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Abstract

We present an adaptation of the MA-LBR scheme to the Monge-Ampère equation with
second boundary value condition, provided the target is a convex set. This yields a fast
adaptive method to numerically solve the Optimal Transport problem between two absolutely
continuous measures, the second of which has convex support. The proposed numerical
method actually captures a specific Brenier solution which is minimal in some sense. We
prove the convergence of the method as the grid stepsize vanishes and we show with numerical
experiments that it is able to reproduce subtle properties of the Optimal Transport problem.

1 Introduction

Given two bounded open domains X and Y in R2 and (strictly positive) probability densities f
and g, defined respectively on X and Y , our goal is to numerically solve the quadratic Monge-
Kantorovich problem

inf
{T]f=g}

ˆ
X
‖x− T (x)‖2 f(x) dx (1)

where T : X → Y is a Borel map and T]f = g is a mass conservation property, that is (see also
(8)) ˆ

T−1(A)
f(x) dx =

ˆ
A
g(y) dy, for all Borel subset A of Y . (2)

This problem has been extensively studied, we refer the reader to the classical monograph
of Villani [Vil09] and also the more recent book by Santambrogio [San15] for a comprehensive
review of its mathematical theory and applications.

Numerical approaches to optimal transport. From the numerical point of view, the old-
est approach is the linear programming formulation of Kantorovich [Kan42] which relaxes the
problem in the product space X × Y . This approach however does not scale with the size of the
discretization. The so called “Benamou-Brenier” approach [BB00] is based on a different convex
relaxation in a time extended space. It is difficult to assess exactly its efficiency but its many
numerical implementations suggest it does no better than O(N3).
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Significant progress has been achieved this last decade and new algorithms are now available
which can reach almost linear complexity. They can be classified in two groups : first, alternate
projection methods (a.k.a. Split Bregman, Sinkhorn, IPFP) [Cut13,Gal16,BCC+15] which are
based on the entropic regularization of the Kantorovich problem. These methods are extremely
flexible, they apply to a much wider range of Optimal Transport problems (OT) and are easy to
parallelize. The entropic regularization however blurs the transport map. Decreasing this effect
requires more sophisticated tools, see [CPSV16] and references therein.

The second class relies on the Monge-Ampère (MA) interpretation of problem (1). Because
the optimal solution satisfies T = ∇u, u convex (see theorem 2.1) below), one seeks to solve

det(∇2u) =
f

g ◦ ∇u on X,

∇u(X) ⊆ Y ,
u convex.

(MA-BV2)

Classical solutions of this problem have been studied in [Urb90]. They are unique up to a constant
which can be fixed, for example by adding

´
X u dx to the r.h.s. of the first equation in (MA-BV2),

this additional term must then vanish because of the densities balance. Weak solutions can also
be considered either in the Aleksandrov sense or in the regularity framework developed after
Cafarelli in the 90s using Brenier weak solutions, that is solutions of (1). Section 2 briefly
reviews these notions as we will work with C 1 solutions.

Numerical resolution of the Monge-Ampère equation. Numerical methods based on
Monge-Ampère subdivide again in two branches, the semi-discrete approach where g is an em-
pirical measure with a finite number N of Dirac masses [OP88,CP84,Mér11,Lév15a], and finite-
difference methods (FD) where f is discretized on a grid of size N [LR05, SAK15, BFO14].
Efficient semi-discrete algorithms rely on the fast computation of the measure of Laguerre cells
which correspond to the subgradient of the dual OT map at the Dirac locations. In this paper
we focus on the second approach, but we will also use that finite differences solutions yield an
approximation of this subgradient at grid points.

The second boundary value condition (BV2),

∇u(X) ⊆ Y , (3)

is a non local condition and a difficulty for the Monge-Ampère finite differences approach. Under a
convexity hypothesis for Y , an equivalent local non-linear boundary condition is given in [BFO14]
which preserves the monotonicity (aka “degenerate ellipticity” after Oberman [Obe06]) of the
scheme. In particular a Newton method can be applied for the solution of the discretized system
for periodic [LR05, SAK15] or Dirichlet [FO13,Mir15] Boundary Conditions (BC). We provide
in Section 3 a new interpretation of these BC in terms of an infinite domain “minimal” convex
extension. It can be used to build the same boundary conditions as in [BFO14], it shows how to
extend the FD scheme outside of possiby non convex supports of f and also provides a suitable
continuous interpolation tool for the convergence proof in Section 5.

For the sake of completeness, we mention that Optimal transport problems can be attacked
trough non-specific methods based on the Kantorovich linear programming relaxation and its
Entropic regularization [BCC+15,OR15,Sch16] amongst many ...

Convergence of the discretizations. Existing convergence proofs for FD methods in [FO13,
Mir15] rely on the viscosity solutions of Crandall and Lions [CIL92] and the abstract convergence
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theory of Barles and Souganidis [BS91]. This is a powerful framework which can be applied, in
particular, to general degenerate elliptic non-linear second order equations. Our problem however
has two specificities. First, the Monge-Ampère operator is degenerate elliptic only on the cone
of convex function and this constraint must somehow be satisfied by the discretization and
preserved in the convergence process. Second, the theory requires a uniqueness principle stating
that viscosity sub-solutions are below super-solutions. The first problem or more generally the
approximation of convex functions on a grid, has attracted a lot of attention, see [Mir16a] and the
references therein. The Lattice Basis Reduction (LBR) technique in particular was applied to the
MA Dirichlet problem in [BCM16]. The second issue (uniquess principle) is more delicate and,
even though the BV2 reformulation in [BFO14] clearly belongs to the family of oblique boundary
conditions (see [CIL92] for references) there is, to the best of our knowledge, no treatment of the
specific (MA-BV2) and convexity constraint in the viscosity theory literature.

We follow a different path in this paper. We build a “minimal” convex extension interpolation
of the discrete solutions and interpret it as an Aleksandrov solution of an adapted semi-discrete
problem. We can then use classical optimal transport theory to prove convergence of our finite
difference discretization. Instead of monotonicity and consistency of the scheme, the proof re-
lies on three ingredients : specific properties of the LBR discretization of the Monge-Ampère
operator (Section 4.5), the volume conservation enforced by the BV2 boundary condition and
the uniqueness and the C 1 regularity of the limit problem. This last condition also requires the
convexity of the target Y . We borrow here some of the techniques used in [CMOB15] to prove
convergence of semi-discrete approximation of JKO gradient steps problems. In the case where g
the target density is not constant, we show that simple centered FD is sufficient for the discrete
gradient. In summary, we provide a convergent finite difference method for the optimal transport
problem which applies to Lebesgue integrable source densities f and Lipschitz target densities g
with convex support.

Newton solvers. A common feature of the semi-discrete and FD approaches is the successful
use of a damped Newton method to solve the discrete set of equations. It results in a numerically
observed linear complexity of these methods. Mérigot, Kitagawa and Thibert [KMT16] have
proven in the semi-discrete case that the Jacobian of the discrete non-linear system is strictly
positive definite, they show convergence of the Newton method and provide speed convergence.
For finite difference similar results are available for the periodic and Dirichlet problems [LR05,
FO13,Mir15]. The convergence of the Newton method relies on the invertibility of the Jacobian
of the non-linear scheme. It remains open in the case of BV2 boundary conditions. We provide a
numerical study in Section 6 indicating convergence and that the method has linear complexity.

2 The Monge-Ampère problem

2.1 Weak solution theory for the Monge-Ampère equation

2.1.1 Some background on Optimal Transport

As the optimal transport problem is our main motivation for solving the Monge-Ampère problem
(MA-BV2) with BV2 conditions, it also guides the notion of generalized solution we are interested
in. Let µ, ν be Borel probability measures on Rn. The Monge problem consists in finding a Borel
map T : Rn → Rn, which solves

min
{T]µ=ν}

ˆ
Rn

‖x− T (x)‖2 dµ(x), (4)
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where T]µ = ν means that µ(T−1(A)) = ν(A) for all Borel subset A of Rn.
Its relaxation, the Monge-Kantorovich problem, consists in finding a transport plan γ solution

to

min
γ∈Π(µ,ν)

ˆ
Rn×Rn

|x− y|2dγ(x, y), (5)

where Π(µ, ν) is the set of Borel probability measures on Rn × Rn with respective marginals µ
and ν, i.e. γ(A× Rn) = µ(A) and γ(Rn ×B) = ν(B) for all Borel subsets A,B ⊆ Rn.

The following theorem is a simplified version of [Vil03, Th. 2.12] which summarizes results
of Knott-Smith (for the first point) and Brenier [Bre91] (for the remaining points).

Theorem 2.1 ( [Vil03, Th. 2.12]). Let µ, ν be probability measures on Rn with compact support.

1. γ ∈ Π(µ, ν) is optimal in (5) if and only if there exists a convex lower semi-continuous
function u such that supp γ ⊆ graph(∂u).

2. If µ is absolutely continuous with respect to the Lebesgue measure, there is a unique optimal
transport plan γ for (5); it has the form γ = (I × ∇u)]µ̂, where u : Rn → R ∪ {+∞} is
convex lower semi-continuous. Moreover, T def.

= ∇u is the unique transport map solution
to (4), and

supp(ν) = ∇u(supp(u)). (6)

3. If both µ and ν are absolutely continuous w.r.t. the Lebesgue measure, then

∇u∗ ◦ ∇u(x) = x µ− a.e. x ∈ Rn,
∇u ◦ ∇u∗(y) = y ν − a.e. y ∈ Rn,

and ∇u∗ is the unique optimal transport map from ν to µ.

Remark 2.2. In Theorem 2.1, second item, T = ∇u may be regarded as a map T : Rn → Rn
defined almost everywhere. It is actually the uniqueness of the restriction of T (or ∇u) to
supp(µ) which is asserted. It is obviously possible to modify T (or u) on Rn \ supp(µ) without
changing the optimality of T . In Section 3, we use this fact to choose a solution with a “good”
behavior outside X = supp(µ).

