stencils for extending the schemes used in two dimensions

to three dimensions. Natural generalizations of these schemes can be prohibitively

expensive in three dimensions. Thus, we introduce new techniques for efficiently

constructing the monotone stencils.

1.1 Outline of this Dissertation

There are multiple problems to address in solving fully nonlinear elliptic PDEs:

criteria for convergence, efficient construction of the nonlinear operator, and efficiently

solving the resulting nonlinear system. This dissertation focuses primarily on

efficiently building and analyzing the operator. This is not an easy feat, especially

in three dimensions or for general domains in two dimensions. Efficient solvers are

future work.

In Chapter 2, we present an introduction to viscosity solutions specifying the

weak solutions of elliptic PDEs, as well as existing results on convergence of numerical

methods for these types of equations. In Chapter 3, we leverage this background

in order to demonstrate convergence of monotone schemes for solving eigenvalue

problems. In Chapter 4, we outline the construction of convergent monotone schemes

in two dimensions. In Chapter 5, we extend these results to implement monotone

schemes in three dimensions. These schemes are used to solve a large range of

3

nonlinear PDEs including eigenvalue problems. Finally, in Chapter 6 we conclude

and discuss future work.

4

CHAPTER 2

BACKGROUND

In this chapter, we discuss the existing theory available for fully nonlinear elliptic

PDEs. We start with important theoretical results and then discuss more specifically

the type of PDEs being solved in this dissertation. Finally, we review existing methods

for solving fully nonlinear elliptic equations in two dimensions.

2.1 Elliptic Equations

A PDE

F (x, u,Du,D2u) = 0 (2.1)

is fully nonlinear and elliptic if it exhibits nonlinear dependence on the highest order

derivative, and satisfies the ellipticity condition:

Definition 2.1 (elliptic operator). Equation (2.1) is (degenerate) elliptic if

F (x, r, p,X) ≤ F (x, s, p, Y)

for all x ∈ X̄, r, s ∈ R, p ∈ Rn, X, Y ∈ Sn with X ≥ Y and r ≤ s, where X ≥ Y

means X − Y is a positive definite matrix, and Sn is the set of symmetric n by n

matrices [24].

A desirable property that is shared by many elliptic operators is the comparison

principle.

Definition 2.2 (comparison principle). The PDE operator (2.1) satisfies a compar-

ison principle if whenever F (x, u(x),∇u(x), D2u(x)) ≤ F (x, v(x),∇v(x), D2v(x))

for all x ∈ X̄ then u(x) ≤ v(x) for all x ∈ X̄ [1].

5

A comparison principle can be used to establish existence and uniqueness of

solutions to the PDE. A common technique for proving existence is Perron’s method,

which involves arguing that the maximal subsolution

u(x) ≡ sup
{
v(x) | F (x, v(x),∇v(x), D2v(x)) ≤ 0

}
(2.2)

is actually a solution to the PDE. Uniqueness of solutions follows immediately from

a comparison principle [1].

2.2 Viscosity Solutions

Many fully nonlinear elliptic equations do not possess a classical solution, and thus,

some notion of weak solution is needed. A powerful approach is the viscosity solution,

which relies on a maximum principle argument to transfer derivatives onto smooth

test functions [11].

An equation can be shown to have a unique viscosity solution if it has a

comparison principle [11]. In order to understand the weak solutions we solve for, the

theory of viscosity solutions must be introduced.

Viscosity solutions were introduced by Lions and Crandall in the 1980s. These

are a generalization of the classical solution to a PDE which can be found for

degenerate elliptic PDEs. Let X ⊂ Rd and F : X × R × Rd × Rd×d. Then the

function u ∈ C2 is considered a classical solution if

F (x, u,Du,D2u) = 0. (2.3)

In contrast to classical solutions, an equation may have a viscosity solution even

when Du or D2u does not exist. For many PDEs we consider, classical solutions may

not exist. This motivates the theory of viscosity solutions, particularly when dealing

with degenerate elliptic PDEs, which need not have smooth solutions [24]. Viscosity

solutions provide a framework which allows many comparison, uniqueness, existence,

6

and continuous dependence theorems to be proved. A problem can be shown to have

a unique viscosity solution if it has a comparison principle (Definition 2.10) [11].

Degenerate ellipticity (Definition 2.1) is related to the comparison principle, so we

expect that many degenerate elliptic PDEs will have a comparison principle. In order

to define viscosity solutions, we first must define the upper and lower semicontinuous

envelopes [24]. These are not equivalent in general since there are second order linear

problems that are uniformly elliptic but have multiple viscosity solutions [24].

Definition 2.3. (upper and lower semicontinuous envelopes) The upper and lower

semicontinuous envelopes of a function u(x) are defined by

u∗(x) = lim sup
y→x

u(y), (2.4)

and

u∗(x) = lim inf
y→x

u(y), (2.5)

respectively [24].

Definition 2.4. A function f(x) is called upper semicontinuous (USC) if for every

point x0 in its domain,

lim sup
x→x0

f(x) ≤ f(x0)

Definition 2.5. A function f(x) is called lower semicontinuous (LSC) if for every

point x0 in its domain,

lim inf
x→x0

f(x) ≥ f(x0)

Definition 2.6. A lower semicontinuous function u : X → R is a (viscosity)

supersolution if for any x ∈ X and any ϕ ∈ C2(X) such that u − ϕ attains a

(local) minimum at x,

F ∗ (x, u(x), Dϕ(x), D2ϕ(x)
)
≥ 0. (2.6)

7

Definition 2.7. Similarly, an upper semicontinous function u : X → R is a

(viscosity) subsolution if for any x ∈ X and any ϕ ∈ C2(X) such that u − ϕ

attains a (local) maximum at x,

F∗
(
x, u(x), Dϕ(x), D2ϕ(x)

)
≤ 0. (2.7)

Definition 2.8. A continuous function u is called a viscosity solution if it is both

a subsolution and a supersolution (See Figure 2.1).

When checking for viscosity solutions, we may assume the maximum or

minimum of u − ϕ is unique, strict, and global with u − ϕ = 0 at the extremum

[24].

To illustrate how viscosity solutions work, we present the example of the Eikonal

equation:

F (Du) = 1− |Du| = 0 (2.8)

u(x) = |x| is a viscosity solution to this equation. Since |x| is differentiable for x ̸= 0

and the derivatives, ±1, satisfy the equation,

1− |Du| = 1− | ± 1| = 1− 1 = 0

Since the derivative exists there, the local max (or min) of u− ϕ implies u′ − ϕ′ = 0

or ϕ′ = u′ = ±1. Thus,

F (x, u,Dϕ) = F (Dϕ) = 1− | ± 1| = 0

for x ̸= 0. Hence, F (Dϕ) ≤ 0 and F (Dϕ) ≥ 0, respectively; so u is both a sub- and

supersolution for x ̸= 0.

To show this is a viscosity solution at the singularity, we first show that it is

a supersolution. Suppose u − ϕ = |x| − ϕ has a local minimum at x = 0. Then

8

0 ∈ ∂(u − ϕ) i.e., 0 is in the subdifferential of u − ϕ and ϕ for which there is a

local minimum belong to the same set as the subdifferential of u at zero. Thus,

∂u(0) = [−1, 1] and ϕ′ ∈ [−1, 1]. Hence,

F (Dϕ) = 1− |ϕ′| ≥ 0

Thus, u is a supersolution.

To verify that is a subsolution, note that we need only satisfy the inequality for

any ϕ ∈ C1 such that u − ϕ has a local maximum at zero. We can see graphically

that any ϕ that touched |x| above so that |x| − ϕ is a local maximum would have a

sharp turn and not be differentiable there and hence, not C1. Since there is no such

ϕ, there is nothing to check, and u is a subsolution. Therefore, u = |x| is a viscosity

solution of 1− |Du| = 0.

Remark 2.9. u is not a viscosity solution of the seemingly equivalent equation |Du|−

1 = 0 since |ϕ′| − 1 ≤ 0 so we can’t show that it is a supersolution. It is still a

subsolution by default.

Figure 2.1 u(x) (supersolution) is touched below by a smooth test function ϕ.

9

For many uniformly elliptic PDEs it can be proven that a comparison principle

exists [37]. In order to make sense of this, we must define what it means to have a

comparison principle.

Definition 2.10. A PDE has a weak comparison principle if given u ∈ USC
(
X̄
)

is a viscosity subsolution and v ∈ LSC
(
X̄
)

is a viscosity supersolution, if u ≤ v on

∂X then u ≤ v on X̄ [37].

Additionally, we can derive uniqueness for the Dirichlet problem using a strong

comparison principle which can be shown using the next two theorems.

Definition 2.11. A PDE has a strong comparison principle if given u ∈ (X̄) is a

viscosity subsolution and v ∈ (X̄) is a viscosity supersolution, then u ≤ v on X̄ [37].

Theorem 2.12. If u is a subsolution and v is a supersolution, then max (u− v) is

the same on both X̄ and ∂X [37].

Theorem 2.13. If u and v are viscosity solutions and u = v on the boundary of X,

then u = v everywhere in X̄ [37].

The latter definition is the comparison principle required for much of the existing

convergence framework. This differs from Definition 2.10 in that it does not require

us to know a priori how u and v compare on the boundary, and it may apply to more

general boundary conditions.

2.3 Optimal Transport Boundary Conditions

We consider a family of problems which are equipped with boundary conditions from

optimal transport. These were initially used with the Monge-Ampére equation, but

they are also relevant for a number of other problems. Normally, the Monge-Ampère

optimal transportation problem is equipped with a condition on the sub-gradient of

the solution:

∂u(X) ⊂ Y (2.9)

10

The Monge-Ampère PDE equipped with this condition is called the second boundary

value problem for the Monge-Ampère equation [32]. One can express this as a

nonlinear Neumann boundary condition. To do this, we require a defining function

for the target set Y [16, 51], which should have the property that

H(y) =

< 0, y ∈ Y

= 0, y ∈ ∂Y

> 0, y /∈ Ȳ .

A natural choice is the signed distance function to the target boundary ∂Y. Note:

(2.9) can be expressed as

H(∇u) ≤ 0 [32]. (2.10)

In this case, as in [3], we can rewrite the boundary condition as

H(∇u(x)) = 0, x ∈ ∂X. (2.11)

This simply requires that all points on the boundary of the domain X are mapped

(via the gradient of u) onto the boundary of the target set Y . We know this is true

for convex functions from the following lemma, proved in “On the Second Boundary

Value Problem for Equations of Monge-Ampére Type” [51].

Lemma 2.14. Let u ∈ C2(X̄) be convex with X and Y convex. Then ∇u(X̄) = Ȳ

if and only if ∇u(∂X) ⊂ ∂Y [51].

This and similar boundary conditions are relevant for a number of different

PDEs including the Monge-Ampére equation.

As a model problem we focus on the problem of constructing minimal

Lagrangian graphs, which can be recast as the following eigenvalue problem with

11

nonlinear Neumann-type boundary conditions.
F (D2u(x)) + c = 0, x ∈ X

H(∇u(x)) = 0, x ∈ ∂X

(2.12)

where

F (D2u(x)) = −
n∑

i=1

arctan
(
λi(D

2u(x))
)
, (2.13)

λi(D
2u(x)) are the eigenvalues of the Hessian matrix D2u(x), and

H(∇u(x)) =

− dist (∇u(x), ∂Y) , ∇u(x) ∈ Y

0, ∇u(x) ∈ ∂Y

dist (∇u(x), ∂Y) , ∇u(x) /∈ Ȳ .

(2.14)

The eigenvalues λi(D
2u(x)) of the Hessian are the values such that D2u(x)y = λy for

all y ∈ Rn×1.

From the convexity of Y , the signed distance function to its boundary is also

convex, and thus, H is convex. We can rewrite H in terms of supporting hyperplanes

to the convex target set

H(y) = sup
y0∈∂Y

{n(y0) · (y − y0)} (2.15)

where n(y) is the outward normal to ∂Y at y0 [3]. By duality, this is equivalent to

H(y) = sup
||n||=1

{n · (y − y(n))} (2.16)

where y(n) is the point on the boundary of Y with the normal n. Then if n is a unit

outward normal to Y at y0, the Legendre-Fenchel transform of H(y) is

H∗(n) = sup
y∈∂Y

{n · y −H(y)} = sup
y∈∂Y

{n · y} = n · y(n) (2.17)

12

and we can rewrite the condition as

H(y) = sup
||n||=1

{n · y −H∗(n)} [3]. (2.18)

This is equivalent to representing Y by supporting hyperplanes.

Figure 2.2 An example polyhedral target set with outward normal and (some)
supporting hyperplanes.
Source: [4].

Theorem 2.15. (Supporting Hyperplane Theorem) Let Y be a convex set and let

y0 ∈ ∂Y. Then y0 has a (possibly non-unique) supporting hyperplane

P = {A(y) = 0|A(y) ≡ n · (y − y0)},

where A(y) ≤ 0 whenever y ∈ Y [4].

Lemma 2.16. Let u ∈ C2(X̄) be uniformly convex with X and Y convex. Then

there exists ℓ > 0 such that for all x ∈ ∂X

H(∇u(x)) = max
n·nx>ℓ

{∇u · n−H∗(n)} (2.19)

13

From Section 2.3 of “Numerical Solution of the Second Boundary Value Problem

for the Elliptic Monge-Ampère Equation” [4], we know that

nx · ny = k∇H(∇u(x))TD2u(x)∇H(∇u(x)),

where k is a normalization constant. This is positive for all x since D2u(x) is

positive definite. Moreover, this is continuous on the compact set ∂X. Thus, it

has a minimum, which must also be a positive value ℓ. From the same section in [4],

we know that the maximum is attained when n = ny. Since we know that nx ·ny > ℓ,

we can restrict the maximum to vectors n satisfying this constraint.

2.4 Theory of Convergence

We next turn our attention to the numerical solution of fully nonlinear PDEs and

begin by reviewing existing convergence results that inspire the approach taken in this

dissertation. In order to fully understand the convergence result derived by Barles

and Souganidis [1], we must state the following definitions leading up to the theorem.

We consider a finite set of points Gh in X̄ and focus on generalized finite

difference approximations, which have the form:

F h (x, u(x), u(x)− u(·)) = 0 x ∈ Gh (2.20)

where F h : X̄ × R × B(X̄) → R is locally bounded and B(X̄) is the set of bounded

functions on X̄. The following definitions are given:

Definition 2.17 (Truncation error). Define τ(h) to be the maximum truncation

error of the scheme on the exact solution uex ∈ C2 of (2.12):

τ(h) = max
x∈Gh

∣∣F (D2uex(x)
)
− F h (x, uex(x), uex(x)− uex(·))

∣∣ .
Note that when smooth solution do not exist, we can alternately use Definition

2.18 instead.

14

Definition 2.18 (Truncation error). The truncation error τ(h) > 0 of the scheme is

a quantity chosen so that for every smooth function ϕ,

lim sup
h→0

max
x∈Gh

(
F h(x, ϕ(x), ϕ(x)− ϕ(·))− F (x,∇ϕ(x), D2ϕ(x))

τ(h)

)
< ∞ [34].

As above, the differences between a point and its neighbors which are used in the

approximation are often denoted by u(x)−u(·) where u(·) represents the appropriate

neighbor being used.

Definition 2.19. (Monotonicity): F h is monotone if F h(x, t, u) ≤ F h(x, t, v)

whenever u ≤ v ∀h ≥ 0, x ∈ X̄, t ∈ R, and u, v ∈ B(X̄).

For example, let F (x, u) = −uxx(x). Then

F h(x, u, u(x)− u(·)) = −u(x+ h) + u(x− h)− 2u(x)

h2

is a monotone approximation since it is a non-decreasing function of the differences

u(x)− u(x+ h) and u(x)− u(x− h).

Remark 2.20. Montonicity is a discrete analogue of ellipticity.

Definition 2.21. (Stability): F h is stable if ∀h > 0 there exists a solution uh ∈

B(X̄) and there exists some M ∈ R independent of h such that ∥uh∥∞ ≤ M .

Definition 2.22. (Consistency): F h is consistent if ∀x ∈ X̄ and ∀ϕ ∈ C∞
b (X̄)

lim sup
h→0,y→x,ξ→0

F h (y, ϕ(y) + ξ, ϕ(·) + ξ) ≤ F ∗ (x, ϕ(x),∇ϕ(x), D2ϕ(x)
)

(2.21)

and

lim inf
h→0,y→x,ξ→0

F h (y, ϕ(y) + ξ, ϕ(·) + ξ) ≥ F∗
(
x, ϕ(x),∇ϕ(x), D2ϕ(x)

)
(2.22)

Monotone schemes automatically satisfy a discrete comparison principle, even

if the underlying equation does not have a comparison principle.

15

Lemma 2.23 (discrete comparison principle [44, Theorem 5]). Let F h be a monotone

scheme and F h (x, u(x), u(x)− u(·)) < F h (x, v(x), v(x)− v(·)) for every x ∈ Gh.

Then u(x) ≤ v(x) for every x ∈ Gh.

Montonicity, consistency, and stability, along with the PDE having a comparison

principle, yield the convergence theorem:

Theorem 2.24. Assume a scheme F h is monotone, consistent, stable, and the

underlying PDE has a strong comparison principle. Then, as h → 0, the solution

uh converges locally uniformly to the unique continuous viscosity solution [1].

This result gives a convergence proof for a wide class of schemes for nonlinear

elliptic PDEs, which motivates the work of many in the field. However, often we

cannot directly apply this result because many PDEs do not satisfy the required

strong comparison principle result [4]. Additionally, the proof does not explain how

to construct the required monotone schemes.

2.5 Numerical Methods for Nonlinear PDEs

In this section, we first describe some existing methods for solving 2nd order elliptic

fully nonlinear PDEs. Then we discuss the most relevant methods in more detail,

including one method for approximating directional derivatives on a rectangular grid.

We then describe a monotone approximation of second directional derivatives on

general point clouds in two dimensions and illustrate the advantage it has over uniform

grids. We discuss the error in the approximation, how the scheme works, and why we

expect convergence. In this dissertation, these approximations were used on convex

sets, but they can be used with nonuniform meshes on complicated geometries as

well. We show the approximations and give the conditions under which we expect a

convergent method.

16

2.5.1 Existing Methods

Existing methods for solving 2nd order fully nonlinear elliptic PDEs can be divided

into four categories: methods involving difference quotients, variational methods,

finite basis expansions, or none of the above. Most methods fall into some combination

of the first three. Some examples of each category are finite difference methods;

Galerkin methods, finite element methods, least squares methods, spectral or

discontinuous Galerkin methods; collocation or meshless methods; lattice Boltzmann,

respectively. Variational formulations generally do not exist for fully nonlinear PDEs

since the nonlinearity in the highest order term prevents shifting derivatives onto

smooth test functions [18]. We briefly discuss some of the ideas behind a variety of

methods and their advantages and disadvantages.

Geometric Methods These are a technique used for solving the Monge-Ampère

equation which takes the geometric formulation of the problem and then discretizes

that in order to solve the problem. The problem is reformulated by defining a measure

for the Monge-Ampère operator which is dependent on the Lebesgue measure of the

subdifferential of a Borel set, then finding when it is equal to a particular value

depending on the boundary data. After that, it is straightforward to discretize the

measure and the problem is to find a piecewise linear, continuous, and convex function

uN that takes the linear interpolant of g on the boundary such that the Monge-Ampère

measure of uN on each piece is equal to the prescribed measure of each piece [46].

Probabilistic Methods In many probabilistic methods such as those used for the

Bellman equation, monotone finite difference schemes are created by approximating

a controlled Markov diffusion process by a controlled Markov chain on a lattice.

Then the dynamic programming equation leads to a discretized Bellman equation.

Unfortunately, this method is computationally expensive [22].

17

Finite Difference Methods Standard finite difference methods can be used to

approximate the Hessian by approximating each of its entries. Symmetric second

difference stencils can be used to approximate the derivatives on the diagonal,

and standard discretizations can be used for the mixed derivatives. These are

easy to construct, but may not converge due to non-monotonicity. A variation

on this approach is given by wide stencil methods, which directly approximate

the eigenvalues of the Hessian. These are monotone and easier to analyze. The

framework of Barles and Souganidis can be employed by monotone finite difference

methods to prove the convergence of the wide stencil schemes introduced by Oberman.

We will discuss wide stencil schemes in more detail in Chapter 4. These have

been generalized to higher dimensions but retain the advantages and disadvantages

described in Chapter 4 [44]. In “Discretization of the 3d Monge-Ampére operator,

between Wide Stencils and Power Diagrams” [40], an alternate approach to producing

wide stencil approximations was also used for the Monge-Ampére equation in

three dimensions. In addition to these, convergent narrow stencil methods were

proposed in “A Narrow-Stencil Finite Difference Method for Approximating Viscosity

Solutions of Fully Nonlinear Elliptic Partial Differential Equations with Applications

to Hamilton-Jacobi-Bellman Equations” [20], where they outline an alternate form of

monotonicity, called generalized monotonicity. This is then used to build and analyze

compact finite difference schemes for a class of fully nonlinear elliptic equations.

Finite Element Methods Finite element methods project the solution onto a

finite-dimensional subspace. L2 projection methods are one example of a finite

element method. The idea is to pose the variational form
∫
Fv = 0 in a

finite-dimensional setting with test functions and piecewise polynomials (such as

finite element functions). Then the problem is broken into polyhedral cells, on which

a linearized approximation to the solution is found. The linearization, along with

18

the discretization, simplify the problem but introduce error. The advantage of these

methods is that they make it easy to work with complicated geometries. The weakness

of these methods is that often the weak formulations do not even make sense unless the

original problem has a C2 solution. An alternative method to these more traditional

finite element methods is the two-scale finite element method proposed in “Two-Scale

Method for the Monge-Ampère Equation: Convergence to the Viscosity Solution”

[42]. This inherits the flavor of wide stencil finite difference methods, and is used to

produce convergent piecewise linear approximations to the Monge-Ampére equation.

