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Abstract
We show that the discrete Sinkhorn algorithm—as applied in the setting of Optimal
Transport on a compact manifold—converges to the solution of a fully non-linear
parabolic PDE of Monge–Ampère type, in a large-scale limit. The latter evolution
equation has previously appeared in different contexts (e.g. on the torus it can be
be identified with the Ricci flow). This leads to algorithmic approximations of the
potential of theOptimal Transportmap, aswell as theOptimal Transport distance, with
explicit bounds on the arithmetic complexity of the construction and the approximation
errors. As applications we obtain explicit schemes of nearly linear complexity, at each
iteration, for optimal transport on the torus and the two-sphere, as well as the far-field
antenna problem. Connections to Quasi-Monte Carlo methods are exploited.

Mathematics Subject Classification 35J60 · 35K55 · 90C08 · 65N99

1 Introduction

The theory of Optimal Transport [67,68] is used in a multitude of applications rang-
ing from economics, statistics, cosmology, geometric optics and meteorology to more
recent applications in data sciences (including machine learning, vision, graphics and
imaging; see [27,63,64]). In the last years there has been a flurry of numerical work
applying the Sinkhorn algorithm [61] (aka the Iterative Proportional Fitting Procedure
[55]) as a fast and efficient way of computing approximations to optimal transport
maps, or equivalently, solutions to certain geometric Monge–Ampère type equations.
This is motivated by applications to machine learning [26] (concerning optimal trans-
port in Euclidean R

n) and computer graphics and image processing [63] (where the
general setting of optimal transport on Riemannian manifolds is considered). The
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772 R. J. Berman

key advantage of the Sinkhorn algorithm in this context is its favorable large-scale
computational properties (parallelization, linear time convergence, etc [3]).

Themain aim of the present paper is to show that, in a large-scale limit, the Sinkhorn
algorithm converges towards the solution of a parabolic PDE ofMonge–Ampère type,
which, incidentally, previously has appeared in [44,45,57] and is called the parabolic
optimal transport equation in [44]. The convergence is shown with explicit error esti-
mates. This leads, in particular, to the first constructive approximation of the potential
of the optimal transport map with explicit bounds on the time-complexity of the con-
struction and the approximation errors introduced by the discretization.

1.1 Background and setup

1.1.1 The Sinkhorn iteration

Let p and q be two vectors in R
n+ whose entries sum to one. Given any matrix K ∈

R
N+ ×R

N+ there exists, by Sinkhorn’s theorem [61], two diagonal positive matrices Da

and Db with diagonal vectors a and b in RN+ such that the matrix

B := Db K Da (1.1)

has the property that the rows sum to p and the columns sum to q. The diagonal
matrices Da and Db are uniquely determined up to scaling Da and D−1

b by the same
positive number. Moreover, B can be obtained as the limit of the algorithm defined by
alternately normalizing the rows and columns of the matrix. In other words,

B = lim
m→∞ B(m), B(m) = Db(m)K Da(m),

where the pair of positive vectors (a(m), b(m)) are defined by the following recursion,
formulated in terms of matrix vector multiplications and component-wise division of
vectors:

b(m) = p/K · a(m)

a(m + 1) = q/K T · b(m)

with initial data a(0) taken as the vector with entries 1. In fact, any initial positive
vector a(0)will do and the vectors a(m) and b(m) are convergent as m → ∞ (without
any need of scaling) as follows from Theorem 2.9. The corresponding iteration

a(m + 1) := q/K T · (p/K · a(m))

will be called the Sinkhorn iteration. Its fixed point (uniquely determined up to scaling)
is thus the vector a appearing in formula 1.1.

The same algorithm has appeared in various fields (economics, traffic planning,
statistics,...; see [27]). In its most general (infinite dimensional) form, known as the
Iterative Proportional Fitting Procedure in the statistics literature, the roles of p and q

123



The Sinkhorn algorithm, parabolic optimal transport and geometric… 773

are played by probability measures on two (possible non-finite) topological spaces. In
this setting the corresponding convergence of B(m) towards a limit B was established
in [55] using a maximum entropy characterization of B, which in the discrete setting
above says that B is the unique element realizing the infimum

inf
γ∈�(p,q)

I(γ |K )

where I denotes the Kullback–Leibler divergence of γ relative to K , when γ and K
are identified with measures on the discrete product {1, . . . , N }2 and �(p, q) denotes
the set of all matrices γ in R

N+ × R
N+ with row sum p and column sum q (i.e. the

corresponding measures on {1, . . . , N }2 have marginals p and q, respectively). Since
−I(γ |K ) is the “physical” entropy of γ relative to K this can indeed be viewed as
a maximum entropy characterization of B. An alternative proof of the convergence
follows from Theorem 2.9 below, which also shows that a(m) and b(m) have unique
limits (determined by the initial value a(0)).

1.1.2 Discrete optimal transport

Now replace K with a family of matrices Kε of the form

(Kε)i j = e−ε−1Ci j ,

for a givenmatrixCi j andparametrized by a positive number ε. Then the corresponding
matrix Bε ∈ �(p, q) furnished by Sinkhorn’s theorem converges, as ε → 0, to a
matrix B0 realizing the infimum

C := inf
γ∈�(p,q)

〈C, γ 〉 . (1.2)

In the terminology of discrete optimal transport theory [27,67] this means that B0 is an
optimal transport plan (coupling) between p and q, with respect to the cost matrix C.
The convergence follows from the maximum entropy characterization of Bε (recalled
in the previous section), which reveals that Bε realizes the perturbed minimum

Cε := inf
γ∈�(p,q)

〈c, γ 〉 + εI(γ |I ).

While the matrix B0 is sparse (and is typically supported on the graph of a transport
map) the approximation Bε always has full support (by Sinkhorn’s theorem) and is
thus more “regular” than B0. Accordingly, the small parameter ε is sometimes referred
to as the entropic regularization parameter. This is illustrated by the simulations in [3]
for the case when p and q represent the discretization of two probability measures on
the unit-interval in R, using a large number N of points and with Ci j the cost matrix
defined by to the squared distance function on R. When ε is taken to be of the order
1/N [3, Fig. 1] shows how the discrete probability measures on R × R appear as
smoothed out versions of the graph of the corresponding optimal transport map.
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774 R. J. Berman

It should also be pointed out that the entropy minimization problem above can be
traced back to the work by Schrödinger on Quantum Mechanics in the 30s [60] (see
the survey [48], where the connection to optimal transport is emphasized).

1.1.3 Discretization of optimal transport on the torus

Let now X be a compactmanifold endowedwith a cost function c(x, y). To keep things
as simple as possible we will start by taking the manifold X to be the n-dimensional
torus

T n :=
(
R

Z

)n

endowed with the standard distance function dT n (x, y), induced from the Euclidean
distance function on R

n . Let μ and ν be two probability measure on T n (which thus
correspond to two periodic measures on R

n) with Hölder continuous and strictly
positive densities e− f and e−g , respectively

μ = e− f dV , ν = e−gdV (1.3)

where dV is the Riemannian normalized volume form on T n . Define the cost function
c(x, y) by

c(x, y) := dT n (x, y)2/2.

As is well-known, a continuous self-map F of T n transporting (pushing forward) μ

to ν is optimal with respect to this cost function, i.e. the corresponding transport plan
γF := (I × F)∗μ realizes the infimum

d2(μ, ν)/2 := inf
γ∈�(μ,ν)

〈c, γ 〉 , (1.4)

if and only if F can be expressed in terms of a potential u ∈ C2(T n) :

F(x) := x + ∇u(x), T n → T n,

which is strictly quasi-convex in the sense that the symmetricmatrix∇2u+ I is positive
definite:

∇2u + I > 0

(we identify u with a Zn-periodic function on R
n so that F(x) descends to define a

self-map of T n) . The function u is uniquely determined, up to an additive constant,
by the following Monge–Ampère equation

exp(−g(x + ∇u(x)) det(I + ∇2u(x)) = exp(− f (x)). (1.5)
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We recall that the distance d(μ, ν) betweenμ and ν, defined by formula 1.4, is usually
called the Wasserstein L2-distance or the Optimal Transport distance.

Main results in the torus setting

For notational reasons it will be convenient to express the entropic regularization
parameter as

ε := k−1

for k a positive integer (but the results apply to any real parameter k ≥ k0 > 0). For
each k we fix a positive integer Nk and denote by �k the corresponding discrete torus
in T n with Nk points. In other words, �k is the grid on T n with edge-length N−1/n

k :

�k :=
(

(N−1/n
k Z)

Z

)n

⊂ T n .

We will assume that

lim
k→∞ Nk = ∞.

Denote by p(k) and q(k) the corresponding discrete approximations in R
Nk of μ and

ν, defined by the normalized values of the densities of μ and ν at the points in �k .
Defining a sequence of Nk × Nk matrices K (k) by

K (k)
i j := K(k)(x (k)

i , x (k)
j ), K(k)(x, y) := e−kd(x,y)2/2 (1.6)

and applying Sinkhorn’s theorem to the triple (K (k), p(k), q(k)) furnishes two positive
vectors a(k) and b(k) in RNk , uniquely determined by the normalization condition that
a(k)

ik
= 0 for the index ik corresponding to the point xik = 0 in �k .

Our first result shows that the potential u for the optimal transport problem between
μ and ν can be recovered from the positive vectors a(k) and b(k), furnished by the
Sinkhorn theorem, i.e. the fixed points of the corresponding iteration:

Theorem 1.1 (Static case) If x (k)
ik

is a sequence of points in the discrete torus �k

converging to the point x in the torus T n, as k → ∞, then

− lim
k→∞ k−1 log a(k)

ik
= u(x)

where u is the unique optimal transport potential solving the Monge–Ampère equation
1.5 and normalized by u(0) = 0.

This convergence result should come at no surprise and it holds in a very general
setting (see Theorems 3.3, 3.4 and 3.6). But the main point of the present paper is
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776 R. J. Berman

that the Sinkhorn algorithm itself, when viewed as a discrete dynamical system for
the positive vectors a(k)

ik
, also admits a continuous large-scale limit ut (x), evolving

according to the following fully non-linear parabolic PDE:

∂ut (x)

∂t
= log det(I + ∇2ut (x)) − g(x + ∇ut (x)) + f (x), u0 = 0 (1.7)

The existence of a C4-smooth solution ut to this PDE, given f , g ∈ C2,α(T n), essen-
tially follows from the results in [44,45,57] (for completeness a proof is provided in
“Appendix B”). In order to formulate the convergence in the next theorem we first
observe that for m ≥ 1 the function

u(k)
m (xi ) = −k−1 log

a(k)
i (m)

pi
(1.8)

on the discrete torus�k admits a canonical extension, defining a quasi-convex function
on X :

u(k)
m (x) := k−1 log

Nk∑
i=1

e−kd(x,y(k)
i )2/2b(k)

i (m − 1) (1.9)

expressed in terms of a Fourier/Gauss type sum, with k playing the role of the band-
width.

Theorem 1.2 (Dynamic case) Assume that f and g are in C2,α(T n) for some α > 0
and that Nk = kn, i.e. the edge-length of the grid on T n is equal to k−1. For any
sequence of discrete times mk (iterations) such that mk/k → t we have

lim
k→∞ u(k)

mk
= ut

uniformly on T n, where ut is the smooth and strictly quasi-convex solution of the
parabolic PDE 1.7 with initial data u0 = 0. More precisely, for any positive integers
k and m

sup
T n

∣∣∣u(k)
m − um/k

∣∣∣ ≤ C
m

k
k−1,

for a constant C independent of t . More generally, if at the initial discrete time m = 0,

u(k)
0|�k

= u0|�k ,

for a given strictly quasi-convex function u0 in C4,α(T n), then the corresponding
result still holds (with a constant C depending on u0).

An immediate consequence is that if the number mk of iterations is too small, of the
order o(k), then u(k)

mk → 0 under the Sinkhorn iterations, i.e. “nothing happens”. As
discussed in Sect. 4.2 the estimate in the previous theorem can be expected to be sharp
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under the regularity assumption in the theorem. Moreover, the proof of the theorem
yields an essentially explicit control on the constant C appearing in the error bound.

Using that ut converges exponentially to a potential u for the optimal transport
problem, as t → ∞ (which follows from results in [44]) we deduce the following

Corollary 1.3 (Constructive approximation of the potential u) Assume that f and g
are in C2,α(T n) for some α > 0 and that Nk = kn, i.e. the “edge length” of the grid
on T n is equal to k−1. There exists a positive constant A0 such that for any A > A0
the following holds: after mk = �Ak log k
 iterations the corresponding quasi-convex
functions uk(x) := u(k)

mk (x) satisfy the estimate

sup
T n

|uk − u| ≤ Ck−1 log k, (1.10)

for some constant C (depending on A), where u is a potential for the corresponding
optimal transport map. Moreover, the discrete probability measures γk on T n × T n,
determined by the Sinkhorn algorithm, converge weakly towards the corresponding
optimal transport plan (I × (∇u + I ))∗μ, concentrating exponentially on the graph
	 of the transport map ∇u + I :

γk ≤ pk pe−kd2
	u

/p
δ�k , (1.11)

for some positive constant p, where d	 denotes the vertical distance to the graph 	

in T n × T n, i.e. d	(x, y) := dT n (y,∇u(x)+ x) and δ�k denotes the discrete uniform
probability measure on the discrete torus �k .

More generally, we will show in Sect. 5, that if f and g are in C∞(T n), then the
previous theorem and its corollary still hold as long as the number of discretization
points in the grid satisfies

Nk ≥ Cδkn/2(1+δ), Cδ > 0

for some δ ∈]0, 1/2]. In particular, this means that one can then take a grid with larger
edge-length

h = O(1/k1/2+δ)

without affecting the quality of the approximation uk , that is, without affecting the
order O(k−1 log k) of the corresponding error terms. In other words, for smooth data
the error terms are nearly of order O(h2) if the entropic regularization parameter is
taken to be close to the square of the edge-length h of the grid.

Since each iteration in the Sinkhorn algorithm may be formulated in terms of
matrix-vector multiplication, which requires O(N 2) arithmetic operators, and since
the direct construction of the function uk uses, in general, O

(
k N 2

k log k
)
elementary

arithmetic operations. Moreover, in the present case of the torus the matrix-vector
operations in question are discrete convolutions and can thus be performed using
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778 R. J. Berman

merely O (N log N ) arithmetic operations, by using the Fast Fourier Transform (or
O(N 1+1/n) operations, using separability; see Sect. 6.3.1). Thus the construction of
uk in the previous corollary requires merely O (k Nk(log Nk) log k) arithmetic opera-
tions to obtain on error term of order O(k−1 log k). The same number of arithmetic
operations (modulo a negligible term O(Nk) needed to for the summing) yields the fol-
lowing constructive approximation of the squared Optimal Transport distance d(μ, ν)

(formula 1.4) with an additive error of the order O(k−1 log k):

Corollary 1.4 (Constructive approximation of d(μ, ν)2) Assume that f and g are in
C2,α(T n) for some α > 0. There exists a positive constant A such that after mk =
�Ak log k
 iterations

1

2
d(μ, ν)2 = 1

k

Nk∑
i=1

p(k)
i log a(k)

i (mk) + 1

k

Nk∑
i=1

q(k)
i log b(k)

i (mk) + O

(
1

k
log k

)

and, as a consequence, such an equality also holds for the squared discrete Optimal
Transport distance d(μ(k), ν(k))2 (defined by formula 1.2 with Ci j = d(xi , x j )

2/2).

Finally we point out that, by symmetry, Theorem 1.2 also shows that, on the one
hand, the functions

v(k)
mk

(xi ) := −k−1 log
b(k)

i (mk)

qi
(1.12)

converge, as k → ∞, towards the solution vt of the parabolic equation obtained by
interchanging the roles ofμ and ν. On the other hand, by Lemma 3.1, the function v

(k)
mk

is equal to the Legendre transform (in the space variable) of u(k)
mk , up to a negligible

O
(
k−1 log k

)
error term. Thus Theorem 1.2 is consistent, as it must, with the fact

that the Legendre transform of the solution ut of Eq.1.7 solves the parabolic equa-
tion obtained by interchanging the roles of μ and ν (as can be checked by a direct
calculation).

1.2 Generalizations

1.2.1 The static case

The result in the static setting is shown to hold in a very general setting of optimal
transport between two probability measures μ and ν defined on compact topological
spaces X and Y , respectively: see Theorems 3.3, 3.4 and also Theorem 3.6 which,
in particular, applies to the classical Euclidean setting where X and Y are convex
domains inRn and c(x, y) := −x · y. In the case when Y is convex the corresponding
limit φ obtained from the Sinkhorn iteration is the unique convex normalized solution
to the second boundary value problem for Monge–Ampère equation in the interior of
X :

e−g(∇φ) det(∇2φ)dx = μ, (∂φ)(X) ⊂ Y . (1.13)

The result holds without any regularity assumptions on μ and g if Alexandrov’s clas-
sical notion of a Monge–Ampère measure is employed (see Sect. 3.2). Moreover, the
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convergence holds even when the target set Y is not convex, but then (∂φ)(X) is
contained in the convex hull of Y (see the discussion in Sect. 3.2).

In the general setting the roles of the positive vectors p(k) and q(k), discretizing μ

and ν, are played by two sequences μ(k) and ν(k), satisfying certain density properties
with respect to μ and ν (which are almost always satisfied in practice). Moreover, the
cost function c is merely assumed to be continuous and can even be replaced by any
sequence ck converging uniformly to c, as the inverse k of the entropic regularization
parameter tends to infinity (which applies, in particular, to the convolutional Wasser-
stein distances introduced in [63], where the matrix in formula 1.6 is replaced by a
heat kernel; see Sect. 3.3).

1.2.2 The dynamic case

The corresponding result in the dynamic setting (Theorem 5.7) requires that X and
Y be compact Riemannian manifolds and further regularity assumptions on c, μ and
ν (the case when X and Y have boundaries is left for the future). A “local den-
sity property” on the approximations μ(k) and ν(k) is required, roughly saying that
the approximations of μ and ν hold up to length scales of the order k−1/2, with an
O(1/k)-error term. Interestingly, the local density properties turn out to be satisfied
when the approximations μ(k) and ν(k) are defined by (weighted) point clouds, gen-
erated using Quasi-Monte Carlo methods for numerical integration [12,13,17]. The
general results are applied to the case of the round two-sphere endowed with the two
different cost functions: (1) d(x, y)2 and (2)− log |x − y|. These two cases appear, for
example, in applications to (1) computer graphics (texture mapping), medical imaging
[30,72], mesh adaptation for global whether and climate prediction [70] and (2) the
reflector antenna problem in geometric optics [37,69]. Nearly linear complexity of the
corresponding Sinkhorn iteration is achieved in both cases, using fast transforms and
O(N 3/2)-complexity using separability.

