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ABSTRACT

The construction of bounded-degree plane geometric spanners has been a focus of interest

since 2002 when Bose, Gudmundsson, and Smid proposed the first algorithm to construct

such spanners. To date, eleven algorithms have been designed with various trade-offs in

degree and stretch factor. We have implemented these sophisticated algorithms in C++ using

the CGAL library and experimented with them using large synthetic and real-world pointsets.

Our experiments have revealed their practical behavior and real-world efficacy. We share the

implementations via GitHub1 for broader uses and future research.

We present a simple practical algorithm, named AppxStretchFactor, that can estimate

stretch factors (obtains lower bounds on the exact stretch factors) of geometric spanners – a

challenging problem for which no practical algorithm is known yet. In our experiments with

bounded-degree plane geometric spanners, we find that AppxStretchFactor estimates

stretch factors almost precisely. Further, it gives linear runtime performance in practice for

the pointset distributions considered in this work, making it much faster than the naive

Dijkstra-based algorithm for calculating stretch factors.

1https://github.com/mgatc/geometric-spanners

x

https://github.com/mgatc/geometric-spanners


CHAPTER 1

Introduction

Let G be the complete Euclidean graph on a given set P of n points embedded in the

Euclidean plane. A geometric t-spanner on P is a geometric graph G′ := (P,E), a subgraph

of G such that for every pair of points u, v ∈ P , the distance between them in G′ (the

Euclidean length of a shortest path between u, v in G′) is at most t times their Euclidean

distance |uv|, for some t ≥ 1. It is easy to check that G itself is a 1-spanner with Θ(n2)

edges. The quantity t is referred to as the stretch factor of G′. If there is no need to specify

t, we simply use the term geometric spanner and assume that there exists some t for G′. We

say that G′ is plane if it is crossing-free. G′ is degree-k or is said to have bounded-degree if

its degree is at most k. In this work, we experiment with bounded-degree plane geometric

spanners. See Figure 1.1 for an example of such a spanner.

Bounded-degree plane geometric spanners have been an area of interest in computational

geometry for a long time. Non-crossing edges make them suitable for wireless network

applications where edge crossings create communication interference. The absence of crossing

edges also makes them useful for the design of road networks to eliminate high-budget flyovers.

Such spanners have O(n) edges (at most 3n− 6 edges); as a result, they are less expensive to

store and navigate. Further, shortest-path algorithms run quicker on them since they are

sparse. Bounded-degree helps in reducing on-site equipment costs.

Bose, Gudmundsson, and Smid [13] were the first to show that there always exists a plane

geometric σ(π + 1)-spanner of degree at most 27 on any pointset, where σ denotes an upper

– 1 –



Figure 1.1: Left: A set P of 150 points, generated randomly within a square. Right: A plane degree-6
spanner on P with stretch factor ≈ 1.82. The pair of points for which the spanner achieves a stretch
factor of ≈ 1.82 is shown in red along with the shortest path between them.

bound for the stretch factor of L2-Delaunay triangulations1 (the current best known value

is σ = 1.998 due to Xia [44]). This result was subsequently improved in a long series of

papers [9, 12,14,16,33,34,36] in terms of degree and/or stretch factor. Bonichon et al. [11]

reduced the degree to 4 with t ≈ 156.8. Soon after this, Kanj et al. improved this stretch

factor upper bound to 20 in [32]. A summary of these results is presented in Table 1.1. This

family of spanner construction algorithms has turned out to be a fascinating application of

the Delaunay triangulation. Note that all these algorithms produce bounded-degree plane

subgraphs of the complete Euclidean graph on P with constant stretch factors.

The intriguing question that remains to be answered is whether the degree can be reduced to

3 while keeping t bounded; refer to [15, Problem 14] and [42, Chapter 32]. Interestingly, if one

does not insist on constructing a plane spanner, Das and Heffernan [23] showed that degree 3

is always achievable. Narasimhan and Smid [39, Section 20.1] show that no degree-2 plane

spanner of the infinite integer lattice can have a constant stretch factor. Thus, a minimum
1A triangulation T for a pointset P is referred to as a L2-Delaunay triangulation if no point in P lies

inside the circumcircle of any triangle in T .

– 2 –



Table 1.1: A summary of results on constructions of bounded degree plane geometric spanners,
sorted by the degree they guarantee. The best known upper bound of σ = 1.998 for the stretch
factor of the L2-Delaunay triangulation [44] is used in this table for expressing the stretch factors.

Reference Degree Stretch factor
Bose, Gudmundsson, and Smid [13] 27 σ(π + 1) ≈ 8.3

Li and Wang [36] 23 σ(1 + π√
2
) ≈ 6.4

Bose, Smid, and Xu [16] 17 σ(2 + 2
√
3 + 3π

2
+ 2π sin π

12
) ≈ 23.6

Kanj, Perković, and Xia [33] 14 σ(1 + 2π
14 cos(π/14)

) ≈ 2.9

Kanj and Xia [34] 11 σ( 2 sin(2π/5) cos(π/5)
2 sin(2π/5) cos(π/5)−1

) ≈ 5.7

Bose, Hill, and Smid [14] 8 σ
(
1 + 2π

6 cos(π/6)

)
≈ 4.4

Bose, Carmi, and Chaitman-Yerushalmi [12] 7 σ(1 +
√
2)2 ≈ 11.6

Bose, Carmi, and Chaitman-Yerushalmi [12] 6 σ
(

1
1−tan(π/7)(1+1/ cos(π/14))

)
≈ 81.7

Bonichon, Gavoille, Hanusse, and Perković [9] 6 6

Bonichon, Kanj, Perković, and Xia [11] 4
√

4 + 2
√
2(19 + 29

√
2) ≈ 156.8

Kanj, Perković, and Türkoǧlu [32] 4 20

degree of 3 is necessary to achieve a constant stretch factor. If P is convex, then it is always

possible to construct a degree-3 plane geometric spanners, see [4, 7, 32]. From the other

direction, lower bounds on the stretch factors of plane spanners for finite pointsets have been

investigated in [24,25,35,37]. In-browser visualizations of some of the algorithms (those based

on the L2-Delaunay triangulation) have been recently presented in [3]. In related works, the

construction of plane hop spanners (where the number of hops in shortest paths is of interest)

for unit disk graphs has been considered in [6, 19, 26].