Augmented Lagrangian Method The augmented Lagrangian method is to solve

a minimization problem with Lagrange multipliers. By recasting a fully nonlinear

PDE into minimization problem, one can then use conjugate gradient or another

algorithm to solve it. Some of the most common algorithms used are ALG2 or the

closely related alternating direction methods of multipliers (ADMM) [14, 15].

Least Squares Methods Least squares methods are similar to the above method

in that they solve a minimization problem. For example, F (D2u) = g could be

converted to the problem minimize j(u, g) where

j(u, g) =
1

2

∫
X

|F
(
D2u

)
− g|2dx (2.23)

Remark 2.25. There is no analysis on if or when this is equivalent to other notions

of weak solutions.

By minimizing this instead of directly solving the problem, we are able to

capture the smooth convex solutions whenever they exist. In situations where there

are no convex solutions, this yields the closest convex approximation which is good

enough for many applications where the boundary matters more than the interior

[14].

19

Vanishing Moment Method The vanishing moment method is a more general

method for simplifying problems and can be paired with a variety of techniques. It

follows and extends the idea of the vanishing viscosity method from first order fully

nonlinear PDEs. The idea is to try to approximate the fully nonlinear PDE by a

higher order quasi-linear PDE, making the PDE easier to solve and still converging

to the original PDE solution. This is accomplished by adding a small multiple of

the bilaplacian to the equation, then exploiting existing methods for fourth-order

quasi-linear equations. Typically, this requires the addition of an artificial boundary

condition, which can lead to boundary layers. Convergence results are not available

except in a few simple cases where there is high regularity, and or radial symmetry

[21].

20

CHAPTER 3

NONLINEAR EIGENVALUE PROBLEMS

3.1 Example Problems

The results described in Chapter 2 apply to a wide class of degenerate elliptic PDEs.

Here, we discuss the type of problem being solved in this research. Specifically, the

problems we solve are nonlinear eigenvalue problems with transport type boundary

conditions. These are fully nonlinear elliptic partial differential equations, equipped

with an extra unknown constant multiplier c, the eigenvalue. The boundary

conditions are nonlinear and involve the re-configuring of the domain into some

target set via a map defined by the gradient of the solution. Some examples include

the Monge-Ampère equation, Pucci’s maximal and minimal equations, the equation

for the convex envelope, some obstacle problems, and the equation for a minimal

Lagrangian submanifold [45, 26, 7]. The general form of these problems is
F (x,∇u,D2u) = c f(x,∇u) x ∈ X

H(∇u) = 0 x ∈ ∂X.
(3.1)

Note that the problem cannot be well-posed since all expressions are in terms of

derivatives of u, so at best it is unique up to additive constants. Moreover, there is

typically a solvability condition that uniquely determines the eigenvalue c for which

we get existence of solutions. Symbolically, some examples of these problems are:

λ1 + λ2 = c f (3.2)

the equation for the minimal Lagrangian submanifold,

tan−1(λ1) + tan−1(λ2) = c (3.3)

21

the Monge-Ampère equation,

det(D2u) = c f (3.4)

or more generally in optimal transport

det(∇T (x, u(x),∇u(x))) = c f(x, u(x),∇u(x)) (3.5)

where T can be a much more complicated mapping [45].

3.2 Eigenvalue Problem for a PDE

The problem given by Equation (3.13) and the boundary condition from Equation (3.1),

which we consider in this dissertation, is an example of an eigenvalue problem for a

fully nonlinear elliptic operator. This equation is known to have a unique classical

solution from “A Boundary Value Problem for Minimal Lagrangian Graphs” [7].

Abstractly, the problem statement is to find u ∈ C2(X)∩C1(X̄) and x ∈ R such that
F (x,∇u(x), D2u(x)) + cG(x,∇u(x)) = 0, x ∈ X

H(x,∇u(x)) = 0, x ∈ ∂X.

(3.6)

Remark 3.1. The solution is at best unique only up to additive constants.

In fact, this formulation of the problem is intricately connected to the solvability

of a related PDE. As an example, we consider the Neumann problem for Poisson’s

equation.
∆u = f, x ∈ X

∂u
∂n

= g, x ∈ ∂X

(3.7)

For a solution to exist, data must satisfy the solvability condition∫∫∫
X

f(x) dV =

∫∫
∂X

g(x) dS.

22

Often, the data f and g arising in applications are susceptible to noise, measurement

error, etc. This can lead to a failure in the solvability condition. One approach

to ensuring solvability in this case is to interpret this as an eigenvalue problem by

introducing a constant c and solving
∆u = cf, x ∈ X

∂u
∂n

= g, x ∈ ∂X.

(3.8)

for the unknown pair (u, c).

The new solvability condition is

c

∫∫∫
X

f(x) dV =

∫∫
∂X

g(x) dS. (3.9)

The solution of the eigenvalue problem (3.8) will select a value of c that satisfies this

condition and forces the problem to be solvable. If f and g are close to satisfying the

solvability condition, then the solution will choose c ≈ 1 and produce a solution to a

PDE close to the original (3.7), with the error due to errors in the input data f, g.

A similar issue arises in the solution of the second boundary value problem for

the Monge-Ampère equation, which arises in the context of optimal transport.
−g(∇u(x)) det(D2u(x)) + f(x) = 0, x ∈ X

u is convex

∇u(X) ⊂ Ȳ .

(3.10)

This problem has a solution only if the following mass balance condition is satisfied,∫
X

f(x) dx =

∫
Y

g(y) dy. (3.11)

However, in many applications (e.g., image processing [29], seismic full waveform

inversion [17], mesh generation [8], etc.) the data is not expected to naturally satisfy

23

the solvability condition. A proposed solution is to view the equation as an eigenvalue

problem and seek a pair (u, c) satisfying
−g(∇u(x)) det(D2u(x)) + cf(x) = 0, x ∈ X

u is convex

∇u(X) ⊂ Ȳ .

(3.12)

In fact, even when data does satisfy the relevant solvability condition, consistent

discretizations of Equation (3.7) or Equation (3.10) cannot be expected to inherit this

solvability.

To illustrate this, consider Poisson’s equation in one dimension with Neumann

boundary conditions:
u′′ = f(x) ≡ cos

(
π
2
x
)

x ∈ (0, 1)

u′ = g(x) ≡ 2
π
sin
(
π
2
x
)

x = 0, 1

This has a solution, which is unique up to additive constants, since the data satisfies

the solvability condition ∫ 1

0

f(x)dx = g(1)− g(0).

Now consider the uniform grid xj = jh, j = 0, . . . , N and discretize the equation

using standard centered differences for the second derivative and a one-sided difference

for the boundary condition. It is not hard to check that the resulting linear system

has a solution only if the following discrete solvability condition is satisfied [38]:

h
N−1∑
j=1

f(xj) = g(xN)− g(x0).

24

N

100 102
10-4

10-2

100

‖uh
− u‖∞

|ch − 1|

Figure 3.1 Discrete solution to Poisson’s equation when viewed as an eigenvalue
problem.

This is a natural discrete analogue of the continuous solvability condition, but it is

not exactly satisfied at the discrete level and thus, the discrete problem fails to have

a solution.

As an alternative, we view the Poisson equation as the following eigenvalue

problem.
u′′ = cf(x) x ∈ (0, 1)

u′ = g(x) x = 0, 1

We discretize as before, including the eigenvalue c as an additional unknown,

and supplementing the linear system with an additional equation u(x0) = 0 in order

to select a unique solution. This time, the discrete problem has a solution uh with

corresponding eigenvalue ch. We verify that both uh → u and ch → 1 as the grid is

refined, so that the limiting problem is the original Poisson equation. See Figure 3.1.

There is certainly a need for numerical methods and convergence analysis that

can be applied to eigenvalue problems for fully nonlinear elliptic equations. In

addressing this issue for the construction of minimal Lagrangian graphs, we also

begin the development of a framework for solving many other important nonlinear

PDEs. While both Poisson’s equation and the Monge-Ampére equation have known

25

solvability conditions, the solvability condition for the problem we study is not known

a priori.

3.2.1 The Equation for the Minimal Lagrangian Submanifold

The equation we use as a model problem in our study comes from Brendle and

Warrens “A Boundary Value Problem for Minimal Lagrangian Graphs" [7]. In that

paper, it is shown that there exists a diffeomorphism f : X → Y such that the graph

Σ = {(x, f(x)) : x ∈ X} is a minimal Lagrangian submanifold of Rn × Rn,where X

and Y are uniformly convex domains in Rn with smooth boundary. The problem is

reduced to the solvability of the following nonlinear PDE,

F (D2u(x)) =
n∑

j=1

tan−1(λj(D
2u)) = c (3.13)

equipped with the transport boundary condition (2.9), where the λj(D
2u) are the

eigenvalues of D2u(x) and n is the number of dimensions. There are existence proofs

for a similar boundary condition to that of the second boundary value problem for

the Monge-Ampère equation [7]. Most precisely, the problem states

Find a convex function u : X → R and a constant c ∈ (0, nπ
2
) such that ∇u is

a diffeomorphism from X to Y and F (D2u(x)) = c for all x ∈ X [7].

There are several challenges in solving this problem. The solvability condition,

which may not be known a priori, may not be satisfied exactly because of noise in

the data. Also, even if we know the solvability condition for the continuous problem,

it may not be exactly equivalent to solvability of discretized problem.

3.2.2 Reformulation of the PDE

We begin by proposing a reformulation of the PDE (3.1), which will allow us to build

more stability into our numerical schemes. Moreover, we demonstrate that viscosity

26

solutions of this new equation (with the eigenvalue cex fixed) are equivalent to classical

solutions of the original problem.

We remark first of all that solutions to the second boundary condition (2.9)

will trivially satisfy a priori bounds on the solution gradient. That is, choose any

R > max{|p| | p ∈ ∂Y } and let u satisfy the second boundary condition (2.9). Then

|∇u(x)| < R (3.14)

for all x ∈ X̄.

We also recall that any smooth convex solution of the second boundary

condition, reformulated as in (2.11), will satisfy the constraints

−λ1(D
2u(x)) ≤ 0

H(∇u(x)) ≤ 0

(3.15)

for every x ∈ X. Here λ1(M) denotes the smallest eigenvalue of the symmetric

positive definite matrix M .

We propose combining all of these constraints into a new PDE

max
{
F (D2u(x)) + cex,−λ1(D

2u(x)), H(∇u(x)), |∇u(x)| −R
}
= 0, x ∈ X.

(3.16)

We remark that this equation is posed only in the interior of the domain, and

boundary conditions will not be required to select a unique (up to additive constants)

solution. We also note that in the above equation, the eigenvalue cex will be

interpreted as a known quantity.

Theorem 3.2 (Equivalence of PDEs). Let u : X̄ → R be continuous and cex ∈

(0, nπ/2) be the unique eigenvalue of (2.12). Then (u, cex) is a classical solution

of (2.12) if and only if u is a viscosity solution of (3.16).

Proof. This result is an immediate consequence of Lemmas 3.3-3.4, proved below.

27

Lemma 3.3 (Classical implies viscosity). Let (u, cex) be a classical solution of (2.12).

Then u is a viscosity solution of (3.16).

Proof. We remark that u trivially satisfies the constraints (3.14)-(3.15). Since

additionally

F (D2u(x)) + c = 0,

it is certainly true that the modified equation in Equation (3.16) holds in the classical

sense. It is a simple consequence that (3.16) will also hold in the viscosity sense [11].

Lemma 3.4 (Viscosity implies classical). Let u : X̄ → R be continuous and cex ∈

(0, nπ/2) be the unique eigenvalue for (2.12). If u is a viscosity solution of (3.16)

then (u, cex) is a classical solution of (2.12).

Proof. Let uex be any classical solution of (2.12). From [7], this is uniquely determined

up to an additive constant.

We remark first of all that u is a viscosity subsolution of the equation

−λ1(D
2u(x)) = 0.

From [43, Theorem 1], u is convex.

We also observe that u is a convex viscosity subsolution of the equation

H(∇u(x)) = 0.

From [31, Lemma 2.5], the subgradient of u satisfies

∂u(X) ⊂ Ȳ .

As u is continuous up to the boundary, a consequence of this is that

∂u(x) ∩ Ȳ ̸= ϕ (3.17)

28

for every x ∈ ∂X.

We now assume that u − uex is not a constant and show that this leads to a

contradiction. Since uex is a viscosity solution of the constrained PDE (3.16), it is

also a subsolution of the uniformly elliptic component

F (D2u(x)) + cex ≤ 0.

Since uex is a classical solution of

F (D2u(x)) + cex = 0,

it is also a viscosity solution [11] and a viscosity supersolution.

From [36, Theorem 3.1], the maximum of u − uex must be attained at some

point x0 ∈ ∂X. Moreover, by a nonlinear version of the Hopf boundary lemma [39],

we have that
∂(u− uex)(x0)

∂n
> 0

for any exterior direction n satisfying n · nx(x0) > 0. That is, taking any p ∈ ∂u(x0),

we must have

(p−∇uex(x0)) · n > 0.

Now we consider in particular the choice of n = ∇H(∇uex(x0)), which does satisfy

the requirement n · nx(x0) > 0 as in Lemma 2.16. Hence,

(p−∇uex(x0)) · ∇H(∇uex(x0)) > 0

On the other hand, since H is convex, we know that

H(p) ≥ H(∇uex(x0)) +∇H(∇uex(x0)) · (p−∇uex(x0)) > H(∇uex(x0)) = 0.

29

The condition H(p) > 0 implies p is outside Ȳ for any p ∈ ∂u(x0), which

contradicts (3.17).

We conclude that u − uex must be constant on X. Since the classical solution

of (2.12) is unique up to additive constants, u is a classical solution.

3.3 Numerical Approach

Our goal in this chapter is to find a framework for solving well-posed eigenvalue

problems numerically in order to correctly approximate both the eigenvalue and the

solution of the PDE. In order to build convergent methods for the eigenvalue problem

in Equation (3.13), we wish to build upon recent developments in the approximation

of fully nonlinear elliptic equations.

Classically, the convergence of numerical methods for linear equations is

established via the Lax-Equivalence Theorem. Roughly speaking, a consistent, stable

method will converge to the solution of the continuous equation. However, this does

not immediately yield convergent methods for fully nonlinear equations for a couple

of reasons. First, establishing the existence and stability of solutions to a discrete

method can be a delicate problem in the case of nonlinear equations and secondly, it

does not apply when the equation does not have classical solutions. Establishing error

estimates for smooth solutions by linearizing the problem can be done fairly easily

for Dirichlet boundary conditions, but is much harder for pure Neumann conditions.

A powerful contribution to the numerical approximation of elliptic equations

was provided by the Barles-Souganidis framework, which states that the solution to a

scheme that is consistent, monotone, and stable will converge to the viscosity solution,

provided the underlying PDE satisfies a comparison principle [1]. In this setting,

the Barles-Souganidis framework does not apply since we do not have a comparison

principle. Nevertheless, it is still desirable to consider consistent, monotone schemes

since they are more amenable to analysis.

30

In this dissertation, we consider finite difference schemes that have the form

F h(x, u(x), u(x)− u(·)) = 0, x ∈ Gh (3.18)

where u : Gh → R is a grid function and Gh ⊂ X̄ is a set of discretization points,

which can be a finite difference grid or a more general point cloud. Here h is a small

parameter relating to the grid resolution. In particular, we expect that as h → 0, the

domain becomes fully resolved in the sense that

lim
h→0

sup
y∈X

min
x∈Gh

|x− y| = 0. (3.19)

The computational and convergence framework we employ involves a two-step

approach. Let us first suppose that we have discrete approximations F h, Hh, Eh, Lh

of the PDE operators F (D2u), H(∇u), |∇u|,−λ1(D
2u). The details of these discrete

operators will be explained in the following subsections. These are assumed to have

a maximum truncation error of τ(h) as defined in Definition 2.17. We also let x0 ∈ X̄

be any fixed point in the domain and choose a sequence xh
0 ∈ Gh such that xh

0 → x0.

Finally, we choose some κ(h) ≥ 0.

We now employ a two-step procedure to solve for an approximation (uh, ch) to

the true solution (uex, cex). Existence can be shown using Perron’s method.

1. Solve the discrete system
F h(x, vh(x)− vh(·)) + ch = 0, x ∈ Gh ∩X

Hh(x, vh(x)− vh(·)) = 0, x ∈ Gh ∩ ∂X

vh(xh
0) = 0

(3.20)

for the grid function vh and scalar ch.

2. Solve the discrete system
max

{
F h(x,wh(x)− wh(·)) + ch, Lh(x,wh(x)− wh(·)) ,
Hh(x,wh(x)− wh(·)), Eh(x,wh(x)− wh(·))−R

}
= 0, x ∈ Gh ∩X

max{Hh(x,wh(x)− wh(·)) + κ(h)wh(x),

Eh(x,wh(x)− wh(·))−R} = 0, x ∈ Gh ∩ ∂X

(3.21)

31

for the grid function wh and set

uh(x) = wh(x)− wh(xh
0). (3.22)

We remark that while the second step is important for the convergence analysis,

we do not find it necessary to solve this second system in practice. Instead, we

typically find that the solution vh obtained in step 1 automatically satisfies the second

system with κ(h) = 0. If this does not occur, solving the second system (3.21)

becomes necessary. In that case, we should choose κ(h) > 0 to guarantee existence of

a solution. This relaxation of the boundary condition is needed since the solvability

conditions for Equations (3.20) and (3.21) may differ slightly. We do not a priori

know the solvability conditions, so this is necessary. With κ(h) > 0, existence follows

from a discrete version of Perron’s method [30].

We also observe that the final candidate solution uh that we compute satisfies

the scheme

max { F h(x, uh(x)− uh(·)) + ch, Lh(x, uh(x)− uh(·)),

Hh(x, uh(x)− uh(·)), Eh(x, uh(x)− uh(·))−R
}
= 0

(3.23)

at interior points x ∈ Gh ∩X and satisfies the inequality

Eh(x, uh(x)− uh(·))−R ≤ 0 (3.24)

at all points x ∈ Gh.

The approximation schemes will have to satisfy consistency and monotonicity

conditions in order to fit within the requirements of our ultimate convergence

theorems (Theorems 3.5-3.6), with some additional structure built into the discrete

Eikonal operator Eh.

The additional condition |∇u| − R in Equation (3.16) must be discretized in a

monotone way.

32

A choice of monotone approximation for |∇u| that is convenient for the

convergence analysis involves characterizing this as the maximum possible first

directional derivative,

|∇u(x)| = max
|ν|=1

∂u(x)

∂ν
.

Then a simple choice of discretization involves looking at all possible directions that

can be approximated exactly within our search radius r.

|∇u| ≈ Eh(x, u(x)− u(·)) = max

{
u(x)− u(y)

|x− y|
| y ∈ Gh ∩B(x, r)

}
. (3.25)

3.4 Convergence Analysis

In this section, we present a proof of convergence for the discrete eigenvalue problem

in Equation (3.20). We separate this into two results: convergence of the eigenvalue

ch and convergence of the grid function uh.

Theorem 3.5 (Convergence of the eigenvalue). Let (uex, cex) be any smooth classical

solution of the eigenvalue problem given by Equation (3.13) and Equation (2.9), and

let (vh, ch) be any solution of the scheme (3.20). Then ch converges to cex as h → 0.

Theorem 3.6 (Convergence of the grid function). Let (uex, cex) be a solution of the

eigenvalue problem given by Equation (3.13) and Equation (2.9) satisfying uex(x0) = 0

and let uh be any solution of the scheme (3.21)-(3.22). Then ũh converges uniformly

to uex as h → 0.

We also remark that, while our focus here is the construction of minimal

Lagrangian graphs, this analysis could be readily adapted to more general eigenvalue

problems of the form (3.1).

3.4.1 Convergence of the Eigenvalue

We begin by establishing convergence of the eigenvalue (Theorem 3.5). The proof

of this result will require several short lemmas. In these we will use the shorthand

33

notation

F h
i [u] = F h(xi, u(xi)− u(·))

Hh
i [u] = Hh(xi, u(xi)− u(·)).

We also define the following objects relating to sub- and super-solutions of the

schemes.

Uh
c = {u | F h

i [u] + c ≤ 0, xi ∈ Gh ∩X;Hh
i [u] < 0, xi ∈ Gh ∩ ∂X} (3.26)

V h
c = {v | F h

i [v] + c ≥ 0, xi ∈ Gh ∩X;Hh
i [v] > 0, xi ∈ Gh ∩ ∂X} (3.27)

We begin by establishing that these sets of sub(super)-solutions are non-empty for

appropriate choices of c.

Lemma 3.7 (existence of sub(super) solutions). There exist uh
+ ∈ V h

cex+ω(h), u
+
−h ∈

Ucex−ω(h) where ω(h) is proportional to the maximum consistency error τ(h) of the

scheme.

Proof. We begin by letting G(x) be the signed distance function to the boundary

of the domain ∂X. Through convolution with an appropriate mollifier, we obtain a

smooth function w with the property that

∇w(x) = nx, x ∈ ∂X.

For some ϵ > 0 (which will be fixed) we define

uh
− = uex − ϵw, uh

+ = uex + ϵw.

We will show that for suitable choices of ϵ = ϵ(h) and ω(h) = O(τ(h)) we have

uh
− ∈ Uh

cex−ω(h). The argument regarding uh
+ is similar.

34

Note that from Lemma (2.16), if x ∈ ∂X then

H(∇uh
−(x)) = sup

n·nx>ℓ
{∇uh

−(x) · n−H∗(n)}

≤ sup
n·nx>ℓ

{∇uex(x) · n−H∗(n)} − ϵℓ

= H(∇uex(x))− ϵℓ

= −ϵℓ.

By consistency we have

Hh
i [u

h
−] ≤ H(∇uh

−(xi)) + τ(h) ≤ −ϵℓ+ τ(h).