1.3 Relation to previous results

To the best of the authors knowledge these are the first convergence results concerning
the Sinkhorn algorithm (and its fixed points) in the limit when the number N of points
and the inverse of the regularization parameter ε jointly tend to infinity (see [21] and
references therein for the static case when only ε−1(= k) tends to infinity in the
Euclidean R

n-setting and [47,48] for a very general setting). This kind of joint limit
is, in practice, what is studied in numerical simulations in the context of geometric
optimal transport (see for example [63] and the in-depth study in [35,59] on CPU
and GPU hardware, respectively. Thus the convergence analysis in the present paper
provides a theoretical bases for these simulations and yields concrete rates, under
appropriate regularity assumptions (see Sect. 4.2 for a comparison with previous rates
for the Sinkhorn algorithm). In particular, the present results rigorously establish and
quantify the experimental observations in [59, Fig. 2], that the Sinkhorn algorithm
converges after essentially O(ε−1) iterations. Moreover, the experimental findings in
[59, Fig. 2] that ε can be taken to be close to the order O(h2) on a grid with “edge
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780 R. J. Berman

length” h are confirmed, if the data is assumed to be C∞-smooth (note that the data
in [59, Fig. 2] is even real-analytic).

It should also be pointed out that the “change of variables” in formula 1.8 which
plays an important role in the present paper, is also crucial for numerical simulations
as it ensures numerical stability, as emphasized in [27,35,59]. As stressed in [35] the
corresponding log-sum-exp KeOps routines [22], used in [35] to implement the itera-
tion um → um+1 onGPU hardware, are just as efficient asmatrix-vector products with
the kernel matrix Ki j . Moreover, the present results provide a theoretical justification
for the kernel truncations employed in [35,59]. To briefly explain this we recall that
the starting point of the stabilization scheme advocated in [59] (see also [27, Remark
4.22]) is to write the iteration in terms of the variables (um+1 − um, vm+1 − vm). In
the setting of a general cost function c(x, y) this corresponds to replacing the matrix
kernel e−kc(x,y) with the “stabilized” kernel

e−kc(x,y)e−kum−1(x)e−kvm−1(y)

By Theorems 1.2, 5.7 (and the argument in the proof 1.11) the latter kernel is, for k
large, exponentially concentrated on the graph of 	t in X × Y of the diffeomorphism
Fut corresponding to the parabolic solution ut for t = (m − 1)/k. This means that
the corresponding Nk ×Nk matrices

(
e−kc(xi ,y j )e−kum−1(xi )e−kvm−1(y j )

)
are effectively

sparse. Building on the results in the present paper this is exploited in [6] to modify
the Sinkhorn algorithm in order to obtain a numerically stable algorithm on the torus,
which is shown to have nearly O(N )-complexity at each iteration.

1.3.1 Comparison with other numerical schemes for optimal transport

The quantitative convergence in Corollary 1.3 should be compared with previous
results in the rapidly growing literature on numerical approximations schemes for
solutions to Optimal Transport problems and the corresponding Monge–Ampère type
equations. However, the author is not aware of any previous results providing both
complexity bounds (in terms of N ) and a quantified rate of convergence of the error
of the approximate solution, as N → ∞. Recall that a time-honored approach is to
approximate the optimal transport potential u by solving the linear program which is
dual to the discretized optimal transport problem. This can be done using combina-
torial algorithms. However, they do not scale well for large N (see, for example, the
exposition in [14], where applications to cosmology are given in the periodic setting).
Moreover, it is not clear how to establish quantitative convergence rates for the conver-
gence towards u. Another influential approach is the Benamou–Brenier Augmented
Lagrangian approach, using computational fluid mechanics, introduced in [2] in the
periodic setting (numerical experiments suggest that it has O(N 3) time-complexity,
as pointed out in [4]). There is also a rapidly expanding literature concerning other
discretization schemes in the field of numerical analysis of PDEs, mainly concerning
the case of domains in R

n (as in Sect. 3.2) and the periodic case of the torus (as in
Sect. 1.1.3). Herewewill focus on the schemeswhere convergence results—analogous
to Theorems 3.6, 1.1 - have been established. Themostly studied approaches are based
on either finite differences [4,5] or semi-discrete Optimal Transport [46] (which goes

123



The Sinkhorn algorithm, parabolic optimal transport and geometric… 781

back to the classical work of Alexandrov and Pogorelov). Then the fully non-linear
Monge–Ampère equation for the potential u (and the corresponding boundary condi-
tions 1.13 or periodicity conditions) is replaced with a finite dimensional non-linear
algebraic equation for a “discrete” function uh , where h denotes the corresponding
spatial resolution. In our torus setting we thus have h = 1/k (defined as the entropic
regularization paremeter) when the data is C2,α smooth and for C∞-data h can be
taken arbitrarily close to 1/k1/2. The equation for uh may be expressed as the fixed
point condition for a non-linear map Sh :

Sh(uh) = uh,

(whose role in our setting is played by the scaled logarithm of the Sinkhorn operator
defined by formula 2.20). In practice, the map Sh is often taken to be a Newton
type iteration. In experiments it has been computed in almost linear time-complexity
O(Nh) [4,5]. Moreover, merely a few dozen iterations S(mh)

h (u0) appear to be needed
in order to obtain a good approximation of uh . In the semi-discrete approach the
convergence of uh towards u, as h → 0, follows directly from basic stability results
for optimal transport plans. Moreover, in the case of finite difference approach the
convergence is established in [4] in the setting of domains. Another discretization of
the Optimal Transport problem in domains, called the logarithmic discrete Monge–
Ampère optimization problem, is introduced in [49] and the corresponding solution
uh is shown to converge towards u. Very recently, a general convergence framework
is introduced in [38], showing how to slightly modify a range of existing numerical
schemes (including [5]) to establish the convergence of the corresponding discrete
solutions uh towards u in the setting of domains.

However, the problem of establishing convergence rates as h → 0 is still open in
these schemes (see the discussion in the survey [34]). From this point of view one of
the main points of the present paper is to rigorously quantify how many iterations mh

are needed in the setting of the Sinkhorn iteration in order to approximate the solution
u to nearly order O(h), for C2,α-data (and nearly order O(h2) for C∞-data). The
answer is that nearly O(h−1) iterations are needed, according to Corollary 1.3 (see
the discussion in Sect. 4.2). This is in line with the experimental findings in [35,59]
(see, in particular, [35, Figure 3.19] where ε := k−1 = 10−4 and [59, Fig. 2]).

Remark 1.5 Interestingly, as discussed in detail in [35,59], heuristics inspired by sim-
ulated annealing in numerics (aka ε-scaling) and multi-scale techniques can be used
to effectively reduce the of number of Sinkhorn iterations needed to approximate the
optimal transport potential u to a few dozen. In a nutshell, the idea is to fine-tune
and gradually decrease both the parameter ε and the spatial resolution h during the
Sinkhorn iterations (see [35, Figure 3.26]). One can anticipate that variants of The-
orems 1.2, 5.7 will play a role in making these heuristics and experimental findings
mathematically rigorouswith quantitative error estimates. The local density property in
Definition 5.6 should be useful in this regard (note that the length scale k−1/2(= ε1/2)

appearing in Definition 5.6 corresponds to the notion of blurring scale in [35]). On the
other hand, as discussed in Sect. 7, it is of independent interest to be able to approx-
imate the solution ut of the parabolic optimal transport equations at any finite time t
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and then ε must be kept fixed during the iterations (so that an O(ε)-approximation of
ut is obtained after O(ε−1t) iterations, if logarithmic factors are ignored).

In the setting of semi-discrete optimal transport the convergence of a damped New-
ton iteration towards uh is established in [46] (under similar assumptions as inTheorem
5.10) at a linear rate (in the exponential sense). Furthermore, rates of convergence of
uh towards u are established in [11]. However, the damping parameter and the rate
established in [46] depends on the discrete solution uh (and hence on h) in a rather
complicated way and degenerates as Nh is increased, i.e. when h is decreased; see
[46, Remark 1.3] and compare also with the discussion in Sect. 4.2. This means that,
for the moment, the analog of Corollary 1.3 in the semi-discrete setting seems ot be
out of reach.

A damped Newton approach has also been applied directly to the Monge–Ampère
equation and shown to converge to u at a linear rate in the periodic setting in [51]
when the target density is constant and then in [58] in the general periodic setting. In
these approaches the iteration u(m+1) is obtained by inverting a second order linear
elliptic operator (in non-divergence form) depending on u(m). Various discretizations
of these schemes are studied experimentally in [42,51,58,70].

One advantage of the Sinkhorn framework over many other approaches, when
applied to general manifolds, is that it is meshfree. In other words, it does not require
generating a grid or a polyhedral tessellation of the manifolds, but only a suitable point
cloud, which can be efficiently generated using Quasi-Monte Carlo methods. In the
case of the round sphere various different numerical algorithms have previously been
explored in the literature: see [30,70,72] for experimental work on the case of the cost
function d(x, y)2 and [18,28] for the case of the cost function− log |x − y|, as applied
to the reflector antenna problem in geometric optics.

1.3.2 Kähler geometry

The present results are very much inspired by an analogous setup which appears in
complex (Kähler) geometry. Briefly, the role of the Sinkhorn algorithm is then played
by Donaldson’s iteration, introduced in [32], whose fixed points are called balanced
metrics and k appears as the power of a given ample line bundle L over X with e−ku

playing the role of a Hermitian metric on L . Moreover, the role of the function ρku

(formula 2.23) is played by the (normalized) point-wise norm of the Bergman kernel
on the diagonal, induced by the pair (u, μ). From this point of view the “static case”
of Theorem 1.1 (and its generalization Theorem 3.3) is the analog of [10, Thm B]
and the “dynamic case” of Theorem 1.2 is the analog of the result in [8] showing
that Donaldson’s iteration converges to the Kähler-Ricci flow [20], as conjectured
in [32]. In fact, identifying the real torus T n with a reduction of the complex torus
X := C

n/(Zn + iZn) the parabolic flow 1.7 can, in the case when g is constant be
identified with a twisted Kähler-Ricci flow [20] whose stationary solutions are Kähler
potentials solving the corresponding complexMonge–Ampère equation (known as the
Calabi–Yau equation in this context).1 But is should be stressed that a new feature of

1 When f and g are constant the corresponding twisted Kähler-Ricci flow coincides with Hamilton’s Ricci
flow restricted to the space of Kähler metrics.
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the analysis in the present paper, compared to the usual situation in Kähler geometry
(apart from allowing a non-uniform target measure ν, i.e. a non-constant g) is that
the source measure μ is taken to be discrete and depend on k, i.e. it is given by a
discrete sequence μ(k). In practice, such discretizations are used in implementations
of Donaldson’s iteration, such as the experimental work [33], motivated by String
Theory. The discreteness of μ(k) leads to various technical complications, that do not
seem to have been studied rigorously in the Kähler geometry setting. Interestingly,
the density condition on the sequence μ(k) appearing in Lemma 3.1 can be viewed
as a real analog of the Bernstein–Markov property for a sequence μ(k), as studied in
the complex geometric and pluripotential theoretic setting (see the discussion on page
8 in [9]). The relations between the real and complex settings will be expanded on
elsewhere.

1.4 Organization

In Sect. 2 a general setting for iterations onC(X), generalizing the Sinkhorn algorithm,
is introduced. The iteration in question, which is determined by a triple (μ, ν, c), is
essentially equivalent to the Iterative Proportional Fitting Procedure and the results in
Sect. 2 are probably more or less well-known (except perhaps Theorem 2.9). But one
point of the presentation is to exploit the variational structure. It can be viewed as a real
analogue of the formalism introduced in [8], in the setting of Donaldson’s iteration
[32] and it lends itself to various generalizations of the optimal transport problem
(such as Monge–Ampère equations with exponential non-linearities). In Sect. 3 the
variational structure is used to give a general convergence result for the Sinkhorn fixed
points, which when specialized to the torus setting yields Theorem 1.1. Applications
to the second boundary value problem for the Monge–Ampère operator in R

n and to
convolutional Wasserstein distances are also given. Then in Sect. 4 the convergence
of the Sinkhorn iteration towards the parabolic Optimal Transport equations on the
torus is shown (Theorem 1.2). The proof leverages the regularity theory and a priori
estimates of the corresponding parabolic PDE on the torus (shown in “Appendix B”).
In the following Sect. 5 the result is generalized to a rather general setting of optimal
transport on compact manifolds. In Sect. 6 it is shown that nearly linear complexity
can be achieved in the case of optimal transport on the torus and the sphere (which
applies, in particular, to the reflector antenna problem). Section 7 gives an outlook
on relations to singularity formation in the parabolic optimal transport equations. In
particular, the variational approach to the Sinkhorn iteration introduced in Sect. 2 is
exploited in order to propose a generalized notion of solution to the corresponding
parabolic PDE. In “Appendix A” a proof of a discrete version of the classical stationary
phase approximation is provided.

2 General setup and preliminaries

If Z is a compact topological space then we will denote by C(Z) the space of contin-
uous functions on Z endowed with the sup-norm and by P(Z) the space of all (Borel)
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probability measures on Z , endowed with the weak topology. Given a subset S of Z
we will denote by χ S the function which is equal to 0 on S and infinity otherwise.

Throughout the paper we will assume given a triple (μ, ν, c) where μ and ν are
probability measures on compact topological spaces X and Y , respectively and a
function c on X × Y . The function c will be assumed to be continuous in all sections
except in Sect. 5 (where we assume that c is lower semi-continuous). The supports of
μ and ν will be denote by Xμ and Yν , respectively. Given u ∈ C(X) and v ∈ C(Y )

we will, abusing notation slightly, identify u and v with their pull-backs to X × Y .

2.1 Recap of optimal transport and the c-Legendre transform

Let us start by recalling the standard setup for optimal transport (see the book [67] for
further background). A probability measure γ ∈ P(X × Y ) is said to be a transport
plan (or coupling) between μ and ν if the the push forwards of γ to X and Y are equal
to μ and ν, respectively. The subspace of all such probability measures in P(X × Y )

will be denote by �(μ, ν). A transport plan in �(μ, ν) is said to be optimal wrt the
cost function c, if it realizes the following infimum:

inf
γ∈�(μ,ν)

∫
X×Y

cγ

By weak compactness such an optimal transport plan always exists. The c-Legendre
transform uc of a function u ∈ C(X) is defined as the following function in C(Y )

uc(y) := sup
x∈X

(−c(x, y) − u(x)) .

Similarly, if v ∈ C(Y ) then vc is the function on C(X) defined by replacing u in the
previous formula with v and taking the sup over Y . A function u ∈ C(X) is said to be
c-convex if

(uc)c = u

Equivalently, u is c-convex iff there exists some v ∈ C(Y ) such that u = vc. Indeed,
this follows from the observation that uccc = uc for any u ∈ C(X), which in turn
follows fromucc ≤ u. The following functional onC(X)will be called theKantorovich
functional:

J (u) :=
∫

uμ +
∫

ucν. (2.1)

Proposition 2.1 (“Optimality criterion”) A transport plan γ ∈ �(μ, ν) is optimal iff
there exists u ∈ C(X) which is c-convex and such that γ is supported in

	u := {(x, y) ∈ X × Y : u(x) + uc(y) + c(x, y) = 0
}

(2.2)
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Moreover, if this is the case then

∫
X×Y

cγ = −J (u)

Proof This is standard and known as the Knott–Smith optimality criterion (in the
Euclidean setting) [67]. For completeness we provide the simple proof of the direction
that we shall use later on. Since u + uc + c ≥ 0 on X × Y the following lower bound
holds for any given γ ∈ �(μ, ν)

∫
X×Y

cγ ≥ − inf
u∈C(X)

J (u) (2.3)

Now, if γ is supported in 	u it follows directly that
∫

X×Y cγ = −J (u) and hence γ

attains the lower bound above, i.e. γ is optimal. ��
Remark 2.2 A byproduct of Theorem 3.3 below (applied to the case whenμk = μ and
νk = ν for all k) is a proof that there always exists a transport plan γ∗ with support in
	u for some c-convex function. Since γ∗ saturates the lower bound 2.3 it follows that
taking the infimum over all γ in �(μ, ν) yields equality in 2.3. As a consequence,

inf
γ∈�(μ,ν)

∫
X×Y

cγ = sup
(u,v)∈�c

∫
uμ

+
∫

vν, �c := {(u, v) ∈ C(X) × C(Y ) : u + v ≤ c}
(2.4)

This is the content of Kantorovich duality, which is usually shown using Rockafeller-
Fenchel duality in topological vector spaces [67].

2.1.1 The torus setting

In section we consider the case when X = Y = T n := R
n/Zn and the cost function

c := d2
T n /2 is half the squared standard distance function on T n . We will identify a

function u on T n with a Zn-periodic function on R
n in the usual way. Similarly, we

identify the cost function c on T n with a function on R
n × R

n , which is Zn-periodic
in each argument

c(x, y) := 1

2
dT n (x, y)2 := 1

2
inf

m∈Zn
|x + m − y|2 (2.5)

Note that c(x, ·) is Lipschitz with Lipschitz constant
√

n on T n(endowed with its
standard metric). As a consequence any c-convex function u on T n is also Lipschitz
with Lipschitz constant

√
n. In this particular case a c-convex function will be called

quasi-convex and we will say that u ∈ C2(T n) is strictly quasi-convex if∇2u + I > 0.
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Lemma 2.3 Let u ∈ C2(T n) be strictly quasi-convex. Then

• the map
x �→ yx := x + (∇u)(x) (2.6)

defines a C1-diffeomorphism of T n.
• uc is also a strictly quasi-convex C2-function on T n and the corresponding map

y �→ xy := y + (∇uc)(y) (2.7)

is the inverse of the map 2.6 and the following matrix relation holds

(∇2u + I )(xy)
−1 = (∇2uc + I )(y) (2.8)

Conversely, if u ∈ C2(T n) is quasi-convex and the map 2.6 is a C1-diffeomorphism of
T n, then u is strictly quasi-convex. Moreover, if u ∈ Ck(T n) is strictly quasi-convex,
for k a positive integer and k ≥ 2, then uc ∈ Ck(T n).

Proof Given a function φ on Rn we denote by φ∗ its classical Legendre transform:

φ∗(y) := sup
x∈Rn

x · y − φ(x) (2.9)

(in other words, this is the c-Legendre transform wrt c(x, y) := −x · y). Given a
Z

n-invariant quasi-convex function u on R
n we set φ(x) := u(x) + |x |2/2. Then it

follows directly from the definitions that φ is convex and

φ∗(y) = uc(y) + |y|2/2, x + (∇u)(x) = ∇φ(x), ∇2u + I = ∇2φ (2.10)

Next note that since uc is continuous and periodic it is bounded and hence φ∗ is finite
on all of Rn with quadratic growth. As a consequence, given y ∈ R

n , the function
x �→ x · y − φ(x) attains it sup at some point xy ∈ R

n

φ∗(y) = xy · y − φ(xy) (2.11)

and since the point is a localmaximumwehave y = ∇φ(xy). This shows that∇φ maps
R

n surjectively ontoRn .Moreover, since∇2φ > 0 theφ function is strictly convex and
xy is uniquely determined. Thus theC1-map∇φ is a bijection andmoreover its inverse
y �→ xy is also a C1-map (by the inverse function theorem), which proves the first
claim in the lemma. Moreover, since xy is the unique minimizer of the sup defining
φ∗ the function φ∗ is differentiable with gradient xy at y. Hence, the C1-inverse
of ∇φ is given by ∇φ∗, showing that φ∗ is in C2(Rn). Differentiating the identity
∇φ∗ ◦ ∇φ = I finally proves 2.8 and the last statement follows from the implicit
function theorem: ∇φ is Ck−1 implies (since ∇2φ > 0) that its inverse ∇φ∗ is also
Ck−1. Finally, if u ∈ C2(T n) is quasi-convex and the map 2.6 is a diffeomorphism of
T n , then differentiating (∇φ)−1 ◦ ∇φ = I reveals that the non-negative matrix ∇2φ

is non-degenerate, hence strictly positive, i.e u is strictly quasi-convex. ��
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We will also have use for the following

Lemma 2.4 Assume that u is C1-smooth and strictly quasi-convex. Then, for any fixed
y ∈ T n, the unique infimum of the function x �→ c(x, y) + u(x) on T n is attained at
x = xy (defined by formula 2.7). Moreover, the function x �→ c(x, y) is smooth on
some neighborhood of xy in T n and its Hessian is equal to the identity there.