The most notable experimental work for geometric spanners is done by Farshi and Gud-

mundsson [27]. The authors engineered and experimented with some of the well-known

geometric spanners construction algorithms published before 2009. However, the authors

did not use the algorithms considered in this work in their experiments. Planarity and

bounded-degree are important concerns in geometric network design. Hence, we found

it motivating to implement the eleven algorithms (refer to Table 1.1) meant to construct

bounded-degree plane geometric spanners. Asymptotic runtimes and various theoretical

– 3 –



bounds do not always do justice in explaining the real-world performance of algorithms,

especially in computational geometry, because of computationally heavy operations needed

for various geometric calculations. Experiments reveal their real-world performance. A unique

aspect of the family of bounded-degree plane spanner construction algorithms is that users

cannot specify an arbitrary value of t and/or degree for spanner construction. It is a deviation

from many standard spanner algorithms; see [12,39] for a review of such algorithms. This

makes experiments with them even more interesting.

Our contributions. (i) We experimentally compare the aforementioned eleven bounded-

degree plane spanner construction algorithms by implementing them carefully in C++ using

the popular CGAL library [41] and running them on large synthetic and real-world pointsets.

The largest pointset contains 1.9 million points approximately. For broader uses of these

sophisticated algorithms, we share the C++ implementations via GitHub2. The comparisons are

performed based on their runtimes and degree, stretch factor, and lightness of the generated

spanners. We present a brief overview of the algorithms implemented and our experimental

results in Sections 2 and 4, respectively.

(ii) In doing experiments with spanners, we find that stretch factor measurement turns out

to be a severe bottleneck when n is large. To address this, we have designed a new fast

algorithm named AppxStretchFactor that can estimate the stretch factor of a given

spanner (not necessarily plane). In our experiments, we find that it can estimate stretch

factors with high accuracy for the class of geometric spanners dealt with in this work. It is

considerably faster than the naive Dijkstra-based exact stretch factor measurement algorithm

in practice. To our knowledge, no such practical algorithm exists in the literature. Further,

it can be easily parallelized, making it very useful for estimating stretch factors of large

spanners. See Section 3 for a description of this algorithm.

2https://github.com/mgatc/geometric-spanners
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CHAPTER 2

Algorithms implemented

Every algorithm designed to date for constructing bounded-degree plane geometric spanners

relies on some variant of Delaunay triangulation. The rationale behind this is that such

triangulations are geometric spanners [10, 21,22,44] and are plane by definition. As a result,

the family of plane spanner construction algorithms considered in this work has turned out to

be a fascinating application of Delaunay triangulation. It is essential to know that Delaunay

triangulations have unbounded degrees and cannot be used as bounded-degree plane spanners.

In this section, we provide a brief description for each of the eleven algorithms considered

in this work. Appropriate abbreviations using the authors’ names and dates of publication

are used for naming purposes. Since most of these algorithms are involved, so we urge the

reader to refer to the original papers for a deeper understanding and correctness proofs.

For visualizing some of these algorithms, we recommend the interactive in-browser applet1

developed by us; refer to [3]. To observe variations in spanner construction between the

algorithms see Appendix A.

1https://ghoshanirban.github.io/bounded-degree-plane-spanners/index.html

Algorithm 1: ReverseLowDegreeOrdering(DT )
1 Allocate Φ[1 . . . n];
2 Make a copy of DT and call it H;
3 for i = 1 to n do
4 Let u be a vertex in H with minimal degree;
5 Φ[u]← n− i+ 1;
6 Remove u and all incident edges from H;

7 return Φ;

– 5 –

https://ghoshanirban.github.io/bounded-degree-plane-spanners/index.html


Algorithm 2: LW04(P, 0 < α ≤ π/2)
1 DT ← L2-DelaunayTriangulation(P );
2 Φ[1 . . . n]← ReverseLowDegreeOrdering(DT );
3 E ← ∅;
4 foreach u ∈ Φ do
5 Divide the area surrounding u into sectors delineated by u’s already processed

neighbors in DT ;
6 Divide each sector into a minimum number of cones C0

u, C
1
u, . . . with angle at most α;

7 foreach Ci
u do

8 Let v1, v2, ..., vm be the clockwise-ordered Delaunay neighbors of u in Ci
u;

9 Add an edge between u and the closest of such neighbors to E;
10 Add all edges {vj , vj+1} such that 1 ≤ j < m to E;

11 Mark u as processed;

12 return E;

In these algorithms, the surrounding of every input point is frequently divided into multiple

cones (depending on the algorithm) for carefully selecting edges from the Delaunay trian-

gulation used as the starting point. In our pseudocodes, the cone i of point u, considered

clockwise, is denoted by Cu
i . A triangulation T of a pointset P is said to be a L2-Delaunay

triangulation of P if no point in P lies inside the circumcircle of any triangle in T . Eight of the

eleven algorithms use L2-Delaunay triangulation as the starting point. The remaining three

use L∞ or TD-Delaunay triangulations, as described later in this section. In the following, n

denotes the size of the input pointset.

• BGS05: Bose, Gudmundsson, and Smid [13]. This was the first algorithm that can

construct bounded-degree plane spanners using the classic L2-Delaunay triangulation. First,

a Delaunay triangulation DT of P is constructed. Next, a degree-3 spanning subgraph

SG of DT is computed that contains the convex hull of P and is a (possibly degenerate)

simple polygon with P as its vertex set. The polygon is then transformed into a simple

non-degenerate polygon Q. The vertices of Q, are processed in an order that is obtained

from a breadth-first order of the Delaunay triangulation of Q, and then Delaunay edges

are carefully added to the resulting graph denoted G′, a plane spanner for the vertices of

Q. Refer to Algorithm 11 for a pseudocode of this algorithm. The authors show that their
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algorithm generates degree-27 plane spanners with a stretch factor of 1.998(π + 1) ≈ 8.3

and runs in O(n log n) time.

• LW04: Li and Wang [36]. This algorithm is inspired from BSG2005 but is a lot simpler and

avoids the use of intermediate (possibly degenerate) polygons. The algorithm computes a

reverse low degree ordering of the vertices of the L2-Delaunay triangulation DT constructed

on P . Then it sequentially considers the vertices in this ordering, divides the surrounding

of every such vertex into multiple cones, and then adds short edges from DT to preserve

planarity. Refer to Algorithm 2 for a pseudocode of this algorithm. The authors have

shown that this algorithm generates degree-23 plane spanners (when the input parameter

α of this algorithm is set to π/2) having a stretch factor of 1.998
(
1 + π/

√
2
)
≈ 6.4 and

runs in O(n log n) time.

