4 research outputs found

    Linear-time algorithms for scattering number and Hamilton-connectivity of interval graphs.

    Get PDF
    We prove that for all inline image an interval graph is inline image-Hamilton-connected if and only if its scattering number is at most k. This complements a previously known fact that an interval graph has a nonnegative scattering number if and only if it contains a Hamilton cycle, as well as a characterization of interval graphs with positive scattering numbers in terms of the minimum size of a path cover. We also give an inline image time algorithm for computing the scattering number of an interval graph with n vertices and m edges, which improves the previously best-known inline image time bound for solving this problem. As a consequence of our two results, the maximum k for which an interval graph is k-Hamilton-connected can be computed in inline image time

    On Eulerian subgraphs and hamiltonian line graphs

    Get PDF
    A graph {\color{black}GG} is Hamilton-connected if for any pair of distinct vertices {\color{black}u,vV(G)u, v \in V(G)}, {\color{black}GG} has a spanning (u,v)(u,v)-path; {\color{black}GG} is 1-hamiltonian if for any vertex subset SV(G)S \subseteq {\color{black}V(G)} with S1|S| \le 1, GSG - S has a spanning cycle. Let δ(G)\delta(G), α2˘7(G)\alpha\u27(G) and L(G)L(G) denote the minimum degree, the matching number and the line graph of a graph GG, respectively. The following result is obtained. {\color{black} Let GG be a simple graph} with E(G)3|E(G)| \ge 3. If δ(G)α2˘7(G)\delta(G) \geq \alpha\u27(G), then each of the following holds. \\ (i) L(G)L(G) is Hamilton-connected if and only if κ(L(G))3\kappa(L(G))\ge 3. \\ (ii) L(G)L(G) is 1-hamiltonian if and only if κ(L(G))3\kappa(L(G))\ge 3. %==========sp For a graph GG, an integer s0s \ge 0 and distinct vertices u,vV(G)u, v \in V(G), an (s;u,v)(s; u, v)-path-system of GG is a subgraph HH consisting of ss internally disjoint (u,v)(u,v)-paths. The spanning connectivity κ(G)\kappa^*(G) is the largest integer ss such that for any kk with 0ks0 \le k \le s and for any u,vV(G)u, v \in V(G) with uvu \neq v, GG has a spanning (k;u,v)(k; u,v)-path-system. It is known that κ(G)κ(G)\kappa^*(G) \le \kappa(G), and determining if κ(G)3˘e0\kappa^*(G) \u3e 0 is an NP-complete problem. A graph GG is maximally spanning connected if κ(G)=κ(G)\kappa^*(G) = \kappa(G). Let msc(G)msc(G) and sk(G)s_k(G) be the smallest integers mm and m2˘7m\u27 such that Lm(G)L^m(G) is maximally spanning connected and κ(Lm2˘7(G))k\kappa^*(L^{m\u27}(G)) \ge k, respectively. We show that every locally-connected line graph with connectivity at least 3 is maximally spanning connected, and that the spanning connectivity of a