Proof First observe that, given y ∈ T n , the infimum in question is attained at xy

(defined by formula 2.7), as follows directly from combining formulas 2.11 and 2.10.
Representing xy and y with points in Rn we thus have

dT n (xy, y)2 = inf
m∈Zn

|xy + m − y|2 = |xy + m0 − y|2

for some m0 ∈ Z
n . We claim that, under the assumptions of the lemma, the inf above

is uniquely attained at m0, i.e.

m �= m0 �⇒ |xy + m − y|2 > |xy + m0 − y|2.

To see this we note that, since u is periodic, when viewed as a function onRn , we have

inf
x∈Rn

dT n (x, y)2/2 + u(x) = inf
x∈Rn

|x − y|2/2 + u(x) (2.12)

Since the inf in the left hand side above is attained at xy so is the inf in the right hand
side. Now assume, to get a contradiction, that the claim above does not hold, i.e. there
exists a non-zero m ∈ Z

n such that |xy + m − y| = |xy + m0 − y|. This implies that
the inf in the right hand side in formula 2.12 is attained both at xy and at xy +m (since
u is periodic). But this contradicts the fact that the function x �→ |x − y|2/2+ u(x) is
strictly convex on Rn (by the assumed strict quasi-convexity of u on T n). Finally, the
claim shows, since the inequality in the claim is preservedwhen x̄ is perturbed slightly,
that dT n (x, y)2 = |x − y|2 for all x sufficiently close to xy . Hence, x �→ dT n (x, y)2/2
is smooth there and its Hessian is constant, as desired. ��

2.2 The log Sinkhorn iteration on C(X)

In this section we will consider an iteration on C(X), which can be viewed as a refor-
mulation of the Sinkhorn algorithm and the Iterative Proportional Fitting Procedure,
recalled in Sect. 1.1.1 (see Sect. 2.3.1). Given data (μ, ν, c), as in Sect. 2.1, we first
introduce the following maps

Tμ : C(X) → C(Y ), u �→ v[u] := log
∫

e−c(x,·)−u(x)μ(x)

and

Tν : C(Y ) → C(X), v �→ u[v] := log
∫

e−c(·,y)−v(y)ν(y)
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(abusing notation slightly we will write Tμ(u) = v[u] etc). This yields an iteration on
C(X) defined by

um+1 := S[um], (2.13)

where S is defined as the the composed operator Tν ◦ Tμ on C(X) :

S : C(X) → C(X), u �→ u[v[u]]

In lack for a better name the iteration 2.13 will be called the log Sinkhorn iteration
and the operator S will be called the log Sinkhorn operator. It will be convenient to
rewrite it as the following difference equation:

um+1 − um = log(ρum ), (2.14)

where ρu is defined by
ρu := eS[u]−u (2.15)

and has the property that ρuμ is a probability measure on X (as follows directly from
the definitions).

In this section we will use a variational approach to study the log Sinhorn iteration.
An alternative approach will also be used in Sect. 4, which relies on the observation
that the log Sinkhorn iteration contracts the L∞-distance on C(X) (see Step 2 in the
proof of Lemma 4.4).

2.2.1 Existence and uniqueness of fixed points

Consider the following functional F on C(X) :

F := Iμ − L, Iμ(u) =
∫

X
uμ, L(u) := −

∫
Y

v[u]ν. (2.16)

Note that Iμ and L are equivariant under the additive action of R and hence F is
invariant.

Remark 2.5 This functional can be viewed as an analog of the Kantorovich functional
J (u) (formula 2.1), where the c-Legendre transform uc is replaced by v[u]. From a
numerical perspective this amounts to replacing the supremum defining uc by a “soft
max” [27]. It is well-known thatF decreases under the log Sinkhorn iteration, i.e. that
F(Su) ≤ F(u). This is usually shown using block coordinate descent on the “dual
functional” to the “primal” minimization problem in Prop 2.12; see [27, Prop 4.21]
and [66, Section 3.1]. But here we observe that, in fact, both functionals Iμ and −L
decrease along the iteration (see Step 1 in the proof of Theorem 2.9). This will be
important in the proof of the last step of Theorem 2.9 and in the proof of Prop 7.1.

Lemma 2.6 The following is equivalent:

• u is a critical point for the functional F on C(X)

• ρu = 1 a.e. with respect to μ
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Moreover, if u is a critical point, then u∗ := S(u) is a fixed point for the operator S
on C(X)

Proof First observe that the differential of the functional L defined in formula 2.16,
at an element u ∈ C(X), is represented by the probability measure ρuμ, where ρu is
defined by formula 2.15. This means that for any u̇ ∈ C(X)

d(L(u + t u̇))

dt
|t=0 =

∫
u̇ρuμ.

This follows readily from the definitions by differentiating t �→ v[(u + t u̇)] to get an
integral over (X , μ) and then switching the order of integration. As a consequence,
u is a critical point of the functional F on C0(X) iff ρuμ = μ, i.e. iff ρu = 1 a.e.
with respect to μ. Finally, if this is the case then S(u) = u a.e wrt μ and hence
S(S(u)) = S(u) (since S( f ) only depends on f viewed as an element in L1(X , μ)).

��
The following basic compactness property holds:

Lemma 2.7 Given a point x0 ∈ X the subset Kx0 of C(X) defined as all elements u
in the image of S satisfying u(x0) = 0 is compact in C(X).

Proof First observe that, since X ×Y is assumed compact, the continuous function c is,
in fact, uniformly continuous on X . Hence, it follows from the very definition of S that
S(C(X)) is an equicontinuous family of continuous functions on X . By Arzela-Ascoli
theorem it follows that the set Kx0 is compact in C(X). ��

Using the previous two lemmas gives the following

Proposition 2.8 The operator S has a fixed point u∗ in C(X). Moreover, u∗ is uniquely
determined a.e. wrt μ up to an additive constant and u∗ minimizes the functional F .
More precisely, there exists a unique fixed point in S(C(X))/R.

Proof We start by noting that

F(Su) ≤ F(u)

(this is shown in the first step of Theorem 2.9 below). Since F is invariant under the
natural R-action we conclude that

inf
C(X)

F = inf
K0

F ,

where K0 denotes the compact subset of C(X) appearing in Lemma 2.7. Since F is
clearly continuous on C(X) this implies the existence of a minimizer of F which is
moreover in K0.

Next observe that F is convex on C(X). Indeed, for any fixed y ∈ Y , u �→ v[u](y)

is convex on C(X), as follows directly from Jensen’s inequality. Hence, −L is convex
and since Iμ is affine we conclude that F is convex. More precisely, Jensen’s (or
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Hölder’s) inequality implies that F is strictly convex on C(X)/R viewed as a subset
of L1(μ)/R. Hence, if u0 and u1 are two minimizers, then there exists a constant C
such that u0 = u1 + C a.e. wrt μ. In particular, if C = 0 then u∗ := S(u0) = S(u1)

gives the same fixed point of S. ��

2.2.2 Monotonicity and convergence properties of the iteration

Wenext establish the following result, which can be seen as a refinement, in the present
setting, of the convergence of the general Iterative Proportional Fitting Procedure
established in [55]. The result will be used in the proof of Proposition 7.1.

Theorem 2.9 Given u0 ∈ C(X) the corresponding iteration um := Smu0 converges
uniformly to a fixed point u∞ of S.

Proof Step 1 Iμ and −L are decreasing along the iteration and hence F is also
decreasing. The functionals are strictly decreasing at um unless S(u∗) = u∗ for
u∗ := S(um).

Using the difference equation 2.14 for um and Jensen’s inequality, we have

Iμ(um+1) − Iμ(um) =
∫

log ρum μ ≤ log
∫

ρum μ = log 1 = 0

Moreover, equality holds unless ρum = 1 a.e wrt μ i.e. S(um) = um and S(u∗) = u∗
everywhere on X . Similarly, by symmetry,

L(um) − L(um+1) =
∫

log ρvm ν ≤ log
∫

ρvm ν = log 1 = 0,

where now ρv , for v ∈ C(Y ), denotes the probability measure on Y defined as in
formula 2.15, but with the roles of μ and ν interchanged.

Step 2 Convergence in C(X)/R.
Given the initial data u0 we denote by Ku0 the closure of the orbit of u0 in C(X)

under repeated application of S. By Lemma 2.7Ku0/R is compact inC(X)/R. Hence,
after perhaps passing to a subsequence, um → u∞ in C(X)/R. Now, since F is
decreasing along the orbit we have

F(u∞) = inf
K0

F .

Hence, by the condition for strict monotonicity it must be that Su∞ = u∞ a.e. wrt
μ and hence, since u∞ is the image of S, it follows that Su∞ = u∞ on all of X . It
then follows from Proposition 2.8 that u∞ is uniquely determined in C(X)/R (by the
initial data u0), i.e. the whole sequence converges in C(X)/R.

Step 3 Convergence in C(X)

Let us first show that there exists a number λ ∈ R such that

lim
m→∞ Iμ(um) = λ. (2.17)
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By Step 1 Iμ is decreasing and hence it is enough to show that Iμ(um) is bounded from
below. But Iμ = F +L, where, by Prop 2.8 (or the previous step) F is bounded from
below (by F(u∞)). Moreover, by the first step L(um) ≥ L(u0), which concludes the
proof of 2.17. Next, decompose

um = ũm + um(x0),

By Lemma 2.7 the sequence (ũm) is relatively compact in C(X) and we claim that
|um(x0)| ≤ C for some constant C . Indeed, if this is not the case then there is a
subsequence um j such that |um j | → ∞ uniformly on X . But this contradicts that
Iμ(um) is uniformly bounded (by 2.17). It follows that the sequence (um) is also
relatively compact. Hence, by the previous step the whole sequence um converges to
the unique minimizer u∗ of F in S(C(X)) satisfying Iμ(u∗) = λ. ��
Remark 2.10 The convergence result in [55] is, in the present setting, equivalent to
convergence of the induced iteration on C(X)/R. In fact, the latter convergence
holds at linear rate, i.e. there exists a norm ‖·‖C(X)/R on C(X)/R and a positive
number δ such that ‖u − u∞‖C(X)/R ≤ e−δm . Indeed, setting

∥∥u − u′∥∥
C(X)/R

:=∥∥sup(u − u′) − inf(u − u′)
∥∥

C(X)
(which corresponds, under u �→ e−u , to the Hilbert

metric on the cone of positive functions inC(X)) this follows fromBirkhoff’s theorem
about positive operators on cones, precisely as in the finite dimensional situation of
the Sinkhorn iteration considered in [36]; see also [27, Thm 4.2] and [66].

2.2.3 The induced discrete evolution on C(X)× C(Y)

Fixing an initial function u0 ∈ C(X) the corresponding evolution m �→ um induces a
sequence of pairs (um, vm) ∈ C(X) × C(Y ) defined by the following recursion:

(um+1, vm+1) := (u[vm+1], v[um])

2.2.4 The induced discrete evolution onP(X × Y) and entropy

Let us briefly explain the dual point of view involving the spaceM(X ×Y ) ofmeasures
on X × Y (which, however, is not needed for the proofs of the main results). The data
(μ, ν, c) induces the following element γc ∈ M(X × Y ) :

γc := e−cμ ⊗ ν

Given a function u ∈ C(X) we will write

γu := e−(u+v[u])γc (2.18)

Lemma 2.11 u satisfies S(u) = u a.e. wrt μ iff γu ∈ �(μ, ν).

123



792 R. J. Berman

Proof A direct computation reveals that the push-forwards of e−(u+v[u])γc to X and
Y , respectively, are given by

∫
X

e−(u+v[u])γc = ν,

∫
Y

e−(u+v[u])γc = ρuμ

Hence, γu ∈ �(μ, ν) iff ρuμ = μ, which, by the definition 2.15 of ρu , concludes the
proof. ��

The discrete dynamical system um induces a sequence

γm := γum (= e−um (x)e−vm (x)γc) ∈ P(X × Y )

Proposition 2.12 The unique minimizer γ∗ of the functional I(·|γc) on �(μ, ν) is
characterized by the property that it has the form

γ∗ = e−�γc

for some � ∈ C(X) + C(Y ). Moreover, γ∗ = γu∗ , where u∗ is a fixed point for S on
C(X) (or more generally, on L1(X , μ)) and

inf
�(μ,ν)

I(·|γc) = inf
C(X)×C(Y )

F (2.19)

and given any function u0 ∈ C(X), the corresponding sequence γm converges in L1

(i.e. in variation norm) towards γ∗ (and moreover I(γm |γ∗) → 0).

Proof By construction γ∗ := γu∗ has the property that

γ∗ = e−�γc, γ∗ ∈ �(μ, ν)

for some � ∈ L∞(X) + L∞(Y ). But a standard calculus argument reveals that any
such γ∗ is the unique minimizer of the restriction of I to the affine subspace �(μ, ν)

of P(X × Y ) (using that I is strictly convex). The last convergence statement then
follows directly fromTheorem 2.9 (only the easier convergence inC(X)/R is needed).

��
Rewriting

k−1I(γ |γkc) =
∫

cγ + k−1I(γ |μ ⊗ ν),

the equality 2.19 can be viewed as an entropic variant of Kantorovich duality 2.4 in
the limit when c is replaced by kc for a large positive number k. In fact, it follows
from Theorem 3.3 applied to μk = μ and νk = ν that

lim
k→∞ inf

γ∈�(μ,ν)
k−1I(γ |γkc) = inf

γ∈�(μ,ν)

∫
cγ = sup

�c

∫
uμ +

∫
vν,
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as in the Kantorovich duality 2.4. In the next section wewill consider the setting where
μ and ν also change with k.

2.3 The scaled setting and discretization

Let us next consider the following variant of the previous setting, parametrized by
a parameter k (which is the parameter that will later on tend to infinity and which
corresponds to the entropic regularization parameter ε := k−1). This means that we
replace the triple (μ, ν, c) with a sequence (μ(k), ν(k), kc). As explained in Sect. 1.1.2
replacing c with kc corresponds to introducing the entropic regularization parameter
ε = k−1. We then rescale the functions in C(X) and C(Y ) by k and consider the
corresponding rescaled operators:

v(k)[u] := k−1 log
∫

e−kc(x,·)−ku(x)μ(k)(x)

u(k)[v] := k−1 log
∫

e−kc(·,y)−kv(y)ν(k)(y)

S(k)(u) := k−1S(ku) (2.20)

etc. The corresponding rescaled iteration is thus defined by the iteration

u(k)
m+1 := S(k)u(k)

m ∈ C(X), (2.21)

given the initial value u(k)
0 ∈ C(X). It will be called the scaled log Sinkhorn iteration

(at level k). Equivalently,

u(k)
m+1 − u(k)

m = k−1 log(ρ
ku(k)

m
), (2.22)

where

ρku(x) := eku(k)
[
v(k)[u]](x)

eku
(x), (2.23)

which can be explicitly expressed as

ρku(x) =
∫

Y

e−kc(x,y)−ku(x)∫
X e−kc(x ′,y)−ku(x ′)μ(k)(x ′)

ν(k)(y)

We also set

F (k)(u) := k−1F(ku) =
∫

uμ +
∫

v(k)[u]ν. (2.24)

By Theorem 2.9 (applied to a fixed k) as m → ∞ the iteration u(k)
m converges in C(X)

to a fixed point u(k) of the operator S(k) (uniquely determined by the initial value
u(k)
0 )).
We observe that the following compactness property holds (and is proved exactly

as in Lemma 2.7):
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Lemma 2.13 The union
⋃

k≥0 S(k) is relatively compact in C(X)/R (identifying
C(X)/R with the set of all continuous functions vanishing at a given point x0)

2.3.1 Discretization and the Sinkhorn algorithm

Now assume that μ(k) and ν(k) are discrete probability measures whose supports are
finite sets

X (k) := {x (k)
i }Nk

i=1, Y (k) := {y(k)
i }Nk

i=1

of the same number Nk of points in X and Y , respectively. This means that there exist
vectors p(k) and q(k) in RNk such that

μ(k) =
Nk∑

i=1

δ
x (k)

i
p(k)

i , ν(k) =
Nk∑

i=1

δ
x (k)

i
q(k)

i .

Moreover, since μ(k) and ν(k) are probability measures the vectors p(k) and q(k) are
elements in the simplex �Nk in R

Nk defined by

�N :=
{

v ∈ R
N : vi ≥ 0,

N∑
i=1

vi = 1

}
, (2.25)

which we identify with P({1, . . . , N }). Similarly, we identify the discrete measure

γ (k)
c := e−kcμ(k) ⊗ ν(k)

on X × Y with the matrix K̃ ∈ R
Nk × R

Nk defined by

K̃i j := K (k)
i j p(k)

i q(k)
j , K (k)

i j := exp(−kCi j ), Ci j := c(x (k)
i , y(k)

j ),

where Ci j is viewed as a cost function on {1, . . . , N }2. Under the identifications

C(X (k)) ↔ R
Nk+ , u �→ a, ai := e−ku(x (k)

i ) p(k)
i

and

C(Y (k)) ↔ R
Nk+ , v �→ b, bi := e−kv(y(k)

j )q(k)
i

the scaled iteration 2.21 gets identified with the recursion a(k)(m) defined by the
Sinkhorn algorithm determined by the matrix K (k) and the positive vectors p(k) and
q(k) (see Sect. 1.1.1). Given an initial positive vector a(k)(0) Theorem 2.9 thus shows
that (a(k)(m), b(k)(m)) converges, as m → ∞, to a pair of positive vectors (a(k), b(k))

such that the scaled matrix Db K (k) Da has the property that the rows sum to p(k) and
the columns sum to q(k).

123



The Sinkhorn algorithm, parabolic optimal transport and geometric… 795

Remark 2.14 By construction, the functions u(k)
m (x) on X can be expressed in terms

of a Fourier type sum:

u(k)
m (x) = k−1 log

Nk∑
i=1

e
−kc

(
x,y(k)

i

)
b(k)

i (m − 1)

where the “Fourier coefficients” b(k)
i (m − 1) are given by the Sinkhorn algorithm. In

the case when X and Y are domains in Rn , with c(x, y) = −x · y, this is the analytic
continuation to iRn of a bona fide Fourier sum with Fourier coefficients in k times the
support of ν(k). Hence, k plays the role of the “band-width”.