Algorithm 3: BSX09(P, 0 < α ≤ 2π/3)
1 DT ← L2-DelaunayTriangulation(P );
2 Φ[1 . . . n]← ReverseLowDegreeOrdering(DT ) (use Algorithm 1);
3 E ← ∅;
4 foreach u ∈ Φ do
5 if u has unprocessed Delaunay neighbors then
6 Let vclosest be the closest unprocessed neighbor to u;
7 Add the edge {u, vclosest} to E;
8 Divide the area surrounding u into a minimum number of cones C0

u, C
1
u, . . . with

angle at most α, such that vclosest is on the boundary between the first and last
cones;

9 foreach Ci
u except the first and last do

10 if u has unprocessed neighbors in Ci
u then

11 Let w be the closest unprocessed neighbor to u in the cone;
12 Add edge {u,w} to E;
13 end
14 Let v0, v1, ..., vm−1 be the clockwise-ordered neighbors of u;
15 Add all edges {vj , v(j+1) mod m} to E such that 0 ≤ j < m and vj , v(j+1) mod m

are unprocessed;
16 end
17 end
18 Mark u as processed;
19 end
20 return E;
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• BSX09: Bose, Smid, and Xu [16]. This algorithm is quite similar to LW04 in design and

also relies on reverse low-degree ordering of the vertices of the Delaunay triangulation.

Refer to Algorithm 3. The authors have generalized their algorithm so that it can

construct bounded-degree plane spanners from any triangulation of P , not necessarily

just the L2-Delaunay triangulation (although the L2-Delaunay triangulation is of primary

interest to us). When the L2-Delaunay triangulation is used and the parameter α is

set to 2π/3, the algorithm generates degree-17 plane spanners having a stretch factor of

σ(2 + 2
√
3 + 3π

2
+ 2π sin π

12
) ≈ 23.6 in O(n log n) time. After computing the triangulation

and the reverse low-degree ordering, at every vertex u, δ = ⌈2π/α⌉ Yao cones are initialized

such that the closest unprocessed triangulation neighbor falls on a cone boundary and

occupies both cones as the short edge, which is added to the spanner. In the remaining

cones, the closest unprocessed neighbor of u in each cone is added. In all cones, special

edges between pairs of neighbors of u are added to the spanner if both the neighbors are

unprocessed.

Algorithm 4: KPX10(P , integer k ≥ 14)
1 DT ← L2-DelaunayTriangulation(P );
2 foreach vertex u ∈ DT do
3 Partition the area surrounding u into k disjoint cones of angle 2π/k;
4 In each nonempty cone, select the shortest edge in DT incident to u;
5 foreach maximal sequence of ℓ ≥ 1 consecutive empty cones do
6 if ℓ > 1 then
7 select the first ⌊ℓ/2⌋ unselected incident DT edges on u clockwise from the

sequence of empty cones and the first ⌈ℓ/2⌉ unselected DT edges incident on
u counterclockwise from the sequence of empty cones;

8 else
9 let ux and uy be the incident DT edges on m clockwise and counterclockwise,

respectively, from the empty cone;
10 if either ux or uy is selected then select the other edge (in case it has not been

selected); otherwise select the shorter edge between ux and uy breaking ties
arbitrarily;

11 end
12 end
13 end
14 return the DT edges selected by both endpoints;
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• BGHP10: Bonichon, Gavoille, Hanusse, and Perković [9]. It was the first algorithm

that deviated from the use of L2-Delaunay triangulation; instead, it used TD-Delaunay

triangulation to select spanner edges, introduced by Chew back in 1989 [22]. For such

triangulations, empty equilateral triangles are used for characterization instead of empty

circles, as needed in the case of L2-Delaunay triangulations. TD-Delaunay triangulations

are plane 2-spanners but may have an unbounded degree. BGHP10 first extracts a degree-9

subgraph from the TD-Delaunay triangulation that has a stretch factor of 6. Then using

some local modifications, the degree is reduced from 9 to 6 but the stretch factor remains

unchanged. Refer to Algorithm 16. It uses internally Algorithms 17 - 23. In this algorithm,

each edge incident to a node is charged to some cone of that node. The algorithm runs in

O(n log n) time, as shown by the authors.

Algorithm 5: BCC12(P,∆ ∈ {6, 7})
1 DT ← L2-DelaunayTriangulation(P );
2 E,E∗ ← ∅;
3 Initialize k = ∆+ 1 cones surrounding each vertex u, oriented such that the shortest edge

incident on u falls on a boundary;
4 foreach {u, v} ∈ DT in order of nondecreasing length do
5 if ∀Ci

u containing {u, v}, Ci
u ∩ E = ∅ and ∀Cj

v containing {u, v}, Cj
v ∩ E = ∅ then

6 Add edge {u, v} to E;
7 end
8 end
9 foreach {u, v} ∈ E do

10 Wedge∆(u, v);
11 Wedge∆(v, u);
12 end
13 return E ∪ E∗;

• KPX10: Kanj, Perković, and Xia [33]. For every vertex u in the L2-Delaunay triangula-

tion, its surrounding is divided into k ≥ 14 cones. In every nonempty cone of u, the shortest

Delaunay edge incident on u is selected. After this, a few additional Delaunay edges are

also selected using some criteria based on cone sequences. See Algorithm 4 for a complete

description of this algorithm with the technical details. When k is set to 14, degree-14

plane spanners are generated having a stretch factor of 1.998
(
1 + 2π

14 cos(π/14)

)
≈ 2.9. Note
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that out of the 11 algorithms we have implemented in this work, this algorithm gives the

best theoretical guarantee on the stretch factor; see Table 1.1. KPX10 runs in O(n log n)

time.