Remark 2.3. It is convenient to consider (6) in terms of the subdifferential ∂u of u. We say that
p ∈ ∂u(x) ⊆ Rn if and only if

∀x′ ∈ Rn, u(x′) ≥ u(x) + 〈p, x− x′〉. (7)

The subdifferential is a multivalued function which extends the gradient in the sense that u is
differentiable at x iff ∂u(x) is single-valued, in which case ∂u(x) = {∇u(x)} (see [Roc83] for
more detail). We deduce from (6) that the closure of ∂u(Rn) contains supp(ν). In general,
∂u(Rn) is not closed, but one may show that supp(ν) ⊆ ∂u(Rn). Indeed, given y ∈ supp(ν),
it suffices to consider xn ∈ supp(µ) such that ∇u(xn) → y; by the compactness of supp(µ),
there is a subsequence of (xn)n∈N which converges to some x ∈ supp(µ), passing to the limit in
inequality (7) we get y ∈ ∂u(x).
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2.1.2 Brenier Solutions

The connection between the Monge-Ampere equation and the optimal transport problem was
pointed out formally in [Bre91], and stated more precisely in [McC97]. The convex function u of
Theorem 2.1 has an (Aleksandrov) second derivative at almost every point of the interior of its
domain, and if both µ and ν are absolutely continuous (with respective densities f and g),

g(∇u(x))
∣∣det(∇2u(x))

∣∣ = f(x) for µ-a.e. x ∈ Rn. (8)

Together with (6), that property tells that u is in some generalized sense a solution to (MA-BV2).
This motivates the following definition.

Definition 2.4. Let µ and ν be two probability measures on Rn with compact support, such
that µ is absolutely continuous w.r.t. the Lebesgue measure. We say that u : Rn → R ∪ {+∞}
is a Brenier solution to (MA-BV2) if it is convex lower semi-continuous and (∇u)]µ = ν.

2.1.3 Aleksandrov Solutions and Semi-Discrete OT

Aleksandrov solutions are useful to tackle the Semi-Discrete Optimal Transport problem, which
corresponds to the situation when one of the two measures is an empirical measure, the other
being absolutely continuous.

Definition 2.5 (Aleksandrov solution). Let µ and ν be two compactly supported probability
measures on Rn. A convex l.s.c. function u is an Aleksandrov solution of (MA-BV2) if for every
measurable set E ∈ R2,

ν(∂u(E)) = µ(E).

When µ is absolutely continuous w.r.t. the Lebesgue measure and supp ν is convex, Aleksan-
drov and Brenier solutions coincide (see [FL09]).

If µ is absolutely continuous and the target measure ν has only atoms, for instance ν =∑N
i=1 gi δyi where the gi’s are positive weights and the yi’s are the locations of Dirac masses in

the plane, Brenier and Aleksandrov solution also coincide: the Brenier map is still well defined
and maps the source domain onto the finite set {yi}1≤i≤N .

Conversely, if the source measure is an empirical measure µ =
∑N

i=1 fi δxi then it is not
possible to define a Brenier map, but the Aleksandrov solution u still makes sense and satisfies

ˆ
∂u(E)

g(y) dy = f(E) =
∑
xi∈E

fi (9)

or equivalently for all i ˆ
∂u(xi)

g(y) dy = fi. (10)

The mass concentrated at the Dirac locations is mapped to cells corresponding to the sub-
gradients. The Semi-Discrete numerical approach is based on solving system (10) using a Newton
method and fast computations of the subgradients ∂u(xi). These subgradients are known as
Laguerre cells tesselation in computational geometry [Mér11, Lév15a]. It should be noted that
u∗, its Legendre Fenchel transform is a Brenier solution for the reverse mapping ν to µ. For
more on the duality properties of Semi-Discrete OT see [BFO14].
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2.2 Regularity

Based on Brenier solutions Caffarelli has developed a regularity theory for MA. In particular,
when Y is convex, the following result holds1 :

Theorem 2.6 ( [Caf92, Caf96]). Let X,Y ⊆ Rn be two bounded open sets, f : X → R+,
g : Y → R+ be two probability densities, bounded away from zero and infinity respectively on X
and Y , i.e.

∃λ > 0,
1

λ
≤ f ≤ λ a.e. on X,

1

λ
≤ g ≤ λ a.e. on Y (11)

and let T = ∇u : X → Y be the optimal transport maps sending f to g. If Y is convex, then

(i) T ∈ C0,α
loc (X) for some α > 0.

(ii) If in addition f ∈ Ck,βloc (X) and g ∈ Ck,βloc (Y ) for some β ∈ (0, 1), then T ∈ Ck+1,β
loc (X).

(iii) If f ∈ Ck,βloc (X), g ∈ Ck,βloc (Y ) and both X and Y are smooth and uniformly convex, then
T : X → Y is a global diffeomorphism of class Ck+1,β.

In the following, we shall assume that f and g are bounded away from zero and infinity. The
first conclusion of the theorem thus implies that u ∈ C1,α

loc (X).

We finally recall a slightly more general regularity result due to Figalli and Loeper wich does
not require lower bounds on the source density f and which holds in the plane (n = 2) :

Theorem 2.7 ( [FL09, Theorem 2.1]). Let X,Y ⊆ R2 be two bounded open sets, Y convex,
f : X → R+, g : Y → R+ be two probability densities, such that there exist λ > 0 with f ≤ 1

λ in
X and λ ≤ g in Y . Let u : R2 → R be a Brenier solution to (MA-BV2) such that ∂u(R2) = Y .

Then u ∈ C 1(R2).

3 Minimal Brenier Solutions in R2

3.1 Definition

From now on, we consider X ⊆ R2, Y ⊆ R2 two bounded open sets, and we assume that Y is
convex. We assume that the probability densities f , g are bounded away from zero and infinity
respectively on X and Y (see (11)). We note in the following Proposition that the property
∂u(R2) = Y assumed by Theorem 2.7 allows to single out a particular Brenier solution to the
Monge-Ampère problem.

Proposition 3.1. Assume that Y is convex. Then there is a unique (up to an additive con-
stant) convex lower semi-continuous function ũ : R2 → R ∪ {+∞} which is a Brenier solution
to (MA-BV2) and which satisfies ∂ũ(R2) = Y .

Moreover, ũ ∈ C 1(R2).

Remark 3.2 (Uniqueness). As the Brenier map is unique, note that uniqueness of the potential
ũ up to a constant carries over to the other notions of solution recalled in Section 2.

1Here we follow the presentation of [PF14, Th. 1.2]
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Proof. We first prove uniqueness. Let u1, u2 be two such functions. Then the gradients of their
Legendre-Fenchel conjugates u∗1 and u∗2 solve the optimal transport problem from ν to µ, and by
Theorem 2.1, ∇u∗1(y) = ∇u∗2(y) for a.e. y ∈ Y . As a result, there is some C ∈ R such that those
two convex functions satisfy u∗1(y) = u∗2(y) +C for all y ∈ Y . Let us prove that the equality also
holds on ∂Y . Let y0 ∈ ∂Y , y1 ∈ Y . By lower semi-continuity and convexity

u∗1(y0) ≤ lim inf
y→y0
y∈Y

u∗1(y)

= lim inf
y→y0
y∈Y

(u∗2(y) + C)

≤ lim inf
t→0+

((1− t)u∗2(y0) + tu∗2(y1)) + C = u∗2(y0) + C.

The converse inequality is obtained by swapping the role of u∗1 and u∗2, and the equality is proved.
Now, since u1, u2 are proper convex lower semi-continuous, we know from [Roc83] that

∀i ∈ {1, 2}, ri (domu∗i ) ⊆ dom (∂u∗i ) ,

where ri(domu∗i ) refers to the relative interior of domu∗i , the effective domain of u∗i (see [Roc83]).
Since Y ⊆ domu∗i is nonempty open, we get

Y ⊆ int (domu∗i ) = ri (domu∗i ) ⊆ dom (∂u∗i ) ⊆ Y ,

hence domu∗i ⊆ Y . The double conjugate reconstruction formula then yields

∀x ∈ R2, u1(x) = sup
y∈Y

(〈y, x〉 − u∗1(y)) = sup
y∈Y

(〈y, x〉 − (u∗2(y) + C)) = u2(x)− C.

To prove the existence of ũ, let u0 be a Brenier solution to the Monge-Ampère prob-
lem (MA-BV2). We define

∀x ∈ R2, ũ(x)
def.
= sup

y∈Y
{〈x, y〉 − u∗0(y)} , (12)

where u∗0 is the Legendre-Fenchel conjugate of u0.

∀y ∈ Y , u∗0(y)
def.
= sup

x∈R2

{〈x, y〉 − u0(x)}. (13)

It is immediate that ũ is convex lower semi-continuous. From Theorem 2.6, we know that u0 is
a convex function which is C 1,α

loc in X. Moreover, u0 is continuous up to ∂X since, for all x ∈ X,
∇u0(x) ∈ Y which is a bounded set. As the supremum of a (finite) upper semi-continuous
function on the compact set Y , ũ is finite on R2.

Now, we prove that ũ(x) = u0(x) for all x ∈ X. Since u0 is proper convex l.s.c., for a.e.
x ∈ X,

u0(x) = 〈x, ∇u0(x)〉 − u∗0(∇u0(x)) = sup
y∈R2

(〈x, y〉 − u∗0(y)) ≥ sup
y∈Y

(〈x, y〉 − u∗0(y)) = ũ(x).

But since ∇u0(x) ∈ Y , 〈x, ∇u0(x)〉 − u∗0(∇u0(x)) ≤ supy∈Y (〈x, y〉 − u∗0(y)), and the above
inequality is in fact an equality. That equality holds almost everywhere in the open set X hence
in fact everywhere.
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To prove that ∂ũ(R2) ⊆ Y , let x ∈ R2, p ∈ ∂ũ(x).

Since ∀h ∈ R2 ũ(x) + 〈h, p〉 ≤ ũ(x+ h),

we get sup
y′∈Y

(
〈x, y′〉 − u∗0(y′)

)
+ 〈h, p〉 ≤ sup

y′∈Y

(
〈x+ h, y′〉 − u∗0(y′)

)
≤ sup

y′∈Y

(
〈x, y′〉 − u∗0(y′)

)
+ sup
y∈Y
〈h, y〉.

As a result, 〈h, p〉 ≤ supy∈Y 〈h, y〉 for all h ∈ R2, hence p ∈ Y , and ∂ũ(R2) ⊆ Y .
We conclude that ũ is also a Brenier solution to (MA-BV2), hence by Remark 2.3, ∂ũ(R2) =

Y , and by Theorem 2.7, we deduce that ũ is C 1(R2).

Remark 3.3. From (12), one may observe that ũ(x) ≤ u0(x) for all x ∈ R2. It is the minimal
convex extension of u0 outside X in the sense that it is the smallest convex function defined
on R2 which coincides with u0 on X. Additionally, it is minimal among all Brenier solutions in
the sense that its subdifferential is the smallest possible. Indeed, by Remark 2.3, any Brenier
solution satisfies ∂u(R2) ⊇ Y .

3.2 The affine ray property

The aim of this section is to give some insight on the behavior of ũ outside X, which helps
motivate the discrete scheme of Section 4. In the following, co(X) denotes the closed convex hull
of X.