locally-connected line graph can be polynomially determined. As applications, we also determined best possible upper bounds for msc(G)msc(G) and sk(G)s_k(G), and characterized the extremal graphs reaching the upper bounds. %==============st For integers s0s \ge 0 and t0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,YE(G)X, Y \subseteq E(G) with Xs|X|\le s and Yt|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. Pulleyblank in [J. Graph Theory, 3 (1979) 309-310] showed that determining whether a graph is (0,0)(0,0)-supereulerian, even when restricted to planar graphs, is NP-complete. Settling an open problem of Bauer, Catlin in [J. Graph Theory, 12 (1988) 29-45] showed that every simple graph GG on nn vertices with δ(G)n51\delta(G) \ge \frac{n}{5} -1, when nn is sufficiently large, is (0,0)(0,0)-supereulerian or is contractible to K2,3K_{2,3}. We prove the following for any nonnegative integers ss and tt. \\ (i) For any real numbers aa and bb with 03˘ca3˘c10 \u3c a \u3c 1, there exists a family of finitely many graphs \F(a,b;s,t) such that if GG is a simple graph on nn vertices with κ2˘7(G)t+2\kappa\u27(G) \ge t+2 and δ(G)an+b\delta(G) \ge an + b, then either GG is (s,t)(s,t)-supereulerian, or GG is contractible to a member in \F(a,b;s,t). \\ (ii) Let K2\ell K_2 denote the connected loopless graph with two vertices and \ell parallel edges. If GG is a simple graph on nn vertices with κ2˘7(G)t+2\kappa\u27(G) \ge t+2 and δ(G)n21\delta(G) \ge \frac{n}{2}-1, then when nn is sufficiently large, either GG is (s,t)(s,t)-supereulerian, or for some integer jj with t+2js+tt+2 \le j \le s+t, GG is contractible to a jK2j K_2. %==================index For a hamiltonian property \cp, Clark and Wormold introduced the problem of investigating the value \cp(a,b) = \max\{\min\{n: L^n(G) has property \cp\}: κ2˘7(G)a\kappa\u27(G) \ge a and δ(G)b}\delta(G) \ge b\}, and proposed a few problems to determine \cp(a,b) with ba4b \ge a \ge 4 when \cp is being hamiltonian, edge-hamiltonian and hamiltonian-connected. Zhan in 1986 proved that the line graph of a 4-edge-connected graph is Hamilton-connected, which implies a solution to the unsettled cases of above-mentioned problem. We consider an extended version of the problem. Let ess2˘7(G)ess\u27(G) denote the essential edge-connectivity of a graph GG, and define \cp\u27(a,b) = \max\{\min\{n: L^n(G) has property \cp\}: ess2˘7(G)aess\u27(G) \ge a and δ(G)b}\delta(G) \ge b\}. We investigate the values of \cp\u27(a,b) when \cp is one of these hamiltonian properties. In particular, we show that for any values of b1b \ge 1, \cp\u27(4,b) \le 2 and \cp\u27(4,b) = 1 if and only if Thomassen\u27s conjecture that every 4-connected line graph is hamiltonian is valid