Choosing ϵ > 1
ℓ
τ(h), we obtain

Hh[uh
−] < 0.

Since our PDE operator F is Lipschitz, we can also find some L > 0 so that

F (D2uh
−(x)) ≤ F (D2uex(x)) + Lϵ = −cex + Lϵ.

By consistency we have

F h
i [u

h
−] ≤ F (D2uh

−(xi)) + τ(h) ≤ −cex + Lϵ+ τ(h).

Again choosing ϵ > 1
ℓ
τ(h) and defining ω(h) = Lϵ(h) + τ(h) we have

F h[uh
−] + cex − ω(h) ≤ 0.

We conclude that uh
− ∈ Uh

cex−ω(h).

Now using the discrete comparison principle, we can begin to see how the

sets of sub(super)-solutions are related to each other, which will lead ultimately to

constraints on our numerically computed eigenvalue.

35

Lemma 3.8 (Comparison of eigenvalues). Suppose u1 ∈ Uh
c1

and u2 ∈ V h
c2

. Then

c1 ≤ c2.

Proof. Suppose instead that c1 > c2. Note that for any constant k we also have

u1 + k ∈ Uh
c1

. Thus, we can assume that u1 > u2. Now we estimate

F h
i [u1] + c2 < F h

i [u1] + c1 ≤ 0 ≤ F h
i [u2] + c2, xi ∈ Gh ∩X

and

Hh
i [u1] < 0 < Hh

i [u2], xi ∈ Gh ∩ ∂X.

By the discrete comparison principle (Lemma 2.23) we have u1 ≤ u2, a contradiction.

With these lemmas in place, we can now prove convergence of the numerically

computed eigenvalue.

Proof of Theorem 3.5. Recall that

F h
i [v

h] + ch = 0, xi ∈ Gh ∩X

and

Hh
i [v

h] = 0, xi ∈ Gh ∩ ∂X.

Following Lemmas 3.7-3.8 we conclude that

cex − ω(h) ≤ ch ≤ cex + ω(h).

Having proved the convergence of the eigenvalue ch → cex, this reduces our task

from the convergence of an eigenvalue problem to the convergence of a fully nonlinear

elliptic PDE.

36

3.4.2 Convergence of the Grid Function

We now turn our attention to the convergence of the approximation uh to the solution

uex (Theorem 3.6).

In order to prove this theorem, we first need to construct a piecewise linear

extension ũh of the grid function uh.

We assume the existence of a triangulation T h of Gh such that

1. The maximal angle in any triangle is bounded uniformly away from π,
independently of h.

2. The diameter of each triangle is O(h).

We note that since Gh ⊂ X̄, we need to extend triangles that intersect the

boundary in order to obtain a decomposition T̃ h that fully covers the domain. To do

this, we define the regions t̃i as follows:

Definition 3.9 (Extension of triangulation). Let t ∈ T h, with the nodes x0, x1, x2.

Then we define the corresponding region t̃ ∈ T̃ h as follows:

(a) If at least two nodes of t are in X, set

t̃ = t.

(b) If two nodes x1, x2 ∈ ∂X, set

t̃ = Conv{x0, x0 + 2(x1 − x0), x0 + 2(x2 − x0)} ∩ X̄.

where Conv denotes the convex hull of the set.

We remark that ⋃
t̃∈T̃

t̃ = X̄.

Now we are able to define a continuous piecewise linear extension.

Definition 3.10 (Extension of grid function). Define the unique continuous piecewise

linear function ũh satisfying:

37

(a) ũh(x) = uh(x) for all x ∈ Gh.

(b) ũh(x) is a linear function on each region t̃ ∈ T̃ .

We remark that ũh will also satisfy the approximation scheme (3.22)-(3.24). An

important element to our convergence proof will be to establish uniform Lipschitz

bounds on the approximations ũh. Note that the search radius for the neighbors is

assumed to be O(
√
h) since this is what the schemes defined in Chapter 4 will be

using.

Lemma 3.11 (Lipschitz bounds). There exists a constant L > 0 such that the

Lipschitz constant of ũh is bounded by L for all sufficiently small h > 0.

Proof. We begin by considering the function ũh restricted to some fixed region t̃ ∈ T̃ h.

Let x0, x1, x2 be the nodes of t̃. Without loss of generality, we can assume that the

maximal interior angle θ of t̃ occurs at the node x0.

Now we know that xi ∈ Gh for i = 0, 1, 2. Since ũh satisfies the scheme (3.24),

we know that

Eh(xi, ũ
h(xi)− ũh(·))−R ≤ 0.

From the definition of Eh (3.25), we can conclude that

ũh(xi) ≤ ũh(y) +R|xi − y|

for every y ∈ Gh ∩ B(xi, r). In particular, this holds for y = x0, x1, x2 since the

diameter of t̃ is bounded by 2h < r = O(
√
h) for small enough h > 0. Thus, we

obtain the discrete Lipschitz bounds

|ũh(xi)− ũh(xj)| ≤ R|xi − xj|, i, j ∈ {0, 1, 2}.

We now use this to bound the gradient of ũh over the region t̃. Notice that for

x ∈ t̃ we can write

ũh(x) = ũh(x0) + p · (x− x0)

38

where p = ∇ũh(x) is constant over this region. Since x1 − x0 and x2 − x0 span R2,

we can find constants a1, a2 ∈ R such that

p = a1(x1 − x0) + a2(x2 − x0).

Now we use our discrete Lipschitz bounds to compute

R|x1 − x0| ≥ |u1 − u0| = |x1 − x0||a1|x1 − x0|+ a2|x2 − x0| cos θ|.

Simplifying and applying the bound on the maximal angle, we obtain

R ≥ |a1||x1 − x0| −M |a2||x2 − x0|.

Similarly,

R ≥ |a2||x2 − x0| −M |a1||x1 − x0|.

Combining the two above expressions, we find that

R(M + 1) ≥ (1−M2)|a2||x2 − x0|

and thus

|a2| ≤
R

(1−M)|x2 − x0|
.

An equivalent bound is available for |a1|.

Now we can bound p = ∇ũh(x) over the region t̃ by

|p| ≤ |a1||x1 − x0|+ |a2||x2 − x0| ≤
2R

1−M
≡ L.

Since ũh is piecewise linear, its Lipschitz constant will be bounded by the

maximum Lipschitz constant over each region t̃ ∈ T̃ h, which is given by L.

An immediate consequence of this is uniform bounds for ũh.

39

Lemma 3.12. There exists a constant C > 0 such that ∥ũh∥∞ ≤ C for all sufficiently

small h > 0.

Proof. Since ũh(xh
0) = 0 and ũh has a bounded Lipschitz constant (Lemma 3.11), we

have that
|ũh(x)| = |ũh(x)− ũh(x0)|

≤ L|x− x0|

≤ L diam(X)

for every x ∈ X̄.

Next we adapt the usual Barles-Souganidis convergence proof [1] to begin

to show how we can obtain viscosity solutions to (3.16) from our approximation

scheme (3.21).

Lemma 3.13. Let hn be any sequence such that hn → 0 and ũhn is uniformly

continuous and converges uniformly to a continuous function v. Then v is a viscosity

solution of (3.16).

Proof. We first demonstrate that v is a viscosity subsolution. Consider any x0 ∈ X

and ϕ ∈ C2 such that v − ϕ has a strict local maximum at x0 with v(x0) = ϕ(x0).

Because ũh and the limit function v are continuous, there exist sequences yn ∈ X and

zn ∈ Gh ∩X such that

yn → x0, |yn − zn| < h, ũhn(yn) → v(x0)

where yn maximizes ũhn − ϕ.

We note that from Lemma 3.11, we have that

|ũhn(yn)− ũhn(zn)| ≤ L|yn − zn| < Lh.

40

From the definition of yn as a maximizer of ũhn − ϕ, we also observe that

ũhn(zn)− ũhn(·) ≥ ũhn(yn)− Lh− ũhn(·) ≥ ϕ(yn)− ϕ(·)− Lh.

Let G(∇u(x), D2u(x)) denote the PDE operator (3.16) and Gh(x, u(x) − u(·))

at interior points x ∈ Gh ∩ X. Since ũhn is a solution of the scheme, we can use

monotonicity to calculate

0 = Ghn(zn, ũ
hn(zn)− ũhn(·)) ≥ Ghn(zn, ϕ(yn)− ϕ(·)− Lh).

As the scheme is consistent and continuous, we conclude that

0 ≥ lim
n→∞

Ghn(zn, ϕ(yn)− ϕ(·)− Lh) = G(x0,∇ϕ(x0), D
2ϕ(x0)).

Thus v is a subsolution of (3.16).

An identical argument shows that v is a supersolution and therefore a viscosity

solution.

With these lemmas in place, we can now complete the main convergence result.

Proof of Theorem 3.6. Let hn be any sequence converging to 0. Since ũhn is uniformly

bounded and Lipschitz continuous (Lemmas 3.11-3.12), we can apply the Arzela-

Ascoli theorem to obtain a subsequence hnk
such that ũhnk → v uniformly for some

continuous function v.

By Lemma 3.13, v is a viscosity solution of (3.16) and therefore a classical

solution of the eigenvalue problem (3.13)-(2.9). Moreover, since convergence is

uniform and uhnk continuous we have that

v(x0) = lim
k→∞

ũhnk (x
hnk
0) = 0.

Thus v = uex is the unique solution of (3.13)-(2.9) satisfying v(x0) = 0.

41

Since every sequence ũhn has a subsequence converging to uex, we conclude that

ũh converges to uex.

Note that both the analysis of the convergence of the eigenvalue and of the

convergence of the solution apply to a wider class of problems. Consider the class of

PDE eigenvalue problems of the form:
F (D2u) = c, x ∈ X

H(∇u) = 0, x ∈ ∂X

(3.28)

under the assumptions that F is elliptic, H is oblique, and the problem has a unique

(up to additive constants) classical solution. The entire argument, including correct

computation of eigenvalue, also applies to show the convergence of (uh, ch) → (uex, cex)

for this wider class of problems.

42

CHAPTER 4

NUMERICAL METHODS IN TWO DIMENSIONS

In this chapter, we review existing schemes for second order operators, including wide

stencil schemes from [45], meshfree schemes from [26], and quadtree methods from

[33] for constructing higher order filtered schemes [24]. Then we extend the work

that was done for Dirichlet boundary conditions to accommodate nonlinear transport

boundary conditions and build higher-order schemes for these boundary conditions.

We also extend this work to be able to solve eigenvalue problems. The extension

of these schemes to accomodate nonlinear transport boundary conditions and the

solution of eigenvalue problems are the main contributions of this chapter of the

dissertation.

4.1 Wide Stencil Methods

We consider two existing ways to solve equations involving eigenvalues of the Hessian

via approximating directional derivatives. The first uses a standard rectangular grid

for approximating the eigenvalues using the directional derivatives in the directions

aligned with the grid, which is limited in that it cannot do adaptivity and cannot work

with complicated domains. Additionally, the schemes actually become inconsistent

near the boundary. To approximate certain directions, looking at the nearest

neighbors is not sufficient. Thus, for each direction, the directional derivative is

approximated by a wide stencil finite difference approximation of the second derivative

in that direction. Visually, the directions we are limited to using are illustrated in

Figure 4.1.

The approximation is made by generalizing the standard centered difference

approximation of the second derivative to accommodate directional derivatives in

43

other directions θ ∈ [0, 2π). Recall,

Uh
xx =

Ui+1,j + Ui−1,j − 2Ui,j

h2
+O(h2) (4.1)

For a scheme of this type on a rectangular grid, we must often look further out to find

neighbors that perfectly align in a given direction. Once found, we can approximate

the second directional derivative ∂2u
∂e2θ

in certain directions θ aligned with the grid

∂2u

∂e2θ
=

U(i+Vx(θ),j+Vy(θ)) + U(i−Vx(θ),j−Vy(θ)) − 2U(i,j)(
h ·
√(

Vx (θ)
2 + Vy (θ)

2))2 . (4.2)

where Vx(θ), Vy(θ) are the x and y components of the vector starting from the point of

interest and terminating at the desired neighboring point expressed as relative indices

in order to obtain the desired direction θ and eθ = (cos (θ), sin (θ)) is the unit vector

in the direction of theta. This is the standard finite difference approximation of a

second directional derivative. These approximations introduce a discretization error

Figure 4.1 An example wide stencil finite difference approximation.
Source: [45, 26].

44

dθ corresponding to the size of the angles that can be resolved on the wide stencil

[45, 26].

The basic approach to approximating the solutions of fully-nonlinear PDEs

involving eigenvalues of the Hessian matrix is to then use the classical Rayleigh-Ritz

characterization of the eigenvalues:

λ+[u](x) = max
θ∈[0,2π)

d2u

de2θ
(x) (4.3)

λ−[u](x) = min
θ∈[0,2π)

d2u

de2θ
(x) (4.4)

We approximate the minimum and maximum on the finite subset of directions given

by

Th =

{
k dθ

∣∣∣∣ k = 0, ...,

⌊
2π

dθ

⌋}
[26]

The minimum and maximum of the directional derivatives approximate the eigenval-

ues of the Hessian [45].

4.2 Meshfree (Generalized) Finite Difference Methods

Wide stencil methods have certain disadvantages, such as problems approximating

directional derivatives near the boundary, being limited to uniform Cartesian grids,

and an inability to deal with directions θ not aligned with the grid. In contrast, using

meshfree methods, we approximate directional derivatives using point clouds where

we can always pick out appropriate points within a given search radius of a point

[45, 26].

We use generalized finite difference methods to approximate the directional

derivatives of u. By using a point cloud and selecting the best aligned neighbors

in a particular direction, with possibly varied distance between the points, we avoid

the difficulty in approximating directions not aligned with a traditional grid. Using

traditional wide stencils, to approximate certain directions may require searching

45

further out on the grid, which leads to difficulty approximating derivatives at points

near the boundary. Using meshfree methods, we can select the best aligned neighbors

to minimize the error and then take an appropriate difference between them to

approximate directional derivatives in any direction. Near the boundary we can still

find appropriate points so that we do not lose accuracy there.

We introduce some important parameters for the mesh.

• G ⊂ X̄ is a point cloud consisting of the points xi, i = 1, ..., N .

• h = supx∈X miny∈G |x− y| is the spatial resolution of the point cloud.

• hB = supx∈∂X miny∈G∩∂X |x − y| is the resolution of the point cloud on the
boundary.

• dθ is the desired angular resolution for the approximation.

• δ = minx∈X∩G infy∈∂X |x − y| is the minimum pairwise distance between any
interior point and any boundary point.

Finally,

r = h (1 + sin (dθ/2) + cos (dθ/2) cot (dθ/2))

is the search radius associated with the point cloud [26].

Figure 4.2 shows a typical example of a search in the interior sufficiently far from

the boundary. These points are guaranteed to exist provided we have a large enough

search radius. This makes only a small error in the angular distance between the

desired vector and the selected points. The error made by the approximation using

the points selected in Figure 4.3 depends on size of the dθi, which are the angular

differences between the desired direction and the direction of the chosen neighbors.

When near the boundary, finding neighbors in each direction is still possible if the

point cloud is constructed correctly. These neighbors are also guaranteed to exist on

and near the boundary provided that enough points are included along the boundary

of the point cloud. A typical search near the boundary is shown in Figure 4.4.

The boundary resolution hb is the maximum of the distances between any two given

46

θ

x1

x3

x2

x4

x0

Figure 4.2 Finding appropriate points in a search radius (interior).
Source: [26].

dθ2

dθ4

dθ3

x1

x2

dθ1

x3

x4

x0

Figure 4.3 Angular resolution of the selected points.
Source: [26].

47

∂Ω

x2

x3

x4

x1

x0 θ

Figure 4.4 Finding appropriate points in a search radius (boundary).
Source: [26].

boundary points. δ is the minimal distance between the interior and the boundary.

A node is guaranteed to exist on the boundary within the search radius given the

boundary resolution hb ≤ 2δ tan (dθ/2) and dθ is sufficiently small, as illustrated in

Figure 4.5.

x0

2δ tan(dθ/2)

θ

dθ/2

x1

∂Ω

δ

y

z

Figure 4.5 Existence of a boundary neighbor.
Source: [26].

Rather than be limited to the directions aligned with the grid, we may choose

any desired direction or set of directions. Then each derivative is computed in much

48

the same way as before, however we search within a certain radius for two points

most closely matching the desired direction and for two most closely matching the

opposite direction.

Error We are guaranteed to be able to find these points and this approach helps

on both complicated geometries and near the boundary. dθ is the angular difference

between the point and the given direction vector. As long as dθ is small, we make

very little error. Unlike traditional wide stencil methods, this approach allows us to

ensure that dθ → 0 globally as we refine the grid. The approximations are of the

form

∂2u

∂e2θ
≈ F̃θ (xi, ui, ui − uj) (4.5)

where j is the index of an appropriate neighboring point.

Scheme As already done in “Meshfree Finite Difference Approximations for

Functions of the Eigenvalues of the Hessian” [26], we look to approximate the

directional derivatives by a scheme of the form:

∂2u

∂e2θ
≈

4∑
i=1

ai (u(xi)− u(x0))

=
4∑

i=1

ai[hi cos(θi)uθ(x0) + hi sin(θi)uθ+π/2(x0)

+
1

2
h2
i cos

2(θi)uθθ(x0)] +O
(
h3
i + h2

i sin(dθi)
)

(4.6)

Consistency and monotonicity require the following equations to be satisfied:

∑4
i=1 aihi cos θi = 0∑4
i=1 aihi sin θi = 0∑4
i=1

1
2
aih

2
i cos

2 θi = 1

ai ≥ 0.

[26] (4.7)

49

In addition, the scheme must satisfy max(hi) ≤ r and max(dθi) ≤ dθ. This yields the

scheme of the form:

Dθθu(x0) ≡
4∑

i=1

ai (u(xi)− u(x0)) =
∂2u(x0)

∂θ2
+O(r + dθ) (4.8)

Without the ai ≥ 0 condition, we have three equations and four unknowns, so we

choose an additional symmetry condition:

a1h1 sin θ1 + a4h4 sin θ4 = 0 [26] (4.9)

This allows the weights to be chosen appropriately when e.g., sin θ1 = 0. It also

implies another condition which allows the scheme to be solved explicitly:

a2h2 sin θ2 + a3h3 sin θ3 = 0 [26] (4.10)

Here, we use the following scheme to approximate the directional derivatives based

on appropriate differences of points in the point cloud. Specifically, we use the

scheme derived in “Meshfree Finite Difference Approximations for Functions of the

Eigenvalues of the Hessian” [26] which has negative monotonicity and consistency by

construction. The scheme is of the form in Equation (4.8), with

a1 =
2S4(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)
(4.11)

a2 =
2S3(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)
(4.12)

a3 =
−2S2(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)
(4.13)

a4 =
−2S1(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)
(4.14)

where

Ci = hi cos (θi) = O(hi), Si = hi sin (θi) = O (hidθi) [26]. (4.15)

50

4.3 Quadtree Methods

We desire a mesh with the flexibility to resolve directional derivatives in many

directions, deal with complicated geometries, and retain enough structure to build

higher order schemes. One can only go so far on a Cartesian grid since the resolvable

directions are limited, especially near the boundary. Unstructured point clouds

have the flexibility to resolve every direction, but setting up the stencils requires

an expensive search. It is better to have some structure in order to make things more

efficient.

One approach to creating such a mesh is to use piecewise Cartesian grids stored

as quadtrees augmented with additional boundary points, as was done in “Higher-

Order Adaptive Finite Difference Methods for Fully Nonlinear Elliptic Equations”

[33]. Using this approach we maintain enough structure to build higher order methods

while still having the advantage of getting additional accuracy of our directional

derivatives and adaptability to complex geometries.

4.3.1 Building the Quadtree

A quadtree is constructed from the basic idea of dividing squares into smaller squares

[33].

Figure 4.6 A quadtree and its corresponding subdivision. Internal nodes are
represented by circles and leaves are represented with squares.
Source: [33].

51

We begin with a square that covers the domain, and subdivide it into four

smaller squares. A square that has no squares within it is called a leaf square. Where

higher resolution is needed or desired, we further subdivide these into four smaller

squares. This process repeats as necessary and the vertices of the leaf squares which

lie inside the domain are added to the point cloud.

To ensure existence of a stencil near the boundary, the point cloud must be

augmented with additional boundary points. First, we include any points where an

edge of a square intersects the boundary. This allows us to easily extend more accurate

schemes from the interior to the boundary because these points align perfectly. Then

we add more boundary points as needed so that more directions can be resolved even

when close to the boundary. If there is a need for higher resolution near some part

of the boundary, we add more boundary points to the cloud as needed.

In order for the scheme to be consistent, there must be some separation between

the interior and the boundary. This should be O(h), which means that certain points

too close to the boundary must be thrown out of the point cloud. In general, for

schemes designed in this way to be consistent we require the boundary to be much

more resolved than the interior (hB ≪ h). This is due to the fact that we search for

appropriate neighbors in each direction allowing them to be much further away than

h in the interior. To keep consistency, we need to be able to find and resolve the

directions just as well near the boundary where the search radius must be smaller.

Hence, a Cartesian mesh is not able to sustain a consistent scheme near the boundary

[24].

4.4 Discretization in the Interior

In this section, we review the discretization of the PDE for second order operators

using quadtrees, which was presented in “Higher-Order Adaptive Finite Difference

52

Methods for Fully Nonlinear Elliptic Equations” [33]. We then introduce new

monotone discretizations of functions of the gradient of the solution.

4.4.1 Second Order Operators

We use approximations of the form

Dθθu(x0) ≡
4∑

i=1

ai (u(xi)− u(x0)) =
∂2u(x0)

∂θ2
+O (r + dθ)

to approximate the directional derivatives of u in each direction in order to

approximate the eigenvalues of the Hessian matrix. These were established to be

consistent and (negative) monotone in “Meshfree Finite Difference Approximations

for Functions of the Eigenvalues of the Hessian” [26], and were derived via Taylor

expansion.

