92 research outputs found

    Optimal Spanners for Unit Ball Graphs in Doubling Metrics

    Full text link
    Resolving an open question from 2006, we prove the existence of light-weight bounded-degree spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple O(logn)\mathcal{O}(\log^*n)-round distributed algorithm in the LOCAL model of computation, that given a unit ball graph GG with nn vertices and a positive constant ϵ<1\epsilon < 1 finds a (1+ϵ)(1+\epsilon)-spanner with constant bounds on its maximum degree and its lightness using only 2-hop neighborhood information. This immediately improves the best prior lightness bound, the algorithm of Damian, Pandit, and Pemmaraju, which runs in O(logn)\mathcal{O}(\log^*n) rounds in the LOCAL model, but has a O(logΔ)\mathcal{O}(\log \Delta) bound on its lightness, where Δ\Delta is the ratio of the length of the longest edge to the length of the shortest edge in the unit ball graph. Next, we adjust our algorithm to work in the CONGEST model, without changing its round complexity, hence proposing the first spanner construction for unit ball graphs in the CONGEST model of computation. We further study the problem in the two dimensional Euclidean plane and we provide a construction with similar properties that has a constant average number of edge intersections per node. Lastly, we provide experimental results that confirm our theoretical bounds, and show an efficient performance from our distributed algorithm compared to the best known centralized construction

    Distributed Construction of Lightweight Spanners for Unit Ball Graphs

    Get PDF
    Resolving an open question from 2006 [Damian et al., 2006], we prove the existence of light-weight bounded-degree spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple ?(log^*n)-round distributed algorithm in the LOCAL model of computation, that given a unit ball graph G with n vertices and a positive constant ? < 1 finds a (1+?)-spanner with constant bounds on its maximum degree and its lightness using only 2-hop neighborhood information. This immediately improves the best prior lightness bound, the algorithm of Damian, Pandit, and Pemmaraju [Damian et al., 2006], which runs in ?(log^*n) rounds in the LOCAL model, but has a ?(log ?) bound on its lightness, where ? is the ratio of the length of the longest edge to the length of the shortest edge in the unit ball graph. Next, we adjust our algorithm to work in the CONGEST model, without changing its round complexity, hence proposing the first spanner construction for unit ball graphs in the CONGEST model of computation. We further study the problem in the two dimensional Euclidean plane and we provide a construction with similar properties that has a constant average number of edge intersections per node. Lastly, we provide experimental results that confirm our theoretical bounds, and show an efficient performance from our distributed algorithm compared to the best known centralized construction

    Constructing Light Spanners Deterministically in Near-Linear Time

    Get PDF
    Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [Shiri Chechik and Christian Wulff-Nilsen, 2018] improved the state-of-the-art for light spanners by constructing a (2k-1)(1+epsilon)-spanner with O(n^(1+1/k)) edges and O_epsilon(n^(1/k)) lightness. Soon after, Filtser and Solomon [Arnold Filtser and Shay Solomon, 2016] showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the greedy spanner is its running time of O(mn^(1+1/k)) (which is faster than [Shiri Chechik and Christian Wulff-Nilsen, 2018]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness Omega_epsilon(kn^(1/k)), even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an O_epsilon(n^(2+1/k+epsilon\u27)) time spanner construction which achieves the state-of-the-art bounds. Our second result is an O_epsilon(m + n log n) time construction of a spanner with (2k-1)(1+epsilon) stretch, O(log k * n^(1+1/k) edges and O_epsilon(log k * n^(1/k)) lightness. This is an exponential improvement in the dependence on k compared to the previous result with such running time. Finally, for the important special case where k=log n, for every constant epsilon>0, we provide an O(m+n^(1+epsilon)) time construction that produces an O(log n)-spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any k = omega(1). To achieve our constructions, we show a novel deterministic incremental approximate distance oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our new oracle is of independent interest

    Multi-Level Weighted Additive Spanners

    Get PDF
    Given a graph G = (V, E), a subgraph H is an additive +β spanner if distH(u, v) ≤ distG(u, v) + β for all u, v ∈ V. A pairwise spanner is a spanner for which the above inequality is only required to hold for specific pairs P ⊆ V × V given on input; when the pairs have the structure P = S × S for some S ⊆ V, it is called a subsetwise spanner. Additive spanners in unweighted graphs have been studied extensively in the literature, but have only recently been generalized to weighted graphs. In this paper, we consider a multi-level version of the subsetwise additive spanner in weighted graphs motivated by multi-level network design and visualization, where the vertices in S possess varying level, priority, or quality of service (QoS) requirements. The goal is to compute a nested sequence of spanners with the minimum total number of edges. We first generalize the +2 subsetwise spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting. We experimentally measure the performance of this and several existing algorithms by [Ahmed et al., 2020] for weighted additive spanners, both in terms of runtime and sparsity of the output spanner, when applied as a subroutine to multi-level problem. We provide an experimental evaluation on graphs using several different random graph generators and show that these spanner algorithms typically achieve much better guarantees in terms of sparsity and additive error compared with the theoretical maximum. By analyzing our experimental results, we additionally developed a new technique of changing a certain initialization parameter which provides better spanners in practice at the expense of a small increase in running time. © Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and Richard Spence; licensed under Creative Commons License CC-BY 4.0 19th International Symposium on Experimental Algorithms (SEA 2021).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Bounded-degree Plane Geometric Spanners: Connecting the Dots Between Theory and Practice

    Get PDF
    The construction of bounded-degree plane geometric spanners has been a focus of interest since 2002 when Bose, Gudmundsson, and Smid proposed the first algorithm to construct such spanners. To date, eleven algorithms have been designed with various trade-offs in degree and stretch factor. We have implemented these sophisticated algorithms in C++ using the CGAL library and experimented with them using large synthetic and real-world pointsets. Our experiments have revealed their practical behavior and real-world efficacy. We share the implementations via GitHub for broader uses and future research. We present a simple practical algorithm, named AppxStretchFactor, that can estimate stretch factors (obtains lower bounds on the exact stretch factors) of geometric spanners – a challenging problem for which no practical algorithm is known yet. In our experiments with bounded-degree plane geometric spanners, we find that AppxStretchFactor estimates stretch factors almost precisely. Further, it gives linear runtime performance in practice for the pointset distributions considered in this work, making it much faster than the naive Dijkstra-based algorithm for calculating stretch factors

    Online Spanners in Metric Spaces

    Get PDF
    corecore