3 Convergence of the fixed points

In this section we will prove various generalizations of Theorem 1.1, stated in the
introduction. Throughout the section wewill consider the parametrized setting in Sect.
2.3 and assume that the sequencesμ(k) and ν(k) converge toμ and ν inP(X) andP(Y ),
respectively (in the standard weak topology). We will denote by u(k) the fixed point of
the corresponding operator S(k) on C(X), uniquely determined by the normalization
condition u(k)(x0) = 0, at a given point x0 in X and set v(k) := Tμu(k) =: v(k)[u(k],
which is a fixed point of the corresponding operator S(k) on C(Y ).

3.1 A general convergence result for the fixed points

Westart bygiving adensity conditiononμ(k) ensuring thatv(k)[u] converges uniformly
to the c-Legendre transform uc of u, when μ has full support:

Lemma 3.1 Assume that the sequence μ(k) converging to μ in P(X) has the following
“density property”: for any given open subset U intersecting the support Xμ of μ

lim inf
k→∞ k−1 logμ(k)(U ) ≥ 0 (3.1)

Then, for any given u ∈ C(X), the sequence v(k)[u] converges uniformly to (χXμ +u)c

in C(Y ).

Proof Replacing the integral over μ(k) with a sup directly gives

v(k)[u](y) ≤ (χXμ + u)c(y) (3.2)

for any y ∈ Y . To prove a reversed inequality let xy be a point in Xμ where the sup
defining (χXμ + u)c(y) is attained and Uδ a neighborhood of xy where the oscillation
of c(·, y) + u is bounded from above by δ (the existence of Uδ is ensured by the
continuity of c and the compactness of X and Y ). Then

v(k)[u](y) ≥ k−1 log
∫

Uδ

e−k(c(x,y)+u(x))μ(k)(x) ≥ k−1 logμ(k)(Uδ) + uc(y) − δ
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Hence, as k → ∞, v(k)[u](y) → uc(y) and since v(k)[u] is equicontinuous (by the
assumed compactness of X×Y and the continuity of c) this implies the desired uniform
convergence. ��
Example 3.2 (Weighted point clouds) If μk = μ for any k then the density property is
trivially satisfied.More generally, the density property 3.1 is satisfiedby any reasonable
approximation μ(k). For example, in the discrete case where μ(k) = ∑Nk

i=1 w
(k)
i δ

x (k)
i

the property in question holds if supi 1/w
(k)
i and the inverse of the number of points

x (k)
i in any given open set U intersecting Xμ have sub-exponential growth in k.

Theorem 3.3 Suppose that μ(k) → μ and ν(k) → μ in P(X) and P(Y ), respectively
and assume thatμ(k) andν(k) satisfy the density property3.1. Let u(k) be the normalized
fixed point for the scaled log Sinkhorn operator S(k) on C(X). Then, after perhaps
passing to a subsequence, the following holds:

u(k) → u

uniformly on X, where u is a c-convex minimizer of the Kantorovich functional J
(formula 2.1) satisfying

u = (χYν + (χXμ + u)c)c (3.3)

As a consequence, the corresponding probability measures

γ (k) := e−k(u(k)+v(k))e−kcμ(k) ⊗ ν(k) ∈ P(X × Y )

converge weakly to a transport plan γ between μ and ν, which is optimal wrt the cost
function c.

Proof Step 1: Convergence of a subsequence of u(k)

In the following all functions will be normalized by demanding that the values
vanish at a givenpoint.ByLemma2.13wemay, after perhaps passing to a subsequence,
assume that u(k) → u(∞) uniformly on X , for some element u(∞) in C(X). By the
previous lemma, for any given u ∈ C(X) we have

F (k)(u) = J (χXμ + u) + o(1), (3.4)

whereF (k) is definedby formula 2.24 and J denotes theKantorovich funtional, defined
by formula 2.1. Now take a sequence εk of positive numbers tending to zero such that

u(∞) − εk ≤ u(k) ≤ u(∞) + εk (3.5)

Since u �→ v(k)[u] is decreasing it follows that

F (k)(u(∞)) − 2εk ≤ F (k)(u(k)) + 2εk (3.6)
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Next note that since u(k) minimizes the functional F (k) (by Prop 2.8) we have
F (k)(u(k)) ≤ F (k)(u) for any given u in C(X). Hence, combining 3.6 and 3.4 and
letting k → ∞ gives

J (u(∞)) ≤ inf
u∈C(X)

J (u),

showing that u(∞) minimizes J on C(X). To see that u(∞) is c-convex first recall that,
by definition, u(k) satisfies

u(k) = u(k)[v(k)[u(k)]].

Hence, combing 3.5 with the previous lemma, applied twice, gives

u(k) = u(k)[(χXμ + u(∞))c] + o(1) = ((χYμ + (χXμ + u(∞))c)c + o(1)

This shows that u(∞) = ((χYμ + (χXμ + u(∞))c)c, proving that u(∞) = f c for some
f ∈ C(Y ). Hence u(∞) is c-convex.

Step 2: Convergence of γ (k) (for the subsequence in Step 1) towards an optimizer
By Lemma 2.11 γ (k) is in �(μ, ν). Hence, by weak compactness, we may assume

that γ (k) converges towards an element γ (∞) in P(X × Y ). By Prop 2.1 it will thus
be enough to show that γ (∞) is supported in 	u(∞) . To this end let 	δ be the closed
subset of X × Y where u + uc + c ≥ δ > 0 for u := u(∞). By the previous lemma
γ (k) ≤ e−kδ/2μ(k) ⊗ ν(k) on 	δ , when k is sufficiently large and hence the limit γ (∞)

is indeed supported on 	u(∞) . ��
In order to ensure that the whole sequence u(k) is convergent some conditions on the

cost function c and the measures μ and ν need to be imposed. Exploiting well-known
uniqueness result for optimal transport plans/maps this can, in particular, be achieved
in the following Riemannian setting.

Theorem 3.4 Let M be a Riemannian manifold and denote by d the Riemannian
distance function. Let X and Y be compact subsets of M such that Y is a topological
domain, i.e. Y is equal to the closure of the interior of Y and take c(x, y) to be the
restriction of d(x, y)2/2 to X × Y . Assume that ν is absolutely continuous wrt the
Riemannian volume form and has support Y and that μ(k) → μ and ν(k) → ν in
P(X). Denote by u(k) the normalized fixed point of the scaled log Sinkhorn operator
S(k) on C(X). Then

• v(k) converges uniformly in Y to a c-convex function v, which is a potential for the
unique optimal Borel map transporting ν to μ, i.e. the map that can be expressed
as

y �→ xy := expy(∇v), (3.7)

(which means that xx is obtained by transporting y along a unit-length geodesic
in the direction of (∇v)(y)).
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• u(k) converges uniformly on X towards the c-convex function u given by the c-
Legendre transform vc of v. Moreover, u and v satisfy

u = (u + χXν )
cc, v = (u + χXν )

c = uc = v

• If μ is absolutely continuous wrt the Riemannian volume form, then x �→
expy(∇u) defines the optimal transport of μ to ν.

Proof This will be shown to follow from the previous theorem combined with results
in [68], generalizing Brenier’s theorem in Rn [16] and its Riemannian version in [52]
(and, in particular, [23], concerning the torus case). After passing to a subsequence,
as in the previous theorem, we may assume that u(k) → u := u(∞) and that v(k) →
v := (χXμ + u)c. In particular, v is c-convex. Denote by γ the corresponding optimal
transport plan, furnished by the previous theorem, which is supported in the subset
of X × Y where u + v + c = 0. Hence, it follows from [68, Thm 10.41] (and its
proof) that the Borel map y �→ expy(∇v) is the unique optimal transport (Borel) map,
pushing forward ν to μ. Since Y is assumed to be a topological domain it follows that
v is uniquely determined on Y , modulo additive constants (see [68, Remark 10.30]).
Now, by formula 3.3 we have u = vc and since u(x0) = 0 it follows that u is
uniquely determined. But, as shown in the proof of the previous theorem, we have
v = (u + χXν )

c and hence v is also uniquely determined (i.e. not only determined
modulo an additive constant). Next, since, by assumption, Y = Yν formula 3.3 says
that (u + χXν )

cc = u. In general, wccc = wc for any function w and hence it follows
that (u + χXν )

c = uc which shows that v = uc. ��

The previous theorem applies more generally as soon as a unique Borel optimal
map exists (see for example [68, Thm 10.38] for conditions on c ensuring that this is
the case).

3.1.1 The torus case: proof of Theorem 1.1

First assume only that the probabilitymeasure ν is absolutely continuouswrt Lebesgue
measure. By the previous theorem u(k) then converges uniformly towards a c-convex
function u such that

(∇uc + I )∗ν = μ

Ifμmoreover and ν have densities e−g and e−g which are Hölder continuous, then it it
is well-known that there exists a unique optimal transport map and its potential (which
is uniquely determined up to a constant) is in C2,α(T ) for some α > 0 (see [23] where
this is deduced from the regularity results of Caffarelli Rn). It follows that uc and
hence also u is C2-smooth and strictly quasi-convex and solves the Monge–Ampère
equation 1.5.
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3.2 Application to the second boundary value problem for theMonge–Ampère
operator inRn

Now consider the Euclidean case of Theorem 3.4, i.e. the case where M = R
n and

d(x, y) = |x − y| and assume that X and Y are compact convex domains (and, in
particular, topological domains) and take x0 = 0. As before we also assume that
the support of ν is equal to Y and that ν is absolutely continuous wrt dx and fix
discretizations μ(k) and ν(k) satisfying the density property 3.1.

In order to conform to classical notation in R
n we set φ(k)(x) := u(k)(x) + |x |2/2

and ψ(k) = v(k)(y) + |y|2 etc. This corresponds to replacing the cost function d2/2
with

c(x, y) := −x · y.

We will use the classical notation φ∗ for the corresponding Legendre transform (for-
mula 2.9). Then, by Theorem 3.4 , φ(k) converges uniformly to a convex function φ

on X and
(∇ψ)∗ν = μ, ψ := (χX + φ)∗ (3.8)

Wenext observe that thismeans thatφ satisfies the followingMonge–Ampère equation
on �

M Aν(φ) = μ, (3.9)

where M Aν(φ) denote the Monge–Ampère measure of φ relative the target measure
ν, in the sense of Alexandrov. We recall that if ν is a given probability measure on Rn

which is absolutely continuous wrt dx and φ is a finite convex function on a convex
open set � in Rn , then M Aν(φ) is the Borel measure on � defined by

∫
E

M Aν(φ) =
∫

(∂φ)(E)

ν,

where E is a given Borel set in � and (∂φ)(E) denotes the image of E under the
multivalued sub-gradient map ∂φ [67]. As is well-known, the assumption that ν is
absolutely continuous wrt dx ensures that M Aν(φ), as defined above, is indeed a
measure on �, i.e. countably additive (see [53, Section 3] for a more general setting
involving a cost function c). Moreover, if φ is C2-smooth and strictly convex, then
making the change of variables y = ∇φ(x) reveals that

M Aν(φ) = ρν(∇φ) det(∇2φ), (3.10)

where ρν denotes the density of ν wrt dx . We will use the following general repre-
sentation of the the Monge–Ampère measure (see [11, Section 2.2] and references
therein).

Lemma 3.5 Let φ be a bounded finite convex function in �. Then

M Aν(φ) = (∇ψ)∗ν, ψ := (χX + φ)∗
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Hence, by formula 3.8, the limit φ of φ(k) indeed solves the Monge–Ampère equation
3.9. It should be stressed that, in general, there can be many different convex solutions
to the Monge–Ampère equation (which not only differ by an additive constant). But
the point is that the Sinkhorn iteration singles out a particular solution φ. On the other
hand, when Y is convex we have the following well-known uniqueness result:

Let � be a convex open set in R
n and μ and ν probability measures on R

n such
that μ is supported in �, ν is absolutely continuous wrt dx and the support Y of ν is
a convex body, i.e. a compact convex set with non-empty interior. Then a solution φ to
the second boundary value problem

M Aν(φ) = μ, (∂φ)(�) ⊂ Y (3.11)

is uniquely determined up to an additive constant.

Proof A simple proof is given in [11], which we recall here since it fits well with the
spirit of the present paper (see also [53, Thm 3.1] for a different proof in the setting
of more general cost function). The starting point is the observation that any convex
function φ on an open convex set � with the property that (∂φ)(�) ⊂ Y , for a convex
body Y , may be expressed as φ = (χY + (χX + φ)∗). But, by the previous lemma,
the equation M Aν(φ) = μ implies that the function ψ := (χX +φ)∗ in Y is uniquely
determined up to an additive constant. Hence, so is φ. ��

We thus arrive at the following result, which also applies to the second boundary
value problem in all of Rn :
Theorem 3.6 Let X and Y be compact convex domains inRn endowed with probability
measure μ and ν respectively. Assume that the support of ν is equal to Y and that
ν is absolutely continuous wrt dx. Let μ(k) and ν(k) be sequences of probability
measures on X and Y converging weakly towards μ and ν respectively and satisfying
the density property 3.1. Denote by φ(k) the unique normalized fixed point of the scaled
log Sinkhorn operator on C(X) corresponding to the cost function c(x, y) = −x · y.
Then

φ(k) → φ, k → ∞ (3.12)

uniformly on X, where φ is the unique normalized convex solution to the second
boundary value problem 3.11 in the interior of X. More generally, the corresponding
result holds when X is replaced byRn under the assumption that there exists a compact
subset containing the support of μ(k) for all k. Then the corresponding convergence
3.12 is uniform on compact subsets of Rn.

Proof First assume that X is compact. As explained above it then follows from The-
orem 3.4 that φ(k) converges uniformly to a normalized convex function φ on X ,
satisfying M Aν(φ) = μ. Next, note that, it follows directly from the definition of the
fixed point φ(k) that φ(k) may be expressed as

φ(k)(x) = k−1 log
∫

Y
ekx ·yν′(y)
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for a measure ν′ supported on Y . As a consequence, φ(k) is smooth and ∇φ(k) is
contained in the convex hull of Y , i.e. in Y , since Y is assumed to be convex. But
then it follows that (∂φ)(�) ⊂ Y , which concludes the proof in the case when X is
compact. Note that, alternatively, we could have used directly that, by Theorem 3.4,
the limit φ satisfies φ = (χY + (χX + φ)∗), which is the unique normalized solution
to the second boundary problem in question (by the proof of the previous lemma). To
prove the non-compact case when X is replaced byRn denote by X R the ball or radius
R centered at 0 and assume that R is sufficiently large to ensure that μ and all μ(k) are
supported in the interior of X R . Denote by φ

(k)
R (x) the normalized fixed point of the

corresponding iteration on C(X R). Since μ(k) is supported in X R it follows, from the
very definition of the iteration, that φ(k)

R (x) is, in fact, independent of R. Accordingly,

we may define a normalized convex function φ(k) on R
n by setting φ(k) := φ

(k)
R on

X R for any R sufficiently large. Then φ(k) is the unique normalized fixed point of
the corresponding iteration on C(Rn). Moreover, since X R is compact φ(k) converges
uniformly on X R to a convex function φ solving the second boundary value problem
3.11 on X R . Since R is arbitrary this shows that φ, in fact, solves the problem on all
of Rn . ��

3.3 Application to convolutionalWasserstein distances

Theorem 3.3 holds more generally (with essentially the same proof) when the function
c is replaced by a sequence ck such that

‖ck − c‖L∞(X×Y ) → 0 (3.13)

For example, in the Riemannian setting of Theorem 3.4. denoting by Kt (x, y) the
corresponding heat kernel and setting t := 2k−1, the sequence

ck := −t−1 logKt (x, y) (3.14)

satisfies 3.13, by Varadhan’s formula (which holds more generally on Lipschitz Rie-
mannian manifolds [54]). Replacing c by ck in this setting thus has the effect of
replacing the matrix Ai j := e−kd2(xi ,x j )/2 appearing in the corresponding Sinkhorn
algorithm with the heat kernel matrix K2k−1(xi , x j ) which, as emphasized in [63],
has computational advantages. Following [63] we consider the squared convolutional
Wasserstein distance between μ and ν :

W2
(k)(μ, ν) := k−1 inf

γ∈�(μ(k),ν(k )
I(γ,K2k−1μ(k) ⊗ ν(k)),

definedwrt approximationsμ(k) and ν(k), for example given byweighted point clouds,
as in Example 3.2. In [63, Page 3], the problem of developing conditions for the
convergence of W2

(k)(μ, ν) was posed. The following result provides an answer:
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Theorem 3.7 Let X be a compact Riemannian manifold (possibly with boundary) and
set c(x, y) := d(x, y)2/2, where d is the Riemannian distance function. Suppose that
μ(k) → μ and ν(k) → μ in P(X) and that μ(k) and ν(k) satisfy the density property
3.1. Then

lim
k→∞W2

(k)(μ, ν) = W2(μ, ν),

where W2(μ, ν) denotes the squared L2-Wasserstein distance between μ and ν.

Proof Repeating the argument in the proof of Theorem 3.3, with c replaced by ck as
above, gives

lim
k→∞ inf

u∈C0(X)
F (k) = inf

u∈C(X)
J (u)

According to formula 2.12 the infimum appearing in the left hand side above is pre-
ciselyW2

(k)(μ, ν). Since the infimum in the right hand side above is equal toW2(μ, ν),
by Kantorovich duality (formula 2.4), the result follows. ��

4 Convergence of the iteration towards parabolic optimal transport
equations on the torus

4.1 Proof of Theorem 1.2

We will denote by δ�k the uniform discrete probability measure supported on the
discrete torus �k with edge-length 1/k :

δ�k := 1

Nk

∑
xi ∈�k

δxi

Given two probability measures μ = e− f dx and ν = e−gdy we can then define their
discretizations as the probability measures

μ(k) = 1∫
T n e− f δ�k

e− f δ�k , ν(k) = 1∫
T n e−gδ�k

e−gδ�k

Note that the normalization constants have the asymptotics

∣∣∣∣
∫

T n
e− f δ�k − 1

∣∣∣∣ ≤ C f k−1,

∣∣∣∣
∫

T n
e−gδ�k − 1

∣∣∣∣ ≤ Cgk−1 (4.1)

where C only depends on an upper bound on |∇ f | on T n (and similarly for g); see
[13, Page 2].

Remark 4.1 As will be clear from the proof, Theorem 1.2 also holds with the simpler
discretizations e− f δ�k and e−gδ�k (which, in general, are not probability measures).
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The Sinkhorn algorithm, parabolic optimal transport and geometric… 803

We start with the following discrete version of the classical Laplace method of
integration, proved in “Appendix A”:

Lemma 4.2 Let α be a lower-semicontinuous (lsc) function on T n with a unique mini-
mum at x0 and assume that α is C4-smooth on a neighborhood of x0 and ∇2α(x0) > 0.
Then, if h is C2-smooth

kn/2
∫

e−kαhδ�k = (2π)n/2e−kα(x0) h(x0)√
det(∇2α(x0))

(1 + εk), |εk | ≤ Ck−1

where the constant C only depends on an upper bounds on the C4-norm of α, the
C2-norm of h and a strict lower bound on the smallest eigenvalue of ∇2α on a neigh-
borhood of x0.