In order to find neighbors for the monotone scheme on a quadtree, we search

each square in the quadtree along the line x0 + tν where x0 is the point of interest

and ν = (cos θ, sin θ). Both vertices and boundary points are included in this search.

The best aligned neighbors in a particular direction are selected to be used in the

approximation. Algorithm 4.1 describes the process for selecting neighbors in the first

and fourth quadrant. The process is similar for other directions [33].

The eigenvalues of the Hessian, λ1 and λ2, can be approximated by the

maximum and minimum of the directional derivatives of u. Thus, we first compute

all directional derivatives in the directions given by an evenly divided partition of

[0, 2π), using more directions as n increases. These are computed by selecting

the best neighbors for each point and then taking an appropriate difference, with

weights described by Equation (4.14). This section applies much of what was done

in “Higher-Order Adaptive Finite Difference Methods for Fully Nonlinear Elliptic

Equations” [33]. In the next section, we derive a new scheme for discretizing functions

of the gradient.

53

Algorithm 4.1 Potential Neighbors (Interior)

1: for each interior point do

2: Identify the leaf square that has x0 as its southwest vertex.

This information is stored for each square so it is efficient to

find.

3: Find the first edge which intersects the line x0 + tν.

4: Identify the leaf squares that share this edge.

5: Identify the edge of the square closest to x0 along the line

x0 + tν.

6: Consider the two endpoints of this edge as potential neighbors.

7: Repeat 3-6 adding each node to the list of potential neighbors,

until x0 + tν exits the search region or a boundary leaf square is

intersected.

8: If a boundary square is encountered, add all boundary nodes in

that square to the list of potential neighbors.

9: end for[33]

Figure 4.7 Potential neighbors are circled in gray. Examples of selected neighbors
are circled in black. Gray squares are considered in Algorithm 4.1.
Source: [33].

54

Figure 4.8 Blacked out squares are part of the quadtree but not used since they
are not inside the domain. White squares are inside the domain, while gray squares
intersect the boundary.
Source: [33].

In our problem, we apply the results of [33] to build a meshfree solver using

quadtrees. In order to approximate the directional derivatives, we search for neighbors

best aligned with each direction that lie in the square of the point at which we want

to compute the derivative and in any square that is part of the quadtree that could be

considered adjacent to it. This search pool includes up to eight neighboring squares

by including those that touch on the diagonal, or as low as three, if the point is

particularly close to the boundary.

4.4.2 Discretization of Functions of the Gradient

In order to approximate the function f (x,∇u) on the right-hand side of the equation

when there are gradient terms, we need a monotone discretization. In order to

accomplish this, we first derive a consistent approximation via Taylor expansion using

the same neighbors used in the interior to approximate the Laplacian operator (for

reasons which will become clear).

Remark 4.1. This is a generalization of the Lax-Friedrichs approximation, which

combines non-monotone centered schemes for the gradient with a small multiple of

the Laplacian that enforces overall monotonicity.

55

By adding a carefully chosen value of ϵ times the discrete Laplacian to the

approximation, we maintain monotonicity which allows the stability needed for

convergence. For example, consider a discretization of f(u′) = u′ using centered

differences. Then

f(u′) = u′ ≈ ui+1 − ui−1

2h
=

ui+1 − ui + ui − ui−1

2h
=

−(ui − ui+1) + (ui − ui−1)

2h

is not a monotone scheme, since it is not a nondecreasing function of the differences

ui − ui+1 and ui − ui−1. However, we can subtract ϵ times the second derivative’s

monotone approximation to get

f(u′) ≈−(ui − ui+1) + (ui − ui−1)

2h
− ϵ

ui+1 + ui−1 − 2ui

h2

=
−(ui − ui+1) + (ui − ui−1)

2h
+ ϵ

(ui − ui+1) + (ui − ui−1)

h2

=
(2ϵ− h)(ui − ui+1) + (2ϵ+ h)(ui − ui−1)

2h2

(4.16)

so this will be a monotone function if ϵ ≥ h/2.

Next, we derive the monotone discretization. Since each point uses four

neighbors for the approximation, we need to solve a system of equations for the

coefficients in each approximation. The differences dxi = (x0 − xi) and dyi = (y0 − yi)

are used in the equations for ux:

ux ≈
4∑

i=0

Aiui

≈
4∑

i=0

Aiu0 +
4∑

i=1

[
Ai

(
dxiux +

dx2
i

2
uxx + dyiuy +

dy2i
2

uyy + dxidyiuxy

)]
+O(h3)

(4.17)

Then, we can derive the approximation with only four neighbors, since the

neighbors chosen are from each cardinal direction; and thus, we do not care about

the mixed derivative terms since one of dxi or dyi is equal to zero for each i.

56

∑4
i=0Ai = 0∑4
i=1Aidxi = 1∑4
i=1Aidyi = 0∑4
i=1Aidx

2
i /2 = 0∑4

i=1Aidy
2
i /2 = 0

(4.18)

For uy, we similarly find coefficients that satisfy

B0 +
∑8

i=5Bi = 0∑8
i=5 Bidxi = 0∑8
i=5 Bidyi = 1∑8
i=5 Bidx

2
i /2 = 0∑8

i=5 Bidy
2
i /2 = 0

(4.19)

These two linear systems can be solved explicitly. We then have a first order

approximation for the gradient terms, but it may not be monotone. In order to create

a monotone approximation when we plug into f , we approximate

f (x, y, ux, uy) ≈ f

(
x, y,

4∑
i=0

Aiui, B0u0 +
8∑

i=5

Biui

)
− ϵ (∆hu)

where ∆hu is the discrete Laplacian depending on coefficients of the second

derivatives. Writing this explicitly including neighbors for ∆hu, we get

f (x, y, ux, uy) ≈ f

(
x, y,

4∑
i=0

Aiui, B0u0 +
8∑

i=5

Biui

)
−ϵ

(
4∑

i=0

Ciui +D0u0 +
8∑

i=5

Diui

)
(4.20)

Since we have monotone approximations for the Laplacian operator, subtract it from

the approximation using a weight ϵ = O(h) so that the scheme becomes monotone,

57

but as h → 0, the extra terms drop out. This Lax-Friedrichs type approximation

requires a choice of ϵ large enough so that the scheme is monotone to accomplish the

result.

In practice, our problem requires epsilon to look like hK where K is the Lipschitz

constant of f for ux, uy. Since we may not know this explicitly, we approximate the

Lipschitz constant by 1.2 times the maximum of the derivatives with respect to ux,uy

for the function f . It is better to make epsilon too large than too small because

stability is our concern. The properties informally stated here are based on the

following lemma.

Lemma 4.2. The approximation in Equation (4.20) is monotone if ϵ ≥ maxi
|Ai|
|Ci|K

where K is the Lipschitz constant of f .

Proof. Let G (u1 − u0, u2 − u0, ..., u8 − u0) be the approximation scheme defined by

G (v1, v2, ..., v8) = f

(
x, y,

4∑
i=1

Aivi,
8∑

i=5

Bivi

)
− ϵ

(
4∑

i=1

Civi +
8∑

i=5

Divi

)

where vi = ui − u0, Ai are the coefficients in the approximation for ux, Bi are the

coefficients in the approximation of uy, and Ci, Di > 0 are the coefficients in the

approximation for −∆u all derived via Taylor series expansion. Then, we want to

show this is a monotone function in each argument; i.e., show that G is a non-

increasing function of each vi. Consider

G (v1 + δ, v2, ..., v8)−G (v1, v2, ..., v8)

where δ > 0. The other arguments of G being monotone will follow by a nearly

identical argument.

58

G (v1 + δ, v2, ..., v8)−G (v1, v2, ..., v8)

= f

(
x, y, A1δ +

4∑
i=1

Aivi,

8∑
i=5

Bivi

)
− ϵδC1 − ϵ

(
4∑

i=1

Civi +
8∑

i=5

Divi

)

− f

(
x, y,

4∑
i=1

Aivi,

8∑
i=5

Bivi

)
+ ϵ

(
4∑

i=1

Civi +
8∑

i=5

Divi

)

= f

(
x, y, A1δ +

4∑
i=1

Aivi,
8∑

i=5

Bivi

)
− f

(
x, y,

4∑
i=1

Aivi,
8∑

i=5

Bivi

)
− ϵδC1

= −

[
f

(
x, y,

4∑
i=1

Aivi,

8∑
i=5

Bivi

)
− f

(
x, y, A1δ +

4∑
i=1

Aivi,

8∑
i=5

Bivi

)]
− ϵδC1

≤ K||
4∑

i=1

Aivi − A1δ −
4∑

i=1

Aivi||∞ − ϵδC1

= K||A1δ||∞ − ϵδC1 ≤ 0

(4.21)

as long as ϵ > K∥A1∥
C1

. Thus, in order to show G is monotone, the argument can be

repeated for all i, and taking ϵ > maxi
K∥Ai∥

Ci
will yield a monotone function.

In particular for this example, ϵ ≥ maxi
K|Ai|
Ci

which we know scales like

ϵ ≥
K 1

h
1
h2

= Kh

4.5 Discretization of the Boundary Condition

The discretization of Dirichlet boundary conditions is simple. Here the contribution

of this work is the discretization of functions of the gradient and of nonlinear

Neumann-type boundary conditions. This section describes discretization of the

possibly nonlinear Neumann-type boundary condition

H (∇u) = 0 x ∈ ∂X

59

4.5.1 Discretization of the Boundary Condition

Recall the formulation we use for the boundary conditions,

H (∇u(x)) = 0, x ∈ ∂X

where H is the signed distance function:

H(y) =

+dist (y, ∂Y) y /∈ Y

−dist (y, ∂Y) y ∈ Y

Convexity of H and u ensure the existence of a consistent, monotone discretiza-

tion that uses only values in the domain.

The neighbors are selected for the boundary conditions based on searching for

appropriate points within the same square as the boundary node or within neighboring

squares. The points are divided into eight regions based on the direction they lie in,

and points are chosen based on proximity to the node and direction. In Figure 4.9,

we do not include the points very close to the boundary in the cloud, but include

in the search all points both in the cloud and within a one square radius (including

diagonally) of the point of interest.

To approximate the boundary condition in Equation (2.19), we first compute

H∗, which can be done by using the formula in Equation (2.17) and approximating

the sup by a max among a finite set of directions N̂ which are determined for each

point in the following way:

• Partition [0, 2π) using a number of elements depending on h.

• N̂ is the subset of directions from this partition which point outside the
boundary at the given boundary point.

Then, we use a monotone approximation of the directional derivatives at each

boundary point. We get a monotone approximation of the boundary condition by

60

Figure 4.9 An example set of neighbors (in red) for the boundary point (in green)
with points in the cloud labeled in blue and the points in the quadtree but not the
point cloud labeled in black. The eight regions partition the h,k plane. Not all regions
need to be represented.

computing

max
{
Dnu−H∗ (n) |n ∈ N̂

}
where N̂ is a finite subset of the directions such that n · nx > 0 and Dnu is an

approximation of the directional derivative in the direction n. To approximate for a

given n, we choose two neighbors such that the direction −n is in the convex hull of

the two neighbors. To accomplish this at a point x0 ∈ ∂x, we need to identify points

x1, x2 ∈ Gh such that for small t > 0, the line segment x0 − nt is contained in the

convex hull of x0, x1, x2 (which is a triangle). Given the structure of our mesh, this

is easily accomplished for neighbors satisfying

|x1 − x0|, |x2 − x0| ≤ O (h) .

See Figure 4.9 for a visual of this selection. Let u1, u2 be the chosen neighbors for

u0. Then let

61

• hi = xi − x0

• ki = yi − y0

• θ is the angle for the direction n

The scheme used to approximate the first directional derivatives is derived via

Taylor expansion. We can set up the following system of equations, which leads to a

monotone scheme

∑2
i=0 ai = 0∑2
i=1 aihi = − cos (θ)∑2
i=1 aiki = − sin (θ)

(4.22)

The scheme used is then

a0u0 + a1u1 + a2u2

where we have the coefficients
a1 =

−h2 sin(θ)+k2 cos(θ)
h2k1−h1k2

a2 =
h1 sin(θ)−k1 cos(θ)

h2k1−h1k2

a0 = − (a1 + a2) .

(4.23)

4.6 Solving the Eigenvalue Problem

We approximate the PDE operator as above, then use a damped Newton’s method

to solve for uh and ch.

Handling the Extra Unknown In our implementation, the point cloud includes

boundary points, then the interior points, for a total of N points. Normally, the

unknowns are the ui such that xi ∈ ∂X, and the ui such that xi ∈ X. The main

characteristic that makes this an eigenvalue problem is an extra unknown c. In

general, since we have introduced an additional unknown, we have N equations with

62

N+1 unknowns. This yields a solution that is only unique up to an additive constant,

since both the PDE and the boundary condition depend only on derivatives of u.

Thus, in order for the solution to be unique, we add another equation to the system.

For now, we use the condition that the first value on the boundary has a value

equal to zero. In practice, the choice of extra condition does not matter, since in

most applications we only care about the gradient of u. In introducing an extra

unknown, we also would like to be able to solve more general problems introducing

more complicated functions on the right side. These variants have the form

F
(
λ1(D

2u), λ2(D
2u)
)
= cf (x,∇u)

in the interior. The full problem can then be written abstractly as

F [u, c] = 0

where

F [u, c] =

cf (x,∇u)− tan−1 (λ1)− tan−1 (λ2) x ∈ X

H (∇u) x ∈ ∂X

u1 (Extra equation)

(4.24)

and u1 is the value of u at the first boundary point included in the point cloud.

We now replace Equation (4.24) with the discrete problem
F h[uh] + ch = 0, x ∈ X

Hh[u] = 0, x ∈ ∂X

uh
1 = 0

(4.25)

Note that these approximations are consistent and monotone, so they fit into the

convergence framework described by Theorem 3.5 and Theorem 3.6.

63

A more accurate, but not yet known to be convergent approximation is derived

in the next section.

4.7 Higher Order Implementation

4.7.1 Filtered Schemes

The basic idea of a filtered scheme comes from [24]. This is to construct a scheme in

a clever way that combines the stability of a monotone scheme (which is convergent

from Barles and Souganidis [1]) with the accuracy of a higher order scheme that may

or may not have stability issues.

We would like to use the accurate scheme where it works, and the monotone

scheme where it has a singularity. A singularity can naturally be defined as when

the difference between the accurate scheme and the monotone scheme is large. When

the accurate scheme is not singular, the difference should be on the order of the

discretization error. When it is singular, the difference will be very large since the

accurate scheme would blow up. To convert this condition into a continuous filter

function, we want the filter to be equal to the identity nearby the origin and zero

outside, e.g.,

S(x) =

x |x| ≤ 1,

0 |x| ≥ 2,

−x+ 2 1 ≤ x ≤ 2,

−x− 2 −2 ≤ x ≤ −1

[24] (4.26)

The scheme is then defined as:

FS = FM + ϵ · S
(
FA − FM

ϵ

)
(4.27)

64

where ϵ must be large in comparison to the discretization error of the scheme. This is

consistent with what we are looking for since when the accurate scheme is too large,

S is zero and the scheme reduces to the monotone scheme, and when it is not, S is

the identity, which cancels the equation to the accurate scheme. Filtered schemes are

almost monotone, and converge by similar principles to the proof of convergence of

monotone schemes [1, 24].

Figure 4.10 The filter function, a continuous function that is the identity near the
origin, and decays to zero outside.
Source: [24].

Analysis The convergence of filtered schemes for nonlinear elliptic PDEs is estab-

lished in “Convergent Filtered Schemes for the Monge-Ampère Partial Differential

Equation” [24] in a similar way to the original convergence theorem put forth by

Barles and Souganidis [1]. The basis for this is that we are working with a nearly

monotone (or nearly elliptic) scheme:

65

Definition 4.3. (Nearly Monotone) A scheme F ϵ[v] is nearly monotone if it can

be written as

F ϵ[v] = FM [v] + F ϵ
P [v] (4.28)

where FM is a monotone scheme and F ϵ
P is a perturbation, which satisfies

lim
ϵ→0

||F ϵ
P || = 0 [4].

This definition, along with the usual requirements for the convergence theorem,

yield the following theorem from [24]:

Theorem 4.4. (Convergence of Approximation Schemes) Let u be the unique

viscosity solution of the PDE

F
(
x, u(x),∇u(x),∇2u(x)

)
= 0, x ∈ X

and let uϵ be a stable solution of the consistent, nearly monotone approximation

scheme in Equation (4.28). Then,

uϵ → u locally uniformly, as ϵ → 0 [4].

Also, if the non-monotone perturbation is continuous, uϵ exists and is stable.

Remark 4.5. This applies to PDEs satisfying a comparison principle. This does not

fit our convergence framework at this time (in particular, for computing the correct

eigenvalue). However, initial results show that this is an effective approach worthy of

additional study in the context of eigenvalue problems.

The proof of the theorem is very similar to the proof of the Barles and Souganidis

convergence theorem. What allows the result to carry through is that since S is

bounded, Equation (4.27) is a small perturbation of the monotone scheme. This

66

allows the result to go through even though the scheme itself is not monotone. This

result provides motivation for using filtered schemes as well as a way of proving their

convergence. In addition, the schemes are formally higher-order since on smooth

examples it reduces to the accurate scheme, with reduction in order the more singular

the example being solved [24].

Handling the Boundary Conditions We build a filtered scheme in our example

to obtain formally second order convergence. In the interior, we can easily find an

accurate approximation of the operator by using the structure of the quadtree. On

the boundary, we also require an accurate scheme for ux and uy to approximate the

boundary condition H (∇u) = 0, which we construct using appropriate neighbors.

For this, we search the square and all neighboring squares for points closely aligned

with the x and y directions, respectively; but these will generally not be perfectly

aligned.

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

x

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

y

Example u
x
 Neighbors

Point Cloud
Selected Neighbors
Point of Interest

Figure 4.11 An example of selected neighbors for the higher order approximation
to the x derivative.

67

We derive a second order scheme via Taylor expansion using five neighbors, then

solving the system of equations numerically. For a scheme of the form a0u0+
∑n

i=1 aiui

we require the following equations for ux:

∑n
i=1 ai = −a0∑n
i=1 hiai = 1∑n
i=1 kiai = 0∑n
i=1

h2
i

2
ai = 0∑n

i=1
k2i
2
ai = 0∑n

i=1 hikiai = 0

(4.29)

where ai are the coefficients, hi are the difference in x coordinate between the point

ui and u0, and ki are the difference in y coordinate between the point ui and u0. Then

we can solve the system numerically. When this happens, the system may or may not

be well conditioned. To remedy the problem, we select eight neighbors and solve the

five equations in a least squares sense. This can be included in the filtered scheme

using the filter above and the monotone scheme used earlier.

4.7.2 Accurate Approximation of Distance Functions for Target Sets

In order to approximate the boundary condition H (∇u) = 0, we not only need

accurate approximations for the gradient, but also a perfectly accurate signed distance

function H (x, y). This is handled on a case by case basis depending on the target

set. Whenever possible, we find the exact function that does this. To find the correct

H (x, y), we must first solve the minimization problem:

minimize d (x, y)2 = (x− x0)
2 + (y − y0)

2 (4.30)

subject to x, y on the boundary of the target set. (4.31)

68

where (x0, y0) is the point that we are plugging into the distance function H. Note that

we minimize the distance squared since this is a more smooth objective function and

the problem is equivalent. To find the desired function, we take the actual distance

on the coordinates found and then correct the sign to be negative if (x0, y0) is inside

the target set and positive if it is outside. As a function of two variables, we expect

the plot of the function on a square domain to look like a cone since the distance is

negative inside and increasingly positive outside (see Figure 4.12). We also expect

the level sets of H (x, y) to be shaped like the target set. The zero level set of H (x, y)

should correspond to the actual target set (see Figure 4.12).

For many figures such as the skewed ellipse, the minimization problem must be

done numerically. In that example, we represent the boundary of the ellipse in polar

coordinates. Then for each point, we find the angle for which the distance to the

ellipse in that direction is minimized. To do this, we use Newton’s method with the

derivative of the distance function. Unfortunately, in general there may be multiple

places where the derivative is zero, some local minima and some local maxima. To

ensure we converge quickly to the correct minimum, we do a crude search for the

general location of the best angle by brute force with far less angles being considered.

This puts us in a close enough spot for the initial guess that Newton’s method can

converge to the correct spot in very few iterations.

For the skewed ellipse, we see that the zero level set of H (x, y) is the target

set. In Figure 4.12, we see the expected type of figure which is a cone whose level

sets are the shape of the target set. Other targets such as the unit circle have more

obvious signed distance functions like H (x, y) =
√

x2 + y2 − 1. Since any point on

the boundary of the unit circle has a distance to the origin of one, and the unit circle

is symmetric about the origin, the closest distance is a projection of the point in

the direction of the origin onto the circle. Thus, since the distance to the origin for

any point is given by
√

x2 + y2, the distance to the boundary of the circle would be

69

H(x,y) = 0 (i.e. The Boundary of the Target Set)

-4 -3 -2 -1 0 1 2 3 4

x

-4

-3

-2

-1

0

1

2

3

4

y

-2
4

-1

0

1

2 4

H
(x

,y
)

2

Signed Distance Function for the Skew Ellipse

2

y

3

0

x

4

0
-2 -2

-4 -4

Figure 4.12 H (x, y) for the skewed ellipse.

√
x2 + y2 − 1. Notice that for a value outside the circle, the distance is greater than

one, so we have a positive distance. For a value inside the circle, the distance is less

than one, so H is negative. Thus, we have the signed distance function as desired.