Proposition 3.4. The function ũ has the following properties.

(i) For all x ∈ R2 \ co(X), there exists x0 ∈ ∂ co(X) such that ũ is affine on the half-line
{x0 + t(x− x0) ; t ≥ 0}. Moreover, ∇ũ(x) ∈ argmaxy∈Y 〈y, x− x0〉 ⊆ ∂Y .

(ii) For all x ∈ co(X)\X, there exists x0 ∈ ∂X such that ũ is affine on the line segment [x, x0].

Remark 3.5. The condition ∇ũ(x) ∈ argmaxy∈Y 〈y, x − x0〉 actually means that x − x0 is in
NY (y), the normal cone to Y at y = ∇ũ(x). In fact, all the points x′ such that x′ − x0 ∈ NY (y)
are mapped to the same gradient value y = ∇ũ(x), and ũ is affine on that set.

Figure 1 provides an illustration of Proposition 3.4 and Remark 3.5. The connected blue
regions in the source space represent points which are mapped to the same gradient value. Such
regions are invariant by translation by NY (y). In co(X) \X (here X is not convex) points are
mapped into the interior of Y , onto a line segment (black dashed line) which is a discontinuity
set for the gradient of the inverse optimal transport map. Gradients are also constant on some
convex sets corresponding to the subgradients of the inverse optimal map on this line segment.
These regions are naturally connected to X. The behavior of optimal transport maps in the case
of non-convex supports is analysed in depth in [Fig09].

Proof. In view of the uniqueness (up to a constant) stated in Proposition 3.1, we may assume
without loss of generality that the function u0 used in the construction of ũ (see (12)) is convex
lower semi-continuous and satisfies

∀x ∈ R2 \ coX, u0(x) = +∞, (14)

as this does not change its being a Brenier solution.
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Figure 1: Illustration of Proposition 3.4 showing the correspondence between gradients (red) and
their support (blue) in source space and target space. The connected blue regions in the source
space represent points which are mapped to the same gradient value (in red).

Let y0 ∈ Y be a slope, and x ∈ R2. Then y0 is optimal for x in (12) iff

x ∈ ∂
(
u∗0 + χY

)
(y0) = ∂u∗0(y0) +NY (y0) = (∂u0)−1(y0) +NY (y0), (15)

as there is a point y′ ∈ Y where χY is continuous and u∗0 is finite. In the above equation, χY
and NY respectively stand for the characteristic function and the normal cone of Y at y0,

χY (y) =

{
0 if y ∈ Y ,
+∞ otherwise,

, NY (y0) =
{
x′ ∈ R2 ; ∀y ∈ Y , 〈x′, y − y0〉 ≤ 0

}
. (16)

Equation (15) is equivalent to the existence of some x0 ∈ (∂u0)−1(y0) ⊆ coX such that 〈x −
x0, y−y0〉 ≤ 0 for all y ∈ Y (or equivalently y0 ∈ argmaxy∈Y 〈y, x−x0〉). Clearly, if y0 is optimal
for x, it is also optimal for x+ t(x− x0) for t > −1.

Moreover, sets of the form (15) cover the whole space R2, since by compactness and semi-
continuity, there always exists an optimal y0 for (15). Incidentally that slope is in fact ∇ũ(x)
since, provided y0 is optimal for x,

∀e ∈ R2, ∀t > 0, ũ(x+ te)− ũ(x) ≥ 〈x+ te, y0〉 − u∗0(y0)− (〈x, y0〉 − u∗0(y0)) ,

hence t〈e, ∇ũ(x)〉+ o(t) ≥ t〈e, y0〉.

Dividing by t→ 0+ yields y0 = ∇ũ(x).
To summarize, we have proved (i): since for all x ∈ R2 \ co(X), x − x0 6= 0, the set

{x+ t(x− x0) ; t > 0} does indeed define a half line. As for (ii), ∇ũ(x) ∈ Y , hence there
exists x0 ∈ (∂u0)−1(∇ũ(x)) ∩X, so that ∇ũ(x0) = ∇ũ(x) (and since {x′ ; ∇ũ(x′) = ∇ũ(x)} is
convex, it is not restrictive to assume x0 ∈ ∂X).

Remark 3.6. Another point of view, using standard tools of convex analysis (see e.g. [Roc83, Th.
16.4]) is to interpret ũ as an infimal convolution

∀x ∈ R2, ũ(x) = inf
{
u0(x′) + σY (x− x′) ; x′ ∈ coX

}
. (17)

where σY : x 7→ supy∈Y 〈y, x〉 is the support function of Y .
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3.3 Discussion

From Proposition 3.4, we see that the function ũ defined in Proposition 3.1 formally satisfies the
equations

det(D2 u) g(∇u) = f on X, (18)

det(D2 u) = 0 on R2 \X, (19)

min
e∈S1
〈(D2u)e, e〉 = 0 on R2 \X, (20)

sup
e∈S1
{〈∇u, e〉 − σY (e)} = 0 on R2 \ co(X). (21)

Indeed, (18) is the Monge-Ampère equation, (19) and (20) follow from the affine property in
Proposition 3.4. If ũ is smooth and the minimum eigenvalue of D2u is null, this also enforces
convexity (see [Obe08] for the connection with the convex enveloppe problem). As for (21),
since Y is convex, the inequality supe∈S1{〈∇u, e〉 − σY (e)} ≤ 0 is an equivalent formulation of
the BV2 boundary condition ∇ũ(R2) ⊆ Y . The equality actually means that ∇ũ(x) ∈ ∂Y for
x ∈ R2 \ co(X).

The discretization strategy is presented in Section 4 and then the convergence proof in Sec-
tion 5. The convergence will hold in the Aleksandrov/Brenier setting but the limit solution
regularity itself will depend on the the regularity of f and g.

Remark 3.7 (Uniqueness). It is not difficult to show that ũ is a viscosity solutions of equations
(18-21) but it is is much harder to prove uniqueness for this class of equations, see [CIL92] and
its references to oblique boundary conditions . However, ũ coincide with the unique Brenier
solution on X and the R2 extension is also unique. More precisely (see remark 3.2) ũ is unique
up to a constant.

4 Finite Difference Discretization

This section explains how our scheme is built from the set of the equations of Section 3.3 and
discuss the properties of the resulting discrete system.

We will consider a sequence of discretization steps (hn)n∈N, hn > 0, hn ↘ 0+, and we define
an infinite lattice of points Gn def.

= hn Z2. We work in a compact square domain D ⊆ R2 (say
D = [−1, 1]2) which contains X in its interior. We assume without loss of generality that 0 ∈ X.
A discrete solution Un ∈ Rcard(Gn∩D) is defined on that grid : if u is a continuous solution of our
problem, its discrete interpolant on the grid is Un[x] = u(x) for all x ∈ Gn ∩D.

We will use the following finite differences formulae in each grid direction e,

δhne Un[x]
def.
= Un[x+ hn e]− Un[x]

and
∆hn
e Un[x]

def.
= δhne Un[x] + δhn−eUn[x].

We say that a vector e ∈ Z2 is irreducible if it has coprime coordinates.

4.1 Discretization of the target Y

As it is defined on a finite grid, our discrete scheme is only able to estimate the directional
gradient in a finite number of directions. Hence, the constraint we can impose in practice
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when discretizing (21) is that the gradient belongs to a polygonal approximation Yn to Y . More
precisely given a finite family of irreducible vectors, Vn ⊆ Z2\{0}, we consider the corresponding
set

Yn
def.
=
{
y ∈ R2 ; ∀e ∈ Vn, 〈y, e〉 ≤ σY (e)

}
(22)

which is nonempty, closed and convex. We assume that

1. Vn contains {(0, 1), (1, 0), (0,−1), (−1, 0)} (so that Yn is compact)

2. Vn ⊆ Vn′ for n′ ≥ n (so that Y ⊆ Yn′ ⊆ Yn),

3.
⋂
n∈N Yn = Y .

4. The following inclusion holds for n large enough

X + hnVn ⊆ D. (23)

The third point holds as soon as Y is defined by a finite number of inequalities of the form (22) (in
which case the constraint∇u(x) ∈ Y is exactly imposed) or provided that

{
e/ |e| ; e ∈ ⋃n∈N Vn

}
is dense in S1. The fourth point will be useful in Proposition 4.3 to ensure that the variations of
Un inside X are bounded by σYn .

A general strategy to ensure the above four assumptions is to choose

Vn =
{
e ∈ Z2 ; e irreducible and ‖e‖∞ ≤ ρn

}
(24)

where ρn → +∞ and ρnhn → 0 as n → +∞ (for instance ρn = 1/
√
hn). The result of this

approximation strategy is illustrated in Figure 2 for three values ρn ∈ {1, 2, 3}. It appears that
ρn = 3 already yields a sharp polygonal approximation of the considered ellipse.

In any case, the first three points above ensure that Yn converges towards Y in the sense of
the Hausdorff topology [Sch93, Lemma 1.8.1], that is

lim
n→+∞

max

(
sup
y∈Y

d(y, Yn), sup
y∈Yn

d(y, Y )

)
= 0. (25)

True boundary
ρ=3

ρ=2

ρ=1

Figure 2: Left: Approximation of an ellipse using (22) for the values ρn ∈ {1, 2, 3} (the true
boundary is shown in dashed red line). The ellipse is obtained by the rotation with angle π/3
of
{

(y1, y2) ∈ R2 ; 1
a2
y2

1 + 1
b2
y2

2 = 1
}

with a = 2, b = 1. Right: the corresponding irreducible
vectors used in Vn.
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4.2 Discretization of the Monge-Ampère operator in X

We use the (MA-LBR) scheme for the Monge-Ampère operator det(D2u) discretization [BCM16].
It relies on the notion of superbase :

Definition 4.1. A basis of Z2 is a pair (e′, e′′) ∈ (Z2)2 such that |det(e′, e′′)| = 1.
A superbase of Z2 is a triplet (e, e′, e′′) ∈ (Z2)3 such that e+ e′ + e′′ = 0, and (e′, e′′) is a basis
of Z2.