Algorithm 6: Wedge7(u, vi)
1 foreach Cz

u containing {u, vi} do
2 Let {u, vj} and {u, vk} be the first and last edges of DT in the cone;
3 Add all edges {vm, vm+1} to E∗ such that j < m < i− 1 or i < m < k − 1;
4 if {u, vi+1} ∈ Cz

u and vi+1 ̸= vk and ∠uvivi+1 > π/2 then
5 Add edge {vi, vi+1} to E∗;
6 end
7 if {u, vi−1} ∈ Cz

u and vi−1 ̸= vk and ∠uvivi−1 > π/2 then
8 Add edge {vi, vi−1} to E∗;
9 end

10 end

Algorithm 7: KX12(P )
1 DT ← L2-DelaunayTriangulation(P );
2 foreach vertex u ∈ DT do
3 In each wide sequence (a sequence of exactly three consecutive edges incident to a vertex

whose overall angle is at least 4π/5) around u, select the edges of the sequence;
4 Partition the remaining space surrounding u not in a wide sequence into a minimum

number of disjoint cones of maximum angle π/5;
5 In each nonempty cone, select the shortest edge incident to u;
6 In each empty cone, let ux and uy be the incident DT edges on u clockwise and

counterclockwise, respectively, from the empty cone;
7 If either ux or uy is selected then select the other edge (in case it has not been

selected); otherwise select the longer edge between ux and uy breaking ties arbitrarily;
8 end
9 return all edges selected by both incident vertices;

• KX12: Kanj and Xia [34]. This O(n log n)-time algorithm takes a different approach in

contrast with the previous ones, although it still uses the L2-Delaunay triangulation DT

as the starting point. Every vertex u in DT selects at most 11 of its incident edges in DT ,

and edges that are selected by both endpoints are kept. As such, it is guaranteed that

the degree of the resulting subgraph is at most 11. The stretch factors of the generated

spanners is shown to be at most 1.998
(

2 sin(2π/5) cos(π/5)
2 sin(2π/5) cos(π/5)−1

)
≈ 5.7. Refer to Algorithm 7.
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Algorithm 8: BHS18(P )
1 DT ← L2-DelaunayTriangulation(P );
2 Let m be the number of edges in DT ;
3 L be the edges ∈ DT sorted in non-decreasing order of bisector-distance;
4 EA ← addIncident(L), ECAN ← ∅;
5 foreach {u, v} ∈ EA do
6 ECAN ← ECAN ∪ addCanonical(u, v) ∪ addCanonical(v, u);
7 end
8 return EA ∪ ECAN ;

Algorithm 9: addIncident(L)
1 EA ← ∅;
2 foreach {u, v} ∈ L do
3 Let i be the cone of u containing v;
4 if {u,w} /∈ EA for all w ∈ Nu

i ∧ {v, y} /∈ EA for all y ∈ Nv
i+3 then

5 Add {u, v} to EA;
6 end
7 end
8 return EA;

• BCC12-7, BCC12-6: Bose, Carmi, and Chaitman-Yerushalmi [12]. The authors

present two algorithms in their paper. Whereas previous algorithms used strategies

involving iterating over the vertices one-by-one, this algorithm takes the approach of

iterating over the edges of the Delaunay triangulation in order of non-decreasing length to

query agreement among the vertices for bounding degrees. BCC12-7, the simpler of the

two, produces 1.998(1 +
√
2)2 ≈ 11.6-spanners with degree 7. BCC12-6, on the other hand,

constructs 11.998
(

1
1−tan(π/7)(1+1/ cos(π/14))

)
≈ 81.7-spanners with degree 6 but not all edges

come from the L2-Delaunay triangulation. Both these algorithms run in O(n log n) time.

See Algorithm 5. The parameter ∆ ∈ {7, 6} is used to control the degree. Depending on

∆, either Algorithm 6 or Algorithm 33 is invoked.

• BKPX15: Bonichon, Kanj, Perković, and Xia [11]. This algorithm uses the L∞-

Delaunay triangulation and was the first degree-4 algorithm. For such triangulations,

empty axis parallel squares are used for characterization instead of empty circles, as needed

in the case of L2-Delaunay triangulations. The L∞-distance between two points u,w is
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Algorithm 10: addCanonical(u, v)
1 E′ ← ∅;
2 Let i be the cone of u containing v;
3 Let efirst and elast be the first and last canonical edge in Can

{u,v}
i ;

4 if Can
{u,v}
i has at least 3 edges then

5 foreach {s, t} ∈ Can
{u,v}
i \ {efirst, elast} do

6 Add {s, t} to E′;
7 end
8 end
9 if v ∈ {efirst, elast} and there is more than one edge in Can

{u,v}
i then

10 Add the edge of Can
{u,v}
i incident to v to E′;

11 end
12 foreach {y, z} ∈ {efirst, elast} do
13 if {y, z} ∈ N z

i−1 then
14 Add {y, z} to E′;
15 end
16 if {y, z} ∈ N z

i−2 then
17 if N z

i−2 ∩ EA does not have an edge incident to z then
18 Add {y, z} to E′;
19 end
20 if N z

i−2 ∩ EA \ {y, z} has an edge incident to z then
21 Let {w, y} be the canonical edge of z incident to y;
22 Add {w, y} to E′;
23 end
24 end
25 end
26 return E′;

defined as d∞(u,w) = max(dx(u,w), dy(u,w)). From the L∞-Delaunay triangulation, a

directed L∞-distance-based Yao graph
−→
Y ∞
4 is constructed that is a plane

√
20 + 14

√
2-

spanner. Then a degree-8 subgraph H8 of Y ∞
4 is constructed. Finally, some redundant

edges are removed and new shortcut edges are added to obtain the final plane degree-4

spanner with a stretch factor of
√

20 + 14
√
2(19 + 29

√
2) ≈ 156.8. No runtime analysis is

presented by the authors. Refer to Algorithm 24. The algorithm divides the space around

each point into 4 cones, separated by the x and y-axes after translating the point to the

origin. Each cone has an associated charge, which can be 0, 1, or 2. The algorithm labels

certain edges as follows. Each edge will be an anchor or a non-anchor and weak or strong.

Further, each edge may have an additional label of start-of-odd-chain-anchor. A weak
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anchor chain is a path w0, w1, w2, ...wk of maximal length consisting of weak anchors

such that the cone of each edge (wrt the source vertex) alternates between some i and i+2.

Canonical edges are edges between consecutive vertices in the ordered neighborhood of a

vertex u in a common cone i. An edge (u, v) is said to be dual if there are two or more

edges of
−→
Y ∞
4 incident to cone i of u and cone i+ 2 of v.