4.8 Solution Methods

Solution methods are readily available for the Dirichlet problem, however adaptions

must be made for the solution of eigenvalue problems and for Neumann or nonlinear

Neumann-type boundary conditions. The main difference is that we build in an extra

condition in order to account for the extra unknown c. We can utilize existing solution

methods by building the extra condition into the operator.

Once we have the approximations and everything is discretized appropriately, we

solve for the solution using either a damped Newton’s method or an explicit method

such as Forward Euler.

For Newton’s method we require a Jacobian matrix and expect convergence

only for a good enough initial guess. For Euler, we instead require the time step to

be sufficiently small, and we accomplish this by shrinking it to the exact size it needs

to be to cause the residual to go down at each iteration. In both methods, we need

70

a vector representing an operator F h[u] where the method used will find the solution

to F h[u] = 0.

Summary We solve a system of equations:

F [u] =

H (∇u)

cf (x,∇u)− tan−1 (λ1)− tan−1 (λ2)

u (1)

 ≈ F h[u] =

max|n|=1

{
∇hu (x) · n−H∗ (n) |n ∈ N̂

}
cf (x,∇u)− tan−1

(
maxθ∈[0,2π)

d2u
de2θ

(x)
)
− tan−1

(
minθ∈[0,2π)

d2u
de2θ

(x)
)

u (1)

 =

0

...

0

where N̂ is a finite subset of the directions such that n · nx > 0. This has the

boundary conditions followed by the evaluation of the guess u in the PDE, followed

by the condition that u (1) = 0. Specifically, the first entries of the vector correspond

to the boundary points, where the desired condition is that H (∇u) = 0, so H (∇u)

is the value of F for u on the boundary. Next, we list the condition in the interior to

solve, which is that

c f (x,∇u)− tan−1 (λ1)− tan−1 (λ2) = 0

Hence, the monotone approximation of the left-hand side is listed for interior points.

Finally, we need to include the extra equation to ensure uniqueness, so the final

equation is u (1) = 0. Again, this translates to the value of the last entry of F h[u]

being u (1).

A Jacobian matrix is then built using derivatives of the PDE with respect to

each entry which contains all values of u followed by the value of c. These are used in

a damped Newton solver which finds the u for which F h = 0, i.e., for which u satisfies

the PDE and boundary conditions. For the initial guesses, we can interpolate a

71

solution computed on a more coarse grid or use a large quadratic such as

10
(
x2 + y2

)
.

Jacobian The Jacobian used for the method was made to enforce the boundary

conditions by using the LF transform to capture the geometry of the target set.

The top of the Jacobian matrix is the matrix M which is a differentiation matrix

for the monotone approximation of the appropriate directional derivatives along the

boundary.

M = Dh
ν

where ν is the argmax of the discrete approximation to ∂u
∂ν

−H∗ (ν).

To solve for c, we needed an extra condition, u (1) = 0. This was included in

the Jacobian as well as the partial derivatives with respect to c.

∇F h =

M ... 0

−diag
(

1
1+λ2

1

)
D2

1 − diag
(

1
1+λ2

2

)
D2

2 ... 1

1 0... 0

Using a non-linear damped Newton’s method we solve for the solution based on

the operator which includes the approximation of the eigenvalues.

For Euler’s Method, we need only use the operator F h[u] with an initial guess,

since we may solve for a steady state (ut = 0) of the equation ut = F h[u]. This leads

to the method

Un+1 = Un + dt · F h[Un]

Then, to find the unknown c, we enforce the extra condition u (1) = 0 at each step

and use the update

c = max
i

(Fi[Un+1])

72

directly after the update for Un+1.

4.9 Computational Results, Examples, and Figures

We solve the problem for several different examples using the monotone scheme

derived above. Some of these have exact solutions while others do not. The problem

is solved for many different domains and target sets. Each of these examples uses

the Newton solver. The Euler’s method solver can be used for problems where the

Newton solver is too expensive. On each example, we expect to see O(
√
h) accuracy

since this is the truncation error for the schemes. However, this rate of convergence

is not rigorously proven.

4.9.1 Circle to Circle

For the first example, we simply map a circle into the same circle. Thus, the gradient

of u would have to be the identity, and integrating up we find the exact solution to

be

u(x, y) =
1

2
(x2 + y2)

c = tan−1 (1) + tan−1 (1)

This is a quadratic so we expect very high accuracy for low numbers of grid points.

The map is pictured in Figure 4.13.

An error table, along with an error plot for the circle to circle example using

the monotone scheme, are shown in Figure 4.14, and in Table 4.1. Note that we only

expect O(
√
h) accuracy but on this example we achieve order O(h).

4.9.2 Circle to Ellipse

Next, we map the unit circle to an ellipse with semi-major axis and semi-minor axis

two and one, respectively. We also invert this map. In these examples, y should be

73

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Domain

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Gradient

Figure 4.13 An example where ∇u maps a circle into another circle.

Table 4.1 Circle to Circle Error Table

h Error Ratio Observed Order

0.1375 4.97923e-02

0.06875 2.35620e-02 2.11325 1.07946

0.034375 1.15507e-02 2.03987 1.02848

0.0171875 5.61285e-03 2.05790 1.04118

0.00859375 2.75303e-03 2.03879 1.02771

10-2 10-1

h

10-2

10-1

E
rr

or

h vs Error

h vs error
slope =1.1014

Figure 4.14 A convergence plot for the example mapping a circle into another circle.

74

the identity but x should either double or half its length. Hence for the circle to

ellipse map, the gradient should be < 2x, y > leading via integration to the exact

solution

u(x, y) = x2 +
1

2
y2

c = tan−1 (2) + tan−1 (1)

For the ellipse to circle, we have the reverse, and the gradient should be < 1
2
x, y >

which leads via integration to the exact solution

u(x, y) =
x2

4
+

y2

2

c = tan−1

(
1

2

)
+ tan−1 (1)

The two maps are pictured in Figures 4.15 and 4.16.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Domain

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Gradient

Figure 4.15 An example where ∇u maps an ellipse into a circle.

In addition to pictures of the maps, we present convergence plots (Figures 4.17

and 4.18) and error tables (Tables 4.2 and 4.3). On the circle to ellipse map, we

observe O(h) accuracy, which is better than the expected O(
√
h).

75

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Domain

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Gradient

Figure 4.16 An example where ∇u maps a circle into an ellipse.

Table 4.2 Circle to Ellipse Error Table

h Error Ratio Observed Order

0.13750 7.07007e-02

0.06875 3.08281e-02 2.29338 1.19748

0.03438 1.70893e-02 1.80395 0.85116

0.01719 8.03814e-03 2.12602 1.08816

0.00859 3.41182e-03 2.35597 1.23632

10-2 10-1

h

10-2

10-1

E
rr

or

h vs Error

h vs error
slope =1.1362

Figure 4.17 A convergence plot for the example mapping a circle into an ellipse.

76

4.9.3 Ellipse to Circle

Table 4.3 Ellipse to Circle Error Table

h Error Ratio Observed Order

0.26250 9.31217e-02

0.13125 4.87816e-02 1.90895 0.93278

0.06563 2.39944e-02 2.03304 1.02364

0.03281 1.13675e-02 2.11079 1.07778

0.01641 5.56250e-03 2.04359 1.03111

On the ellipse to circle map, we observe O(h) accuracy, which is better than

the expected O(
√
h).

10-2 10-1

h

10-2

10-1

E
rr

or

h vs Error

h vs error
slope =0.9844

Figure 4.18 A convergence plot for the example mapping an ellipse into a circle.

4.9.4 Ellipse to Skewed Ellipse

The transformation from one figure into another is also illustrated by computing the

transformation of an ellipse. The domain is the ellipse described above, but the target

set is a skewed ellipse. Another characterization of the ellipse is as follows. Let B be

the unit circle. Then the domain ellipse is given by X = MxB and the target skewed

77

ellipse is given by Y = MyB, where

Mx =

2 0

0 1

and

My =

1.5 .5

.5 2

In R2 the optimal map can be found explicitly to be

∇u(x) = MyRθM
−1
x x

where Rθ is the rotation matrix

Rθ =

cos (θ) − sin (θ)

sin (θ) cos (θ)

and the angle is given by

θ = tan−1
((

trace
(
M−1

x M−1
y J

)
/trace

(
M−1

x M−1
y

)))
where

J = Rπ/2 =

0 −1

1 0

The map and the convergence plot are pictured in Table 4.4 and Figure 4.19 [3].

We observe O(h) accuracy, which is better than the expected O(
√
h).

4.9.5 Other Maps

For some maps, we do not have an exact solution, but we nonetheless compute the

solution for them. For simplicity we map the square with sides of length 1.1 into

78

Table 4.4 Ellipse to Skewed Ellipse Convergence

h Error Ratio Observed Order

0.26250 1.30436e-01

0.13125 5.70280e-02 2.28723 1.19360

0.06563 2.69079e-02 2.11938 1.08364

0.03281 1.42328e-02 1.89055 0.91881

0.01641 6.76756e-03 2.10309 1.07251

10-2 10-1

h

10-2

10-1

E
rr

or

h vs Error

h vs error
slope =1.2317

Figure 4.19 A convergence plot for the example mapping an ellipse into a skewed
ellipse.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

Domain

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

Gradient

Figure 4.20 An example where ∇u maps an ellipse into a skewed ellipse.

79

the more complicated target sets. These include the bowl, an ice cream cone, and a

pentagon. The maps are pictured in Figures 4.21, 4.22, and 4.23, respectively.

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Domain

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Gradient

Figure 4.21 An example where ∇u maps a square into a bowl.

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Domain

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Gradient

Figure 4.22 An example where ∇u maps a square into an ice cream cone.

One more map we do not have an exact solution for is the unit circle mapped

into a square with side lengths 1.1. The map is shown in Figure 4.25. We also

converge to a solution and show the map defined by the gradient. The final map we

do not have an exact solution for is the unit circle mapped into a line segment. This

is a very degenerate example since a line segment is one fewer dimension than the

circle. The map is shown in Figure 4.26. We converge to some solution and display

the map defined by its gradient.

80

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Domain

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Gradient

Figure 4.23 An example where ∇u maps a square into a pentagon.

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Domain

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Gradient

Figure 4.24 An example where ∇u maps a square into a circle.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Domain

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Gradient

Figure 4.25 An example where ∇u maps a circle into a square.

81

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Domain

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Gradient

Figure 4.26 An example where ∇u maps a circle into a line segment.

4.9.6 Non-Constant f

One of the more complicated examples we compute involves the solution of the

equation

tan−1 (λ1) + tan−1 (λ2) = c · f(x, y)

where

f(x, y) = tan−1

(
e

x2+y2−1
2

)
+ tan−1

(
(1 + x2 + y2) · e

x2+y2−1
2

)

This example is contrived so that we have a nice exact solution which maps a unit

circle into another unit circle with a different distribution in the interior than the

previous example. The function f was chosen so that we have a nice solution c = 1,

along with

u(x, y) = e
x2+y2−1

2 .

The map is shown in Figure 4.27, along with an error table including the results in

Table 4.5. Even on the non quadratic example, we get O(h) accuracy, which is

better than the expected O(
√
h).

82

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Domain

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Gradient

Figure 4.27 An example where ∇u maps a circle into a circle with a non-constant
function f(x).

Table 4.5 Circle to Circle (Non-Constant f(x)) Convergence

h Error Ratio Observed Order

0.13750 4.85632e-02

0.06875 2.47727e-02 1.96035 0.97111

0.03438 1.13290e-02 2.18667 1.12874

0.01719 5.91966e-03 1.91379 0.93643

0.00859 2.93863e-03 2.01443 1.01037

10-2 10-1

h

10-2E
rr

or

h vs Error

h vs error
slope =1.0316

Figure 4.28 A convergence plot for the map from a circle to another circle with a
non-constant function f(x).

83

4.9.7 Functions of the Gradient

Finally, we compute an example where we solve

tan−1 (λ1) + tan−1 (λ2) = cf (x,∇u)

where c is unknown, and

f (x,∇u) =
π(x2 + y2 + 1)

2(ux + uy + 1)

This utilizes the approximation for f including gradient terms. The exact solution is

the same as the other examples, and we get better than expected accuracy on this

example. The results are in Table 4.6 and Figure 4.29. For this example, we observe

Table 4.6 Circle to Circle (Non-Constant f (x,∇u)) Convergence

h Error Ratio Observed Order

0.13750 6.60334e-02

0.06875 3.04057e-02 2.17175 1.11886

0.03438 1.56964e-02 1.93711 0.95390

0.01719 7.72875e-03 2.03091 1.02213

0.00859 3.73824e-03 2.06748 1.04788

O(h) accuracy, which is better than the expected O(
√
h).

84

10-2 10-1

h

10-2

10-1

E
rr

or

h vs Error

h vs error
slope =1.0859

Figure 4.29 A convergence plot for the map from a circle to another circle with a
non-constant function f (x,∇u).

85

CHAPTER 5

NUMERICAL METHODS IN THREE DIMENSIONS

5.1 Approach

Building on the work that was done in two dimensions, we devise efficient methods

for solving fully nonlinear elliptic partial differential equations in three dimensions.

This work is an extension of the original generalized monotone finite difference

schemes developed in “Meshfree Finite Difference Approximations for Functions of

the Eigenvalues of the Hessian” [26]. We still focus on building operators that are

functions of second directional derivatives: F (uνν) for ν in some admissible set, which

could be finite or infinite.

There are also many additional challenges which we face as compared with

the two-dimensional problem. Construction of the domain and boundary is also a

non trivial problem since the resolution of the boundary needs to be higher than

the resolution of the interior. This is addressed in Section 5.2. One challenge

in approximating these is that the second derivatives must be characterized in a

monotone way. Entirely new monotone schemes must be derived for three-dimensional

problems. One important contribution of this dissertation is the creation of

such schemes, which is addressed in Section 5.3. We also deal with functions

of the eigenvalues of the Hessian, which involve an infinite admissible set and

require a discretization of orthogonal coordinate frames. Solving problems involving

eigenvalues of the Hessian requires a new method of approximating those eigenvalues.

Since the third dimension adds a third eigenvalue, we cannot simply use the maximum

and minimum of directional derivatives anymore. A framework for building monotone

approximations of the eigenvalues of the Hessian into a monotone approximations of

the full nonlinear operator is given in Section 5.6. Additionally, since we are working

86

in three dimensions, practical concerns of computing resources such as memory and

processing speed are brought to the forefront. Strategies to make the construction of

the discrete approximation more efficient are presented throughout the chapter.

5.2 Building the Point Cloud

In order to build a point cloud where efficient schemes can be used, we follow an

extension of the framework used in “Meshfree Finite Difference Approximations for

Functions of the Eigenvalues of the Hessian” [26]. Structured grids provide certain

advantages in building the stencils, but as in two dimensions, the boundary needs

to be more resolved than the interior. In two dimensions, where the boundary is

a one-dimensional curve, this is fairly straightforward. However, it is much more

difficult to find an optimal sampling of boundary points in three dimensions.

We begin by identifying interior points. One strategy is to begin with a uniform

discretization of the minimal cube covering the domain, then reduce to only the

interior points. Denote the point cloud by G. Define xijk to be the nodes of the cube

C. Let h be the space between adjacent nodes, and

n =
1

h
+ 1.

Define

G(x) =

dist(x, ∂X) x /∈ X

− dist(x, ∂X) x ∈ X

0 x ∈ ∂X

These can be found easily by looking at the values of the signed distance function to

the boundary of the domain G. As in two dimensions, we require that there be some

separation between the interior and the boundary in order to resolve directions there.

87

Thus, the interior points in G are

xijk ∈ C s.t. G(xijk) +
h

2
< 0.

This ensures that there is a distance of at least h
2

between the boundary and the

interior. Note that although we start with a cube, this restriction can be to arbitrarily

complicated three-dimensional regions. This restriction also ensures that

dist(xijk, ∂X) ≥ h/2

for every xijk ∈ G ∩ X. A two-dimensional visualization of this process is shown in

Figure 5.1.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

x

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y

Domain Construction

Full Grid

Rejected Interior Points

Interior Points

Figure 5.1 The z = 0 level set for the sphere. Only the points at least h
2

from the
boundary are kept in the point cloud.

Next we describe the discretization of the boundary. Consider the following

cubes Cijk defined for each xijk:

Cijk = [xi, xi+1]× [yj, yj+1]× [zk, zk+1]

88

Define any cube Cijk such that Cijk∩∂X is non-empty to be a boundary cube. These

can be found using G by taking the set of Cijk such that there is at least one corner

x− ∈ Cijk with G(x−) < 0 and one corner x+ ∈ Cijk with G(x+) > 0. Then boundary

points are added to the cloud by further discretizing boundary cubes and taking

points sufficiently close to the boundary of the domain. Let Cijk be a boundary cube.

We introduce the discretization

Dijk =
{
(xi + ĩh̃, yj + j̃h̃, zk + k̃h̃) s.t. 0 ≤ ĩ, j̃, k̃ ≤ ñ

}

where ñ ≈ n1/4 and h̃ = 1
ñ−1

. A two-dimensional visualization of the possible

boundary points and a closer look at them are given in Figures 5.2 and 5.3.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

x

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y

Possible Boundary Points

Full Grid

Possible Boundary Points

Interior Points

Figure 5.2 The candidate boundary points being considered for the z = 0 level set
of the sphere example.

We keep points such that

G(x) <
h̃

2

89

−0.45 −0.40 −0.35 −0.30 −0.25 −0.20 −0.15

x

0.15

0.20

0.25

0.30

0.35

0.40

0.45

y

Possible Boundary Points (Zoomed)

Full Grid

Possible Boundary Points

Interior Points

Figure 5.3 The candidate boundary points being considered for the z = 0 level set
of the sphere example, zoomed in.

in the cloud as boundary points, then project them onto the true boundary. The

chosen boundary points for the two-dimensional visualizations in Figures 5.2 and 5.3

are depicted in Figures 5.4 and 5.5.

There are O(n2) boundary cubes, each of which are subdivided into ñ3 boundary

points, of which O(ñ2) are taken and projected to the boundary. This is because O(ñ2)

points will be within h̃/2 of the boundary surface. This leaves us with

O(n2ñ2) = O(n2+2/4) = O(n5/2)

which is less than the total O(n3) interior points. Note that although this resolution

is higher than that of a traditional Cartesian grid, it will not significantly affect the

overall computational cost, which continues to be dominated by the number of interior

points.

90

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

x

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y

Chosen Boundary Points

Full Grid

Possible Boundary Points

Interior Points

Chosen Boundary Points

Figure 5.4 The chosen boundary points for the z = 0 level set of the sphere example.

−0.45 −0.40 −0.35 −0.30 −0.25 −0.20 −0.15

x

0.15

0.20

0.25

0.30

0.35

0.40

0.45

y

Chosen Boundary Points (Zoomed)

Full Grid

Possible Boundary Points

Interior Points

Chosen Boundary Points

True Boundary

Figure 5.5 The chosen boundary points for the z = 0 level set of the sphere example,
zoomed in.

91

5.3 Three-Dimensional Monotone Schemes

The schemes used in two dimensions do not extend readily to three dimensions. In

order to find a (negative) monotone approximation, we must find a scheme which is

a nondecreasing function of the differences uj − ui where ui is the point of interest

and uj are its neighbors. The simplest way to do this is via Taylor series expansions.

Define Dννui to be the discrete approximation to the second directional derivative

uνν in the direction ν at the point xi. We look for schemes of the form

uνν(xi) ≈ Dννui =
n∑

j=1

aj(uj − ui) (5.1)

where aj are the coefficients we seek and all aj ≥ 0 for (negative) monotonicity.

Begin by Taylor expanding the function u about ui in three dimensions. If we let

a0 = −
∑n

j=1(aj), then we can reformulate the approximation as

uνν(xi) ≈ a0ui +
n∑

j=1

aj(uj). (5.2)

In order to handle every possible situation, we derive schemes for both grid

aligned and non grid aligned directions. An example of a perfectly grid aligned

neighbor is shown in Figure 5.6 (left). An example of neighbors that are not perfectly

aligned is given in Figure 5.6 (right).

5.4 Grid Aligned Approximation Scheme

One of the easiest (negative) monotone schemes in one dimension is the second

difference operator:

uxx ≈ u(x+ h) + u(x− h)− 2u(x)

h2
(5.3)

where h is the space between the points. We would like to reduce the problem of

approximating a directional derivative to that of approximating a one-dimensional

second derivative. Thus, if we can find perfectly aligned neighbors along a particular

92

Figure 5.6 (Left) An example of a perfectly aligned neighbor. (Right) An example
of four non-perfectly aligned neighbors.

direction, we can use a one-dimensional reduction. However, close to the boundary

or otherwise, there may be instances when the neighbors are perfectly aligned but

not equally spaced. In order to compensate for this, we derive a scheme via Taylor

expansion. Let x1 and x2 be points on opposite sides of x0 and perfectly aligned with

the direction of interest. For simplicity, consider the x direction (1, 0, ..., 0) for the

derivation. Let h1 = x1 − x0 > 0 and h2 = x0 − x2 > 0, then

uxx ≈ a1

(
u0 + h1ux +

h2
1

2
uxx +O(h3)

)
+ a2

(
u0 − h2ux +

h2
2

2
uxx +O(h3)

)
+ a0u0

(5.4)

and we have the equations

a0 + a1 + a2 = 0 (5.5)

a1h1 − a2h2 = 0 (5.6)

a1h
2
1/2 + a2h

2
2/2 = 1 (5.7)

93

Solving this system leads to

a1 =
2

h2
1 + h1h2

, a2 =
2

h2
2 + h1h2

, and a0 = − 2

h2
1 + h1h2

− 2

h2
2 + h1h2

(5.8)

This reduces to the classical second difference if h1 = h2. In general, we can rotate

this scheme to work with any direction ν since it approximates the rate of change

along any axis. If the points are perfectly aligned with a given direction ν, this is a

second order accurate (negative) monotone approximation of the second directional

derivative uνν . Note that for points well away from the boundary we can easily use

the underlying Cartesian structure to select neighbors for grid-aligned directions.