We next prove the key asymptotic result that will be used in the proof of Theorem
1.2 giving the asymptotics of the function ρku(x), defined by formula 2.23 (the result
can be viewed as a refinement of Lemma 3.1).

Proposition 4.3 Let u be a strictly quasi-convex function in C4(T n). Then the following
asymptotics hold

ρku(x) = det(I + ∇2u(x))e f (x)−g(x+∇u(x))(1 + εk), |εk | ≤ Ck−1

where the constant C only depends on upper bounds on the C4-norm of u and the
C2-norms of f and g and a strict positive lower bound on the eigenvalues of the
matrix

(
I + ∇2u(x)

)
.

Proof First recall that, by Lemma 2.3, uc is also strictly quasi-convex and in C4(T n).
Set c(x, y) = d2

T n (x, y)/2. In the proof we will denote by O(k−1) any sequence of
functions satisfying |O(k−1)| ≤ Ck−1, for a constant C depending on data as in the
statement of the proposition. Fix y ∈ Y . The function x �→ c(x, y) + u(x) is lsc on
T n and has a unique minimum xy and it is C4-smooth close to xy (by Lemma 2.4).
Applying the asymptotics 4.1 and Lemma 4.2 thus gives

kn/2ekv(k)[u](y) := kn/2
∫

e−k(c(x,y)+u(x))μ(k)(x) = ekuc(y)
(

h(y) + O(1)k−1
)

,

where

h(y) := (2π)n/2 exp(− f (xy))√
det(I + ∇2u(xy))

.
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Asaconsequence, the inverse of kn/2ekv(k)[u](y) is givenby e−kuc(y)
(
h(y)−1 + O(1)k−1

)
and hence

eku(k)
[
v(k)[u]](x) := kn/2

∫
e−kc(x,y)

(
1

kn/2ekv(k)[u](y)

)
ν(k)(y)

= kn/2
∫

e−k(c(x,y)+u(x)+uc(y))h(y)−1ν(k)(y) + Rk(x), (4.2)

where

Rk(x) ≤ O(k−1)kn/2
∫

e−k(c(x,y)+u(x)+uc(y))ν(k)(y).

By Lemma 4.2 (and the asymptotics 4.1) we have

kn/2
∫

e−k(c(x,y)+u(x)+uc(y))ν(k)(y) ≤ C ′

and hence it follows that

Rk(y) = O(k−1).

Now, the same localization argument as above shows that the integral over ν(k)(y) in
formula 4.2 localizes around a small neighborhood V of y = yx . Hence, applying
Lemma 4.2 (and the asymptotics 4.1) again gives

kn/2
∫

e−k(d(x,y)2/2+u(x)+uc(y))h(y)−1ν(k)(y)

= ek((uc)c)(x)h−1(yx )
(2π)n/2 exp(−g(yx ))√
det(I + ∇2uc(yx ))

(1 + O(k−1)).

All in all, since ((uc)c) = u, this shows that

eku(k)
[
v(k)[u]](x) = eku(x)h−1(yx )

(2π)n/2 exp(−g(yx ))√
det(I + ∇2uc(yx ))

(1 + O(k−1)).

The proof is thus concluded by invoking the inverse properties of the Hessians in
Lemma 2.3. ��
Lemma 4.4 Let X be a compact topological space and consider the following family
of difference equations on C(X), parametrized by a positive number k and a discrete
time m :

u(k)
m+1 − u(k)

m = k−1D(k)(u(k)
m ), (4.3)

where D(k) is an operator on C(X), which descends to C(X)/R and with the property
that I + k−1D(k) is an increasing operator (wrt the usual order relation on C(X)).
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Assume that there exists a subset H of C(X) and an operator D on H such that for
any u in the class ∣∣∣D(k)(u) − D(u)

∣∣∣ ≤ Cuεk, (4.4)

where Cu is a positive constant depending on u and εk is a sequence of positive
numbers converging towards zero. Assume that u(k)

0 = u0 where u0 is a fixed function
in H and that there exists a family ut ∈ H, which is two times differentiable wrt t and
solving

∂ut

∂t
= D(ut ), (ut )|t=0 = u0, (4.5)

for t ∈ [0, T ]. Then, for any (k, m) such that m/k ∈ [0, T ],

sup
T n

∣∣∣u(k)
m − um/k

∣∣∣ ≤ CT
m

k
· 2max{εk, k−1}, CT := max

{
sup

t∈[0,T ]
Cut , sup

X×[0,T ]
∂2ut

∂2t

}
.

Proof We will write ψk,m = um/k .
Step 1: The following holds for all (k, m)

sup
∣∣∣ψk,m+1 − ψk,m − k−1D(k)(ψk,m)

∣∣∣ ≤ k−1CT ε′
k, ε′

k := 2max{εk, k−1}.

Indeed, using the mean value theorem we can write

ψk,m+1 − ψk,m = 1

k

(
um/k+1/k − um/k

1/k

)
= 1

k

(
∂ut

∂t |t=m/k
+ O(k−1)

)
,

where the term O(k−1) may be estimated as |O(k−1)| ≤ AT k−1, where AT =
supX×[0,T ] | ∂2ut

∂2t
|. Using the evolution equation for ut and applying formula 4.4 thus

proves Step 1.
Step 2: The discrete evolution on C(X) defined by the difference equation 4.3

decreases the sup-norm, i.e.

sup
X

|φm+1 − ψm+1| ≤ sup
X

|φm − ψm |

if φm and ψm satisfy the difference equation 4.3 for a fixed k.
To see this set C := sup |φm − ψm |. Then, φm ≤ ψm + C and hence, since

I + k−1D(k) is assumed to be increasing,

φm+1 = φm + k−1D(k)(φm) ≤ ψm + C + k−1D(k)(ψm + C) = ψm+1 + C

In particular, sup(φm+1 − ψm+1) ≤ C . Applying the same argument with the roles of
φ and ψ interchanged concludes the proof.

Step 3: Conclusion:

sup
X

|u(k)
m − ψk,m | ≤ CT

m

k
ε′

k . (4.6)
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We will prove this by induction over m (for k fixed) the statement being trivially true
for m = 0. We fix the integer k and assume as an induction hypothesis that 4.6 holds
for m with C the constant in the previous inequality. Applying first Step 2 and then
the induction hypothesis thus gives

sup
X

|
(
ψk,m + k−1D(k)(ψk,m)

)
−
(

u(k)
m + k−1D(k)(u(k)

m )
)

|

≤ sup
X

|ψk,m − u(k)
m | ≤ CT

m

k
ε′

k .

Now, by Step 1,

sup
X

|ψk,m+1 − (ψk,m + k−1D(k)(ψk,m)| ≤ CT

k
ε′

k

for all (m, k). Hence,

sup
X

|ψk,m+1 − u(k)
m+1| ≤ CT

m

k
ε′

k + CT
1

k
ε′

k = CT
(m + 1)

k
ε′

k,

proving the induction step and hence the final Step 3. ��
In the present settingHwill be taken as subspace ofC4(T n) consisting of all strictly

quasi-convex functions u and

D(u)(x) := log(det(∇2u(x) + I )) − g(∇u(x) + x) + f (x).

The following proposition essentially follows from the results in [44,45,57] (for com-
pleteness a proof is provided in “Appendix B”). The space Ck,α(T n) denotes, as usual,
space of all functions such that the kth order derivatives are Hölder continuous with
Hölder exponent α ∈]0, 1[.
Proposition 4.5 Let f and g be two given functions in C2,α(T n). Then, for initial
data u0 ∈ C4,α(T n) which is strictly quasi-convex there exists a solution u(x, t) to
the corresponding parabolic PDE 1.7 in C2([0,∞[×T n) such that for any t > 0
ut ∈ C4(T n) and ut is strictly quasi-convex. Moreover,

• There exists a positive constant C1—only depending on upper bounds on the C2-
norms of u0, f and g and a strict positive lower bound on the eigenvalues of the
matrix (I + ∇2u0(x))—such that

C−1
1 I ≤

(
∇2ut (x) + I

)
≤ C1 I

and a constant C2 which, moreover, depends on the C4,α-norm of u0 and the
C2,α-norms of f and g such that

‖ut‖C4(T n) ≤ C2
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• There exist positive constants A1 and A0 such that

sup
T n

|ut − u∞| ≤ A1e−t/A0 (4.7)

where u∞ is a potential solving the corresponding optimal transport problem (i.e.
a solution to the corresponding stationary equation).

• if u0, f and g are in C∞(T n), then so is ut and ‖ut‖Cs (T n) ≤ Cs for any positive
integer s.

Note that differentiating the parabolic PDE 1.7 gives

∂2ut

∂2t
= Lut [D(ut )],

where Lut is the linearization of D at tt . By the first point in the previous theorem Lut

is a uniformly elliptic second order operator (see formula 9.2 in “Appendix B”) and
hence

sup
X×[0,∞[

∣∣∣∣∂
2ut

∂2t

∣∣∣∣ ≤ C3

where C3 only depends on the constants C1 and C2 in the previous proposition and
the C2-norms of f and g.

4.1.1 Conclusion of proof of Theorem 1.2 and Corollary 1.3

Consider the log Sinkhorn iteration and define D(k)(u) to be log(ρku), as in Eq.2.22.
The proof of Theorem 1.2 follows directly from combining Lemma 4.4 with Propo-
sitions 4.3, 4.5 and also using that the corresponding operator S(k) = I + k−1D(k),
defined by formula 2.20, is clearly increasing and invariant under the additive R-
action. Finally, Corollary 1.3 follows by combining Theorem 1.2 with the exponential
convergence in formula 4.7. Indeed, setting mk = ktk with tk := A log k, where A is
the constant appearing formula 4.7, gives

∥∥∥u(k)
mk

− u∞
∥∥∥

C(X)
≤
∥∥∥u(k)

mk
− utk

∥∥∥
C(X)

+ ∥∥utk − u∞
∥∥

C(X)

≤ ACk−1 log k + A1(k
−1)A/A0

where C is bounded uniformly from above, independently of t as follows from 1.2
(using the uniform bounds on ut in Prop 4.5, which ensure that C is bounded from
above, independently of t). Setting uk := u(k)

mk this proves the estimate 1.10 when
A > A0.

Next note that the estimate 1.10 implies the estimate 1.11 for γk . Indeed, by def-

inition, γk := e−kd2
T n (x,y)2/2e−kuk (x)e−kvk (y)μ(k) ⊗ ν(k), where vk := v[uk]. By the

estimate 1.10 and Lemma 8.1 there exists a positive number C such that
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808 R. J. Berman

uk(x) + vk(y) ≥ u(x) + uc(y) + Ck−1 log k.

The proof is thus concluded by invoking the following elementary inequality, which
we claim holds for any strictly quasi-convex function u in C2(T n) :

d2
T n (x, y)2/2 + u(x) + uc(y) ≥ δ

2
dT n (y, Fu(x))2, Fu(x) = x + (∇u)(x), (4.8)

under the assumption that

0 < δ I ≤
(
∇2u(x) + I

)
≤ δ−1 I .

To see this we identify u and uc with Z
n-periodic functions on R

n and set φ(x) :=
u(x) + |x |2/2. Then φ∗(y) = uc(y) + |y|2/2, where φ∗ is the classical Legendre-
transform on Rn (compare with the proof of Lemma 2.3). Hence, it will be enough to
show that

− x · y + φ(x) + φ∗(y) ≥ δ

2
|y − ∇φ(x)|2. (4.9)

Indeed, the claimed inequality 4.8 follows from the latter one after replacing x with x+
m and taking the infimumover allm ∈ Z

n .Now, by assumption∇2φ ≤ δ−1 I andhence
∇2φ∗ ≥ δ I (by 2.8). As a consequence, φ∗(y) ≥ φ∗(y − t)+ t ·∇φ∗(y − t)+ δ|t |2/2
for any t ∈ R

n . Setting t := y−∇φ(x) and using that φ∗(∇φ(x)) = ∇φ(x) ·x −φ(x)

and (∇φ∗)(∇φ(x)) = x this implies the desired inequality 4.9.

4.1.2 Proof of Corollary 1.4

By Prop 2.1 C(μ, ν) = −J (u), where u is an optimal transport potential and J is the
Kantorovich functional. Now, since u and uc are Lipschitz continuous (with Lipschitz
constant

√
n) we can approximate the integrals defining J (u) to get

−C(μ, ν) = J (u) :=
∫

uμ +
∫

ucν =
∫

uμ(k) +
∫

ucν(k) + O(k−1)

(see [13, Page 2]). Next, by Corollary 1.3 u = u(k)
mk +O(k−1 log k). Similarly, applying

Corollary 1.3 to the situation where the roles of μ and ν have been reversed shows
that v = v

(k)
mk + O(k−1 log k) and hence

C(μ, ν) = −
∑

xi ∈�k

pi u
(k)
mk

(xi ) −
∑

yi ∈�k

qiv
(k)
mk

(yi ) + O(k−1 log k)

The proof is thus concluded by expressing u(k)
mk and v

(k)
mk (yi ) in terms of a(k)(m) and

b(k)(m), respectively (formulas 1.8, 1.12) and using that k−1 log pi = k−1 log(e− f (xi )

(1 + O(k−1)) = O(k−1) and similarly for qi . This proves the first statement in
Corollary 1.4. The last statement then follows from the observation that
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1

2
d(μ(k), ν(k))2 = 1

2
d(μ, ν)2 + O(k−1)

This observation is without doubt standard but, for completeness, we provide a
proof. Denote by Xk and Yk the support of μ(k) and ν(k), respectively. By defini-
tion, 1

2d(μ(k), ν(k))2 is the sup of 〈c, γ 〉 over all probability measures on Xk × Yk

with marginals μ(k) and ν(k), respectively (with the usual identifications). Since
any probability measure γ on T n × T n with marginals μ(k) and ν(k) is automati-
cally supported on Xk × Yk we may as well take the sup over all such γ . Hence,
1
2d(μ(k), ν(k))2 = C(μ(k), ν(k)) on T n × T n . Kantorovich duality then gives

−1

2
d(μ(k), ν(k))2 = inf

u: ucc=u

(∫
uμ(k) +

∫
ucν(k)

)

= inf
u: ucc=u

(∫
uμ +

∫
ucν

)
+ O(k−1),

where the last equality follows from the argument in the beginning of the proof of the
corollary. Using Kantorovich duality again thus concludes the proof.

4.2 Comparison with previous convergence rates for the Sinkhorn algorithm and
sharpness

As pointed out in Remark 2.10 it is well-known that, for k fixed, u(k)
m converges

exponentially in C(X)/R towards a fixed point u(k)∞ :
∥∥∥u(k)

m − u(k)∞
∥∥∥

C(X)/R
≤ C0e−δk m

(i.e. it converges at linear rate in the terminology of numerical analysis). The general
estimate on e−δk provided in [36] gives that 1 − e−δk is comparable to 1 − 2e−k if
we assume, for simplicity, that c is Lipschitz continuous with Lipschitz constant 1
and that the diameter of X is equal one (see [66]). Hence, δk is comparable to e−k ,
which means that, for k large, on would needs to run O(ek) iterations to get close to
the fixed point u(k)∞ . On the order hand experimental findings reported in [27, Remark
4.15] and [35] suggest that in the “geometric settings”, such as in present torus setting,
δk is of the order O(k−1). Hence, only O(k) iterations should be needed to get close
to the limiting fixed point (see also [59, Prop 18], where this is shown for a modified
asymmetric version of the Sinkhorn algorithm, inspired by the auction algorithm).
This is confirmed by Theorem 1.2 (and the proof of Corollary 1.3). Indeed, setting
mk = tkk and applying Theorem 1.2 gives

∥∥∥u(k)
mk

− u(k)∞
∥∥∥

C(X)
≤ Ctkk−1 + ∥∥utk − u∞

∥∥
C(X)

+ ∥∥utk − u∞
∥∥

C(X)

123



810 R. J. Berman

Hence, by the exponential convergence in Prop. 4.5 and Theorem 1.1

∥∥∥u(k)
mk

− u(k)∞
∥∥∥

C(X)
≤ Ctkk−1 + Ae−tk/A + εk .

In particular, by taking mk ∼ T k for T sufficiently large fixed number one can make
the right hand side above arbitrarily small, for k large. But an important point of

Corollary 1.3 is that it provides a quantative estimate on
∥∥∥u(k)

mk − u∞
∥∥∥

C(X)
when

mk ∼ Ak log k, where u∞ is the optimal transport potential, which arises as the limit
of the corresponding parabolic equation. It should also be pointed out that it can be
shown that the asymptotics in Prop 4.3 are sharp in the sense that error term can not
be improved to o(k−1), in general. Moreover, inspection of the proof of the Laplace
method suggests that f and g should have at least two derivatives to get the order
O(k−1). Hence, the rate of convergence in Theorem 1.2 can be expected to be sharp.

5 Convergence towards parabolic optimal transport equations on
compact manifolds

Let X and Y be compact smooth manifolds (without boundary) and c a lsc function
on X ×Y , taking values in ]−∞,∞] which is smooth on the complement of a closed
proper subset, denoted by sing (c).

Remark 5.1 Note that, in contrast to previous sections, we do not assume that c is
continuous on all of X × Y . See for example Sect. 6.3.3 for a relevant example where
c(x, y) = − log |x − y| for X and Y given by the unit-sphere in R

n+1 and (hence
sing (c) is the diagonal in X ×Y ). In the Riemannian case when X = Y and c = d2/s
(where d is the Riemannian distance function) c is, of course, continuous on all of
X × Y and sing (c) is non-empty, due to the presence of cut-locus.

We will denote by ∂x the vector of partial derivatives defined wrt a choice of local
coordinates around a fixed point x ∈ X . Given two normalized volume forms μ and
ν in P(X) and P(Y ) we locally express

μ = e− f dx, ν = e−gdy

in terms of the local volume forms dx and dy determined by a choice of local coordi-
nates. We assume that f and g are C∞-smooth.

Following standard practice we will assume that the cost function satisfies the
following assumptions

• (A1) (“Twist condition”) The map y �→ ∂x c(x, y) is injective for any (x, y) ∈
X × Y − sing (c)

• (A2) (“Non-degeneracy”)det (∂xi ∂y j c)(x, y) �= 0 for any (x, y) ∈ X×Y−sing (c)

Remark 5.2 See [68] for an in depth discussionof various assumptionon cost functions.
In [68] A1+A2 is called the strong twist condition and as pointed out in [68, Remark
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12.23] it holds for the cost function derived from anywell-behavedLagrangian, includ-
ing the Riemannian setting where c = d2/2).

Definition 5.3 The spaceH(X) (orH for short) of all smooth potentials on X is defined
as the subspace of C∞(X) consisting of all c-convex (i.e. such that (uc)c = u) smooth
functions u on X with the property that the subset 	u of X ×Y defined by formula 2.2
is the graph of a diffeomorphism, denoted by Fu and c is smooth in a neighborhood
of 	u .

The definition has been made so that, if u ∈ H and (Fu)∗μ = ν, then Fu is an
optimal map (diffeomorphism) wrt the cost function c (by Prop 2.1). Accordingly, we
will call u the potential of the map Fu .