The finite difference MA-LBR operator, is a consistent and monotone approximation of the
Monge-Ampère operator given by

MAn(Un)[x]
def.
=

1

h4
n

min
(e,e′,e′′)∈(Z2)3

superbase

h(∆hn
e

+
Un[x],∆hn

e′
+
Un[x],∆hn

e′′
+
Un[x]) (26)

where ∆hn
e

+
Un[x] = max(∆hn

e Un[x], 0) and for a, b, c ∈ R+ we define

h(a, b, c) :=

{
bc if a ≥ b+ c, and likewise permuting a, b, c,
1
2(ab+ bc+ ca)− 1

4(a2 + b2 + c2) otherwise.
(27)

Note that the minimum in (26) is in fact restricted to superbases (e, e′, e′′) such that

{x, x± hne, x± hne′, x± hne′′} ⊆ D (28)

(that is, both x+ hne and x− hne belong to D and similarly for e′ and e′′). The number N of
such superbases is a priori very large, but the adaptive algorithm proposed in [BCM16] yields
a dramatic speed-up as it is asymptotically sufficient to test log(N) superbases out of N . We
use this refinement in our simulations and we refer to [BCM16] for the detail of the adaptive
algorithm. Also, it is shown in [BCM16] that the largest width of the vectors in the optimal
superbase grows with the condition number of the Hessian of u. In practice, it is therefore
possible to limit the minimization to a stencil defined by its width, i.e. vectors on the grid Z×Z
with a given maximum norm.

The scheme consistency is remarkable. Given a quadratic form u(x) = 1
2〈Mx, x〉, where M

a strictly positive definite matrix with condition number κ, its grid interpolation Un satisfies

MAn(Un)[x] = det(M)

provided that {x, x ± hne, x ± hne′, x ± hne′′} ⊆ D for all superbases as in Definition 4.1 such
that ‖e‖2 ≤ κ

√
2 (see [BCM16]).

The MA-LBR operator also provides interesting “discrete” convexity properties (see [BCM16]
and proposition A.3 in [Mir16a]). That notion is used in Appendix A to study the finite difference
approximation of the gradient.

Finally the following property states that the MA-LBR operator overestimates the subgra-
dient of the convex envelope of Un at grid points. The proof was communicated to us by J.-M
Mirebeau, and we reproduce it in Appendix B with his kind permission. This result will be
useful in the convergence proof.

Lemma 4.2. Let u : R2 → R∪{+∞} be the largest convex lower semi-continuous function which
minorizes Un[x] at all points x ∈ Gn ∩D. Then,

∀x ∈ Gn ∩X, |∂u(x)| ≤ MAn(Un)[x]ωn, (29)

where ωn = h2
n is the area of one cell of the grid.
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4.3 Discretization of the Monge-Ampère operator and the BV2 conditions
in D \X

The MA-LBR scheme is only suitable to discretize strictly convex functions. When at least one
eigenvalue decreases to 0, the stencil width (see above) becomes infinite. To capture the flat
behavior of solutions in R2 \X, we need to add more and more directions to the minimization.

Instead, we apply the Wide-Stencil (WS) formulation proposed by Oberman in [Obe08] to
discretize (20), that is, the minimum eigenvalue of the Hessian should be 0. This simply yields
the scheme

MA0
n(Un)[x]

def.
= min

e∈V (x)
∆hn
e Un[x], (30)

where V (x) denotes the set of irreducible vectors e ∈ Z2 \ {0} such that {x− e, x, x+ e} ⊆ D
Additionally, we take advantage of the points in D \ X to impose the (BV2) boundary

condition, by modifying the scheme (30) as follows :

M̃A0
n(Un)[x]

def.
= min

e∈V (x)∪Vn
∆̃hn
e Un[x] (31)

where for all x ∈ Gn ∩D,

∆̃hn
e Un[x]

def.
= δ̃hne Un[x] + δ̃hn−eUn[x],

and δ̃hne Un[x]
def.
=

{
Un[x+ hne]− Un[x] if x+ he ∈ D,
σY (hne) otherwise.

The rationale of that scheme comes from (20) and (21): for fixed e ∈ R2, imposing ∆̃hn
e Un[x] = 0

is consistent with

〈D2u(x)e, e〉 = 0 if x ∈ int(D) \X,
〈∇u(x), e〉 = σY (e) if x ∈ ∂D and e points outwards D.

The formal consistency with with (20) and (21) is straightforward. In pratice, the same
stencil can be used for V (x), i.e. discretization of the degenerate Monge-Ampère operator and
Vn, i.e. the discretization of the target geometry.

4.4 Gradient Approximation

Except when g is the constant density on Y , one needs to discretize the gradient ∇u in order to
discretize the Monge-Ampère equation (18).

In Section 5, we prove the convergence of the scheme as n → +∞. The main assumption
to obtain this convergence is that the discrete gradient D1

nUn satisfies the following uniform
convergence

lim
n→+∞

sup
x∈X∩Gn

sup
y∈∂ũn(x)

∣∣D1
nUn[x]− y

∣∣ = 0, (32)

where ũn is the continuous interpolation of Un defined in the next Section (Eq. (44)) and Un
are solutions of our discrete scheme summarized with his properties in section 4.5. Provided a
solution Un to the scheme exists, Theorem 5.5 then ensures that its interpolation ũn converges
towards the minimal Brenier solution ũ such that ũ(0) = 0.

In particular, we prove in Appendix A that (32) holds for
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• the centered finite difference on the cartesian grid,

D1
nUn[x]

def.
=

1

2hn

(
δhn(1,0)Un[x]− δhn(−1,0)Un[x]

δhn(0,1)Un[x]− δhn(0,−1)Un[x]

)
, (33)

• the forward and backward finite differences on the cartesian grid,

D1
nUn[x]

def.
=

1

hn

(
δhn(1,0)Un[x]

δhn(0,1)Un[x]

)
, D1

nUn[x]
def.
=

1

hn

(
−δhn(−1,0)Un[x]

−δhn(0,−1)Un[x]

)
. (34)

Please note that the proof strongly depends on the specific properties of our construction
(discrete-convexity, boundedness of the gradient, convergence to a C 1 function. . . ), and that (32)
should not hold in general for Un an arbitrary sequence of discrete functions.

Another approach in the framework of Hamilton-Jacobi equations and conservation laws
[LeV92] the simplest and classic correction is to use a Lax-Friedrich style regularisation. Setting
F (x, q1, q2) = f(x)

g(q1,q2) the first order term in the Monge-Ampère equation is discretized as

F (x,D1,LF
n Un[x])

def.
= F (x,D1,C

n Un[x])+αx
1

2
(δhn(0,1)Un[x]+δhn(0,−1)Un[x])+βx

1

2
(δhn(1,0)Un[x]+δhn(−1,0)Un[x])

(35)
where αx = maxq1,q2 ‖∂q1F (x, q1, q2)‖ and βx = maxq1,q2 ‖∂q2F (x, q1, q2)‖.
The construction ensures that the derivatives of the scheme with respect to the δhne remain
positive and hence preserve the degenerate ellipticity. This formulation allows to prove the
convergence of the Non-linear Newton solver the price to pay is the introduction of artificial
diffusion wich has no meaning in our Monge-Ampère equation.

4.5 Summary of the scheme and property of the discrete system

Finally, for fixed n ∈ N, we plan on computing Un solution of

∀x ∈ Gn ∩D,


MAn(Un)[x]− f̄n[x]

g((D1
nUn)[x])

= 0 if x ∈ X
M̃A0

n(Un)[x] = 0 otherwise
Un[0] = 0

(36)

where f̄n[x]
def.
= 1

h2n

´
[−hn/2,hn/2]2 f(x + t)dt is a local average of the density f . The added scalar

equation Un[0] = 0 fixes the constant.
Now, we list several properties of the scheme which will be useful for the proof of convergence.

Proposition 4.3. If Un is a solution to (36), then

1. For all x ∈ Gn∩X, and all e irreducible such that {x+hne, x, x−hne} ⊆ D, ∆hn
e Un[x] > 0.

2. For all x ∈ Gn∩(D\X), and all e ∈ Vn such that {x+hne, x, x−hne} ⊆ D, ∆hn
e Un[x] ≥ 0.

3. For all x ∈ Gn ∩D, e ∈ Vn and (k, `) ∈ N2, such that k ≤ `,

−σY (−hne) ≤ Un[x+ (k + 1)hne]− Un[x+ khne]

≤ Un[x+ (`+ 1)hne]− Un[x+ `hne] ≤ σY (hne)
(37)

whenever x+ ihne ∈ D for i ∈ {k, k + 1, `, `+ 1}.
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4. If x ∈ D and e ∈ Vn irreducible are such that Un[x + hne] − Un[x] = σY (hne), then
Un[x+ khne] = Un[x] + kσY (hne) for all integer k ≥ 0 such that x+ khne ∈ D.

5. There exists C > 0 (independent of n) such that for all x, x′ ∈ Gn ∩D,∣∣Un[x]− Un[x′]
∣∣ ≤ C ∥∥x− x′∥∥

1
. (38)

Proof. The first point follows from MAn(Un)[x] = f̄n(x)
g((D1

nUn)[x])
> 0 and the inequality h(a, b, c) ≤

min{ab, bc, ca} (see [BCM16]). As for the second, point it follows immediately from the definition
of ∆̃hn

e Un and the scheme in D \X.
To prove the third point, let us first assume that ` ∈ Z2 is such that {x+`hne, x+(`+1)hne} ⊆

D but x+ (`+ 2)hne /∈ D. By (23) we deduce that x+ (`+ 1)hne ∈ D \X, so that

0 ≤ ∆̃hn
e Un[x+ (`+ 1)hne] = Un[x+ `hne]− Un[x+ (`+ 1)hne] + σY (hne),

which yields Un[x+ (`+ 1)hne]−Un[x+ `hne] ≤ σY (hne). Similarly −σY (−hne) ≤ Un[x+ (k+
1)hne] − Un[x + khne] if x + (k − 1)hne /∈ D but {x + khne, x + (k + 1)hne} ⊆ D. The other
intermediate inequalities follow from ∆hn

e Un[x+ ihne] ≥ 0.
The fourth point is a consequence of (37).
Now, we deal with the last point. Write x − x′ = khe1 + `he2 where e1

def.
= (1, 0) ∈ Vn and

e2
def.
= (0, 1) ∈ Vn. Applying (37), we get

Un[x]− Un[x′] ≤ h
(
k+σY (e1) + (−k)+σY (−e1) + `+σY (e2) + (−`)+σY (−e2)

)
,

and Un[x′]− Un[x] ≤ h
(
k+σY (−e1) + (−k)+σY (e1) + `+σY (−e2) + (−`)+σY (e2)

)
,

where, as before, k+ def.
= max(k, 0). Hence (38) holds with C = max{σY (e1), σY (−e1), σY (e2), σY (−e2)}.