• KPT17: Kanj, Perković, and Türkoǧlu [32]. Akin to BGHP10, this algorithm uses

the TD-Delaunay triangulation and Θ-graph to introduce fresh techniques in spanner

construction. Refer to Algorithm 32 for a pseudocode of this algorithm. The authors show

that their algorithm generates degree-4 spanners with a stretch factor of 20 and runs in

O(n log n) time. In the following, we define the notations used in the pseudocode.

– For each vertex, the shortest edge in each odd cone is called an anchor.

– Cones 1 and 4 are labelled as blue and the rest as white.

– The first and last edges incident upon a vertex u in a cone i are called the boundary

edges of u in i.

– The canonical path is made up of all canonical edges incident on u in cone i,

forming a path from one boundary edge in the cone to the other.

• BHS18: Bose, Hill, and Smid [14]. This algorithm produces a plane degree-8 spanner

with stretch factor at most 1.998
(
1 + 2π

6 cos(π/6)

)
≈ 4.4 using the L2-Delaunay triangulation

and Θ-graph. However, the authors do not present any runtime analysis of their algorithm.

In BHS18, the space around every point p is divided into six cones and are oriented such

that a boundary lies on the x-axis after translating p to the origin. The algorithm starts

with the L2-Delaunay triangulation DT , then, in order of non-decreasing bisector distance,

each edge is added to the spanner if the cones containing it are both empty. For each edge

added here, certain canonical edges will also be carefully added to the spanner. Refer to

Algorithm 8. In the following, we define the notations used in this pseudocode.
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– The bisector-distance [pq] between p and q is the distance from p to the orthogonal

projection of q onto the bisector of Cp
i where q ∈ Cp

i .

– Let {q0, q1, ..., qd−1} be the sequence of all neighbors of p in DT in consecutive

clockwise order. The neighborhood Np with apex p is the graph with the vertex set

{p, q0, q1, ..., qd−1} and the edge set {{qj, qj+1}} ∪ {{qj, qj+1}}, 0 ≤ j ≤ d− 1, with all

values mod d. The edges {{qj, qj+1}} are called canonical edges.

– Np
i is the subgraph of Np induced by all the vertices of Np in Cp

i , including p.

– Let Can
{p,r}
i be the subgraph of DT consisting of the ordered subsequence of canonical

edges {s, t} of Np
i in clockwise order around apex p such that [ps] ≥ [pr] and [pt] ≥ [pr].

Algorithm 11: BGS05(P )
1 DT ← L2-DelaunayTriangulation(P );
2 SG← SpanningGraph(DT );
3 Q← TransformPolygon(SG,DT );
4 G′ ← PolygonSpanner(Q,SG);
5 return G′;

Algorithm 12: SpanningGraph(DT )
1 Φ[1, . . . , n]← CanonicalOrdering(DT );
2 SG← ∅;
3 Add edges between v1, v2, v3 ∈ Φ to SG and mark the vertices as done;
4 for vi ∈ Φ \ {v1, v2, v3} do
5 Let u1, ..., uk be the vertices neighboring vi in DT marked as done;
6 Remove edge {u1, u2} from SG;
7 Add edges {vi, u1} and {vi, u2} to SG;
8 if k > 2 then
9 Remove edge {uk−1, uk} from SG;

10 Add edge {vi, uk} to SG;
11 end
12 end
13 return SG;
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Algorithm 13: CanonicalOrdering(DT )
1 Allocate Φ[1, . . . , n];
2 Make a copy of DT and call it H;
3 Let reserved be a set of two consecutive vertices v1, v2 on the convex hull of H;
4 Φ1 ← v1,Φ2 ← v2;
5 for i = 1 to n− 2 do
6 Let u be a vertex of the outer face of H \ reserved that is adjacent to at most two other

vertices on the outer face;
7 Φu ← n− i+ 1;
8 Remove u and all incident edges from H;
9 end

10 return Φ;

Algorithm 14: TransformPolygon(SG,DT )
1 V ← ∅, E ← ∅;
2 Let s1, v1 be two consecutive vertices on the convex hull of SG in counterclockwise order;
3 vprev ← s1, vi ← v1;
4 Add vprev to V ;
5 do
6 Add vi to V ;
7 Add {vi, vprev} to E;
8 Let vnext be the neighbor of vi ∈ SG such that vnext is the next neighbor clockwise from

vprev;
9 vprev ← vi, vi ← vnext;

10 while vprev ̸= s1 and vi ̸= v1;
11 E = E ∪ {{vi, vprev}} ∪DT \ SG;
12 return (V,E);

Algorithm 15: PolygonSpanner(Q,SG)
1 Let V,E be the vertices and edges of Q, respectively;
2 Let ρ[1, . . . , n] be the breadth-first ordering of V in Q, starting at any vertex in V ;
3 E′ ← SG;
4 foreach u ∈ ρ do
5 Let s1, s2, ..., sm be the clockwise ordered neighbors of u in Q;
6 sj , sk ← sm;
7 if u ̸= ρ1 then
8 Set sj and sk to the first and last vertex in the ordered neighborhood of u where

sj , sk ∈ E′;
9 end

10 Divide ∠s1usj and ∠skusm into an minimum number of cones with maximum angle π/2;
11 In each cone, add the shortest edge in E incident upon u to E′ and all edges {sℓ, sℓ+1}

such that 1 ≤ ℓ < j or k ≤ ℓ < m;
12 end
13 return E′;
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Algorithm 16: BGHP10(P )
1 DT ← TD-DelaunayTriangulation(P );
2 E ← ∅;
3 foreach nonempty cone i of vertex u ∈ DT where i ∈ {1, 3, 5} do
4 Add edge {u, closest(u, i)} to E;
5 charge(u, i)← charge(u, i) + 1;
6 charge(closest(u, i), i+ 3))← charge(closest(u, i), i+ 3) + 1;
7 if first(u, i) ̸= closest(u, i) ∧ i-relevant(first(u, i), u, i− 1) then
8 Add edge u, first(u, i) to E;
9 charge(u, i− 1)← charge(u, i− 1) + 1;