Lemma 5.4 Assume that c satisfies condition A1. If u ∈ H, then

y = Fu(x) ⇐⇒ (∂x c)(x, y) + (∂x u)(x) = 0 (5.1)

Proof By the very definition of Fu we have that y = Fu(x) iff uc(y) = −c(x, y) −
u(x). In turn, by the definition of uc this equivalently means that x maximizes the usc
function x ′ �→ C(x ′) := −c(x ′, y) − u(x ′) on X . Now assume first that y = Fu(x).
Then, by assumption, the function C is smooth close that x and hence the differential of
C vanishes at x , i.e. (∂x c)(x, y)+ (∂x u)(x) = 0 at x . Conversely, if the latter equation
holds then, by the twist assumption A1, y is uniquely determined by x and since (as
explained above) Fu(x) satisfies the equation in question it follows that y = Fu(x). ��
Example 5.5 Assume that X = Y and that c(x, y) ≥ 0 with equality iff x = y and that
c is smooth in a neighborhood of the diagonal. Then u = 0 is inH (with F0 given by
the identity) and more examples of potentials are obtained by using thatH is open in
the C∞-topology, in general. In particular, this applies in the “Riemannian setting”,
where c = d2/2 on a compact Riemannian manifold X .

5.1 Parabolic optimal transport equations

Consider now the following parabolic PDE, introduced in [44]:

∂ut (x)

∂t
= log det

(
∂x Fut

)− g(Fut (x)) + f (x) (5.2)

expressed in terms of a choice of local coordinates, where det (∂x Fu) denotes the local
Jacobian of the map x �→ Fu(x). We note that

• The right hand side in the equation 5.2 is globally well-defined (i.e. independent
of the choice of local coordinates around (x, Fu(x)) in X × Y ). Indeed, it is equal
to the logarithm of the quotient of (Fu)∗μ and ν. Accordingly, u is a stationary
solution iff it is the potential of an optimal transport map.

• Differentiating the Eq.5.1 reveals that (see [68, Section 12])

det(∂x Fu) = det
(
(∂2x c)(x, Fu(x)) + (∂2x u)(x)

)
det
(
(∂x∂yc)(x, Fu(x))

) . (5.3)
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5.2 Convergence of the Sinkhorn algorithm towards parabolic optimal transport

We next introduce the following stronger local form of the “global” density property
appearing in Lemma 3.1.

Definition 5.6 A sequence (or family) of probability measures μ(k) on X , converging
weakly towards a measure μ, is said to have the local density property at order s (and
length scale k−1/2) if there exists a positive integer s ∈ [2,∞[ and constants C1 and
C2 such for any fixed x0 ∈ X there exist local coordinates ξ := (ξ1, . . . , ξn) centered
at x0 with the following property: for any sequence hk defined on the polydisc 2Dk of
radius 2 log k, centered at 0 in R

n and satisfying
∣∣∂ |α|hk

∣∣ (x) ≤ C1e−|x |2/C1 on 2Dk

for all multiindices α satisfying |α| ≤ s the bound

kn/2
∫

Dk

hk(F (k)
x0 )∗(μ(k) − μ) ≤ C2k−1,

holds, where F (k)
x0 is the scaled coordinate map from a neighborhood of x0 in X into

R
n defined by F (k)

x0 (x) := (k1/2ξ(x)). If this is property holds for some s ∈ [2,∞[
we will simply say that μ(k) has the local density property.

We are now ready for the following generalization of Theorem 1.2 stated in the
introduction (as in the torus setting in Sect. 1.1.2 the entropic regularization parameter
is expressed as ε = k−1, where k is a positive number).

Theorem 5.7 Let c be a function satisfying the assumptions A1 and A2 and μ(k) and
ν(k) be two sequences converging towards μ and ν in P(X) and P(Y ), respectively,
satisfying the local density property. Given u0 ∈ H assume that there exists a solution
ut in C2(X × [0, T ]) of the parabolic PDE 5.2 with initial condition u0 and such
that ut ∈ H for any t ∈ [0, T ]. Denote by u(k)

m the iteration 2.21 defined by the data
(μ(k), ν(k), c) and such that u(k)

0 = u0 for any given k. Then there exists a constant C
such that for any (m, k) satisfying m/k ∈ [0, T ]

sup
T n

∣∣∣u(k)
m − um/k

∣∣∣ ≤ C
m

k
k−1,

Proof The assumptions have been made precisely to ensure that the proof of Theorem
1.2 can be generalized, almost verbatim. Hence, we will be rather brief.

Step 1:Letα be a lower-semicontinuous (lsc) function on X with a uniqueminimum
at x0 and assume that α is C4-smooth on a neighborhood of x0 and ∇2α(x0) > 0 (in
local coordinates centered at x0). Then, in local coordinates centered at x0,

kn/2
∫

X
e−kαhμ(k) = (2π)n/2e−kα(x0) h(x0)e− f (x0)√

det(∂2x α(x0))
(1 + O(k−1)). (5.4)

Using the local density assumption as a replacement of Lemma 8.1, this is shown
essentially as before. The point is that the derivatives ∂α of any fixed order of hk(x) :=
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(
(F (k)

x0 )−1
)∗ (

f e−kα
)
are bounded by Ce−|x |2/C when |xi | ≤ k1/2 (and in particular,

for |xi | ≤ 2 log k). This follows readily from the chain rule, as before. In fact, the
proof of formula 5.4 is even a bit simpler than in the torus case, since the last step 3
is not needed when the local density assumption is made at any point x0.

Step 2: If u ∈ H, then the following asymptotics holds

ρku(x) = det(∂x Fu(x))e f (x)−g(Fu(x))(1 + O(k−1))

To prove this first observe that if u ∈ H(X), then uc ∈ H(Y ). Indeed, by assumption
there is a unique x(= xy) such that y = Fu(x). Moreover, by the very definition of
Fu (Definition5.3) we can express

uc(y) = −c(xy, Fu(xy)) − u(xy).

Since c is assumed to be smooth in a neighborhood of 	u the right hand side above
defines a smooth function in x and since F is a diffeomorphism it follows that uc(y)

is smooth. Moreover, by symmetry 	uc = 	u , which can be identified with the graph
of the diffeomorphism F−1

u . This shows that uc ∈ H(Y ) and

Fuc = (Fu)−1 (5.5)

Setting yx := Fu(x) and xy = Fu∗(y) we can now apply the previous step, essentially
as before, to get

ρku(x) =
√√√√ det

(
(∂2x c)(xy, x) + ∂2x u(xy)

)
det
(
(∂2y c)(x, yx ) + ∂2y uc(yx )

)e f (x)−g(Fu(x))(1 + O(k−1))

Finally, differentiating the relation 5.5 reveals that

det((∂y Fuc )(yx )) = det((Fu(x))−1

and hence using Eq.5.3 and symmetry (which ensures that the denominator appear-
ing in Eq.5.3 coincides with the one appearing obtained when u is replaced by uc)
concludes the proof of Step 2.

Step 3: Conclusion of proof
The proof is concluded, as before, by invoking Lemma 4.4. ��
As pointed out in [44] it follows from standard short-time existence results for

parabolic PDEs that the existence of a solution ut as in the previous theorem holds
for some T > 0 (see, for example, [1, Main Thm 1]). Moreover, by [44] long-time
existence, i.e. T = ∞, holds under the following further assumptions on c :
• (A3) (“Stay-away property”)For any 0 < λ1, λ2 there exists ε > 0 only depending
on λ1, λ2 such that λ1 ≤ |det∂x Fu | ≤ λ2 �⇒ dist (	u, sing (c)) ≥ ε for any
u ∈ H
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• (A4) (“Semi-concavity”) c is locally semi-concave, i.e. the sum of a concave and
a smooth function on the domain where it is finite.

• (A5) (“Strong MAW-condition”) The Ma-Wang-Trudinger tensor of c is bounded
from below on X × Y − sing (c) by a uniform positive constant δ.

Theorem 5.8 (Kim-Streets-Warren [44]) Assume that c satisfies the assumptions A1–
A5. Then, for any given u0 ∈ H there exists a solution u(x, t) in C∞(X × [0,∞[) of
the parabolic PDE 5.2 with initial condition u0 and such that ut ∈ H for any t > 0.
Moreover, ut converges exponentially in C0(X)), as t → ∞, to a potential u ∈ H of
a diffeomorphism Fu transporting μ to ν, which is optimal wrt the cost function c.

Proof Let us explain how to translate the result in [44] to the present setting. Fol-
lowing [44] a function u ∈ C2(X) is said to be locally strictly c-convex, if, in local
coordinates, the matrix (∂2x c)(x, Fu(x))+ (∂2x u)(x) is positive definite. This condition
is independent of the choice of local coordinates. Indeed, it equivalently means that
any given x0 ∈ X is a non-degenerate local minimum for the function

x �→ c(x, F(x0)) + u(x) on X . (5.6)

It follows that for any such u the corresponding map Fu is a local diffeomorphism.
The main result in [44] says that, under the assumptions on c in the statement above,
for any initial datum u0 ∈ C∞(X) which is locally strictly c-convex, there exists a
solution u(x, t) in C∞(X×]0, T ])which is also locally strictly c-convex. To make the
connection to the present setting first note that if u ∈ H then u0 is even an absolute
minimum for the function 5.6, which is non-degenerate (since Fu is a diffeomorphism)
and hence u is locally strictly c-convex. Conversely, if u is locally strictly c-convex
then [44, Cor 7.1] says that u ∈ C2(X) is c-convex (i.e. (uc)c = u) and the proof
given in [44, Cor 7.1] moreover shows that Fu is a global C1-diffeomorphism. It then
follows from the Assumption A3 that c is smooth in a neighborhood of 	u . Hence,
u ∈ C∞(X) is locally strictly c-convex iff u ∈ H, which concludes the proof of the
theorem. ��
Remark 5.9 Under the assumptions in the previous theorem it follows, in particular,
that the optimal transport map is smooth. Conversely, the assumptions are “almost
necessary” for regularity of the optimal transport map (see [68, Chapter 12] and refer-
ence therein). Also note that the semi-concavity assumption is always satisfied in the
case when X = Y is a compact Riemannian manifold and c = d2/2 [68, (b), Page
278].

Combining the exponential large-time convergence of ut , in the previous theorem,
with Theorem 5.7 gives, just as in the torus setting, the following

Corollary 5.10 Assume that the cost function c satisfies the assumptions in Theorem
5.7 (or that c = d2

T n /2 in the case of the torus T n). Assume, moreover, that μ(k)

and ν(k) satisfy the local density property. Then, for any given u0 ∈ H, there exists a
positive constantA0 such that for any A > A0 the following holds: uk(x) := u(k)

mk (xik ),
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with mk := �Ak log k
, converges uniformly to the optimal transport potential u(x).
More precisely, there exists a constant C (depending on A) such that

sup
T n

|uk − u| ≤ Ck−1 log k

In turn, this corollary implies, just as before, that the analog of Corollary 1.4 holds
(under the same assumptions as in the previous corollary).

Example 5.11 The assumptions on c in the previous corollary are satisfiedwhen X = Y
is the n-sphere and c(x, y) = d2(x, y)/2 for the standard round metric or c(x, y) =
− log |x − y|, where |x − y| denotes the chordal distance (see [44] and references
therein). The latter case appears in the reflector antenna problem, as explained in
Sect. 6.3.3.

5.3 Constructing discretizations using Quasi-Monte Carlo systems

In order to construct discretizations satisfying the local density property (Definition
5.6) on general compact manifolds wewill employQuasi-Monte Carlo systems, famil-
iar from the theory of numerical integration. These can be viewed as generalizations
of the standard grids with N points on the torus.

Let (X , g) be an n-dimensional compact Riemannian manifold and denote by dV
the corresponding normalized volume form on X . Following [12] (and [17] in the case
of a sphere) the worst case error of integration of points {xi }N

i=1 � X and weights
{wi }N

i=1 � R+ (assumed to sum to one) with respect to some Banach space W of
continuous functions on X , is defined as

wce ({(xi , wi )}N
i=1) := sup

{∣∣∣∣∣
∫

f dV −
N∑

i=1

f (xi )wi

∣∣∣∣∣ : f ∈ W , ‖ f ‖ ≤ 1

}

We will use the shorthand X N for the weighted point cloud {(xi , wi )}N
i=1 and and call

the corresponding discrete probability measure

λX N :=
N∑

i=1

wiδxi (5.7)

for the sampling measure associated to X N . Let now W := W s
p(X) be the Sobolev

space of all functions f on X such that all (fractional) distributional derivatives of
order s are in L p(X) and assume that s > n/p and p ∈ [1,∞] (which ensures that
W s

p(X) ⊂ C0(X)). Then a sequence of weighted point clouds X N := {(xi , wi )}N
i=1 is

said to be a quasi-Monte Carlo system for W s
p(X) if

wce (X N ) ≤ C(
N 1/n

)s
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for some uniform constant C (the corresponding lower bound holds for any sequence
X N ). In view of the applications to the present setting we introduce the following
definition (modeled on the corresponding definition for p = 2 in [17]):

Definition 5.12 Given p ∈ [1,∞], a sequence of weighted point clouds X N :=
{(xi , wi )}N

i=1 is said to be a generic Quasi-Monte Carlo p-system if X N is a quasi-
Monte Carlo system for W s

p(X) for any positive integer s > n/p. Moreover, X N is
a completely generic QMC system if it is a generic Quasi-Monte Carlo p-system for
any p ∈ [1,∞].
Example 5.13 When M = T n the standard grid with N points on T n (i.e. with “edge
length” 1/N 1/n)) and with all weights taken to be equal to 1/N defines a com-
pletely generic Quasi-Monte Carlo system X N [13]. Moreover, in the case of the
standard n-dimensional sphere Sn it follows from [15,17] that there exists a sequence
of completely generic quasi-Monte Carlo system with all weights equal to 1/N . The
corresponding point sets are taken as spherical t-designs with t ∼ N 1/n (these are
defined as quadrature points, discussed in Sect. 5.3.1 below, with all weights equal).
Such points have been generated for large values of N [71]. But allowing different
weights has the advantage that explicit completely generic QMC systems can be con-
structed, as discussed below.

Remark 5.14 Recall that the covering radiusρN of a point cloud {x1, . . . , xN }on (X , g)

is defined by supx∈X mini≤N d(x, xi ). By [12, Prop 4.1, 4.3], if X N is a weighted
generic QMC 1-system then the corresponding covering radius ρN is comparable to
N−1/n .

In order to apply this setup to the present setting of the Sinkhorn iteration we will
need to adapt the number N of points to the value of the parameter k (defined as the
invers of the entropic regularization parameter). This is made precise by the following
lemma, quantifying how large N (= Nk) needs to be:

Lemma 5.15 Let s be a positive integer. Assume that X Nk :=
{
(x (k)

i , w
(k)
i )
}Nk

i=1
is a

sequence of quasi-Monte Carlo systems for W s
p(X) (where s > n/p) indexed by a

parameter k. Then the corresponding sampling measures λk(:= λNk ) have the local
density property at order s at length scales k−1/2 (Definition 5.6) if the “number
condition”

N−1/n
k ≤ C

k1/2
1

k(1+ n
2 (1−1/p))/s

(5.8)

holds for some positive constant C.

Proof Given a sequence hk as in Definition 5.6 set fk := (F (k)
x0 )∗(χkhk), where

χk(x) := χ(x/ log k) for a given smooth function χ inRn equal to one on the polydisc
D1 centered at 0 and with support in 2D1. By the assumed quasi-Monte Carlo property
there exists a constant C such that

∣∣∣∣
∫

X
fk(λk − dV )

∣∣∣∣ ≤ C
1

N s/n
k

∑
|α|≤s

(∫
|∂α fk |pdV

)1/p

.
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Multiplying both sides with kn/2 and using the chain rule thus gives

kn/2
∣∣∣∣
∫

Dk

hk(F (k)
x0 )∗(λk − dV )

∣∣∣∣ ≤ kn/2
∣∣∣∣
∫
2Dk

χkhk(F (k)
x0 )∗(λk − dV )

∣∣∣∣

= Ckn/2

N s/n
k

⎛
⎝∑

|α|≤s

k|α|/2
∫

D2k

|∂α(χkhk)|p(F (k)
x0 )∗dV

⎞
⎠

1/p

≤ C ′ kn/2k−n/2p

N s/n
k

ks/2
∑
|α|≤s

(∫
D2k

|∂α(χkhk)|pdx

)1/p

.

Now,by assumption, all |∂αhk |(x) ≤ Ce−|x |2/C on D2k .Moreover, |∂αχk | is uniformly
bounded (since ∂αχk = ∂χ/(log k)|α|) and hence the sum in the right hand side above
is uniformly bounded. Since the number condition ensures that the factor in front of
the sum is bounded by a constant times k−1 this concludes the proof. ��

Remark 5.16 When X = T 1 and s = 2 and p = 1 (which satisfies s > n/p) the
previous lemma is closely related to the case n = 1 of Lemma 8.1 (recall that the case
X = T n can be reduced to the case when n = 1).

5.3.1 Constructing completely generic QMC systems

Finally, we recall how to construct completely generic QMC systems on any n-
dimensional compact Riemannian manifold (X , g), generalizing the standard grid
on the torus, following [13]. Given a positive number W (the “bandwidth”) we denote
by H≤W (X , g) the finite dimensional subspace of C∞(X) consisting of all eigen-
functions of the Laplacian with eigenvalue bounded from above by W 2. A weighted
point cloud X N is said to consist of weighted quadrature points for H≤W (X , g)) if
the corresponding numerical integration error vanishes for any f ∈ H≤W (X). For any
sufficently large constant CX there exists a sequence of weighted quadrature points
X N for H≤CX N1/n (X) (as follows from [13, Cor 2.11] and the Weyl asymptotics, say-
ing that the dimension of H≤W (X) grows like a constant times W n). Moreover, by
[13, Cor 2.13] such a sequence X N defines a completely generic QMC system.

Example 5.17 When (X , g) is the round two-sphere S2 it is customary to rewrite W 2 =
l(l +1). Letting l range over all non-negative integers then enumerates all eigenvalues
of theLaplacian and the corresponding space H≤W (X) then coincideswith the space of
all spherical polynomials of degree l (see Sect. 6.3.2). In this case the most commonly
used explicit weighted quadrature points are obtained using various longitude-latitude
rules; see [40, Section 4.1] and also [31, Thm 3] (applied to (l, m) = (0, 0)) for the
“equi-angular” case.
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5.4 Reducing the numbers Nk of discretization points by exploiting higher
regularity of the data

Coming back to the setup in the beginning of Sect. 5 we fix two sequences X N and YN

of N weighted points on X and Y , respectively. We will assume that X N and YN are
completely generic QMC systems defined with respect to some Riemannian volume
forms dVX and dVY on X a Y , respectively. Fix δ ∈]0, 1/2] and index the number of
points N by the parameter k so that

N 1/n
k ≥ Cδk1/2+δ, δ > 0, Cδ > 0 (5.9)

(by Remark 5.14 this equivalently means that the covering radius of the corresponding
point clouds is of the order O(1/k1/2+δ). We then define a family of “discretizations”
μ(k) and ν(k) ofμ and ν, by proceeding as in the torus case, but replacing the sampling
measure δ�k with the samplingmeasures corresponding to X N and YN . In other words,
setting ρX := μ/dVX the discrete probability measure μ(k) is defined as

μ(k) := ρXλX Nk
/Z Nk ,

where Z Nk is the normalizing constant (and ν is defined in a similar fashion).