Degenerate Ellipticity. and well posedness In [Obe06], Oberman develops a framework to
discretize degenerate Elliptic equations such as the Monge-Ampère equation. The relevant finite
difference scheme must satisfy a modified version of monotonicity called Degenerate Ellipticity
(DE). Consider an abstract scheme represented at each point x ∈ Gn ∩D by an equation of the
form

S(x, Un[x], {δy−xUn[x]}y∈Gn∩D\{x}) = 0. (39)

Definition 4.4. The scheme S is Degenerate Elliptic (DE) if for all x ∈ Gn ∩ D, S(x, ·, ·) is
nonincreasing in its first variable, and nondecreasing in any other variable.

This condition is in particular necessary to satisfy the general convergence result of Barles
and Souganidis [BS91] towards viscosity solutions as discussed in the introduction. To the best
of our knowledge, there are only two instances of DE scheme for the Monge-Ampère operator :
the Wide-Stencil and MA-LBR schemes. The BV2 discretization also satisfies this conditions.

Another useful result in [Obe06] (Th. 8) is : A DE Lipschitz and proper scheme is well defined
and has a unique solution. These properties can be checked on (36) when g is the uniform
density. Otherwise and even when g is uniformly Lipschitz, the inner gradient approximation
destroys the DE of the scheme. A fix proposed by Froese and Oberman [FO13] is to remark
that a uniform positive lower bound on the Monge-Ampère operator is sufficient to dominate
the DE defect potentially induced by the gradient approximation. Unfortunately this bound is
not straightforward to establish (Froese and Oberman impose it by truncating their scheme) and
well-posedness for our scheme remains open in the general case.
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Newton solver. As in [BCM16,BFO14,Mir15,LR05,Mér11,Lév15b] we use a damped Newton
algorithm to solve the system (36). For the description of the algorithm and proof of its con-
vergence we refer to the papers above. The crucial ingredient is to prove global convergence of
Newton iterates is the invertibility of the Jacobian matrix of the system. See for example [Mir15]
where the case of Dirichlet boundary conditions is treated.

In our case the invertibility of the Jacobian remains an open problem, regarding :

• The proposed discretization of the BV2 condition.

• The non constant g density case

In practice and in the implementation, the system (36) is unchanged but for the residual in-
version in the Newton procedure we use an inexact Jacobian which preserves diagonal dominance
as follows.

For each line x of the Jacobian : set dF1[x] = ∂q1F (x,Dh
CUn[x]) and dF2[x] = ∂q2F (x,Dh

CUn[x])
and add coefficients of an upwind type discretization on the classical five point stencil :

At column x+ (1, 0)h : Gw = −max(0, dF1[x])
At column x+ (−1, 0)h : Ge = min(0, dF1[x])
At column x+ (0, 1)h : Gn = −max(0, dF2[x])

At column x+ (0,−1)h : Gs = min(0, dF2[x])
On the diagonal : Gn+Gs+Gw +Ge

(40)

Finally, g needs to be defined globally in case the iterate generate gradients outside of the
target Y .

5 Convergence

We now assume that for all discretization steps (hn)n∈N, hn > 0, hn ↘ 0+, there exists a solution
(Un[x])x∈Gn∩D, and we proceed to show that it converges to the Brenier solution of the problem.

The proof is articulated along the following steps.

1. We build functions ũn which “interpolate” the values (Un[x])x∈Gn and which converge (along
a subsequence) towards some funtion v as n→ +∞ (Prop. 5.1 and Lemma 5.2).

2. The function ũn is an Aleksandrov solution for a semi-discrete OT problem between some
measure discrete measure µn supported on the grid Gn and some absolutely continuous
measure νn (Lemma 5.3).

3. The measures µn and νn respectively converge to absolutely continuous measures µ̂ and ν̂,
and v is a minimal Brenier solution for the transport between µ̂ and ν̂ (Lemma 5.3).

4. As a result, v ∈ C 1(R2), and the gradient approximation D1
n satisfies (32) (see Section 4.4).

5. This is used to show that µ̂ = µ, ν̂ = ν and v = ũ (Lemma 5.4 and Theorem 5.5).
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5.1 Convex extension as an interpolation and its properties

Let us recall that we assume that g is continuous on Y , whereas f is only Lebesgue integrable.
We will assume that there exists (αf , βf , αg, βg) ∈ (0,+∞)4, such that

∀x ∈ X, αf ≤ f(x) ≤ βf , (41)

∀y ∈ Y , αg ≤ g(y) ≤ βg. (42)

In fact, possibly changing g in R2 \ Y , it is not restrictive to assume that g is continuous on a
neighborhood of Y0 ⊇ Y and that (42) holds for all y in that neighborhood.

From the values (Un[x])x∈Gn∩D of the discrete problem (see Section 4.5), we build the following
function ũn : R2 → R, with

ũn(x)
def.
= sup

{
L(x) ; L : R2 → R is affine, ∇L ∈ Yn, and ∀x′ ∈ Gn ∩D,L(x′) ≤ Un[x′]

}
. (43)

Equivalently,

∀x ∈ R2, ũn(x)
def.
= sup

y∈Yn
(〈x, y〉 − U?n(y)) (44)

where U?n(y)
def.
= sup

x∈Gn∩D
(〈y, x〉 − Un[x]) . (45)

The following proposition gathers some properties which typically hold with such construc-
tions (see also [CMOB15]).

Proposition 5.1. The following properties hold.

1. ũn is convex, finite-valued, and by construction ũn(x) ≤ Un[x] for all x ∈ Gn ∩D.

2. ∂ũn(R2) = ∂ũn(Gn ∩D) = Yn.

3. Let x ∈ Gn ∩D. If ũn(x) < Un[x], then |∂ũn(x)| = 0.

Proof. The first point is left to the reader. To prove the second one, consider any slope y ∈ Yn.
There is some x ∈ Gn ∩D which minimizes x′ 7→ Un[x′]− 〈y, x′〉 over Gn ∩D (let α denote the
corresponding minimum). Then the affine function L : x′ 7→ 〈y, x′〉 + α satisfies L(x′) ≤ Un[x′]
for all x′ ∈ Gn ∩ D, and L(x) = Un(x). Hence, by construction of ũn, L(x′) ≤ ũn(x′) for all
x′ ∈ R2, and L(x) = ũn(x), which means that y ∈ ∂ũn(x). As a result Yn ⊆ ∂ũn(Gn ∩D). The
fact that ∂ũn(R2) ⊆ Yn follows from ∂ũn(R2) ⊆ dom(ũ∗n) = dom(U?n + χYn).

Now, let us prove the third point. Assume by contradiction that |∂ũn(x)| > 0. Since ∂ũn(x)
is convex, it must have nonempty interior, hence there is some y0 ∈ Yn, r > 0 such that
B(y0, r) ⊆ ∂ũn(x). For all x′ ∈ R2, all p ∈ B(y0, r), ũn(x′) ≥ ũn(x) + 〈p, x′ − x〉 hence

ũn(x′) ≥ ũn(x) + 〈y0, x
′ − x〉+ r

∥∥x′ − x∥∥ .
For x′ ∈ Gn ∩D \ {x}, Un[x′] ≥ ũn(x′) and ‖x′ − x‖ ≥ h. Hence, for α ∈ (0, 1] small enough, the
affine function L : x′ 7→ ũn(x) + 〈y0, x

′ − x〉 + αrh satisfies L(x′) ≤ Un[x′] for all x′ ∈ Gn ∩D,
and ũn(x) < L(x) which contradicts the definition of ũn.

The next Lemma describes more specific properties of ũn which follow from the construction
of Un.
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Lemma 5.2. The family {ũn}n∈N ⊆ C (R2) is relatively compact for the topology of uniform
convergence on compact sets. Moreover, with ωn

def.
= h2

n,

∀x ∈ Gn ∩X, |∂ũn(x)| ≤ MAn(Un)[x]ωn, (46)
∀x ∈ Gn ∩ (D \X), |∂ũn(x)| = 0. (47)

Proof. We observe that (ũn)n∈N is uniformly equicontinuous by Proposition 5.1 and the fact that
Yn ⊆ Y0. Moreover, from Proposition 4.3 and Un(0) = 0, we deduce that

∀n ∈ N,∀x ∈ Gn ∩D, |Un[x]| ≤ C sup
x′∈D

∥∥x′∥∥
1
.

As a result, ũn(0) ∈ [−C supx′∈D ‖x′‖1 , 0]. We deduce the claimed compactness by applying the
Ascoli-Arzelà theorem.

The inequality (46) follows from Lemma 4.2. Indeed, let u : R2 → R ∪ {+∞} be the largest
convex l.s.c. function which minorizes Un[x] at all points x ∈ Gn ∩ D. If ũn(x) < Un[x], then
|∂ũn(x)| = 0 and there is nothing to prove. Otherwise, ũn(x) = u(x) = Un[x] and ũn ≤ u imply
that ∂ũn(x) ⊆ ∂u(x). As a result,

∀x ∈ Gn ∩X, |∂ũn(x)| ≤ |∂u(x)| ≤ MAn(Un)[x]ωn.

Now, we prove (47). Let x ∈ Gn ∩ (D \X). Again, if ũn(x) < Un[x], then |∂ũn(x)| = 0, so we
assume that ũn(x) = Un[x]. Assuming by contradiction that |∂ũn(x)| > 0 there must exist again
some y0 ∈ Yn, r > 0 such that B(y0, r) ⊆ Y , and ũn(x′) ≥ ũn(x) + 〈y0, x

′ − x〉+ r ‖x′ − x‖.
Since mine∈Vn ∆̃eUn[x] = 0, there exists e ∈ Z2\{0} such that ∆̃eUn[x] = 0. If {x−hne, x, x+

hne} ⊆ D, then

0 = (Un[x+ hne]− Un[x]) + (Un[x− hne]− Un[x]) ≥ (ũn(x+ hne)− ũn(x)) + (ũn(x− hne)− ũn(x))

≥ 2rhn ‖e‖ > 0,

which is impossible. On the other hand, if x+ hne /∈ D (the case x− hne /∈ D is similar), then
x−hne ∈ D and Un[x−hne]−Un[x] = −hnσY (e). The slope of ũn is monotone in the direction
e, and it cannot exceed σY (e/ |e|), hence ũn(x + te) = ũn(x) + tσY (e) for t ≥ −hn. But this
contradicts the inequality

ũn(x+ te) ≥ ũn(x) + t〈y0, e〉+ r |t| ‖e‖ .

We conclude that |∂ũn(x)| = 0.