5.5 Generalized Finite Difference Approximation Scheme

Near the boundary and elsewhere, there are situations where a (negative) monotone

scheme using neighbors that do not align with a direction ν is needed. This happens

when there are no perfectly aligned points available for the direction of choice. In this

case, we rotate and shift the coordinate frame such that the point of interest is the

origin, and the direction of interest is the x-axis. This is accomplished by subtracting

the point of interest from its neighbors and taking a dot product of the result with

each ν in the frame to project onto the new axes. Then we Taylor expand about the

point of interest x0 which is the origin in this frame. Let Oi be the octants in the

frame where x0 is the origin and ν is the x-axis. Let xji be points such that

∥xji − x0∥ ≤ r(h) =
√
h

which lie in a particular relative octant Oi. Good candidate neighbors are easy to find

because of the structure imposed on the grid. Similar to what is done in “Meshfree

Finite Difference Approximations for Functions of the Eigenvalues of the Hessian”

[26], we choose one neighbor xi in each Oi such that

xi = argminxji
(θ(xji − x0)− θ(ν))2 + (ϕ(xji − x0)− ϕ(ν))2

94

where θ(·) and ϕ(·) are the θ and ϕ obtained by converting the argument to spherical

coordinates. Thus, we take the points closest aligned to the direction as neighbors, so

that the orthogonal derivatives are multiplied by small numbers and can be dropped.

We define a coordinate frame for each point:
x̄i = (xi − x0) · ν1,

ȳi = (yi − y0) · ν2,

z̄i = (zi − z0) · ν3,

Then in spherical coordinates for this frame, we have
ri =

√
(x̄i

2 + ȳi2 + z̄i2) =
√

(((xi − x0) · ν1)2 + ((yi − y0) · ν2)2 + ((zi − z0) · ν3)2),

dϕi = cos−1 (z̄i
ri
) = cos−1 ((zi−z0)·ν3

ri
),

dθi = tan−1
(

ȳi
x̄i

)
Via Taylor expansion we have for any orthogonal frame (x, y, z):

u(x, y, z) ≈u(x0) + ux(x0, y0, z0)(x− x0) + uy(x0, y0, z0)(y − y0)

+ uz(x0, y0, z0)(z − z0) + uxx(x0, y0, z0)
(x− x0)

2

2

+ uyy(x0, y0, z0)
(y − y0)

2

2
+ uzz(x0, y0, z0)

(z − z0)
2

2

+ uxy(x0, y0, z0)(x− x0)(y − y0) + uxz(x0, y0, z0)(x− x0)(z − z0)

+ uyz(x0, y0, z0)(y − y0)(z − z0) + h.o.t.

In an approximation for uxx, if one chooses neighbors well aligned with this direction,

then |(y − y0)| and |(z − z0)| are much smaller than |x − x0|. Squaring these terms

or multiplying them together, we have something even smaller. Thus, the dominant

terms in the expansion would be

u(x, y, z) ≈u(x0) + ux(x0, y0, z0)(x− x0) + uy(x0, y0, z0)(y − y0)

+ uz(x0, y0, z0)(z − z0) + uxx(x0, y0, z0)
(x− x0)

2

2

95

Now consider in particular the orthogonal frame in which ν is the x-axis. If the

neighbors are well aligned with the direction ν, the terms related to the orthogonal

directions are

|yi − y0|, |zi − z0| ≤ O(ϵ sin dθi sin dϕi + ϵ cos dϕi) = O(ϵdϕ) ≪ O(ϵ) = |xi − x0|

where ϵ is the search radius. Then we also neglect the higher order terms which are

o(ϵ2) and in spherical coordinates we get the following system of equations:

∑n
i=1 airi cos dθi sin dϕi = 0∑n
i=1 airi sin dθi sin dϕi = 0∑n
i=1 airi cos dϕi = 0∑n
i=1 ai

r2i
2
cos dθi

2 sin dϕi
2 = 1.

(5.9)

We have four equations, and need to build a (negative) monotone scheme using some

number of unknowns. This requires ai ≥ 0. In three dimensions, it is difficult

to find extra equations that ensure that the system is well-posed and satisfies the

monotonicity requirement. However, a solution can be easily found numerically if

we know it exists. It turns out that the analytical solution of this is extremely

complicated. Instead, we prove that a solution (and therefore a (negative) monotone

scheme) exists for the underdetermined system and compute it using a least squares

solver with the constraint that all of the coefficients must be nonnegative.

This involves solving a problem of the form
min 1

2
∥Ax− b∥2

s.t. x ≥ 0

(5.10)

where the rows of A and b are from the system of equations in Equation (5.9) and

the x we are solving for is the set of coefficients ai ≥ 0.

96

This scheme is O(
√
h) accurate as in two dimensions, since the angular error

scales as the inverse tangent of the spacing h divided by the search radius
√
h, which

is h√
h
=

√
h. The angular resolution is discussed in Section 4.2.

5.5.1 Farkas’ Lemma

In order to prove the existence of this scheme, we use Farkas’ Lemma. This section

will state and prove the lemma as presented in [52].

Lemma 5.1. Farkas’ Lemma [52] Let A ∈ Rm×n and b ∈ Rm×1. Then exactly one of

the following two conditions holds:

• ∃x ∈ Rn×1 such that Ax = b and all components of x are non-negative;

• ∃y ∈ R1×m such that ATy ≥ 0, yT b < 0

Proof. First, we show that the two cannot happen at the same time. Suppose both

conditions are true, then

yTAx = yT b < 0

since Ax = b, and yT b < 0. Note also that

yTAx = (yTA)x = (ATy)Tx ≥ 0

since ATy ≥ 0 and x ≥ 0. So we have a contradiction with yTAx being both less than

zero and greater than or equal to zero so the two are mutually exclusive [52].

Next show that if the first condition does not hold, then the second condition

does. Let v1, v2, ...vn be the columns of A. Define

Q = cone(v1, ..., vn) ≡ {s ∈ Rm : s =
n∑

i=1

λivi, λi ≥ 0, ∀i}. (5.11)

97

This is a conic combination of the columns of A, which unlike a convex combination

does not require the λi to sum to one. Then

Ax =
n∑

i=1

xivi

and there exists an x such that Ax = b and x ≥ 0 iff b ∈ Q [52].

Suppose the first condition does not hold. Then b /∈ Q. We know that Q

is non-empty since 0 ∈ Q, it is also closed and convex. Thus, we can apply the

separating hyperplane theorem. This implies ∃α ∈ Rm, α ̸= 0, and β such that

αT b > β and αT s < β for all s ∈ Q. Since 0 ∈ Q, we know that β > 0. Note also that

λvi ∈ Q for all λ > 0. Then, since αT s < β ∀s ∈ Q, we have αT (λvi) ∈ Q ∀λ > 0.So

αTvi <
β
λ
∀λ > 0. Since β > 0, as λ → ∞, we have αTvi ≤ 0. If we set y = −α,

we get that yT b < 0 and yTvi ≥ 0 ∀i. Since vi are the columns of A, we get that

ATy ≥ 0. Thus, the second condition holds [52].

5.5.2 Existence of a Positive Solution

In this section, we use Farkas’ Lemma to prove that there exists a positive solution

to the system of equations in Equation (5.9), and therefore a (negative) monotone

scheme exists and the numerical solver should succeed. We also show the existence of

(negative) monotone schemes using some perfectly aligned neighbors and some non

perfectly aligned neighbors. These are both important as either scheme may be useful

near the boundary.

Eight Neighbors

Lemma 5.2. A positive solution to the system of equations in Equation (5.9) exists

for n = 8 if for each neighbor xi, (xi − x0) is in a different octant of the coordinate

frame in which the direction ν is the x-axis.

98

Proof. Consider the choice of neighbors such that each lies in a different octant of the

new coordinate frame. Then each expression in the equations has a known, definite

sign for each component. Indicating the signs of

(ri cos dθi sin dϕi, ri sin dθi sin dϕi, ri cos dϕi)

we have neighbors with

(+,+,+), (−,+,+), (−,−,+), (+,−,+)

(+,+,−), (−,+,−), (−,−,−), (+,−,−)

Then we know the signs of everything in the system we are solving. Each coefficient

is some constant with known sign. Let cij > 0, then the system we are solving is

Ax = b where

A =

c11 −c12 −c13 c14 c15 −c16 −c17 c18

c21 c22 −c23 −c24 c25 c26 −c27 −c28

c31 c32 c33 c34 −c35 −c36 −c37 −c38

c41 c42 c43 c44 c45 c46 c47 c48

(5.12)

and

b =

0

0

0

1

(5.13)

99

As per Farkas’ Lemma, consider ATy ≥ 0 with bTy < 0.

AT =

c11 c21 c31 c41

−c12 c22 c32 c42

−c13 −c23 c33 c43

c14 −c24 c34 c44

c15 c25 −c35 c45

−c16 c26 −c36 c46

−c17 −c27 −c37 c47

c18 −c28 −c38 c48

(1r)

(2r)

(3r)

(4r)

(5r)

(6r)

(7r)

(8r)

(5.14)

and

bTy =< 0, 0, 0, 1 > · < y1, y2, y3, y4 > (5.15)

so

bTy < 0 ⇒ y4 < 0. (5.16)

Consider the solution set for this equation. If y4 < 0, there are eight possibilities:

(1b) y1, y2, y3 ≥ 0 (2b) y2, y3 ≥ 0, y1 ≤ 0

(3b) y1, y2, y3 ≤ 0 (4b) y1, y2 ≤ 0, y3 ≥ 0

(5b) y1, y2 ≥ 0, y3 ≤ 0 (6b) y1, y3 ≤ 0, y2 ≥ 0

(7b) y1, y3 ≥ 0, y2 ≤ 0 (8b) y2, y3 ≤ 0, y1 ≥ 0

(5.17)

Note that each possibility yields a solution with at least one negative component:

(1b) would make Equation (7r) negative; (2b) would make Equation (8r) negative;

(3b) would make Equation (1r) negative; (4b) would make Equation (5r) negative;

(5b) would make Equation (3r) negative; (6b) would make Equation (4r) negative;

(7b) would make Equation (6r) negative; (8b) would make Equation (2r) negative.

100

Thus, there is no solution to ATy ≥ 0 with bTy < 0. Therefore, by Farkas’ lemma,

there exists a solution to Ax = b with x ≥ 0.

It turns out that this neighbor picking strategy has the same effect in any

dimension, and one can build positive or negative monotone approximations in this

way for n dimensions using 2n neighbors, one from each hyperoctant.

Five Neighbors

Lemma 5.3. Suppose at least one neighbor is perfectly aligned with the direction ν.

A positive solution to the system of equations in Equation (5.9) exists for n = 5 if for

each other neighbor xj, (xj − x0) is in a different octant opposite ν in the coordinate

frame in which the direction ν is the x-axis.

Proof. Suppose the scheme is derived as above, but with five neighbors such that one

neighbor aligns perfectly with the desired direction and the other four lie in the four

octants opposite that neighbor. Then each expression in the equations has a known,

definite sign for each component. Indicating the signs of

(ri cos dθi sin dϕi, ri sin dθi sin dϕi, ri cos dϕi)

we have neighbors with the following signs

(−,+,+), (−,−,+), (−,−,−), (−,+,−),

along with the fifth neighbor, which has dθ, dϕ = 0. The system of equations is then

a5r5 +
4∑

i=1

airi cos dθi sin dϕi = 0

4∑
i=1

airi sin dθi sin dϕi = 0

101

4∑
i=1

airi cos dϕi = 0

a5r
2
5/2 +

4∑
i=1

ai
r2i
2
cos dθi

2 sin dϕi
2 = 1

Then we know the signs of everything in the system we are solving. Each

coefficient is some constant with known sign. Let cij > 0, then the system we are

solving is Ax = b where

A =

−c11 −c12 −c13 −c14 c15

c21 −c22 −c23 c24 0

c31 c32 −c33 −c34 0

c41 c42 c43 c44 c45

(5.18)

and

b =

0

0

0

1

(5.19)

As per Farkas’ Lemma, consider ATy ≥ 0 with bTy < 0.

AT =

−c11 c21 c31 c41

−c12 −c22 c32 c42

−c13 −c23 −c33 c43

−c14 c24 −c34 c44

c15 0 0 c45

(1r)

(2r)

(3r)

(4r)

(5r)

(5.20)

and

bTy =< 0, 0, 0, 1 > · < y1, y2, y3, y4 > (5.21)

102

so

bTy < 0 ⇒ y4 < 0. (5.22)

Consider the solution set for this equation. If y4 < 0, there are eight possibilities:

(1b) y1, y2, y3 ≥ 0 (2b) y2, y3 ≥ 0, y1 ≤ 0

(3b) y1, y2, y3 ≤ 0 (4b) y1, y2 ≤ 0, y3 ≥ 0

(5b) y1, y2 ≥ 0, y3 ≤ 0 (6b) y1, y3 ≤ 0, y2 ≥ 0

(7b) y1, y3 ≥ 0, y2 ≤ 0 (8b) y2, y3 ≤ 0, y1 ≥ 0

(5.23)

Then, for Equation (5r) to be non-negative, this implies y1 ≥ 0, which eliminates

possibilities (2b),(3b),(4b), and (6b). This leaves us with

(1b) y1, y2, y3 > 0 −

− −

(5b) y1, y2 > 0, y3 < 0 −

(7b) y1, y3 > 0, y2 < 0 (8b) y2, y3 < 0, y1 > 0

(5.24)

Note that each possibility yields a solution with at least one negative component: (1b)

would make Equation (3r) negative, and (7b) would make Equation (4r) negative, so

we are left with (5b) y1, y2 > 0, y3 < 0

(8b) y2, y3 < 0, y1 > 0

 (5.25)

(5b) would make Equation (2r) negative and (8b) would make Equation (1r) negative,

so we are left with an empty solution set. Thus, there is no solution to ATy ≥ 0 with

bTy < 0. Therefore, by Farkas’ lemma, there exists a solution to Ax = b with

x ≥ 0.

Corollary 5.4. Lemma 5.3 also applies with neighbors surrounding ν and a perfectly

aligned neighbor in the −ν direction.

103

5.6 Approximating Eigenvalues in Three Dimensions

In order to approximate the eigenvalues of the Hessian matrix in three dimensions,

we must use properties from linear algebra to provide a new formulation. We would

like to simply use

λ1 = min
ν1

{uν1ν1}, λ3 = max
ν3

{uν3ν3} (5.26)

again, but this does not provide any insight into the third eigenvalue. We may

consider using

λ2 = min
ν2⊥ν1

{uν2ν2} (5.27)

but this does not necessarily yield a monotone scheme, since a perturbation of an

individual directional derivative could change the minimum in a way that increases

or decreases the operator. Focusing on the Lagrange curvature problem as a model

operator, the following approximation can be used in three dimensions or higher:

G

(
d∑

j=1

ϕ(λj(D
2u))

)
= max

(ν1,ν2,...νd)∈V

{
G

(
d∑

j=1

ϕ(uνjνj)

)}
(5.28)

where the directions are considered in orthonormal frames:

V = {(ν1, ..., νd)|νj ∈ Rd, νi ̸= νj if i ̸= j, ||νj||2 = 1, νj ⊥ νi ∀i ̸= j} (5.29)

Lemma 5.5 (Functions of eigenvalues). Let G : R → R be non-increasing, ϕ : R → R

concave, and A a symmetric real-valued d× d matrix. Then

G

(
d∑

j=1

ϕ(λj(A))

)
= max

(ν1,ν2,...νd)∈V

{
G

(
d∑

j=1

ϕ(νT
j Aνj)

)}
. (5.30)

Proof. Since A is a real-valued symmetric matrix, we can find d orthonormal

eigenvectors v1, . . . , vd. Any (ν1, ν2, ...νd) ∈ V can be expressed as a linear

104

combination of these eigenvectors:

νj =
d∑

k=1

cjkvk =
d∑

k=1

(νT
j vk)vk.

Since νj and vj are both orthonormal, we can also compute

d∑
k=1

c2jk =

(
d∑

k=1

cjkvk

)(
d∑

l=1

cjlvl

)
= νT

j νj = 1,

d∑
k=1

c2jk = vTk

(
d∑

j=1

νjν
T
j

)
vk = vTk Ivk = vTk vk = 1.

Then note that

νT
j Aνj =

(
d∑

k=1

cjkv
T
k

)
A

(
d∑

k=1

cjkvk

)
=

(
d∑

k=1

cjkv
T
k

)(
d∑

k=1

cjkλkvk

)
=

d∑
k=1

c2jkλk.

Recall Jensen’s Inequality for concave functions ϕ:

ϕ

(∑
j cjxj∑
j cj

)
≥
∑

j cjϕ(xj)∑
j cj

Now for any unit vector νj, we can use Jensen’s inequality to estimate

ϕ(νT
j Aνj) = ϕ

(
d∑

k=1

c2jkλk

)
≥

d∑
k=1

c2jkϕ(λk).

Summing these concave functions yields

d∑
j=1

ϕ(νT
j Aνj) ≥

d∑
j=1

d∑
k=1

c2jkϕ(λk) =
d∑

k=1

ϕ(λk)

with equality if the (ν1, . . . , νd) coincide with the eigenvectors (v1, . . . , vd) of A.

Since G is non-increasing, we conclude that

G

(
d∑

j=1

ϕ(λj(A))

)
= max

(ν1,ν2,...νd)∈V

{
G

(
d∑

j=1

ϕ(νT
j Aνj)

)}
.

105

Remark 5.6. This also applies if G is non-decreasing and ϕ is convex, and if the

maximum is replaced with a minimum, G can be non-decreasing with ϕ concave, or

non-increasing with ϕ convex.

In particular, this can be applied to many important operators, such as the

Lagrange curvature problem and the Monge-Ampére equation. In order to keep the

solution to the Lagrange curvature problem in the space of convex functions, we

propose the alternate operator

−
3∑

j=1

(
tan−1 (max{λj, 0}) + min{λj, 0}

)
. (5.31)

Let G(x) = −x and ϕ(x) = tan−1 (max{x, 0}) + min{x, 0}. Then the Lagrange

curvature problem can be expressed as

G

(
d∑

j=1

(ϕ1(λj(D
2u)))

)
= c. (5.32)

For the Monge-Ampére equation, since it is only elliptic on the space of convex

functions, we follow “A Numerical Method for the Elliptic Monge-Ampère Equation

with Transport Boundary Conditions” [25] and use the globally elliptic extension

−max{λ1, 0}max{λ2, 0}max{λ3, 0}−(min{λ1, 0}+min{λ2, 0}+min{λ3, 0})+f = 0.

(5.33)

Let ϕ1(x) = logmax{x, 0}, G1(x) = −ex, ϕ2(x) = min{x, 0}, and G2(x) = −x. Then

the Monge-Ampére equation can be re-expressed as

G1

(
3∑

j=1

ϕ1(D
2u(x))

)
+G2

(
3∑

j=1

ϕ2(D
2u(x))

)
+ f(x) = 0,

similar to [27].

Next, we define the discrete operator. Due to the fact that we are working in

three dimensions, approximating every directional derivative for every point becomes

106

computationally infeasible very quickly. Instead, we must consider some subset of the

orthogonal frames containing the true minimizing frame. Let

dθ = max
v1,...,vd∈V

min
(ν1,...,νd)∈V h

max
i

cos−1(vi · ν̂i)

where

V = {(ν1, ..., νd)|νj ∈ Rd, νi ̸= νj if i ̸= j, ||νj||2 = 1, νj ⊥ νi ∀i ̸= j}

That is, for each frame in V , we first find the frame in V h that minimizes the worst

case angle between vi and νi. Then, we maximize over all possible frames in V to

find the worst case dθ. Consider a representative finite set of orthonormal frames V h

such that V h ⊂ V and the dθ error approaches zero as h → 0. Define the discrete

operator:

F h(ui − uj) = max
(ν1,ν2,...νd)∈V h

{
G

(
d∑

j=1

ϕ(Dνjνju)

)}
+ f(x, y, z) (5.34)

In order to use this approximation, we must show that it is monotone and consistent.

5.6.1 Monotonicity

Lemma 5.7.

Gh(ui − uj) = max
(ν1,ν2,...νd)∈V h

{
G

(
d∑

k=1

ϕ(Dνkνku)

)}

is a monotone approximation of the operator given Dνkνku as defined by Equation (5.1).

Proof. Since G
(∑d

k=1 ϕ(Dνkνku)
)

is an elliptic operator, it is a non-increasing

function of the eigenvalues of the Hessian. Then since Dνkνku is negative monotone,

it is a non-increasing function of the differences ui − uj. Substituting it in place of

the eigenvalues leads to a non-decreasing function of each ui − uj.

107

5.6.2 Consistency

In order to guarantee convergence, we also need the operator to be a consistent

approximation of the operator and the eigenvalues involved.

Lemma 5.8. F h as defined in Equation (5.34) is consistent.

Proof. Note that Dνjνju is a consistent approximation of uνjνj . By continuity of the

minimum function and its arguments, approximating V by V h introduces a dθ error.

We choose dθ → 0 as h → 0 to achieve a consistent approximation for the eigenvalues.

Then since tan−1 (·) is continuous, F h[u] → F (D2u) as h → 0.

We now have consistency and monotonicity provided that the approximation

for the directional derivatives is (negative) monotone. This scheme then fits within

the Barles and Souganidis framework for Dirichlet boundary conditions, and within

the framework from Chapter 3 for Transport boundary conditions and eigenvalue

problems.

5.7 Construction of Orthogonal Frames

In this section, we discuss the evaluation the expression in Equation (5.34), which

requires computing a minimum over many different orthogonal frames. This can be

very expensive in three dimensions, so we define a multi-level approach to approximate

the minimum. For each integer stencil width k, define

Vk = {ν ∈ Z3st.∥ν∥∞ ≤ k}.