10 end
11 if last(u, i) ̸= closest(u, i) ∧ i-relevant(last(u, i), u, i+ 1) then
12 Add edge {u, last(u, i)} to E;
13 charge(u, i+ 1)← charge(u, i+ 1) + 1;
14 end
15 end
16 foreach cone i of vertex u ∈ DT where i ∈ {0, 2, 4} ∧ i-distant(u, i) is true do
17 vnext ← first(u, i+ 1);
18 vprev ← last(u, i− 1);
19 Add edge {vnext, vprev} to E;
20 charge(vnext, i+ 1)← charge(vnext, i+ 1) + 1;
21 charge(vprev, i− 1)← charge(vprev, i− 1) + 1;
22 Let vremove be the vertex from vnext, vprev where ∠(parent(u, i), u, vremove) is

maximized;
23 Remove edge {u, vremove} from E;
24 charge(u, i)← charge(u, i)− 1;
25 end
26 foreach cone i of vertex u ∈ DT where i ∈ {0, 1, . . . , 5} do
27 if charge(u, i) is not 2 ∨ charge(u, i− 1) is not 1 ∨ charge(u, i+ 1) is not 1 then
28 break;
29 end
30 if u = last(parent(u, i), i) then
31 vremove ← last(u, i− 1);
32 else
33 vremove ← first(u, i+ 1);
34 end
35 Remove edge {u, vremove} from E;
36 charge(u, i)← charge(u, i)− 1;
37 end
38 return E;

Algorithm 17: i-relevant(v, u, i)
1 w ← parent(u, i);
2 return v ̸= closest(u, i) ∧ v ∈ Ci

w;
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Algorithm 18: i-distant(w, i)
1 u← parent(w, i);
2 return
{w, u} /∈ E ∧ i-relevant(first(w, i+ 1), u, i+ 1) ∧ i-relevant(last(w, i− 1), u, i− 1);

Algorithm 19: parent(u, i)
1 return the closest vertex to u in a even cone i, if it exists;

Algorithm 20: closest(u, i)
1 return the closest vertex to u in a odd cone i, if it exists;

Algorithm 21: first(u, i)
1 return the first vertex in a odd cone i, if it exists;

Algorithm 22: last(u, i)
1 return the last vertex in a odd cone i, if it exists;

Algorithm 23: charge(u, i)
1 return the number of edges charged to cone i of u;

Algorithm 24: BKPX15(P )
1 DT ← L∞-DelaunayTriangulation(P );
2
−−→
Y ∞
4 ← constructYaoInfinityGraph(DT );

3 A← selectAnchors(
−−→
Y ∞
4 , DT );

4 H8 ← degree8Spanner(A,
−−→
Y ∞
4 , DT );

5 H6 ← processDupEdgeChains(H8,
−−→
Y ∞
4 );

6 H4 ← createShortcuts(H6,
−−→
Y ∞
4 , DT );

7 return H4;

Algorithm 25: constructYaoInfinityGraph(DT )

1
−−→
Y ∞
4 ← ∅;

2 foreach u ∈ DT do
3 foreach Ci

u do
4 Let v ∈ Ci

u be the vertex with the smallest L∞ distance;
5 Add (u, v) to

−−→
Y ∞
4 ;

6 end
7 end
8 return

−−→
Y ∞
4 ;
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Algorithm 26: selectAnchors(
−→
Y ∞
4 , DT )

1 foreach (u, v) ∈
−−→
Y ∞
4 do

2 Let i be the cone of u containing v;
3 vanchor ← v;
4 if ¬isMutuallySingle(

−−→
Y ∞
4 , u, v, i) and u has more than one

−−→
Y ∞
4 edge in Ci

u then
5 Let ℓ be the position of v and k the number of vertices in fan(DT, u, i);
6 if ℓ ≥ 2 and (vℓ−1, vℓ) ∈

−−→
Y ∞
4 and (vℓ, vℓ−1) /∈

−−→
Y ∞
4 then

7 Let vℓ′ such that ℓ′ < ℓ be the starting vertex of the maximal unidirectional
canonical path ending at vℓ;

8 vanchor ← vℓ′ ;
9 else if ℓ ≤ k − 1 and (vℓ+1, vℓ) ∈

−−→
Y ∞
4 and (vℓ, vℓ+1) /∈

−−→
Y ∞
4 then

10 Let vℓ′ such that ℓ′ > ℓ be the starting vertex of the maximal unidirectional
canonical path ending at vℓ;

11 vanchor ← vℓ′ ;
12 end
13 Mark (u, vanchor) as the anchor of Ci

u;
14 end
15 A← ∅;
16 foreach anchor (u, v) in each Ci

u do
17 if anchor of Ci+2

v is (v, u) or undefined then
18 Mark (u, v) as strong and add it to A;
19 else
20 Mark (u, v) as weak;
21 end
22 end
23 foreach weak anchor (u, v) in each Ci

u do
24 if u begins the weak anchor chain (w0, w1, ..., wk) then
25 if k is odd then
26 Mark (w0, w1) as a start-of-odd-chain-anchor;
27 end
28 for ℓ = k − 1; ℓ ≥ 0; ℓ = ℓ− 2 do
29 Add (wℓ−1, wℓ) to A;
30 end
31 end
32 end
33 return A;

Algorithm 27: fan(DT, u, i)
1 return all neighboring vertices (v1, v2, ..., vk) in Ci

u in counterclockwise order;

Algorithm 28: isMutuallySingle(
−→
Y ∞
4 , u, v, i)

1 return u has one
−−→
Y ∞
4 edge in Ci

u and v has one
−−→
Y ∞
4 edge in Ci+2

v ;
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Algorithm 29: degree8Spanner(A,
−→
Y ∞
4 , DT )

1 Charge each anchor (u, v) ∈ A to the cones of each vertex in which the edge lies;
2 H8 ← A;
3 foreach vertex u and cone i of u do
4 {v1, ..., vk} ← fan(DT, u, i);
5 if k ≥ 2 then
6 Add all uni-directional canonical edges to H8 except (v2, v1) and (vk−1, vk);
7 Add (v2, v1) to H8 if (v2, v1) is a non-anchor, uni-directional edge such that

(v2, v1) ∈
−−→
Y ∞
4 ∧ (v1, v2) /∈

−−→
Y ∞
4 ∧ (v1, u) is a dual edge ∧ (v1, u) is not a

start-of-odd-chain anchor chosen by v1;
8 Add (vk−1, vk) to H8 if (vk−1, vk) is a non-anchor, uni-directional edge such that