Lemma 5.18 The sequences μ(k) and ν(k) have the local density property.

Proof First observe that if follows directly from the assumptions on X N and YN that
the corresponding norming constants are equal to 1+ O(k−1) (in fact, the error terms
are of the order O(k−∞) since the densities are assumed to be smooth). Hence, it
will be enough to show that local density property holds for the sequences ρXλX Nk
and ρY λYNk

. But then the result is reduced to Lemma 3.1 by simply replacing hk with

h̃k := hk(F (k)−1

x0 )∗ρ, where ρ is the density of μ or ν. Indeed, by Leibniz rule and
the chain rule h̃k also satisfies the estimates in the lemma. Thus taking s = 1/δ and
p = 1 and invoking Lemma 3.1 concludes the proof. ��

This means that Theorem 5.7 and Corollary 5.10 apply to the discretization scheme
above, as long as the number Nk of points satisfies the bound 5.9 for some δ > 0.

Remark 5.19 The previous argument shows that if the densities of μ and ν are in
Cs(X) for some integer s ∈ [2,∞[ and s > n/p for p ∈ [1,∞[ then the local density
condition (at order s) holds if Nk satisfies the condition 5.8. In particular, if s > n on
can take p = 1 and then the condition is that N 1/n

k ≥ k1/2+1/s . In the particular case
of a uniform grid on the torus the condition is thus that the edge-length of the grid
is bounded from below by Ck−(1/2+1/s) (the assumption s > n is not needed in this
case, since one can reduce to the case when n = 1).

6 Nearly linear complexity on the torus and the sphere

In this section we start by showing that the convergence results in Sect. 5 hold in a
more general setting where the kernel K(k)(x, y) := e−kc(x,y) is replaced with an
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appropriate approximate kernel. This extra flexibility is then applied in the setting of
optimal transport on the two-sphere, using “band-limited” heat-kernels, where it leads
to a nearly linear algorithmic cost for the corresponding Sinkhorn iterations.

6.1 Sequences ck and approximate kernels Kk

Just as in the generalization of the (static) Theorem 3.3, considered in Section 3.7,
the (dynamic) Theorem 5.7 can be generalized by replacing the cost function c with
a suitable sequence ck . But then the uniform convergence of ck towards c (formula
3.13) has to be supplemented with further asymptotic properties on the complement
of the singularity locus of c. For example, the proof of Theorem 5.7 goes through,
almost word for word, if the upper bound corresponding to 3.13 holds globally, i.e.:

e−kck (x,y) ≤ O(eεk)e−kc(x,y) (6.1)

(where O(eεk) denotes a sequence of sub-exponential growth) and ck has the following
further property: on any given compact subset in the complement of sing (c) there
exists a strictly positive smooth function h0(x, y) and a uniformly bounded sequence
rk(x, y) of functions such that

K(k)(x, y) := e−kck (x,y) = e−kc(x,y)(h0(x, y) + k−1rk(x, y)) (6.2)

This implies, in particular, that if Theorem 3.3 holds for a given kernel K(k), then
it also holds for any other kernel K̃(k) which has error O(k−1) as an approximation
relative to K(k), i.e. such that

|K(k) − K̃(k)| ≤ Ck−1K(k) (6.3)

or such that K̃(k) has absolute error e−Ck , for C sufficiently large, i.e.

|K(k) − K̃(k)| ≤ e−Ck, C > inf
X×Y

c (6.4)

6.2 Heat kernel approximations in the Riemannian setting

Consider now the Riemannian setting where X is a compact Riemannian manifold
(without boundary) and c = d2/2 and ck is defined in terms of heat kernel (formula
3.14):

Theorem 6.1 Let X be a compact Riemannian manifold (without boundary) and set
c(x, y) := d(x, y)2/2, where d is the Riemannian distance function. Then the results
in Theorem 5.7 and Corollary 5.10 still hold when the matrix kernel e−kd2(x,y)/2 is
replaced with the heat kernel K2k−1(x, x) (at time t = 2k−1)

Proof As discussed above this follows from the following heat kernel asymptotics
(which are a special case of [7, Thm 3.1] and more generally hold for the heat kernel
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associated to a suitable hypoelliptic operator). Assume that x and y are contained in
a compact subset of the complement of the cut-locus. Then

Kt (x, y) = t−n/2e−t−1d2(x,y)/4 (h0(x, y) + tr1(t, x, y)) ,

where h0 is smooth and h0 > 0 and r1 is smooth and uniformly bounded on ]0, t0]×X .
This is not exactly of the form 6.2 due to the presence of the factor t−n/2 := Ak . But
it is, in fact, enough to know that 6.2 holds when the right hand side is multiplied with
a sequence Ak , only depending on k. Indeed, the iteration u(k)

m is unaltered when the
cost function ck(x, y) is replaced by ck(x, y) + Ck for some constant Ck (which is
consistent, as it must, with the fact that the parabolic equation 5.2 is unaltered when
a constant is added to c). ��

The use of the heat kernel in the Sinkhorn algorithm for optimal transport on
Riemannian manifolds was advocated in [63], where it was found numerically that
discretized heat kernels provide substantial speedups, when compared to other meth-
ods. The previous theorem offers a theoretical basis for the experimental findings in
[63], as long as the discretized heat kernels K̃(k) satisfy one of the the approximation
properties 6.3 and 6.4 (when compared with the corresponding bona fide heat kernel).
However, the author is not aware of any general such approximation results in the dis-
cretized setting (but see [24] and references therein for various numerical approaches
to discretizations of heat kernels). We will instead follow a different route, based on
“band-limited” heat kernels and fast Fourier type transforms, applied to the case when
X is the two-sphere.

6.3 Near linear complexity using fast transforms

Each iteration in the Sinkhorn algorithm amounts to computing two vector-matrix
products of the form

ai =
N∑

j=1

K(xi , y j )b j , i = 1, . . . , N , (6.5)

for a given function K on X × Y (followed by N inversions), where b and a denote
generic “input vector” and “output vectors”, respectively. In general, this requires
O(N 2) arithmetic operations. But, as we will next exploit, in the presence of suitably
symmetry fast summations techniques can be used to lower the complexity to nearly
linear, i.e. to at most C N (log N )p operations (for some positive constants C and p).
Alternatively, separability properties of the kernels in question can often be exploited
to directly decrease the complexity (as in [27, Remark 4.17]). For example, consider
the case when X = X1× X2 and Y = Y1×Y2 and denote by π1 and π2 the projections
on the first and second factors, respectively. If K(x, y) is separable, i.e. factors as

K(x, y) = K1 (π1(x), π1(y))K1 (π2(x), π2(y))
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one can take the point clouds (xi )i≤1 and (yi )i≤N as the “grid”s induced by given
point clouds on each factor with (consisting of N1 and N2 points, respectively). Then
by first summing over the first factor the complexity of the computation is reduced to
O
(
N (N 1 + N 2)

)
operations. More generally, if the separability holds with r factors,

then, by induction, the complexity becomes O
(
N (maxi≤r Ni )

)
.

6.3.1 Optimal transport on the flat torus

Let us first come back to the case of the flat torus T n discretized by the discrete
torus �k , considered in Sect. 1.1.3. Since K(x, y) := e−kd2(x,y) is invariant under the
diagonal action of the torus T n it is follows from standard arguments that the sums
6.5 can be computed in O(N )(log N ) arithmetic operations. Indeed, using the group
structure on T n we can writeK(x, y) = h(x − y), for some function h on�k . Then the
classical convolution theorem of Fourier Analysis, on the discrete torus�k (viewed as
an abelian finite group), gives (with m1, . . . m N the points of the dual discrete torus,
identified with �k) :

ai =
N∑

j=1

h(xi − y j )b j =
N∑

j=1

ĥ(m j )b̂(m j )e
2π im j ·xi , f̂ (m j ) :=

N∑
i=1

fi e
−2π i xi ·m j

This requires evaluating two Discrete Fourier Transforms (DFT) at the N = kn points
m1, . . . m N , Using the Fast Fourier Transform (FFT) this can be done in O(N )(log N )

arithmetic operations. Note that, since the heat kernel is also torus invariant, the same
argument can also be used for the kernel appearing in Theorem 6.1, in the torus case.
Alternatively, using thatK(x, y) is separable on T n (since, in general, the squared Rie-
mannian distance function on aRiemannian product is the sumof the squared distances
of the factors), the summing can directly be achieved with complexity O(N 1+1/n) for
any fixed point cloud on S1.

6.3.2 Optimal transport on the round two-sphere

Consider the round two-sphere S2 embedded as the unit-sphere in R
3. Removing the

north and south pole on S2 we have the standard spherical (longitude-colatitude) coor-
dinates (ϕ, θ) ∈ [0, 2π [×]−π, π [.A complete set of (non-normalized) eigenfunctions
for the Laplacian on L2(S2) is given by the spherical harmonics

Y m
l (ϕ, θ) := eimϕ Pm

l (cos θ), |m| ≤ l,

which has eigenvalue λ2l,m := l(l + 1). Here Pm
l (z) denotes, för z ∈ [−1, 1], as

usual, the Legendre function of degree l and order m (aka the associated Legendre
polynomial); see, for example, [31,40].
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Given a positive number W (the “band-width”) we consider the band-limited heat
kernel on the two-sphere:

Kt (x, y)W :=
∑

|m|≤l≤W

cm,lY
m
l (x)Y m

l (y), cm,l := e−tl(l+1)
∥∥Y m

l

∥∥−2
L2 (6.6)

(By the spectral theorem this means that Kt (x, y)W is the integral kernel of e−t��W

where �W is the orthogonal projection onto the space of all band-limited functions).

Theorem 6.2 Consider the two-sphere, discretized by a given good Quasi-Monte Carlo
(QMC) system and take R such that R > 1. Then the analog of all the results in
Sect.1.1.3 are valid when the matrix kernel e−kd2(x,y)/2 is replaced by the band-limited
heat kernel K2k−1(x, y)Rk. Moreover, the arithmetic complexity of each Sinkhorn iter-
ation is O(N 3/2).

Proof As recalled in Example 5.11 the cost function d(x, y)2 on the sphere satisfies
the assumptions in Theorem 5.7 (with t = ∞) and Corollary 5.10.

Step 1: The asymptotics 6.1 and 6.2 are satisfied.
By Theorem 6.1 it is enough to observe that the following basic estimate holds if

t = 2k−1 and W = Rk :

|Kt (x, y) − Kt (x, y)W | ≤ Cδe−2R2k(1−δ)

for any given δ ∈]0, 1[. To prove the estimate note that

|Kt (x, y) − Kt (x, y)W | ≤
∑
l>W

e−2k−1l(l+1)

∥∥Y m
l

∥∥2
L∞∥∥Y m

l

∥∥2
L2

≤ 2Ck3
∑

l/k>R

e−2k( l
k )2 (l + 1)2

k2
1

k
,

using that the quotient involving Y m
l is dominated byCl (and that a given l corresponds

to 2l + 1 ms). Indeed, this is a special case of the the universal L2-estimates for an
eigenfunction �λ of the Laplacian (with eigenvalue λ2) on a general n-dimensional
Riemannian manifold [62], which gives the growth factor Cλn−1. Finally, dominating
the RiemannGaussian sum abovewith the integral of the function e−ks2s2 over [R,∞[
concludes the proof.

Step 3: Complexity analysis
Using formula 6.6 gives

ai =
∑

|m|≤l≤W

cm,l b̂l,mY m
l (xi ), cm,l = e−tl(l+1)

∥∥Y m
l

∥∥−1
L2 b̂l,m, b̂l,m :=

N∑
j=1

b j Y m
l (x j ))

b̂l,m is the “forward discrete spherical Fourier transform” evaluated at (l, m). Once
it has been computed for all (l, m) ai becomes an “inverse discrete spherical Fourier
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transform” (with coefficients cm,l b̂l,m ). By separation of variables, both these trans-
forms can be computed using a total of O(k3)(= O(N 3/2)) arithmetic operations (see
the discussion after formula 1.9 in [56]). ��

In the special case when the good Quasi-Monte Carlo system is defined by an
“equi-angular” colatitude-longitude rule of N weighted points on S2 the arithmetic
complexity of each iteration can be reduced to O(N )(log N )2 operations, using a fast
discrete spherical Fourier transform [39].

6.3.3 Application to the reflector antenna problem

The extensively studied far field reflector antenna problem appears when X = Y = Sn

is the n-dimensional sphere Sn , embedded as the unit-sphere in R
n+1 and the cost

function is taken as c(x, y) := − log |x − y| [37,69]. Briefly, the problem is to design
a perfectly reflecting surface � in R

n+1 with the following property: when � is
illuminated with light emitted from the origin with intensity μ ∈ P(Sn) the output
reflected intensity becomes ν ∈ P(Sn) (of course, n = 2 in the usual applications).
Representing � as a radial graph over Sn :

� := {h(x)x}, x ∈ Sn,

for a positive function h on Sn it follows from the reflection law and conservation
of energy that h satisfies the following Monge–Ampère type equation, expressed in
terms of the covariant derivatives ∇i in local orthonormal coordinates:

det(−∇i∇ j h + 2h−1∇i h∇ j h + (h − η)δi j )

((|∇h|2 + h2)/2h)n
= eg(Fh(x))− f (x), (6.7)

where Fh(x) denotes the reflected direction of the ray emitted in the direction x (andμ

and ν are represented as in 1.3). The equation is also supplemented with the “second
boundary value condition” that Fh maps the support of μ onto the support of ν.
Assuming that f and g are smooth there exists a smooth solution h, which is unique
up to scaling (see [19] and references therein).

Theorem 6.3 Consider the two-sphere, discretized by a given good Quasi-Monte Carlo
(QMC) system. Let K (k) be the Nk × Nk matrix defined by

K (k)
i j = |x (k)

i − x (k)
j |k

Consider the Sinkhorn algorithm associated to (p(k), q(k), K (k)). There exists a posi-
tive constant A0 such that for any A > A0 the following holds: after mk = �Ak log k

Sinkhorn iterations the function hk on Sn defined by the k th root of ak := a(k)(mk)

converges uniformly, as k → ∞, towards a solution h of the antenna equation 6.7
satisfying the corresponding second boundary value condition. More precisely, there
exists a constant C (depending on A) such that

sup
SN

|hk − h| ≤ Ck−1 log k,
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Moreover, the arithmetic complexity of each iteration is O(N 3/2) in general and
O(N )(log N )2 in the case of an equi-angular grid.

Proof As recalled in Example 5.11 the cost function − log |x − y| on the sphere
satisfies the assumptions in Corollary 5.10. For the complexity analysis we first recall
the general fact that any kernel K (k)(x, y)which is radial, i.e. only depends on |x − y|,
may be expressed as

K (k)(x, y) =
∞∑

l=1

Cm,lY
m
l (x)Y m

l (y) (6.8)

for some positive constants Cm,l (a proof will be given below). By the argument in
the proof of Step 2 in Theorem 6.2, it will be enough to show that Cm,l = 0 when
l > k, i.e. that K (k)(x, y) is already band-limited with W = k. To this end we follow
the general approach in [43]. First observe that when x and y are in S2 we can write
|x − y|2 = 2(1 − x · y). Hence, Kk(x, y) = 2k f (k)(x · y), where f (k)(s) = (1 − s)k

for s ∈ [−1, 1]. The Legendre polynomials pl(= p0l form a base in the space of all
polynomials of degree at most k (which is orthogonal wrt Lebesgue measure on [0, 1])
and hence we can decompose

2k f (k) =
k∑

l=1

c(k)
l pl .

Formula 6.8 now follows from the classical Spherical Harmonic (Legendre) addition
theorem:

pl(x · y) = 4π

2l + 1

∑
|m|≤l

Y m
l (x)Y m

l (y).

��

7 Outlook

7.1 Generalized parabolic optimal transport and singularity formation

Consider the setting in Sect. 5 with a cost function c satisfying the assumptions A1 and
A2, but assume for simplicity that c is globally continuous (for example, c = d2/2 in
the Riemannian setting). Recall that, given initial data u0 ∈ H and volume forms μ

and ν, the parabolic equation 5.2 admits a smooth solution ut on some maximal time-
interval [0, T [ and the corresponding maps Fut give an evolution of diffeomorphisms
of X . It does not seem to be known whether T = ∞, in general, i.e. it could be that
there are no solutions in C∞(X×]0,∞[), in general. Still, using the corresponding
iteration u(m)

k (say, defined with respect to μk = μ and νk = ν) a generalized notion
of solution can be defined:
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Proposition 7.1 Given a c-convex function u0, define the following curve ut of func-
tions on X, emanating from u0 :

ut := sup
{

u(m)
k : (m, k) : m/k → t, k → ∞

}

Then ut is c-convex for any fixed t (and, in particular, continuous) and there exists a
constant C such that supX×[0,∞[ |ut (x)| ≤ C.

Proof Step 1 there exists a constant such that |u(m)
k | ≤ C .

By the argument in Step 3 in the proof of Theorem 2.9 we have

F (k)(u(k)) + L(k)(u0) ≤ Iμ(u(k)
m ) ≤ Iμ(u0)

By Lemma 3.1 L(k)(u0) → − ∫ uc
0ν and by Theorem 3.3 F (k)(u(k)

m ) → infC0(X) J
and hence the lhs above is uniformly bounded in k. Thus, there exists a constant C
such that −C ≤ Iμ(u(k)

m ) ≤ C . The proof of Step 1 is now concluded by observing
that there exist constants A1 and A2 such that, for any c-convex function u,

sup
X

u ≤ Iμ(u) + A1, inf
X

u ≥ Iμ(u) − A2.

Indeed, both functionals f1(u) := supX u − Iμ(u) and f2(u) := inf X u − Iμ(u) are
continuous on C(X) and descend to C(X)/R. But the space of c-convex functions is
compact inC(X)/R (as is shown precisely as in Lemma 2.7) and hence any continuous
functional on the space is uniformly bounded, which implies the two inequalities
above.

Step 2: If {uα}α∈A is a finite family of c-convex functions, then u := max{uα}α∈A

is c-convex.
It is enough to find a function v ∈ C(X) such that u = vc. We will show that v :=

min{uc
α}α∈A does the job. To this end first observe that u �→ uc is order preserving.