Our goal is to construct orthogonal frames out of these Vk.

For each stencil width k begin with a sampling V
(1)
k of ν1 directions in Vk such

that for all distinct ν1i, ν1j, ν1i · ν1j ̸= 0.

We then define a set of ν2 directions V
(2,ν1)
k for each direction ν1 ∈ V

(1)
k such

that ν2 ⊥ ν1.

108

Finally, a ν3 direction is computed for each ν1 and ν2 pairing as ν3 = ν1 × ν2.

In order to define grid aligned neighbors for as many of the frames as possible,

we discard any frame in which any |ν3i| > k.

Any ν1 directions which have no associated ν2 directions for which there is a

valid ν3 direction are also discarded.

The list of directions V
(1)
k that can be formed from Vk for ν1 can be created by

brute force and saved for use in many different PDEs since it is computed once. An

example list of ν1 directions is given in Table 5.1.

Table 5.1 Example ν1 Directions (k = 2)

(1,1,1), (0,1,1), (-1,1,1)

(0,0,1), (1,2,2), (-1,2,2)

(2,1,2), (1,1,2), (0,1,2)

(-1,1,2), (-2,1,2), (1,0,2)

(-1,0,2), (0,-1,2)

Then the lists of ν2 directions V
(2,ν1)
k such that ν2 ⊥ ν1 and maxi{|νi|} ≤ k can

also be computed by brute force and saved for later use.

We next outline a strategy to use the lists V
(1)
k and V

(2,ν1)
k to determine

appropriate sets of directions V h for each h. We propose a multi-level approach

where the stencil width widens after the solution of the problem at the previous level.

This allows the angular error to decrease at each level and approach zero as h → 0,

while balancing memory and efficiency concerns. With a search radius of
√
h, a stencil

width of

round

(√
h

h

)
= round(n1/2)

109

will lead to an angular error which scales like

tan−1

(
distance between adjacent points

search radius

)
= tan−1

(
h√
h

)
= O(

√
h).

Hence, for consistency we require k = O(
√
n).

After computing all possible coordinate frames, we build a hierarchy in order to

reduce the memory cost of the number of directions being considered. In order to do

this, we first create a map from each ν1 in V
(1)
k to the five closest aligned ν1 directions

in V
(1)
k+1.

Then, since each ν1 ∈ V
(1)
k+1 has multiple ν2 ∈ V

(2,ν1)
k+1 associated with it, we create

a second map.

We would like to check a subset of the ν2 directions in V
(2,ν1)
k+1 to reduce the

memory and computational cost of approximating all directional derivatives for the

given directions.

In order to determine the best candidate frames closest to the previous active

frame, we also map the ν2 for each ν1 ∈ V
(2,ν1)
k to the closest five ν2 ∈ V

(2,ν1)
k+1 valid

for each ν1 ∈ V
(1)
k+1 chosen as candidates by the ν1 map.

The end result is a set of maps for each ν1 direction that define the next ν2

directions based on the previous ν2 direction.

We can save these lists and maps, then compute each ν3 using the cross product.

In order to utilize the precomputed hierarchy, first solve the full problem using

k = 1 and record which frame achieved the minimum. Next, use the ν1 map to

generate a new list of five ν1 directions considering a slightly wider stencil. Once

this list is computed, substitute the previous active ν2 direction into the ν2 map

appropriate for each ν1 direction to get a list of five ν2 directions per ν1 direction.

Finally, take the cross product ν1 × ν2 to get a ν3 direction for each pairing. This

results in 25 total frames to check which lie in a cone around the previous active

frames. An illustration is shown in Figure 5.7.

110

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y x0

Figure 5.7 A two-dimensional illustration of the multi-level process for one direction
ν1 in the orthogonal frame. The true eigenvector direction is given by the black line.
In the first level, we maximize over all the nearest (red dot) neighbors. We then
identify the five (black plus) neighbors of stencil width two most closely aligned with
the maximizer. After maximizing over these five neighbors, we continue the procedure
by identifying the best five (yellow diamond) neighbors of stencil width three.

111

5.8 Neumann Boundary Conditions

In addition to solving problems with Dirichlet boundary conditions, it is desirable to

solve problems with Neumann boundary conditions:

∂u

∂n̂
= g

where n is the unit outward normal to the boundary at each point. Given a smooth

boundary and a smooth defining function for the boundary, we can compute n for

each point of interest, or approximate it by using the signed distance function for the

domain G.

n1 =

(
G(x+ ϵ, y, z)−G(x− ϵ, y, z)

2ϵ

)

n2 =

(
G(x, y + ϵ, z)−G(x, y − ϵ, z)

2ϵ

)

n3 =

(
G(x, y, z + ϵ)−G(x, y, z − ϵ)

2ϵ

)

where ϵ = 10−7 to get to machine precision. Once (n1, n2, n3) is computed,

normalizing it gives the unit outward normal n̂ at each boundary point.

In order to use this framework, we must first derive a scheme to approximate

this boundary condition at each boundary point. The simplest approach is through

Taylor expansion:

u(x) ≈ u(x0) +∇u(x0) · (x− x0) +O(x− x0)
2

Since ∂u
∂n̂

= ∇u · n̂, a scheme of the form

∇u · n̂ ≈
∑
j

aj(uj − ui)

112

can be derived by setting the coefficients of the gradient terms to the components of

n̂. ∑
j

ajhj = n̂1

∑
j

ajkj = n̂2

∑
j

ajlj = n̂3

aj ≤ 0

(5.35)

where n̂i are the components of the unit outward normal n̂, and the hj, kj, lj are the

x, y, and z spacing, respectively. In the next subsection, we simultaneously show a

solution to this system and an efficient method of selecting neighbors.

5.8.1 Selection of Neighbors

We look for neighbors in the interior to use for a monotone approximation of the

first directional derivatives at boundary points. Due to the structure of the grid, the

interior is composed of small cubes

Cijk = [xi, xi+1]× [yj, yj+1]× [zk, zk+1]. (5.36)

As a simple way of selecting appropriate neighbors, we let Cijk be the first such

cube (5.36) entered by the ray x0 − tn. We choose as neighbors x1,x2,x3,x4 the

four vertices of the face through which this ray enters the small cube. Using these

neighbors, we can show that a solution to the system (5.35) exists.

Lemma 5.9 (Existence of a negative solution). A negative solution to the system

of equations in Equation (5.35) exists if x0 − tn̂ lies in the convex hull of the four

vertices x1,x2,x3,x4 of a square for some t > 0.

Proof. Since x0− tn̂ lies in the convex hull of the four corners of a square, then it also

lies in the convex hull of three of these points. Without loss of generality, let these

113

be x1,x2,x3. Then there exist λ1, λ2, λ3 ∈ [0, 1] with λ1 + λ2 + λ3 = 1 such that

x0 − tn = λ1x1 + λ2x2 + λ3x3.

Now we let v(x) be the piecewise linear interpolant of the values of u(x) at

the points x0,x1,x2,x3 ∈ R3. Since v is linear, we can compute its first directional

derivative in the direction n via

∂v

∂n
=

v(x0)− v(x0 − tn̂)

t

=
v(x0)− λ1v(x1)− λ2v(x2)− λ3v(x3)

t
.

Then we can easily verify that

a1 = −λ1

t
, a2 = −λ2

t
, a3 = −λ3

t
, a4 = 0

is a solution of (5.35).

5.9 Transport Boundary Conditions

Having outlined what is needed to solve problems with Neumann boundary condi-

tions, we can utilize the framework used in two dimensions to solve problems with

transport boundary conditions:

H(∇u) = 0

where H is the signed distance function for the target set. This can be done using

the same Legendre-Fenchel transform formulation as in two dimensions:

sup
n·nx>0

{∇u · n−H∗(n)}

By approximating this as a maximum over a discrete set of nd values, we can

approximate the boundary condition. To discretize the directions, choose ñ = 9+
√
n.

114

Then let θ be a partition of (0, 2π) into ñ values, and ϕ be a partition of (0, π) into

ñ/2 values. Define the nd directions as the all unique directions given by

(cos (θ) sin (ϕ), sin (θ) sin (ϕ), cos (ϕ)).

As with Neumann boundary conditions, it is necessary to use the eigenvalue

formulation with an extra unknown c in order to satisfy solvability conditions. This is

currently memory intensive, since we consider a larger and larger number of directions

for each boundary point as n increases.

5.10 Parallelization

The run time of this work can be easily reduced using parallel computing. Indeed, the

current implementation used by the author uses multiprocessing in Python. Since the

computation of neighbors and coefficients for each orthogonal frame are independent,

each of the three orthogonal directions can be assigned to a different processor. This

was done in order to speed up the algorithm by assigning one processor to each of

the three frames to be computed simultaneously. Through this, the stencils can be

computed faster than the solution can be.

5.11 Solution Methods

We also describe the techniques used in this implementation to solve the discrete

system of nonlinear equations arising from our approximations. In three dimensions,

it is not practical to explicitly build Jacobian matrices due to their prohibitively large

sizes. Moreover, many of the PDEs we consider are degenerate and/or have singular

solutions. Thus, Newton’s method is not immediately suitable for these problems.

Our approach here is to use a combination of an active set approach [6], which

has excellent stability properties for the nonlinear systems we consider, and a simple

Gauss-Seidel iteration. Depending on the particular PDE of interest, the solver may

115

collapse into only one of these methods or it may involve a combination. In the future,

this approach could be accelerated using a nonlinear multigrid method.

Recall that we are trying to solve systems of the form

max
ν∈V h

F (xi, ui,Dνui,Dννui) = 0, xi ∈ G. (5.37)

The same approach works if the maximum above is replaced by a minimum.

The basic approach is to iterate through a two step process. First, for a given

input u, we identify the directions νi ∈ V h that maximize (5.37) at each point in the

domain. Secondly, we fix this direction and seek an approximate solution of

F (xi, ui,Dνiui,Dνiνiui) = 0.

In order to implement the second part of the procedure, we recall that our finite

difference systems can be written in the form

F (xi, ui,Dνui,Dννui) = Gν(xi, ui, uj)

where the xj are points designated as neighbors of xi. We design a Gauss-Seidel

iteration for this by solving for the reference value ui in terms of the values at

neighboring grid points. That is, we identify a function G−1
ν (xi, uj) such that

Gν(xi, G
−1
ν (xi, uj), uj) = Gν(xi, ui, uj).

In some cases (for linear or simple nonlinear operators), this function G−1
ν can be

identified explicitly. For example if

G(xi, ui, uj) = −ui+1 + ui−1 − 2ui

h2
+ f(xi)

approximates a simple second derivative then

G−1(xi, uj) =
ui+1 + ui−1

2
− 1

2
f(xi)h

2.

116

In more complicated examples, this inverse can be obtained (or approximated)

through several iterations of a nonlinear solver such as a scalar Newton’s method.

This would involve using the update

ui = ui −
Gν(xi, ui, uj)
∂

∂ui
Gν(xi, ui, uj)

.

The resulting solution method is described in Algorithm 5.1. This solver is

simple to implement and memory efficient since there is no need to construct the

Jacobian matrix. In practice, we can initialize the method with the solution computed

on a less refined grid.

Algorithm 5.1 Solution method for (5.37)

1: while Residual > Tolerance do

2: for xi ∈ G do

3: νi = argmaxν∈V h Gν(xi, ui, uj).

4: end for

5: for k = 1, . . . , 10 do

6: for xi ∈ G do

7: ui = G−1
νi
(xi, uj).

8: end for

9: end for

10: end while

In order to establish an appropriate stopping criterion, we use the infinity norm

of the difference between sets of ten iterations. It turns out that the using the residual

or the norm of the operator as a stopping criterion does not always lead to convergence

for these examples. Instead, stopping when the difference between iterations is small

leads to more accurate solutions.

117

When finished, we save the active direction set as well as the solution in order

to improve initial guesses on a finer grid.

5.12 Eigenvalue Problems

In order to be able to use the approximations from the previous section to solve general

problems involving Neumann or Transport boundary conditions, a compatibility

condition must be satisfied. In general, this is not exactly satisfied at the discrete level

even when satisfied at the continuous level. As in two dimensions, we can deal with

this problem by introducing an extra unknown constant c and solving an eigenvalue

problem with an extra condition that u0 = 0. We can do this without changing

the problem since in general, all parts of the problems we are solving involve only

derivatives of the function u. Thus, a constant shift will still be a solution to the

problem. The introduction of the extra constant works exactly the same as it does

in two dimensions.

5.13 Computational Results, Examples, and Figures

We demonstrate the effectiveness of the method by solving a variety of computational

examples including a range of challenging nonlinear PDEs and different boundary

conditions. For each result, we give the distance between two neighboring points

along one axis h, the L∞ error of the approximation for each h, and the log scale

slope between successive h values.

5.13.1 Linear Degenerate Equation

Consider a linear degenerate equation similar to the one in “Meshfree Finite Difference

Approximations for Functions of the Eigenvalues of the Hessian” [26].
−uνν(x, y, z) = 0, x2 + y2 + z2 < 1

u(x, y, z) = sin (2π(x−
√
2y −

√
3z)), x2 + y2 + z2 = 1

(5.38)

118

where ν = (1,−1, −(
√
3+

√
6)

3
). Note that the direction ν is not aligned with any

Cartesian grid. For this example, neither the grid aligned scheme we derived nor

any other grid aligned scheme can be used for a consistent monotone approximation

[26, 41]. For this example, the eight neighbor meshfree schemes are used exclusively

since the other scheme cannot find perfectly aligned neighbors. The exact solution is

u(x, y, z) = sin (2π(x−
√
2y −

√
3z))

2× 10
−2

3× 10
−2

4× 10
−2

6× 10
−2

h

10
−2

10
−1

E
r
r
o
r

L
∞

Linear Degenerate Equation

Figure 5.8 A convergence plot for the Linear Degenerate Equation on a sphere.

We present the convergence plot in Figure 5.8 and a data table in Table 5.2.

Note that the jump between h = .0263158 and h = .0227273 is due to the scaling of

the number of boundary points being based on round(n1/4). This is when round(n1/4)

increases from 2 to 3 and the boundary becomes much more resolved as a result. The

eight neighbor scheme is set to use the best available points, so extra resolution on

the boundary can lead to a great increase in accuracy for grids where the angular

119

Table 5.2 Linear Degenerate Equation Error Table

h L∞ Error Observed Order

0.0714286 0.452733

0.05 0.246499 1.70447

0.0384615 0.139358 2.17376

0.03125 0.107001 1.27244

0.0263158 0.0855902 1.29917

0.0227273 0.00945624 15.0262

0.02 0.00619057 3.31406

error is dominant over the spatial discretization error. We observe better accuracy

than the expected O(
√
h).

5.13.2 Two Operators

For a second example, consider the following fully nonlinear PDE:

max {−uν1ν1 ,−uν2ν2} = f(x, y, z) x2 + y2 + z2 < 1

ν1 = (1, 1, 0)

ν2 = (−1, 0, 1)

u(x, y, z) = e
x2+y2+z2

2 x2 + y2 + z2 = 1

(5.39)

where

f(x, y, z) = max

{
−1

2
e

x2+y2+z2

2 (2 + x2 + 2xy + y2),−1

2
e

x2+y2+z2

2 (2 + x2 − 2xz + z2))

}

This is a more complicated operator similar to the linear degenerate equation. Since

the directions chosen for the problem are integer directions, we can approximate the

directional derivatives accurately using the grid aligned scheme in the interior. In

120

general there will not be perfectly aligned points near the boundary, so the eight

neighbor meshfree scheme is used near the boundary. The exact solution is

u(x, y, z) = e
x2+y2+z2

2

The convergence plot and the data table are presented in Figure 5.9 and Table 5.3,

10
−12× 10

−2
3× 10

−2
4× 10

−2
6× 10

−2

h

10
−4

10
−3

E
r
r
o
r

L
∞

max (−u
ν1ν1

,−u
ν2ν2

) = f(x, y, z)

Figure 5.9 A convergence plot for the two-operator problem on a sphere.

respectively. As with the linear degenerate equation, the jump between h = .0263158

and h = .0227273 is due to the scaling of the number of boundary points being based

on round(n1/4). We also observe better accuracy than the expected O(
√
h) for this

problem.

5.13.3 Convex Envelope Equation

Consider as another example the convex envelope equation.
max {−λ1(D

2u), u− g} = 0 x2 + y2 + z2 < 0.25

u = 0.2 x2 + y2 + z2 = 0.25

(5.40)

121

Table 5.3 Two-Operator Error Table

h L∞ Error Observed Order

0.125 4.07982e-03

0.0714286 2.58436e-03 0.815875

0.05 1.17185e-03 2.21739

0.0384615 9.23987e-04 0.905781

0.03125 4.5052e-04 3.45935

0.0263158 5.11281e-04 -0.736213

0.0227273 4.47889e-05 16.6091

0.02 3.64554e-05 1.61047

0.0178571 2.88353e-05 2.0691

where

g(x, y, z) = min
{
2
√

(x2 + y2 + z2), 0.2
}

This is a fully nonlinear elliptic partial differential equation. Additionally, the solution

must be understood in a weak sense because the solution is only Lipschitz continuous

and not differentiable at (0, 0, 0). The exact solution for this problem is

u(x, y, z) = 0.4
√
(x2 + y2 + z2)

For each step in the Gauss-Seidel type update in the solver, we evaluate

min
{
λ1(D

2u), u− g
}

and update using the Newton update for the active operator. This is effectively the

same as a policy iteration, but involves no matrices.

The convergence plot and the data table are presented in Figure 5.10 and Table

5.4, respectively.

122

Figure 5.10 A convergence plot for the Convex Envelope Equation on a sphere.

Table 5.4 Convex Envelope Error Table

h L∞ Error Observed Order

0.125 0.0037424

0.0714286 0.00538204 -0.649265

0.05 0.00324458 1.41889

0.0384615 0.00409974 -0.891659

0.03125 0.00329443 1.05322

0.0263158 0.00250006 1.60556

0.0227273 0.00203438 1.40601

0.02 0.00228924 -0.923316

0.0178571 0.00195022 1.41431

0.016129 0.00167566 1.49076

123

Note that this is not monotone convergence due to effects of variations in

the alignment of the grid points for different n. Despite this, we observe overall

convergence close to O(
√
h) even on this problem where the regularity is low.

5.13.4 Poisson’s Equation

For the next three examples, we demonstrate the effectiveness of the method for

solving functions of the eigenvalues of the Hessian. First, consider something as

simple as Poisson’s equation, which can be expressed as

λ1(D
2u(x, y, z)) + λ2(D

2u(x, y, z)) + λ3(D
2u(x, y, z)) = f(x, y, z) (5.41)

In order to use an example where the method will not be exact, we choose
∑

i λi(D
2u(x, y, z)) = e

x2+y2+z2

2 (3 + x2 + y2 + z2) x2 + y2 + z2 < 1

u(x, y, z) = e
x2+y2+z2

2 x2 + y2 + z2 = 1

(5.42)

In order to approximate the eigenvalues, we needed to minimize

min (uν1ν1 + uν2ν2 + uν3ν3)

over all frames such that ν1, ν2, ν3 are orthogonal. Thus, both the grid aligned scheme

and the meshfree scheme are used at various points to approximate a sampling of those

frames, and then we take the discrete minimum. The results of this approximation

are in Figure 5.11 and Table 5.5. The exact solution is

u(x, y, z) = e
x2+y2+z2

2

5.13.5 Monge-Ampére Equation

While Poisson’s equation is linear and can be expressed as a sum of the eigenvalues

of the Hessian, the Monge-Ampére equation is fully nonlinear and can be expressed

124

10
−1

h

10
−4

10
−3

E
r
r
o
r

L
∞

uexact(x, y, z) = e
x
2
+y

2
+z

2

2 Poisson circle convergence

Figure 5.11 A convergence plot for Poisson’s Equation on a sphere.

Table 5.5 Poisson’s Equation Error Table

h L∞ Error Observed Order

0.125 0.00126191

0.0666667 0.000285287 2.36535

0.0416667 9.68666e-05 2.2982

0.0285714 5.16758e-05 1.6654

0.0208333 2.47164e-05 2.33503

0.015873 1.78873e-05 1.18918

0.0125 1.34561e-05 1.19156

125

as their product. Normally, the Monge-Ampére equation can be expressed as:
− det (D2u) + f = 0, x ∈ X

u = g x ∈ ∂X

u is convex.

(5.43)

The determinant can be expressed as a product of the eigenvalues:

− det (D2u) = −λ1λ2λ3

As in “Meshfree Finite Difference Approximations for Functions of the Eigenvalues of

the Hessian” [26], since the equation is only elliptic in the space of convex functions,

we can use the globally elliptic extension from “A Numerical Method for the Elliptic

Monge-Ampère Equation with Transport Boundary Conditions” [25]:

−(max {λ1, 0}max {λ2, 0}max {λ3, 0}+min {λ1, 0}+min {λ2, 0}+min {λ3, 0})+f = 0

(5.44)

This formulation of the Monge-Ampére equation leads us to approximate − det (D2u)

by
−min {max {uν1ν1 , 0}max {uν2ν2 , 0}max {uν3ν3 , 0}

+ min {uν1ν1 , 0}+min {uν2ν2 , 0}+min {uν3ν3 , 0}}
(5.45)

where ν1, ν2, and ν3 are mutually orthogonal. We can use this to approximate the

operator by applying the grid aligned and meshfree schemes to approximate the

second directional derivatives for a discrete subset of the orthogonal frames, and

then taking the discrete minimum.

Consider the specific example analogous to the one used for the other problems:
− det (D2u) + e

3
2
(x2+y2+z2)(1 + x2 + y2 + z2) = 0, x2 + y2 + z2 < .25

u = e
x2+y2+z2

2 x2 + y2 + z2 = .25

u is convex.