(vk−1, vk) ∈
−−→
Y ∞
4 ∧ (vk, vk−1) /∈

−−→
Y ∞
4 ∧ (vk, u) is a dual edge ∧ (vk, u) is not a

start-of-odd-chain anchor chosen by vk;
9 foreach canonical edge (v, w) added to H8 do

10 vcharge ← v;
11 if (v, w) is a non-anchor then
12 vcharge ← u;
13 end
14 Charge (v, w) to the cone of v containing w and the cone of w containing vcharge;
15 end
16 end
17 end
18 return H8;

Algorithm 30: createShortcuts(H6,
−→
Y ∞
4 , DT )

1 H4 ← H6;
2 foreach

pair of non-anchor uni-directional canonical edges (vr−1, vr), (vr+1, vr) in cone i of u do
3 Remove (vr−1, vr) and (vr+1, vr) from H4;
4 Add (vr−1, vr+1) to H4;
5 Charge this edge to the cones of each vertex in which the edge lies;
6 end
7 return H4;
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Algorithm 31: processDupEdgeChains(H8,
−→
Y ∞
4 )

1 H6 ← H8;
2 foreach uni-directional non-anchor (u, v) in cone i of u in H8 with charge = 1 do
3 if cone i+ 1 or i− 1 of v has charge = 2 ∧ (u, v) is charged to cone i+ 1 or i− 1 of v

then
4 Let j be the cone of v where (u, v) is charged;
5 vcurrent ← u, vnext ← v;
6 D ← ∅;
7 while cone j of vnext has charge = 2 ∧ (vcurrent, vnext) is in cone j of vnext do
8 Add (vcurrent, vnext) to D;
9 vcurrent ← vnext;

10 Set vnext to the target of the
−−→
Y ∞
4 edge beginning in cone j of vcurrent;

11 swap(i, j);
12 end
13 Starting with the last edge in the path induced by D, remove every other edge from

H6;
14 end
15 end
16 return H6;
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Algorithm 32: KPT17(P )
1 DT ← TD-DelaunayTriangulation(P );
2 E,A← ∅;
3 foreach white anchor (u, v) in increasing order of d▽ length do
4 if u and v do not have a white anchor in a cone adjacent to (u, v)’s cone then
5 Add (u, v) to A;
6 end
7 end
8 Add all blue anchors to A;
9 foreach blue anchor u do

10 Let s1, s2, ..., sm be the clockwise ordered neighbors of u in DT ;
11 Add all canonical edges (sℓ, sℓ+1) /∈ A to E such that 1 ≤ ℓ < m;
12 end
13 foreach pair of canonical edges (u, v) , (w, v) ∈ E in a blue cone do
14 Remove (u, v) and (w, v) from E;
15 Add a shortcut edge (u,w) to E;
16 end
17 foreach white canonical edge (u, v) on the white side of its anchor a do
18 if a /∈ A then
19 Add (u, v) to E;
20 end
21 end
22 foreach white anchor (v, w) and its boundary edge (u,w) ̸= (v, w) on the white side do
23 Let u = s1, s2, ..., sm = v be the canonical path between u and v;
24 for i = 0 to m do
25 if (si+1, si) is blue then
26 Let j be the smallest index in Pi = {si+1, ..., sm} such that sj is in a white cone

of si and Pi lies on the same side (or on) the straight line sisj ;
27 Add the shortcut (sj , si) to E;
28 if (sj , sj−1) ∈ E then
29 Remove (sj , sj−1) from E;
30 end
31 i← j;
32 end
33 end
34 end
35 return E ∪A;
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Algorithm 33: Wedge6(u, vi)
1 foreach Cz

u containing {u, vi} do
2 Let Q = {vn : {u, vn} ∈ Cz

u ∩DT} = {vj , ..., vk};
3 Let Q′ = {vn : ∠vn−1vnvn+1 < 6π/7, vn ∈ Q \ {vj , vi, vk}};
4 Add all edges {vn, vn+1} to E∗ such that vn, vn+1 /∈ Q′ and

n ∈ [j + 1, i− 2] ∪ [i+ 1, k − 2];
/* W.l.o.g. the points of Q′ lie between vi and vk (the symmetric case is

handled analogously) */
5 if ∠uvivi−1 > 4π/7 and i, i− 1 ̸= j then
6 Add edge {vi, vi−1} to E∗;
7 end
8 Let vf be the first point in Q′;
9 Let a = min{n|n > f and vn ∈ Q \Q′};

10 if f = i+ 1 then
11 if ∠uvivi+1 ≤ 4π/7 and a ̸= k then
12 Add edge {vf , va} to E∗;
13 end
14 if ∠uvivi+1 > 4π/7 and f + 1 ̸= k then
15 Add edge {vi, vf+1} to E∗;
16 end
17 else
18 Let vℓ be the last point in Q′;
19 Let b = max{n|n < ℓ and vn ∈ Q \Q′};
20 if ℓ = k − 1 then
21 Add edge {vℓ, vb} to E∗;
22 else
23 Add edge {vb, vℓ+1} to E∗;
24 if vℓ−1 ∈ Q′ then
25 Add edge {vℓ, vℓ−1} to E∗;
26 end
27 end
28 end
29 end
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CHAPTER 3

Estimating stretch factors of large spanners

Measuring exact stretch factors of large graphs is a tedious job, and so is for geometric

spanners. Although many algorithms exist in the literature for constructing geometric

spanners, nothing is known about practical algorithms for computing stretch factors of large

geometric spanners. It is a severe bottleneck for conducting experiments with large spanners

since the stretch factor is considered a fundamental quality of geometric spanners.

For any spanner (not necessarily geometric) on n vertices, its exact stretch factor can be

computed in O(n3 log n) time by running the folklore Dijkstra algorithm (implemented using

a Fibonacci heap) from every vertex, and in Θ(n3) time by running the classic Floyd-Warshall

algorithm. Note that the Dijkstra-based algorithm runs O(n2 log n) time for plane spanners

since the number of edges is O(n). Both of these are very slow in practice. However, the

latter has a quadratic space-complexity and is unusable when n is large. Consequently, they

are practically useless when n is large. Stretch factor estimation of large geometric graphs

appears to be a far cry despite theoretical studies on this problem; refer to [2, 20,28,38,43].