    Circuits and Cycles in Graphs and Matroids

    Get PDF
    This dissertation mainly focuses on characterizing cycles and circuits in graphs, line graphs and matroids. We obtain the following advances. 1. Results in graphs and line graphs. For a connected graph G not isomorphic to a path, a cycle or a K1,3, let pc(G) denote the smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and t, respectively, then P is called a divalent (s, t)-path. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K3}. We prove the following. (i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is essentially 3-edge-connected. (ii) pc(G) ≤ l(G) + 2. Furthermore, if l(G) ≥ 2, then pc(G) = l(G) + 2 if and only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length l(G). For a graph G, the supereulerian width μ′(G) of a graph G is the largest integer s such that G has a spanning (k;u,v)-trail-system, for any integer k with 1 ≤ k ≤ s, and for any u, v ∈ V (G) with u ̸= v. Thus μ′(G) ≥ 2 implies that G is supereulerian, and so graphs with higher supereulerian width are natural generalizations of supereulerian graphs. Settling an open problem of Bauer, Catlin in [J. Graph Theory 12 (1988), 29-45] proved that if a simple graph G on n ≥ 17 vertices satisfy δ(G) ≥ n − 1, then μ′(G) ≥ 2. In this paper, we show that for 4 any real numbers a, b with 0 \u3c a \u3c 1 and any integer s \u3e 0, there exists a finite graph family F = F(a,b,s) such that for a simple graph G with n = |V(G)|, if for any u,v ∈ V(G) with uv ∈/ E(G), max{dG(u), dG(v)} ≥ an + b, then either μ′(G) ≥ s + 1 or G is contractible to a member in F. When a = 1,b = −3, we show that if n is sufficiently large, K3,3 is the only 42 obstacle for a 3-edge-connected graph G to satisfy μ′(G) ≥ 3. An hourglass is a graph obtained from K5 by deleting the edges in a cycle of length 4, and an hourglass-free graph is one that has no induced subgraph isomorphic to an hourglass. Kriesell in [J. Combin. Theory Ser. B, 82 (2001), 306-315] proved that every 4-connected hourglass-free line graph is Hamilton-connected, and Kaiser, Ryj ́aˇcek and Vr ́ana in [Discrete Mathematics, 321 (2014) 1-11] extended it by showing that every 4-connected hourglass-free line graph is 1- Hamilton-connected. We characterize all essentially 4-edge-connected graphs whose line graph is hourglass-free. Consequently we prove that for any integer s and for any hourglass-free line graph L(G), each of the following holds. (i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2; (ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. For integers s1, s2, s3 \u3e 0, let Ns1,s2,s3 denote the graph obtained by identifying each vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1,s2 and s3, respectively. We prove the following results. (i)LetN1 ={Ns1,s2,s3 :s1 \u3e0,s1 ≥s2 ≥s3 ≥0ands1+s2+s3 ≤6}. Thenforany N ∈ N1, every N-free line graph L(G) with |V (L(G))| ≥ s + 3 is s-hamiltonian if and only if κ(L(G)) ≥ s + 2. (ii)LetN2={Ns1,s2,s3 :s1\u3e0,s1≥s2≥s3≥0ands1+s2+s3≤4}.ThenforanyN∈N2, every N -free line graph L(G) with |V (L(G))| ≥ s + 3 is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. 2. Results in matroids. A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with e0 being the root. We present a characterization of all connected binary rooted matroids whose root lies in at most three circuits, and a characterization of all connected binary rooted matroids whose root lies in all but at most three circuits. While there exist infinitely many such matroids, the number of serial reductions of such matroids is finite. In particular, we find two finite families of binary matroids M1 and M2 and prove the following. (i) For some e0 ∈ E(M), M has at most three circuits containing e0 if and only if the serial reduction of M is isomorphic to a member in M1. (ii) If for some e0 ∈ E(M), M has at most three circuits not containing e0 if and only if the serial reduction of M is isomorphic to a member in M2. These characterizations will be applied to show that every connected binary matroid M with at least four circuits has a 1-hamiltonian circuit graph

    On Spanning Disjoint Paths in Line Graphs

    No full text
    Spanning connectivity of graphs has been intensively investigated in the study of interconnection networks (Hsu and Lin, Graph Theory and Interconnection Networks, 2009). For a graph G and an integer s \u3e 0 and for u,v∈V(G)u,v∈V(G) with u ≠ v, an (s; u, v)-path-system of G is a subgraph H consisting of s internally disjoint (u,v)-paths. A graph G is spanning s-connected if for any u,v∈V(G)u,v∈V(G) with u ≠ v, G has a spanning (s; u, v)-path-system. The spanning connectivity κ*(G) of a graph G is the largest integer s such that G has a spanning (k; u, v)-path-system, for any integer k with 1 ≤ k ≤ s, and for any u,v∈V(G)u,v∈V(G) with u ≠ v. An edge counter-part of κ*(G), defined as the supereulerian width of a graph G, has been investigated in Chen et al. (Supereulerian graphs with width s and s-collapsible graphs, 2012). In Catlin and Lai (Graph Theory, Combinatorics, and Applications, vol. 1, pp. 207–222, 1991) proved that if a graph G has 2 edge-disjoint spanning trees, and if L(G) is the line graph of G, then κ*(L(G)) ≥ 2 if and only if κ(L(G)) ≥ 3. In this paper, we extend this result and prove that for any integer k ≥ 2, if G 0, the core of G, has k edge-disjoint spanning trees, then κ*(L(G)) ≥ k if and only if κ(L(G)) ≥ max{3, k}
    corecore