5.2 A semi-discrete optimal transport problem

Let us define the following measures

µn
def.
=

∑
x∈Gn∩D

Fh[x]δx, νn
def.
=

∑
x∈Gn∩D

g(D1
nUn[x])1∂ũn(x)L2, (48)

where Fh[x] is defined for all x ∈ Gn ∩D as

Fh[x]
def.
= g(D1

nUn[x]) |∂ũn(x)| ≤ g(D1
nUn[x])MAn(Un)[x]ωn = f̄n(x)ωn, (49)

f̄n is the grid discretization of f defined in section 4.5 and ωn = h2
n is the area of one cell of the

grid.
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Let us note that from Proposition 5.1 and Lemma 5.2, the Monge-Ampère measure (see [Gut01])
associated with ũn satisfies

det(D2ũn)
def.
= |∂ũn| =

∑
x∈Gn∩X

Fh[x]

g(D1
nUn[x])

δx. (50)

Lemma 5.3. There exists v ∈ C 1(R2), and non-negative absolutely continuous measures µ̂ ∈
M(R2), ν̂ ∈M(R2), such that, up to the extraction of a subsequence,

• the function ũn converges uniformly on compacts sets towards v,

• the measures µn and νn respectively weakly converge to µ̂ and ν̂ as hn → 0+,

• µ̂(R2) = ν̂(R2) > 0, and v is the minimal Brenier solution for the optimal transport of µ̂
to ν̂.

Proof. Let us consider the transport plan γn ∈M(R2 × R2)

γn
def.
=

∑
x∈Gn∩D

g(D1
nUn[x])δx ⊗ 1∂ũn(x)L2

We note that γn is an optimal transport plan between µn and νn since its support is contained
in the graph of ∂ũn (see Theorem 2.1).

Moreover, we observe that

µn ≤ ωn
∑

x∈X∩Gn

f̄n(x)δx =
∑

x∈X∩Gn

(ˆ
[x−hn/2,x+hn/2]2

f(x+ t)dt

)
δx, (51)

where the right hand-side converges towards µ in the weak-* topology (i.e. induced by compactly
supported continuous test functions). Additionally, since

νn ≤ βgL2xYn, (52)

we deduce that the supports of µn, νn, γn are respectively contained in the compact sets X,
Yn, X × Yn, and their masses are uniformly bounded. Hence, there exist Radon measures µ̂,
ν̂ ∈ M(R2), γ̂ ∈ M(R2 × R2) such that, up to the extraction of a (not relabeled) subsequence,
µn, νn and γn respectively converge to µ̂, ν̂, γ̂ in the weak-* topology. We note that γ̂ has
respective marginals µ̂ and ν̂, and µ̂, ν̂ have densities with respect to the Lebesgue measure f̂ ,
ĝ which satisfy

f̂ ≤ f and ĝ ≤ βg1Y .
Since g(D1

nUn[x]) ≥ αg, we get

νn ≥ αg
∑

x∈Gn∩D
(1∂ũn(x)L2) = αgL2xYn,

and in the limit we deduce ĝ ≥ αg1Y . As a result, µ̂(R2) = ν̂(R2) ≥ αg |Y | > 0.
As for ũn, we already know from Lemma 5.2 that we may extract an additional subsequence

so that ũn converges uniformly on compact sets to some (convex function) v ∈ C (R2). Since any
element of supp γ̂ is the limit of (a subsequence of) elements (xn, yn) of supp γn ⊆ ∂ũn, passing
to the limit in the subdifferential inequality

∀x′ ∈ R2, ũn(x′) ≥ ũn(xn) + 〈yn, x′ − xn〉,
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we obtain
supp γ̂ ⊆ graph ∂v.

As a result, and since µ̂ is absolutely continuous with respect to the Lebesgue measure L2,
γ̂ = (I ×∇v)]µ̂ and ∇v is the optimal transport map between µ̂ and ν̂.

Additionally, since ∂ũn(R2) = Yn, we deduce that ∂v(R2) ⊆ Y =
⋂
n∈N Yn. As a result, v is

the minimal Brenier solution to the Monge-Ampère problem from µ̂ to ν̂, hence v ∈ C 1(R2).

Lemma 5.4. Assume that (32) holds. Then, with the notations of Lemma 5.3, µ̂ = µ and ν̂ = ν.

Proof. For all y ∈ Y ⊆ Yn, there exists x ∈ Gn ∩ D such that y ∈ ∂ũn(x). Except for a set
of y with zero Lebesgue measure, that x is unique [Gut01, Lemma 1.1.12], and x ∈ X (see
Lemma 5.2). Then, denoting by ωg the modulus of continuity of g over some neighborhood of
Y0, we get

∣∣g(D1
nUn[x])− g(y)

∣∣ ≤ ωg ( max
x′∈Gn∩X

max
y′∈∂ũn(x′n)

∣∣D1
nUn[x′])− y′

∣∣) −→ 0

as n→ +∞, where the convergence of the right-hand side follows from (32).
As a result the following convergence holds

lim
n→+∞

∥∥∥∥∥ ∑
x∈Gn∩D

g(D1
nUn[x])1∂ũn(x) − g

∥∥∥∥∥
L∞(Y )

= 0. (53)

We deduce that ĝ ≡ g on Y and from (53) and (25) we obtain
ˆ
R2

f̂(x)dx = lim
n→+∞

µn(R2)

= lim
n→+∞

νn(R2)

= lim
n→+∞

ˆ
Yn

( ∑
x∈Gn∩D

g(D1
nUn[x])1∂ũn(x)(y)

)
dy

=

ˆ
Y
g(y)dy =

ˆ
R2

f(x)dx.

Since, f̂ ≤ f , we get f = f̂ .

To sum up, we are now in position to prove the following result.

Theorem 5.5. As n → +∞, the function ũn converges uniformly on compact sets towards the
unique minimal Brenier solution ũ which satisfies ũ(0) = 0.

Proof. Up to the extraction of a sequence, we obtain from Lemma 5.3 and 5.4 that ũn converges
uniformly on compact sets towards some convex function v ∈ C 1(R2) which satisfies in the
Brenier sense

det(D2v) = f(x)/g(∇v(x)), and ∂v(R2) = Y .

However, the function v may depend on the choice of the subsequence. By Proposition 3.1 which
states the uniqueness of the minimal Brenier solution up to an additive constant, we can prove
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that v = ũ by proving that v(0) = 0. Then we obtain that the full family (ũn)n∈N converges
towards ũ by uniqueness of the cluster point.

We know that v is a solution to the Monge-Ampère equation, hence (in our setting) also in
the Aleksandrov sense. As a result, for all r > 0,

´
B(0,r) fdL2 =

´
∂v(B(0,r)) gdL2, and

0 < αf |B(0, r)| ≤ βg |∂v(B(0, r))| .

But by weak-convergence of the Monge-Ampère measures [Gut01, Lemma 1.2.2],

|∂v(B(0, r))| ≤ lim inf
n→+∞

|∂ũn (B(0, r))| = lim inf
n→+∞

|∂ũn (B(0, r) ∩ Gn)| (54)

As a result, for all n large enough, there exists xn,r ∈ B(0, r)∩Gn such that |∂ũn(xn,r)| > 0, and
thus, by Proposition 5.1, ũn(xn,r) = Un[xn,r]. By a diagonal argument we construct a sequence
x∗n such that x∗n → 0 and ũn(x∗n) = Un[x∗n]. By Proposition 4.3

|ũn(x∗n)| = |Un[x∗n]| ≤ C ‖x∗n‖1 . (55)

Passing to the limit n→ +∞, we get v(0) = 0. As a result v = ũ and the full family converges
towards ũ.

6 Numerical study

The numerical method, as we implemented it, depends on two main parameters :

• h the step size of the cartesian grid discretizing the square D wich contains the support of
f .

• The stencil width, i.e. the maximum norm of the vectors on the grid Z2 which will be used
in the variational schemes. More precisely we use superbases with vector with maximum
norm given by the stencil width in (26), we use the same set of vectors for V (x) in (26)
and finally we also use the same vectors to define Vn in (22) for the discretization of the
target.

There are also parameters linked to the precision of the damped Newton algorithm, but they
have a very limited impact on the efficiency of the method.

We run the Newton method until the residual is stationary in `∞ norm which usually takes
a few dozen interations. The value of the residual depends on the discretization parameter but
in all of our experiments was always between 1e-10 and 1e-15.

The target density g is defined in all R2 using a constant extension. In practice we initialized
with a potential u which gradient maps inside the target Y but it cannot be excluded to hit out
along the iterations.

6.1 Imposing the constraint Un[0] = 0

A straightforward implementation of (36) yields a non-square nonlinear system. When perform-
ing the Newton iterations with a Moore-Penrose pseudo-inverse of the Jacobian, we have observed
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Figure 3: Error E [x] when mapping a square to a disc. The plain implementation of (36) yields
some high error in D \X (left), whereas the alternative approach yields a uniform small error.

convergence towards a function which approximately solves the Monge-Ampère equation in X,
but yields a stronger error in D \X. In other words,

E [x]
def.
=

{
MAn(Un)[x]− f̄n[x]

g((D1
nUn)[x])

= 0 if x ∈ X
M̃A0

n(Un)[x] = 0 if x ∈ D \X
(56)

is small in X, but may be large in some parts of D \X (see Figure 3, left).
An alternative way to impose the condition Un[0] = 0 is to rely on the mass conservation

property. Instead of trying to cancel (E [x])x∈Gn∩D and Un[0] separately, one tries to cancel
(E [x] +Un[0])x∈Gn∩D. In principle, the mass conservation then implies that Un[0] = 0. However,
at the discrete level, the mass conservation is only approximate, since the densities and the target
Y are discretized. As a result Un[x0] is not exactly 0 in practice.

Numerically, we have noticed that this alternative approach has better convergence properties,
and yields an error which is smaller and uniformly spread (see Figure 3, right). In fact, up to
some small residual, the error E [X] is uniformly equal to Un[0] which is slightly different from zero
because of the inexact mass conservation. Although the straightforward approach has similar
consistancy properties as the alternative one when h → 0, in the following we describe the
numerical results of the alternative approach, as it shows better numerical properties. We refer
to the quantity (E [x] + Un[0])x∈Gn∩D as the residual error Res.

6.2 Experiment with h

A standard test is to optimally map a uniform density square to a uniform density circle. We
use here a stencil width of 5 (i.e. we use vectors on the grid Z2 of maximum `∞ norm 5).

X is a square [0.2, 0.8]2 immersed in a bigger square D = [0, 1]2.

Table 1 shows, for different values of h, the number of iterations the norms of the reached
residuals and the value of Un[0].