Hence, uα ≤ u implies that uc
α ≥ uc, giving v ≥ uc. Applying the c-Legendre

transform again thus gives vc ≤ ucc = u. To prove the reversed inequality first
observe that, by definition, uc

α ≥ v and hence uα = (uc
α)c ≤ vc. Finally, taking the

sup over all α proves the desired reversed inequality.
Step 3: Conclusion
Denote by Kt the closure in C(X) of the set St of all u(k)

m such that m/k → t and
k → ∞. By Step 1 and Lemma 2.13Kt is compact. Let u1, . . . , um be the limit points
of St . By the argument towards the end of Step 1 in the proof of Theorem 3.3, ui is
c-convex. Hence, by Step 2, so is u := max{ui }. ��

The curve ut 5.2 is well-defined for any probability measure μ and ν on compact
topological spaces X and Y and for any continuous cost function c. Moreover, if μ

and ν are normalized volume forms on compact manifolds, assumptions A1 and A2
hold and u0 ∈ H, then, by Theorem 2.9, ut coincides with the classical solution of the
parabolic equation 5.2, as long as such such a solution exists in H, i.e. as long as Fut

is a well-defined diffeomorphism. This makes the curve ut a candidate for a solution
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to the problem posed in [29, Problem 9] of defining some kind of weak solution to
the parabolic equation 5.2, without making assumptions on the MTW-tensor etc (as in
Theorem 5.8). The connection to the Sinkhorn algorithm also opens the possibility of
numerically exploring singularity formation of classical solutions ut to the parabolic
equation 5.2 as t → T (the maximal existence time). As indicated in [29, Problem
9] one could expect that the first derivatives of a classical solution ut blow up along
a subset S of X of measures zero as t → T (moreover, in the light of the discussion
in [29, Problem 8], the subset S might be expected to be rectifiable and of Hausdorff
codimension at least one).

Finally, it may be illuminating to point out that, even if the construction of the
generalized solution ut may appear to be rather non-standard from a PDE point of
view it bears some similarities to the method of “vanishing viscosity” for constructing
solutions to PDEs by adding small regularizing terms. This is reinforced by the inter-
pretation of the inverse of k as an “entropic regularization parameter” discussed in the
introduction of the paper (also note that the approximations u(k)

mk are smooth when the
heat kernel is used, as in Theorem 6.1). One is thus lead to ask whether, under suitable
regularity assumptions on (μ, ν, c) the curve ut is a viscosity solution of the parabolic
PDE [25]?

8 “Appendix A”: proof of Lemma 4.2 (discrete Laplacemethod)

We start with the following elementary lemma:

Lemma 8.1 Let hk be a sequence of continuous convex functions on the polydisc Dk

in R
n of radius log k centered at 0 such that there exists a constant C such such that

|hk(x)|+|∇e1∇e2hk |(x) ≤ Ce−|x |2/C , where e1 and e2 are any two unit-vectors. Then
there exists a constant C ′ (only depending on C) such that

∣∣∣∣∣∣∣
k−n/2

∑
x (k)

i ∈Dk∩(k−1/2Z)n

hk(x (k)
i ) −

∫
Dk

hkdx

∣∣∣∣∣∣∣
≤ C ′/k

Proof By restricting the integration to one variable at a time it is enough to consider the
case when n = 1. Fix x (k)

i , which, by symmetry, may be assumed non-negative. For

any fixed x in the interval Ik(x (k)
i ) centered at x (k)

i , of length k−1/2, Taylor expanding
hk gives

|hk(x (k)
i ) − hk(x) − (x (k)

i − x)h′
k(x (k)

i )| ≤ k−1Ce−(x (k)
i )2/C ≤ Ck−1e−(x−1/2k1/2)2/C ,

using that e−x2/C is decreasing in the last step. By symmetry, the integral over Ik(x (k)
i )

of the linear term (x (k)
i − x)h′

k(x (k)
i ) vanishes, giving

k−1/2hk(x (k)
i ) =

∫
Ik (x (k)

i )

hk(x (k)
i )dx =

∫
Ik (x (k)

i )

hk(x)dx + ε
(k)
i ,

123



The Sinkhorn algorithm, parabolic optimal transport and geometric… 827

where

|ε(k)
i | ≤ Ck−1

∫
Ik (x (k)

i )

e−(x−1/2k1/2)2/C dx

Hence, summing over all points x (k)
i ∈ Dk ∩ k−1/2

Z except the end points and using

that |hk(x (k)
i )| ≤ Ce−(log k)2/C ≤ C ′/k−1 at the end points gives

∣∣∣∣∣∣∣
k−1/2

∑
x (k)

i ∈Dk∩k−1/2Z

hk(x (k)
i ) −

∫
Dk

hkdx

∣∣∣∣∣∣∣
≤ C ′k−1 + k−1C ′′

∫
0≤s≤log k

e−(s−1/2k1/2)2/C ds,

which concludes the proof. ��
In the sequel we will denote by + the ordinary group structure on T n and by 0 the

zero with respect to the group structure. Without loss of generality we may as well
assume that α(x0) = 0 and h(x0) = 1. We will denote by O(k−1) any sequence of
functions satisfying |O(k−1)| ≤ Ck−1, for a constant C depending on data as in the
statement of the proposition to be proved.

Step 1: Localization to a polydisc Uk of radius k−1/2 log k centered at x0

First fix a neighborhood U of x0. Since α is assumed lower-semicontinuous we have
α(x) ≥ δ > 0 on U and hence

kn/2
∫

T n−U
e−kαhδ�k ≤ kn/2 sup

T n
|h|e−kδ = kn/2O(1)k−1,

using that δ�k is a probability measure. Next, assume that U is a small coordinate
neighborhood of x0 and denote by Uk the polydisc of radius k−1 log k centered at x0.
By assumption we may assume that α(x) ≥ |x − x0|2/C on U . Hence,

kn/2
∫

U−Uk

e−kαhδ�k ≤ kn/2 sup
T n

|h|e−(log k)2 = O(1)k−1

Step 2: The case when x0 = 0 in Tn

Introducing thenotationα(k)(x) := kα(k−1/2x) andhk(x) := h(k−1/2x) exp(−α(k)(x))

we can write

Ik := kn/2
∫

Uk

e−kαhδ�k = k−n/2
∑

x (k)
i ∈Dk∩(k−1/2Z)n

hk(x (k)
i )

123



828 R. J. Berman

Now,Taylor expandingα and denoting by p(3) the third order term (i.e. defining a poly-
nomial of homogeneous degree three) gives, when |x | ≤ k1/2/C (and, in particular,
when |x | ≤ log k)

α(k)(x) = Ax · x/2 + k−1/2 p(3) + k−1O(|x |4)

Thus hk(x) may be Taylor expanded as follows

hk(x) = e−Ax ·x/2
(
1 + k−1/2(q(1) + p(3)) + k−1O(|x |4)

)
, q(1)(x) := (∇h)(0) · x

Next note that hk(x) satisfies the assumptions of the previous lemma. Indeed, by the
chain rule (∇e1∇e2α

(k))(x) is, when |xi | ≤ k1/2/C , equal to the corresponding second
derivatives of α on U , which are uniformly bounded on U , by assumption. Hence,
applying the lemma in question gives

Ik =
∫

Dk

hkdx + O(k−1)

This shows that in the present discrete settingweget the same result, up to the negligible
error term O(k−1), as the ordinary Laplace method of integration, which can hence
be invoked to conclude. For completeness we provide an alternative direct argument.
By the expansion above we have

Ik =
∫

Dk

e−Ax ·x/2
(
1 + k−1/2(q(1) + p(3)) + k−1O(|x |4)

)

Using the exponential decay of e−Ax ·x/2 the integral may be taken over all ofRn , up to
introducing an error term O(k−∞). Hence computing the Gaussian integral concludes
the proof, once one has verified that the integrals over q(1) and p(3) vanish. In the case
when A is the identity matrix the vanishing follows directly from the fact that q(1) and
p(3) are odd. In the general case one first observes that the space of polynomials of
homogeneous degree d on R

n is invariant under the action of the space of invertible
linearmaps.Hence the problem reduces, by a linear change of variables, to the previous
case of an identity matrix.

Step 3: The case of a general x0

Set α̃(x) := α(x + x0) and f̃ (x) := f (x + x0) and decompose x0 = mk + rk where
mk ∈ �k and |rk | ≤ 1/k (where we have identified a small neighborhood of 0 in T n ,
containing rk with Rn). Then we can write

∫
e−kα f δ�k =

∫
e−kα̃ f̃ δ(�k−rk )
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Indeed, for any function h on T n we have, since mk ∈ �k ,

∑
xi ∈�k

h(xi + mk + rk) =
∑

xi

h(xi + rk)

Now, we note that the conclusion in the previous lemma remains true when �k is
replaced by the shifted set �k − rk (with essentially the same proof) and hence we
can conclude as before.

9 “Appendix B”: Proof of Prop 4.5 (the parabolic PDE on the torus)

The main difference between Proposition 4.5, concerning the n-dimensional torus T n

and the corresponding result for cost functions c on general compact manifolds in [44]
(see Theorem 5.8) is that in [44] it is assumed that the strong M-W-T condition holds,
i.e. the Ma-Wang-Trudinger tensor of c is bounded from below by a strictly positive
constant, while the Ma-Wang-Trudinger tensor vanishes identically for the standard
cost function c on T n . The only place where the strong M-W-T condition enters in
[44] is in the proof of the C2-estimate of ut . Here we will provide a proof of the
C2-estimate in question on T n , building on estimates in [45]. To make the connection
to the setting in [45] we identify a solution ut of the parabolic flow appearing in Prop
4.5 with a periodic function in R

n , i.e. ut is a Zn-invariant function in R
n . Using the

notation in [45] the parabolic equation in question may be expressed as

∂ut (x)

∂t
= D[ut ], D[ut ] := log det

(
∇2ut (x) − A

)
− log B (x,∇ut (x)) (9.1)

with

A = −I , log B (x,∇u(x)) = g (x + ∇u(x)) − f (x).

Recall that the initial data u0 is assumed to be a periodic function in C4,α(Rn), which
is strictly quasi-convex, i.e. the matrix (∇2u0)(x) + I is positive definite for all x .
This is precisely the parabolic equation appearing in [45] in the case of the smooth
cost function c(x, y) = |x − y|2/2 in R

n × R
n . However, in [45] the equation is

considered on a compact domain � in Rn with additional boundary conditions, while
here we assume that ut is a periodic function on R

n . Denote by Lu the linearization
of the operator D at u. A direct calculation reveals that

Lu = �w − (∇g) · ∇, (9.2)

where �w denotes the Laplacian operator defined wrt the Hessian metric

(wi j ) = (∇2ut )(x) + I , (9.3)

i.e., denoting by (wi j ) the inverse matrix,
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�w =
∑
i, j

wi j∇i∇ j

and the gradient ∇g is evaluated at the point x + ∇u(x) and (∇g) · ∇ denotes the
corresponding first order differential operator. Note that u is strictly quasi-convex iff
Lu is an elliptic operator.

9.1 The C2-estimate

First observe that
|∇ut | ≤ √

n. (9.4)

This follows directly from the fact that ut is c-convex, when viewed as a function on
the torus T n (see the beginning of Sect. 2.1.1).

Lemma 9.1 Let ut (x) be a solution to the parabolic equation 9.1 on T n × [0, tmax [
which is C2-smooth in x and jointly C1-smooth in x and t. There exists a constant C0,
independent of t , such that

|∇2ut | ≤ C0.

More precisely, C0 only depends on upper bounds on the C2-norms of u0, f and g
and a strict positive lower bound on the eigenvalues of the matrix (I + ∇2u0(x)).

Proof We will adapt the proof of the interior C2-estimate in [45, Thm 10.1] to the
present periodic setting (the estimate in [45, Thm 10.1] is a parabolic version of
the corresponding estimate in the elliptic setting considered in [65]). Following the
convention used in [45] we will omit the sum sign

∑
from the formulas below.

Moreover, C will denote a constant only depending on an upper bound on |∇ut | and
the first and second order derivatives of log B (i.e. of g and f ), whose precise value
may change from line to line. By the a priori estimate 9.4 these bounds are thus
independent of t . Given a unit-vector ξ ∈ Sn−1 and a > 0 we consider the function

v(x, t) = wξξ (x) + a|∇ut (x)|2, wξξ (x) := wi j (x)ξiξ j ,

which coincides with the function defined in the beginning of the proof of [45, Thm
10.1]. Fix a point x0 ∈ R

n and take ξ to be a unit-vector ξ0 maximizing wi j (x0)ξiξ j .
Step 1: The following inequality holds at the fixed point x0 if wi j (x0)ξiξ j ≥ 1

(
− ∂

∂t
+ Lut

)
[v] ≥ (2a − C)wi i − Cwi i − Ca,

This inequality is shown in the course of the proof of [45, Thm 10.1], only using that
the MTW-tensor is non-negative (in the present case where the matrix A is constant
the MTW-tensor vanishes identically). Indeed, first it is shown, by differentiating the
parabolic equation for ut , that
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(
− ∂

∂t
+ Lut

)
[v] ≥ wilw jk∇ξwi j∇ξwlk

(wξξ )2
− wi j∇iwξξ∇ jwξξ

wξξ

+(2a − C)wi i − Cwi i − Ca.

Then it is shown that the sum of the first two terms is bounded from below by a constant
times −wi i . But, in fact, in the present case, where the matrix A is constant, the sum
in question is actually non-negative (see the proof of [50, Thm 3.3] Theorem 3.3 for
a different proof of this fact).

Step 2: The following inequality holds at any point x

Lu[−u] ≥ wi i − C |∇u|.

To see this first observe that the following identity holds:

−�wu + n = wi i ,

This is seen by multiplying the matrix identity 9.3 with the inverse (wi j ) of (wi j ) and
taking the trace. Hence,

L[−u] ≥ wi i + (∇g) · ∇u

which concludes the proof of Step 2.
Step 3: Conclusion using the parabolic maximum principle
Now fix b > 0 and consider the function

va,κ (x, t) = wi jξiξ j + a|∇ut |2 − b(ut − ut (0)).

Combining the previous steps we get, at the fixed point x0 :

La,κ [v] ≥ (2a − C)wi i + (b − C)wi i − C(a + b).

Take the parameters a and b sufficiently large to ensure that 2a−C > 0 and b−C >

0 (this condition is independent of the choice of fixed point x0). Now fix T < tmax

and consider the smooth function va,κ on R
n × [0, T ] × Sn−1. Since va,κ is periodic

in the x-variable its sup is attained at some (x0, t0, ξ0) in [0, 1]n ×[0, T ]× Sn−1. Note
that ξ0 maximizes wi j (x0)ξiξ j . We may assume that wi j (x0)ξiξ j ≥ 1 (otherwise we
are already done). Now, if t0 > 0 then

0 + 0 ≥
(

− ∂

∂t
+ L

)
[va,κ ]

at (x0, t0). But then the inequality in Step 1 implies an upper bound on wi i at (x0, t0)
only depending on C . Finally, since a|∇ut |2 −b(ut −ut (0)) is uniformly bounded by
a constant this shows that the sup of wi i over Rn × [0, T ] is also uniformly bounded
by a constant. Finally, if t0 = 0 then we get an upper bound on wi i in terms of the
Hessian of u0. ��

123



832 R. J. Berman

9.2 Conclusion of the proof of Prop 4.5

The rest of the argument proceeds as in [44], but for the convenience of the reader we
provide some details, highlighting the dependence on the regularity assumptions on
the data u0, f and g.

9.2.1 Short-time existence

First assume that u0 ∈ C2,α(T n) and that u is strictly quasi-convex. Then the lin-
earization Lu0 is uniformly elliptic and hence standard short-time existence results for
parabolic equations imply that there exists a maximal tmax > 0 and a unique solution
u(x, t) to the equation 9.1 on T n × [0, tmax [ with the property that ut is in C2,α(X)

and the corresponding Hölder derivatives of ut are continuous as t → 0. In particular,
the norms ‖ut‖C2,α(T n) are uniformly bounded for t ∈ [0, T ] for any given T < tmax .
This follows, for example, from [1, Main Thm 1] or [41, Thm 1.2]. Next given two
unit-vectors e1 and e2 denote by ∇1 and ∇2 the corresponding derivations. Applying
∇1 to the equation 9.1 gives

∂(∇1ut )

∂t
= Lut [∇1ut ] − ∇1 f . (9.5)

Next assume that u0 ∈ C4,α(T n). Since Lut is uniformly elliptic when t ≤ T < tmax

and the coefficients of Lut are Hölder continuous (with exponent α) global linear
parabolic Shauder estimates [41, Thm 2.3] yield, since e1 was arbitrary, that ∇ut ∈
C2,α(T n) and that ‖∇ut‖C2,α(T n) is uniformly bounded for t ∈ [0, T ]. Now, applying
∇2 to the equation 9.5 gives

∂(∇2∇1ut )

∂t
= Lut [∇2∇1ut ] − Ft , Ft :=

∑
i, j

(∇2w
i j )∇i∇ j (∇1ut )

−∇2(∇g) · ∇(∇1ut ) − ∇2∇1 f .

By assumption,∇2g and∇2 f are Hölder continuous and hence (also using that∇ut ∈
C2,α(T n)) the function Ft is Hölder continuous on T n for some positive Hölder
exponent α′(≤ α). We can thus apply the global linear parabolic Shauder estimates
again (now to the linear operator Lt [·]−Ft ) and deduce that the norms

∥∥∇2ut
∥∥

C2,α′
(T n)

are uniformly bounded for t ∈ [0, T ].

9.2.2 t0-independent a priori estimates

Next note that there exist constant C (independent of x and t) such that

C−1 I ≤ (wi j (x, t)) ≤ C I . (9.6)

Indeed, the upper bound is the content of Lemma 9.1 and to prove the lower bound
first note that the time derivative u̇t of ut solves the linear parabolic equation
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∂Ut

∂t
= Lut [Ut ], (9.7)

Hence, by the parabolic maximum principle

sup
T n×[0,tmax [

|u̇t | ≤ sup
T n

|u̇0|.

Plugging this bound into the equation 9.1 this means that the determinant of wi j (x, t)
is uniformly bounded from below (by a constant only depending on the sup norm
of g and the Hessian of u0). Combined with the upper bound in 9.6 this implies the
lower bound in 9.6. Next note that the bound 9.6 says that the linearized operator Lut is
uniformly elliptic (with constants independent of t). Hence, theKrylov-Safanov theory
for fully non-linear parabolic equations yield uniform interior C2,α(T n)-estimates for
ut for some α > 0 (i.e. they hold for t ≥ ε > 0 with constants only depending on ε,
the C2-norms of ut and f and g, i.e. on the previous uniform constant C). It follows
that tmax = ∞ (otherwise we could restart the flow again). Then, by the argument in
the previous section, using parabolic Shauder estimates, we get a bound

∥∥∥∇2ut

∥∥∥
C2,α′

(T n)
≤ C ′

for a constant independent of t ∈ [0,∞[. In particular, such a bound holds for
‖ut‖C4(T n), which concludes the proof of the first point in Prop 4.5.

9.2.3 Exponential convergence

Finally, the exponential convergence follows from the generalization of the Li-Yau
Harnack inequality in [40, Thm 5.2, Cor 5.3]. Briefly, by [40, Thm 5.2, Cor 5.3] the
a priori bounds in the first point of Prop 4.5 imply that there exists a constant C ′ such
that any positive solution Ut to the linear parabolic equation 9.7 satisfies

sup
T n

Ut+1/2 ≤ C ′ inf
T n

Ut

when n ≥ 3. Using a standard induction argument this implies an exponential decay of
the sup-norm of the oscillation of u̇, which in turn implies the exponential convergence
in Prop 4.5. The assumption that n ≥ 3 in [40, Cor 5.3] is then bypassed by taking a
product of T n with T 2, just as in [44, Section 7.1.2].
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