(5.46)

126

with the exact solution being

u(x, y, z) = e
x2+y2+z2

2

The results of the approximation are included in Figure 5.12 and Table 5.6. On

this example, we also observe better than the expected O(
√
h) convergence.

10 13 × 10 2 4 × 10 2 6 × 10 2

h

10 4

10 3

Er
ro

r

L

Figure 5.12 A convergence plot for the Monge-Ampére Equation on a sphere.

Table 5.6 Monge-Ampére Equation Error Table

h L∞ Error Observed Order

0.125 0.00637493

0.0714286 0.000304859 5.43279

0.0416667 0.000121219 1.71105

0.0294118 7.45852e-05 1.39435

0.0227273 4.7917e-05 1.71614

127

5.13.6 Lagrangian Curvature Problem

Finally, we consider a variation of the Lagrangian Curvature problem from [7].

Specifically, we solve
∑3

j=1 tan
−1 (λj(D

2u)) = f(x, y, z) x2 + y2 + z2 < 1

u(x, y, z) = e
x2+y2+z2

2 x2 + y2 + z2 = 1

(5.47)

where

f(x, y, z) = 2 tan−1

(
e

x2+y2+z2

2

)
+ tan−1

(
(1 + x2 + y2 + z2)e

x2+y2+z2

2

)

The exact solution is

u(x, y, z) = e
x2+y2+z2

2

This is also a fully nonlinear PDE. As we proved in Section 5.6.2, we can create a

consistent monotone approximation of this operator by minimizing the directional

derivatives over all orthogonal frames. Thus, we approximate the operator by

min
ν1,ν2,ν3 orthogonal

(tan−1 (uν1ν1) + tan−1 (uν2ν2) + tan−1 (uν3ν3))

where the uνiνi are approximated by the monotone stencils we derived earlier. As

with the other problems, we approximate the directional derivatives for a subset of

orthogonal frames, then take a discrete minimum. The results are in Figure 5.13 and

Table 5.7. We observe accuracy ranging from the expected O(
√
h) to O(h2).

Filtered Schemes Although filtered schemes have not yet been analyzed in this

case, their implementation is a promising avenue for future work. We can already

demonstrate some preliminary numerical results by solving the Lagrange Curvature

problem with Dirichlet boundary conditions using a filtered scheme. The results from

solving this equation using filtered schemes are shown in Figure 5.14 and Table 5.8

As suspected, we observe second order accuracy for this example.

128

10−12×10−2 3×10−2 4×10−2 6×10−2
h

10−5

10−4

10−3
Er
ro
r

L∞

L2

Arctan Exponential

Figure 5.13 A convergence plot for the Lagrangian Curvature Equation.

Table 5.7 Lagrangian Curvature Error Table

h L∞ Error Observed Order

0.125 0.00136792

0.0714286 0.000299701 2.71305

0.0416667 0.00010337 1.97491

0.0294118 7.83304e-05 0.796364

0.0208333 3.13434e-05 2.6561

0.015625 2.66247e-05 0.567172

129

10−1
h

10−5

10−4

10−3
Er
ro
r

L∞

L2

Arctan Filtered Convergence

Figure 5.14 A convergence plot for the Lagrangian Curvature Equation with
Dirichlet boundary conditions using filtered schemes.

Table 5.8 Lagrangian Curvature Filtered Error Table

h L∞ Error Observed Order

0.125 0.00198083

0.0714286 0.000484545 2.51612

0.0416667 0.000165188 1.99654

0.0294118 7.98305e-05 2.08775

0.0208333 6.78961e-05 0.469571

0.015625 3.00262e-05 2.83615

0.0125 1.52504e-05 3.03602

130

5.13.7 Neumann Boundary Conditions

Next, we consider a variation of the Lagrangian Curvature problem from “A Boundary

Value Problem for Minimal Lagrangian Graphs” [7] with Neumann boundary

conditions. Specifically, we solve
∑3

j=1 tan
−1 (λj(D

2u)) = c f(x, y, z) x2 + y2 + z2 < 1

∂u(x,y,z)
∂n̂

= e
1
2 x2 + y2 + z2 = 1

(5.48)

where

f(x, y, z) = 2 tan−1

(
e

x2+y2+z2

2

)
+ tan−1

(
(1 + x2 + y2 + z2)e

x2+y2+z2

2

)

The exact solution is

u(x, y, z) = e
x2+y2+z2

2

As with the other problems, we approximate the second directional derivatives for

a subset of orthogonal frames, then take a discrete minimum. We also approximate

the normal derivatives using the scheme derived in Section 5.8. The results are in

Figure 5.15 and Table 5.9. We observe close to the expected O(
√
h) accuracy on

this example.

In addition, we consider Poisson’s equation with Neumann boundary conditions.

Specifically, we solve the eigenvalue formulation
λ1(D

2u) + λ2(D
2u) + λ3(D

2u) = cf(x, y, z) x2 + y2 + z2 < 1

∂u(x,y,z)
∂n̂

= e
1
2 x2 + y2 + z2 = 1

(5.49)

where

f(x, y, z) = (3 + x2 + y2 + z2)e
x2+y2+z2

2

131

10−1
h

10−2

10−1
Er
ro
r

L∞

L2

Arctan Neumann Convergence

Figure 5.15 A convergence plot for the Lagrangian Curvature Equation with
Neumann boundary conditions.

Table 5.9 Lagrangian Curvature with Neumann Boundary Conditions Error Table

h L∞ Error Observed Order

0.125 0.231545

0.0714286 0.183496 0.41561

0.0416667 0.136972 0.542525

0.0294118 0.120954 0.357059

0.0227273 0.104701 0.559656

0.015625 0.0872153 0.487688

0.0125 0.0776716 0.519349

132

The exact solution is

u(x, y, z) = e
x2+y2+z2

2

For the interior, we approximate the second directional derivatives for a subset of

orthogonal frames, then take a discrete minimum. For the boundary, we compute the

normal derivative using the exact outward normal vector and we also approximate

the normal derivatives using the scheme derived in Section 5.8. The results are in

Figure 5.16 and Table 5.10. On average we observe the expected O(
√
h) accuracy

10−1
h

10−2

10−1

Er
ro
r

L∞

L2

Poisson Neumann Convergence

Figure 5.16 A convergence plot for Poisson’s Equation with Neumann boundary
conditions.

on this example.

5.13.8 Transport Boundary Conditions

Next, we consider a variation of the Lagrangian Curvature problem from “A Boundary

Value Problem for Minimal Lagrangian Graphs” [7] with Transport-type boundary

133

Table 5.10 Poisson’s Equation Neumann Boundary Conditions Error Table

h L∞ Error Observed Order

0.125 0.510503

0.0714286 0.371374 0.56858

0.0416667 0.247244 0.7548

0.0294118 0.199854 0.610916

0.0208333 0.184646 0.229521

0.015625 0.126245 1.32166

0.0125 0.120595 0.205195

conditions. Specifically, we solve
tan−1 (λ1(D

2u)) + tan−1 (λ2(D
2u)) + tan−1 (λ3(D

2u)) = c 3π
4

x2 + y2 + z2 < 1

∇u(S2) ⊂ T (S2).

(5.50)

where T (x, y, z) = (x+ 2, y + 1, z − 1) is an affine shift. The exact solution is

u(x, y, z) =
(x+ 2)2 + (y + 1)2 + (z − 1)2

2

In order to discretize the function, we introduce the modification in Equation (5.31)

which agrees with (5.50) on the space of convex functions (which is where the desired

solution lives). It also fits into our framework since it can be expressed as in

Equation (5.32). We approximate the boundary condition using the same scheme

as in two dimensions as stated in Section 5.9. The results are in Figure 5.17 and

Table 5.11. We observe slightly better than the expected O(
√
h) accuracy overall.

134

10−1
h

10−1

6×10−2

2×10−1

3×10−1

4×10−1

Er
ro
r

L∞

Affine Map Convergence

Figure 5.17 A convergence plot for the Lagrangian Curvature Equation with
transport boundary conditions.

Table 5.11 Lagrangian Curvature with Transport Boundary Conditions Error
Table

h L∞ Error Observed Order

0.125 0.423231

0.0714286 0.208314 1.26671

0.0416667 0.148553 0.627286

0.0294118 0.129053 0.404012

0.0208333 0.0564395 2.39837

0.015625 0.0847806 -1.4144

0.0125 0.0676967 1.00845

135

CHAPTER 6

CONCLUSIONS

6.1 Summary

This dissertation focused primarily on efficiently building and analyzing approxima-

tions of fully nonlinear elliptic operators in two- and three-dimensions. Our particular

focus was on eigenvalue problems involving fully nonlinear PDEs.

In general dimensions, we produced a new framework for numerically solving

eigenvalue problems involving fully nonlinear PDEs. The proof was demonstrated on a

model problem: the construction of minimal Lagrangian graphs. Convergence to both

the correct solution and the correct eigenvalue allows the solution of problems where

the solvability condition is not satisfied exactly at the discrete level. In addition,

this analysis provides a framework for the design of other convergent methods for

eigenvalue problems involving fully nonlinear elliptic PDEs.

In two dimensions, techniques for solving eigenvalue problems for fully nonlinear

elliptic PDEs were presented. In particular, we proposed a framework for discretizing

and solving fully nonlinear eigenvalue problems with nonlinear transport-type bound-

ary conditions. We also provided numerical results using the Lagrangian curvature

problem as a test problem. The implementation allows for the solution of this problem

on complicated geometries by adapting the quadtree methods used for simpler PDEs

and Dirichlet boundary conditions. Additionally, higher order schemes were derived

for functions of the gradient. Finally, we derived new monotone stencils for extending

the schemes used in two dimensions to three dimensions. The new schemes can also

be easily extended to n dimensions.

In three dimensions, we implemented a new generalized finite difference method

for solving a large range of fully nonlinear elliptic equations. One challenge was

136

in devising and implementing a framework for approximation of the eigenvalues

of the Hessian in higher dimensions, where one cannot use the maximum and

minimum of the second directional derivatives anymore. In addition, it was

challenging to implement these schemes in three dimensions using limited memory

and computational resources. We overcame these challenges in order to extend some

of the two-dimensional work to three dimensions. We have built monotone schemes

for solving problems involving eigenvalues of the Hessian in dimensions three and

higher. In addition, we have extended the eigenvalue problem framework from our

two-dimensional work in order to satisfy compatibility conditions at the discrete level

in three or higher dimensions. This allows us to solve the problems with nonlinear

transport-type boundary conditions in dimensions three and higher. The techniques

derived for three dimensions can be readily applied to higher dimensions and to

complicated domains.

6.2 Future Work

There are multiple problems to deal with in order to numerically solve fully nonlinear

elliptic PDEs in three dimensions. One problem is the criteria for convergence, which

we studied in this research. The next difficult problem was to efficiently construct

a monotone approximation to the fully nonlinear operator, which was another focus

of this dissertation. However, although the solution of these discrete systems were

found in this work, this was not done very efficiently. One avenue of future work is

the completion of the analysis and implementation of higher-order methods. Filtered

schemes can be extended for higher dimensional operators and eigenvalue problems.

Further analysis is needed to show the convergence of these higher-order methods

when used with eigenvalue problems and in higher dimensions.

Equipped with the monotone approximations from this work, the next step is to

build efficient solvers. This problem is nontrivial because with three dimensions, there

137

are a large number of points, and the Jacobian matrix required for Newton’s method

is often infeasible computationally and from a memory perspective. Without directly

building the system of equations, information must propagate some other way. One

way to efficiently propagate this information is by using multigrid methods.

In addition, this eigenvalue framework can be extended to other problems. Of

particular interest are general optimal transport problems where the data does not

naturally satisfy the solvability condition at the discrete level. This framework holds

great promise for these applications.

After efficient solvers are built, many other three-dimensional problems in

industry can be solved. For example, optimal transportation problems in geophysics

can solved efficiently using the techniques in this dissertation paired with new

efficient solvers. Additionally, the efficient solution of three-dimensional optimal

transportation problems can also be used for image registration. This is the problem

of aligning two data sets with each other, which is relevant for brain MRIs. Since

these deal with information about proton density it is natural to use optimal

transport techniques to solve them. With efficient three-dimensional solvers, optimal

transport can be used to create a better three-dimensional image of the brain. The

specifics may depend on the imaging techniques used, but the ability to efficiently

solve three-dimensional Monge-Ampére problems is a good starting point for these

applications.

138

REFERENCES

[1] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully
nonlinear second order equations. Asym. Anal., 4(3):271–283, 1991.

[2] P. W. Bates, G.-W. Wei, and S. Zhao. Minimal molecular surfaces and their
applications. J. Comp. Chem., 29(3):380–391, 2008.

[3] J.-D. Benamou, B. D. Froese, and A. M. Oberman. Numerical solution of the optimal
transportation problem using the monge-ampère equation. J. Comput. Phys.,
260:107–126, March 2014.

[4] J.-D. Benamou, A. Oberman, and B. Froese. Numerical solution of the second
boundary value problem for the Elliptic Monge-Ampère equation. Inria
research report, June 2012.

[5] K. Böhmer. On finite element methods for fully nonlinear elliptic equations of second
order. SIAM J. Numer. Anal., 46(3):1212–1249, 2008.

[6] O. Bokanowski, S. Maroso, and H. Zidani. Some convergence results for Howard’s
algorithm. SIAM J. Numer. Anal., 47(4):3001–3026, 2009.

[7] S. Brendle and M. Warren. A boundary value problem for minimal lagrangian graphs.
J. Diff. Geom., 84(2):267–287, 02 2010.

[8] C. Budd and J. Williams. Moving mesh generation using the parabolic mongeampère
equation. SIAM J. Sci. Comput., 31(5):3438–3465, 2009.

[9] A. Caboussat, R. Glowinski, and D. Sorensen. A least-squares method for the
numerical solution of the dirichlet problem for the elliptic monge-ampère
equation in dimension two. ESAIM: Contr. Opt. Calc. Var., 19, 07 2013.

[10] L.A. Caffarelli and M. Milman. Monge Ampère Equation: Applications to Geometry
and Optimization : NSF-CBMS Conference on the Monge Ampère Equation,
Applications to Geometry and Optimization, July 9-13, 1997, Florida Atlantic
University. Cont. Math. - Amer. Math. Soc. Bull. Amer. Math. Soc., 1999.

[11] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67,
1992.

[12] M. Cullen, J. Norbury, and R. Purser. Generalised lagrangian solutions for
atmospheric and oceanic flows. SIAM J. Appl. Math., 51(1):20–31, 1991.

[13] E. Dean and R. Glowinski. Numerical solution of the two-dimensional elliptic
monge-ampère equation with dirichlet boundary conditions: A least-squares
approach. C. R. Math., 339:887–892, 12 2004.

139

[14] E. J. Dean and R. Glowinski. Numerical solution of the two-dimensional elliptic
monge-ampére equation with dirichlet boundary conditions: An augmented
lagrangian approach. C. R. Math. Acad. Sci. Paris, 336:779784, 2003.

[15] E. J. Dean and R. Glowinski. An augmented lagrangian approach to the numerical
solution of the dirichlet problem for the elliptic monge-ampére equation in two
dimensions. Electron. Trans. Numer. Anal., 22:7196, 2006.

[16] P. Delanoë. Classical solvability in dimension two of the second boundary-value
problem associated with the monge-ampère operator. Ann. Inst. H. P. Nonlin.
Anal., 8(5):443–457, September 1991.

[17] B. Engquist and B. D. Froese. Application of the Wasserstein metric to seismic
signals. Comm. Math. Sci., 12(5):979–988, 2014.

[18] X. Feng, R. Glowinski, and M. Neilan. Recent developments in numerical methods
for fully nonlinear second order partial differential equations. SIAM Rev.,
55(2):205–267, 2013.

[19] X. Feng, C.-Y Kao, and T. Lewis. Convergent finite difference methods for
one-dimensional fully nonlinear second order partial differential equations. J.
Comput. Appl. Math., 254, 12 2012.

[20] X. Feng and T. Lewis. A Narrow-stencil finite difference method for approximating
viscosity solutions of fully nonlinear elliptic partial differential equations with
applications to Hamilton-Jacobi-Bellman equations. arXiv e-prints, July 2019.

[21] X. Feng and M. Neilan. Vanishing moment method and moment solutions for fully
nonlinear second order partial differential equations. SIAM J. Sci. Comput.,
38(1):74–98, 2009.

[22] W.H. Fleming and H.M. Soner. Controlled Markov Processes and Viscosity Solutions.
Sto. Model. Appl. Prob. New York, NY: Springer, 2006.

[23] U. Frisch, S. Matarrese, R. Mohayaee, and A. Sobolevski. A reconstruction of
the initial conditions of the Universe by optimal mass transportation. Nat.,
417:260–262, May 2002.

[24] B. Froese and A. Oberman. Convergent filtered schemes for the Monge-Ampère
partial differential equation. SIAM J. Numer. Anal., 51(1):423–444, 2013.

[25] B. D. Froese. A numerical method for the elliptic Monge-Ampère equation with
transport boundary conditions. SIAM J. Sci. Comput., 34(3):A1432–A1459,
2012.

[26] B. D. Froese. Meshfree finite difference approximations for functions of the eigenvalues
of the Hessian. Numer. Math., 138(1):75–99, 2018.

140

[27] B. D. Froese and A. M. Oberman. Convergent finite difference solvers for viscosity
solutions of the elliptic Monge-Ampère equation in dimensions two and higher.
SIAM J. Numer. Anal., 49(4):1692–1714, 2011.

[28] T. Glimm and V. Oliker. Optical design of single reflector systems and the
monge–kantorovich mass transfer problem. J. Math. Sci., 117(3):4096–4108,
September 2003.

[29] S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent. Optimal mass transport for
registration and warping. Int. J. Comp. Vis., 60(3):225–240, 2004.

[30] B. Hamfeldt. Convergent approximation of non-continuous surfaces of prescribed
Gaussian curvature. Comm. Pure Appl. Anal., 17(2):671–707, 2018.

[31] B. Hamfeldt. Convergence framework for the second boundary value problem for the
monge–ampère equation. SIAM J. Numer. Anal., 57(2):945–971, 2019.

[32] B. F. Hamfeldt. Viscosity subsolutions of the second boundary value problem for the
Monge-Ampére equation. arXiv, July 2018.

[33] B. F. Hamfeldt and T. Salvador. Higher-order adaptive finite difference methods for
fully nonlinear elliptic equations. SIAM J. Sci. Comput., 75(3):1282–1306,
June 2018.

[34] B. F. Hamfeldt and A. G. R. Turnquist. A convergence framework for optimal
transport on the sphere. arXiv e-prints, 2021.

[35] M. Jensen and I. Smears. On the convergence of finite element methods for Hamilton–
Jacobi–Bellman equations. SIAM J. Numer. Anal., 51(1):137–162, 2013.

[36] R. Jensen. The maximum principle for viscosity solutions of fully nonlinear second
order partial differential equations. Arch. Rat. Mech. Anal., 101(1):127, 1988.

[37] S. Koike. A Beginner’s Guide to the Theory of Viscosity Solutions. MSJ memoirs.
Tokyo, JP: Mathematical Society of Japan, 2004.

[38] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems (Classics in Applied
Mathematics). Philadelphia, PA: SIAM, 2007.

[39] Y. Lian and K. Zhang. Boundary lipschitz regularity and the Hopf lemma for fully
nonlinear elliptic equations. arXiv e-prints, December 2018.

[40] J.-M. Mirebeau. Discretization of the 3d Monge-Ampére operator, between wide
stencils and power diagrams. ESAIM: Math. Model. Numer. Anal., 49(5):1511–
1523, 2015.

[41] T. S. Motzkin and W. Wasow. On the approximation of linear elliptic differential
equations by difference equations with positive coefficients. J. Math. and Phys.,
31(1-4):253–259, 1952.

141

[42] R. Nochetto, D. Ntogkas, and W. Zhang. Two-scale method for the Monge-Ampère
equation: Convergence to the viscosity solution. Math. Comput., 88, 06 2017.

[43] A. Oberman. The convex envelope is the solution of a nonlinear obstacle problem.
Proc. Amer. Math. Soc., 135(6):1689–1694, 2007.

[44] A. M. Oberman. Convergent difference schemes for degenerate elliptic and parabolic
equations: Hamilton–Jacobi equations and free boundary problems. SIAM J.
Numer. Anal., 44(2):879–895, 2006.

[45] A. M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère
equation and functions of the eigenvalues of the Hessian. Disc. Cont. Dynam.
Syst. Ser. B, 10(1):221–238, 2008.

[46] V. I. Oliker and L. D. Prussner. On the numerical solution of the equation (∂
2z

∂x2)(
∂2z
∂y2

)−
(∂2z
∂x∂y

)2 = f and its discretizations. I, Numer. Math., 54:271–293, 1988.

[47] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision, and
Graphics. New York, NY: Springer, 2003.

[48] K. Smoczyk and M.-T. Wang. Mean curvature flows of Lagrangian submanifolds with
convex potentials. J. Diff. Geom., 62(2):243–257, 2002.

[49] E. L. Thomas, D. M. Anderson, C. S. Henkee, and D. Hoffman. Periodic area-
minimizing surfaces in block copolymers. Nat., 334(6183):598, 1988.

[50] R. P. Thomas and S.-T. Yau. Special Lagrangians, stable bundles and mean curvature
flow. Comm. Anal. Geom., 10(5):1075–1113, 2002.

[51] J. Urbas. On the second boundary value problem for equations of Monge-Ampére
type. J.R.A.M., 487:115–124, 1997.

[52] D. Williamson. Lecture notes in Mathematical Programming I. Lecture Notes, Cornell
University, September 2008.

142

	Eigenvalue problems for fully nonlinear elliptic partial differential equations with transport boundary conditions
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Nonlinear Eigenvalue Problems
	Chapter 4: Numerical Methods in Two Dimensions
	Chapter 5: Numerical Methods in Three Dimensions
	Chapter 6: Conclusions
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