Figure 4 shows the deformation of the computational grid under the gradient map. Notice
that the grid volume is well preserved and that all grid points in D \X are collapsed onto the
boundary of Y which is approximated as a polygon (see next section).
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N = 1
h # It. ‖Res.‖∞ ‖Res.‖2 Un[0]

128 32 4e-12 7e-13 1.4e-03
256 72 3e-12 3e-11 4.5e-02
512 103 1e-10 1e-11 1.7e-02
1024 209 3e-10 5e-11 1.1e-02

Table 1: Number of iterations / Norms of the reached residuals / Value of forced constant
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Figure 4: Left: Map deformation of the cartesian grid for square to ball test case. Right: Zoom
of the Map deformation of the cartesian grid (as expected, D \X is mapped to ∂Y ).

On a standard Laptop a non optimized Julia implementation needs less than 5 minutes to
solve the 512× 512 case and 1.5 hours for the 1024× 1024 case.

6.3 Experiments with stencil width

In all this section N = 128, and we vary the stencil width, meaning the number of vector on
the grid used in scheme. The target is an heptagon whose normals directions are not necessarily
vectors in the stencil.

Table 2 shows, for increasing values of the stencil width , the number of iterations the norms
of the reached residuals and the value of the Un[0], which decreases as the accuracy of the dis-
cretization of Y improves.

Figure 5 to 7 shows the deformation of the computational grid under the gradient map
and zooms. They show how the geometry of the computed target improves with the domain
discretization which also depends on the stencil width. Notice again that grid volume is well
preserved and that all grid points in D \X are collapsed onto the boudary of Y .

In Section 6.6 below, we provide another experiment which shows that the MA-LBR schemes
uses very small stencil widths.
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Figure 5: Left: Mapping a square to heptagon, Stencil width = 2. Right: zoom.
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Figure 6: Mapping a square to heptagon. Left: stencil width = 4. Right: stencil width = 8.
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S. width # It. ‖Res.‖∞ ‖Res.‖2 Un[0]

2 32 9e-12 1.5e-12 1.5e-01
4 42 9e-12 6e-12 6.4e-02
8 39 8e-12 4e-12 3.9e-02
16 42 4e-12 7e-13 2.2e-02

Table 2: Stationary residual reached in `∞ and `2 norms / Number of iterations to reach
stationary minimal residual / Value of forced constant
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Figure 7: Left: Mapping a square to heptagon, Stencil width = 16. Right: zoom.
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6.4 Experiments with inhomogeneous source density f

We start with a test case taken from [BFO14] and for which the anaytical solutions is given.
Set

q(z) =

(
− 1

8π
z2 +

1

256π3
+

1

32π

)
cos(8πz) +

1

32π2
z sin(8πz)

The map from the density

f(x1, x2) = 1 + 4
(
q′′(x1)q(x2) + q′′(x2)q(x1)

)
+ 16

(
q(x1)q(x2)q′′(x2)q′′(x1)− q′(x2)2q′(x1)2

)
defined on the square (−0.5, 0.5)2 onto a uniform density in the same square has the exact
solution

ux1(x1, x2) = x1 + 4 q
′
(x1)q(x2) ux2(x1, x2) = x2 + 4 q

′
(x2)q(x1)

In table 3 we give the error in relative L1 nom on the gradient for different values of N , the
space discretization and Stencil width. Convergence is set for a residual at least of 1e− 10. Two
main observations can me made: First the results clearly indicate a first order accuracy on the
gradient of the solution. Second and as already discussed in Section 6.3 and [BCM16], if the
condition numbers of the Hessian of the solution are bounded, then the MA-LBR accuracy only
depends on h. In this test case the directions contained in the stencil of length 2 are sufficient
to represent the positive definite Hessians of the exact solution.

N
S. Width 2 4 6

64 1.6425e-2 1.6425e-2 1.6425e-2
128 0.8045e-2 0.8045e-2 0.8045e-2
256 0.3966e-2 0.3966e-2 0.3966e-2
512 0.1968e-2 0.1968e-2 0.1968e-2

Table 3: Error in relative L1 norm on the gradient for different values of N , the space dis-
cretization and Stencil width

In the next example, the heterogeneous densities f mapped to a constant density ball Y ,
N = 128 and stencil width is 5 .

Figures 8 and 9 show heterogeneous sources and the corresponding deformation of the carte-
sian grid.

In Figure 9 the source density is random on the square. This test case demonstrates the
applicability of the method to Lebesgue integrable densities.

6.5 Experiments with inhomogeneous target densities g

In this section we show the results obtained with a constant density square X (not represented
in the figures) mapped to heterogeneous densities g defined on a ball Y , N = 128 and stencil
width is 5. Figure 10 shows the case of one Gaussian and a mixture of Gaussians. The boundary
of the target is the red circle. The density g and its gradient need to be defined in the numerical
code as functions which can be evaluated anywhere in the ambient space of Y as the map can
hit anywhere including in R2 \ Y . If g is given analytically (our case) this is easy we just extend
it by a constant out of Y , otherwise one has to resort to interpolation.
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Figure 8: Left column: Source density f . Right column: Corresponding optimal map deformation
of the grid.

6.6 Experiments with non convex and non connected sources

In this section we map constant source densities f with non convex and non connected supports
to a constant density ball Y . The solution is still C1 but is is know that the inverse mapping,
i.e. the Legendre-Fenchel transform of the potential, has gradient singularities. This has been
analyzed by Figalli in [Fig09]. Figures 11 to 14 show different densities an the associated map
deformations. The zero densities inclusions created singular structures in the target which cor-
respond to gradient singularities of the dual map. These structures are consistent with those
predicted by Figalli. We use N = 128 and the stencil width is 5 .

Eventually, in Figure 15, we display an experiment which shows the `∞-norm of e for the opti-
mal superbase chosen by MAn or the optimal vector chosen by M̃A0

n. This illustrates the fact that
the MA-LBR operator uses very compact stencils (in that case the superbase {(1, 1), (0, 1), (1, 0)}
or its rotation is used everywhere in X), whereas the extension outside X uses more elongated
vectors depending on where the points are mapped in Y .
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Figure 9: Left: Source density f . Right: Corresponding optimal map deformation of the grid.
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Figure 10: Left: Target density g. The boundary of the target is the red circle. Right: Corre-
sponding optimal map deformation of the grid.

7 Conclusion

In this work, we have proposed an novel way to impose the BV2 boundary condition for the
Monge-Ampère equation in schemes such as MA-LBR. The idea consists in slightly extending
the domain of the solution so as to capture the behavior of “minimal” Brenier solutions to the
optimal transport problem. Our proof of convergence as the grid stepsize goes to zero does
not appeal to the theory of viscosity solutions, but rather to simple arguments combined with
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Figure 11: Left column: Source density f . Right column: Corresponding optimal map deforma-
tion of the grid.

standard optimal transport results. The numerical experiments faithfully reproduce the typical
behavior of optimal transport solutions.

Although numerically we have not encountered any particular difficulty with the resolution
of the scheme, the existence of a solution to the discrete problem remains an open problem that
we leave for future work.
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A Convergence of the finite difference schemes

The aim of this section is to prove that (32) holds for the centered, forward and backward finite
difference schemes, respectively D1,C

n (see (33)), D1,F
n and D1,B

n (see (34)).
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Figure 12: Left column: Source density f . Right column: Corresponding optimal map deforma-
tion of the grid.

We have defined in Section 4, the values (Un[x])x∈D∩Gn , and in Section 5 their “interpolation”
ũn using (44) as a convex function. In Lemma 5.3, we have shown that this interpolation
converges (along some sequence) towards some function v ∈ C 1(R2). We wish to prove that the
discrete gradients D1,C

n Un, D1,F
n Un and D1,B

n Un converge in some sense to the gradient ∇v.

A.1 Convergence of the gradient of convex functions

We begin with some general results on convex functions. The following lemma is standard, and
mainly follows from the results in [HUL96, Section VI.6.2]. However, we provide a proof below,
as this result is not explicitly stated there.

Lemma A.1. Let Ω ⊆ R2 be a nonempty open convex set, C > 0, and {vn}n∈N be a sequence
of finite-valued convex functions on Ω which converges pointwise on Ω towards some function
v : Ω→ R as n→ +∞.

If v ∈ C 1(Ω), then for all compact set K ⊆ Ω,

lim
n→+∞

sup
x∈K

sup
|x′−x|≤Chn

sup
y∈∂vn(x′)

|∇v(x)− y| . (57)

30



1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
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Proof. Let us recall that the convexity of vn implies that v is convex, and vn converges uniformly
on the compact sets of Ω towards v. Let ρ > 0 such that ρ ≤ 1

4 dist(K,R2 \ Ω), and let
K ′

def.
=
{
x′ ∈ R2 ; dist(x′,K) ≤ ρ

}
⊆ Ω.

Observe that ∂vn(K ′) is bounded independently of n. Indeed, for any x′ ∈ K ′, any yn ∈
∂vn(x′), if y 6= 0,

vn

(
x′ + ρ

yn
|yn|

)
≥ vn(x′) + ρ |yn| , (58)

hence |yn| ≤
1

ρ

(
vn

(
x′ + ρ

yn
|yn|

)
− vn(x′)

)
, (59)

and the right-hand side is uniformly bounded by uniform convergence of vn on {x′′ ∈ Ω ; dist(x,K) ≤ 2ρ}.
Now, assume by contradiction that there is some ε > 0, some (not relabeled) subsequence

xn ∈ K, x′n ∈ B(xn, Chn), and yn ∈ ∂vn(x′n) with |yn −∇v(xn)| ≥ ε.
By compactness, there exists y ∈ R2, x ∈ K, such that (up to an additional extraction)
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Figure 15: From left to right, top to bottom: Source density, target density and set Y , ‖e‖∞ for
the e vector of the optimal superbase, optimal map deformation.

yn → y and xn → x. Passing to the limit in the subgradient inequality

∀x′′ ∈ Ω, vn(x′′) ≥ vn(x′n) + 〈yn, x′′ − x′n〉, (60)
we obtain ∀x′′ ∈ Ω, v(x′′) ≥ v(x) + 〈y, x′′ − x〉. (61)

Hence y = ∇v(x) which yields a contradiction with |yn −∇v(xn)| ≥ ε for n large enough. This
yields the claimed result.

Now, we consider the finite difference scheme applied to a convex function.

Lemma A.2. Let Ω ⊆ R2 be a nonempty open convex set, and {vn}n∈N be a family of finite-
valued convex functions on Ω which converges pointwise on Ω towards some function v ∈ C 1(Ω).
Define Vn[x]

def.
= vn(x) for all x ∈ Ω ∩ Gn. Then, for all compact set K ⊆ Ω,

lim
n→+∞

sup
x∈K∩Gn

∣∣D1,C
n Vn[x]−∇v(x)

∣∣ (62)

where the centered finite difference operator D1,C
n is defined in (33).

Proof. By [HUL96, Theorem VI.2.3.4], we see that

δhn(1,0)Vn[x] = Vn[x+ hn(1, 0)]− Vn[x] = hn

ˆ 1

0
max

y∈∂vn(x+shn(1,0))
〈y, (1, 0)〉ds, (63)
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so that by Lemma A.1, the above quantity converges uniformly on K towards ∂v
∂x1

(x).
Similarly, the quantities δhn(−1,0)Vn[x], δhn(0,1)Vn[x] and δhn(1,0)Vn[x] respectively converge to− ∂v

∂x1
(x),

∂v
∂x2

(x) and − ∂v
∂x2

(x) uniformly.

A.2 Finite difference schemes for the subsampled sequences

Now, let us turn to the values (Un[x])x∈D∩Gn defined in Section 4 and the function ũn defined
in (44). In the following, v denotes the function constructed in Lemma 5.3, as the limit of (ũn)n∈N.
Unfortunately, we cannot directly apply Lemma A.2 to ũn as it is not really an interpolation of
(Un[x])x∈D∩Gn : there could be some points x ∈ D∩Gn such that ũn(x) < Un[x] hence D1,C

n Un is
not a priori the centered finite difference scheme applied to ũn.

However, the first two properties of Proposition 4.3 express the fact that Un is directionally
convex, in the sense of [Mir16b, Appendix A]. In particular, defining the subsampled grids

G(I)
n

def.
= h(2Z)× (2Z), G(II)

n
def.
= h(2Z + 1)× (2Z),

G(III)
n

def.
= h(2Z)× (2Z + 1), G(IV )

n = h(2Z + 1)× (2Z + 1),

there exist convex lower semi-continuous functions v(I)
n , v(II)

n , v(III)
n , v(IV )

n : R2 → R ∪ {+∞}
such that

∀x ∈ G(I)
n ∩D, v(I)

n (x) = Un[x], (64)

and similarly, replacing (I) with (II), (III), (IV ).
The following Lemma shows that those convex functions are not too far from our interpolation

ũn, at least far from the boundary of D. We define Dn
def.
= {x ∈ D ; x+ 2hnVn ⊆ D}.

Proposition A.3. The following inequalities hold.

∀x ∈ G(I)
n ∩D, v(I)

n (x) ≥ ũn(x), (65)

∀x ∈ G(I)
n ∩Dn, ũn(x) ≥ v(I)

n (x)− Chn, (66)

where C = 4 max
{
σY (e) ; e ∈ {(±1, 0), (0,±1)}

}
.

The corresponding inequalities also hold for v(II)
n , v(III)

n , v(IV )
n .

Proof. The first inequality readily follows from the construction of ũn,

∀x ∈ G(I)
n ∩D, ũn(x) ≤ Un[x] = v(I)

n (x).

Now we deal with (66). Let x ∈ G(I)
n ∩ Dn. We first prove that ∂v(I)

n (x) ⊆ Yn. For any
y ∈ ∂v(I)

n (x), all e ∈ Vn, and using Proposition 4.3,

〈y, 2hne〉 ≤ v(I)
n (x+ 2hne)− v(I)

n (x) = Un[x+ 2hne]− Un[x] ≤ σY (2hne)

Hence 〈y, e〉 ≤ σY (e) for all e ∈ Vn, that is y ∈ Yn. Moreover, by the subgradient inequality,

∀x′ ∈ G(I)
n ∩D, Un[x′] = v(I)

n (x′) ≥ v(I)
n (x) + 〈y, x′ − x〉. (67)
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For all x′′ ∈ Gn ∩D, there exists x′ ∈ G(I)
n ∩D such that ‖x′′ − x′‖∞ ≤ hn. Let e

def.
= 1

hn
(x′′ − x′)

satisfying ‖e‖∞ ≤ 1 (hence |〈y, e〉| ≤ 2 max
{
σY (e) ; e ∈ {(±1, 0), (0,±1)

}
). Using Un[x′] ≤

Un(x′′) + σY (−hne) in (67) we get

Un(x′′) + σY (−hne) ≥ v(I)
n (x) + 〈y, x′′ − x〉 − 〈y, hne〉,

hence Un(x′′) ≥ 〈y, x′′ − x〉+ v(I)
n (x)− Ch.

As a result, the affine mapping L : x′′ 7→
(
〈y, x′′ − x〉+ v

(I)
n (x)− Ch

)
minorizes Un[x′′] at each

x′′ ∈ Gn ∩ D, and ∇L = y ∈ Yn. We deduce that ũn ≥ L. In particular, ũn(x) ≥ L(x) =

v
(I)
n (x)− Chn.

The next proposition shows that, along sequences, ũn and v(I)
n share the same limit as h→ 0+.

Proposition A.4. Let K ⊆ int(D) be a compact set.
There exists v̂ ∈ C (K) such that for n large enough v(I)

n ∈ C (K) and up to a subsequence,

lim
n→+∞

∥∥∥v(I)
n − v̂

∥∥∥
L∞(K)

= lim
n→+∞

∥∥∥v(II)
n − v̂

∥∥∥
L∞(K)

= 0, (68)

lim
n→+∞

∥∥∥v(III)
n − v̂

∥∥∥
L∞(K)

= lim
n→+∞

∥∥∥v(IV )
n − v̂

∥∥∥
L∞(K)

= 0, (69)

lim
n→+∞

‖ũhn − v̂‖L∞(K) = 0. (70)

Proof. The first point follows from Proposition 4.3 which ensures that (Un[x])n∈N is bounded
uniformly in x ∈ Gn ∩ D. As a result, the convex function v

(I)
n is uniformly bounded (hence

uniformly Lipschitz) in a neighborhood ofK and Ascoli-Arzelà’s theorem ensures the convergence
of v(I)

n towards some v̂ up to a subsequence.
By Proposition A.3, we see that ũhn must converge (pointwise) towards v̂ on a dense subset

of K. Since K is compact and the functions are uniformly Lipschitz, the convergence is uniform
on K.

Since Proposition A.3 also holds for v(II)
n , v(III)

n , v(IV )
n , we deduce that those convex functions

also converge uniformly (along the same subsequence) towards v̂.

In Lemma 5.2, we show that {ũn}n∈N ⊆ C (R2) is precompact for the topology of uniform
convergence on compact subsets of R2. As a consequence of Proposition A.3, if ũhn converges
along some subsequence towards some function v, then v(I)

n , . . . v(IV )
n converge uniformly towards

v on compact subsets of int(D), along the same subsequence. Now, in Lemma 5.3, we show that
v ∈ C 1(R2). We may now state the main result of this section.

Proposition A.5. Assume that (up to a subsequence) ũhn converges uniformly on the compacts
subsets of R2 towards some function v ∈ C 1(R2). Then, for all K ⊆ int(D) compact,

lim
n→+∞

max
x∈K∩Gn

∣∣D1,C
n Un[x]−∇v(x)

∣∣ = 0, (71)

lim
n→+∞

max
x∈K∩Gn

∣∣D1,F
n Un[x]−∇v(x)

∣∣ = 0, (72)

lim
n→+∞

max
x∈K∩Gn

∣∣D1,B
n Un[x]−∇v(x)

∣∣ = 0. (73)

Proof. We note that from Proposition A.4, v(I)
n , . . . v(IV )

n also converge uniformly on compact
subsets of int(D) towards v.
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We begin with the forward and backward differences defined in (34). Let e = (1, 0) or
e = (0, 1). By monotonicity of the slopes (see Proposition 4.3),

Un[x+ 2hne]− Un[x]

2hn
≥ Un[x+ hne]− Un[x]

hn
≥ Un[x]− Un[x− hne]

hn
≥ Un[x]− Un[x− 2hne]

2hn
(74)

To fix ideas, let us assume that x ∈ G(I)
n . Then x± 2hne ∈ G(I)

n and applying Lemma (A.2)
to v(I)

n (in some compact set K ′, K ⊆ K ′ ⊆ int(D)), we see that the left and right-hand sides of
(74) converge towards 〈∇v(x), e〉, uniformly in x ∈ G(I)

n ∩K. The same argument holds for x in
G(II)
n , G(III)

n or G(IV )
n , so that we get (72) and (73).

By linear combination, we deduce (71).

B MA-LBR overestimates the subgradient

The following proof of Lemma 4.2 was suggested to us by J.-M. Mirebeau. We denote by ∂xu
the subgradient of a convex function u at a point x.

Lemma B.1. Let Ω be a convex neighborhood of a point x ∈ Rd, and let u, v : Ω→ Rd be convex.
If u ≤ v, and u(x) = v(x) then ∂xu ⊆ ∂xv. In particular |∂xu| ≤ |∂xv|.

The following Lemma is a consequence of the Brunn-Minkowski inequality (see [Sch93]).

Lemma B.2. Let Ω be a convex neighborhood of a point x ∈ Rd, and let u, v : Ω→ Rd be convex.
Let w = (1− t)u+ tv with 0 ≤ t ≤ 1. Then (1− t)∂xu+ t∂xv ⊆ ∂xw, where the sign plus denotes
a Minkowski sum. In particular (1− t)|∂xu|

1
d + t|∂xv|

1
d ≤ |∂xw|

1
d .

We denote by u the largest convex function bounded above by u.

Proposition B.3. Let X ⊆ Rd be a finite point set, and let x ∈ X. Let Y ⊆ X be symmetric
w.r.t. the point x, i.e. ∀y ∈ Y one has 2x− y ∈ Y . Let u : X → R, and let v : Y → R be defined
by v(y) := 1

2(u(y) + u(2x− y)). Then

|∂xu| ≤ |∂xv|. (75)

Proof. If u(x) > u(x), then |∂xu(x)| = 0 and there is nothing to prove. We thus assume
u(x) = u(x). Introduce the restriction uY := u|Y , and its symmetry u−Y := uY (2x − ·), and
note that 1

2(uY + u−Y ) ≤ v.
The equality u(x) = u(x) implies uY (x) = uY (x), hence also u−Y (x) = u−Y (x) and v(x) =

v(x). We have

u ≤ uY hence |∂xu| ≤ |∂xuY |,
1

2
(uY + u−Y ) ≤ v hence

1

2
|∂xuY |

1
d +

1

2
|∂xu−Y |

1
d ≤ |∂xv|

1
d .

The announced result follows since |∂xuY | = |∂xu−Y |.

The final step to prove Lemma 4.2 is given by Remark 1.10 in [BCM16] which shows that
MAn(Un)[x]ωn = |∂xv(x)|.
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