We believe these algorithms are either involved from an algorithm engineering standpoint or

rely on well-separated pair decomposition [18], which may potentially slow down practical

implementations due to the large number of well-separated pairs needed by those algorithms.

This has motivated us to design a practical algorithm, named AppxStretchFactor, that

gives a lower-bound on the actual stretch factor of any geometric spanner (not necessarily

plane). However, we will consider the universe of plane geometric spanners as the input

domain in this work. To our knowledge, we are not aware of any such algorithm in the

literature. Refer to Algorithm 34. It takes as input an n-element pointset P and a geometric
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graph G, constructed on P .

Algorithm 34: AppxStretchFactor(P,G)
1 DT ← L2-DelaunayTriangulation(P );
2 t← 1;
3 foreach p ∈ P do
4 h← 1, tp ← 1;
5 while true do
6 Let X denote the set of points which are exactly h hops away from p in DT found

using a breadth-first traversal originating at u;
7 t′ ← 1;
8 foreach q ∈ X do
9 t′ ← max

(
|πG(p,q)|

|pq| , t′
)
;

10 end
11 if t′ > tp then
12 h← h+ 1; tp ← t′;
13 else
14 break;
15 end
16 t← max(t, tp);
17 end
18 return t;

The underlying idea of our algorithm is as follows. We observe that most geometric spanners

are well-constructed; meaning it is likely that far away points (having many hops in the

shortest paths between them) have low detour ratios (ratio of the length of a shortest path

to that of the Euclidean distance) between them and the worst-case detour is achieved by

point pairs that are a few hops apart. Note that stretch factor of a graph is the maximum

detour ratio over all vertex pairs. To capture closeness, we use the L2-Delaunay triangulation

constructed on P as the basis. For every point p ∈ P , we start a breadth-first traversal on

the Delaunay triangulation DT . At every level, we compute the detour ratios in G from p to

all the points in that level. If a worse detour ratio is found in the current level compared to

the worst found in the previous level, we continue to the next level; otherwise, the process

is terminated. For finding detour ratios in G, we use the folklore Dijkstra algorithm since
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computation of shortest paths are required. In our algorithm, πG(p, q) denotes a shortest

path between the points p, q ∈ P in G and |πG(p, q)| its total length. The detour between

p, q in G can be easily calculated as |πG(p, q)|/|pq|. The current level is denoted by h. It is

assumed that the neighbors of p in G are at level 1. For efficiency reasons, we do not restart

the Dijkstra at every level of the breadth-first traversal; instead, we save our progress from

the previous level and continue after that.

To our surprise, we find that for the class of spanners used in this work, AppxStretch-

Factor returned exact stretch factors almost every time. The precision error was very

low whenever it failed to compute the exact stretch factor. Further, our algorithm can be

parallelized very easily by spawning parallel iterations of the foreach loop. Apart from the

L2-Delaunay triangulation (which can be constructed very fast in practice), it does not use

any advanced geometric structure, making it fast in practice. We present our experimental

observations for this algorithm in Section 4.3.
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CHAPTER 4

Experiments

We have implemented the algorithms in GNU C++17 using the CGAL library [41]. The machine

used for experiments is equipped with a AMD Ryzen 5 1600 (3.2 GHz) processor and 24 GB of

main memory, and runs Ubuntu Linux 20.04 LTS. The g++ compiler was invoked with -O3 flag

to achieve fast real-world speed. The Exact_predicates_inexact_constructions_kernel

from CGAL is used for accuracy and speed. We have tried our best to tune our codes to run

fast.

All the eleven algorithms considered in this work use one of the following three kinds

of Delaunay triangulation as the starting point: L2, TD, and L∞. For constructing L2

and L∞-Delaunay triangulations, we have used the CGAL::Delaunay_triangulation_2 and

CGAL::Segment_Delaunay_graph_Linf_2 implementations, respectively. As of now, a TD-

Delaunay triangulation implementation is not available in the CGAL. It was pointed out

by Chew in [22] that such triangulations can be constructed in O(n log n) time. However,

no precise implementable algorithm was presented. But luckily, it is shown in [8] by Boni-

chon et al. that TD-Delaunay triangulation of a pointset is same as its 1
2
-Θ graph. We

leveraged this result and used the O(n log n) time CGAL::Construct_theta_graph_2 imple-

mentation for constructing the TD-Delaunay triangulations. For faster speed, the input

pointsets are always sorted using CGAL::spatial_sort before constructing Delaunay trian-

gulations on them. We share the implementations via GitHub1. In our experiments, we have

used both synthetic and real-world pointsets.

1https://github.com/mgatc/geometric-spanners
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(a) uni-square (b) uni-disk (c) normal-clustered (d) normal

(e) grid-contiguous (f) grid-random (g) annulus
1

(h) galaxy

Figure 4.1: The eight distributions used to generate pointsets for our experiments.

4.1 Synthetic pointsets

We have used the following eight distributions to generate synthetic pointsets for our exper-

iments. The selection of these distributions are inspired by the ones used in [5, 30, 40] for

geometric experiments. See Figure 4.1 to visualize these eight distributions.

(a) uni-square. Points are generated uniformly inside a square of side length of 1000 using

the CGAL::Random_points_in_square_2 generator.

(b) uni-disk. Points are generated uniformly inside a disc of radius 1000 using the

CGAL::Random_points_in_disc_2 generator.

(c) normal-clustered. A set of 10 normally distributed clusters placed randomly in the

plane. Each cluster contains n/10 normally distributed points (mean and standard-

deviation are set to 2.0). We have used std::normal_distribution<double> to

generate the point coordinates.

(d) normal. This is same as normal-clustered except that only one cluster is used.

(e) grid-contiguous. Points are generated contiguously on a ⌈
√
n⌉ × ⌈

√
n⌉ square grid

using the CGAL::points_on_square_grid_2 generator.
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(f) grid-random. Points are generated on a ⌈0.7n⌉ × ⌈0.7n⌉ unit square grid. The value

0.7 is chosen arbitrarily to obtain well-separated non-contiguous grid points. The

coordinates of the generated points are integers and are generated independently using

std::uniform_int_distribution.

(g) annulus. Points are generated inside an annulus whose outer radius is set to 1000 and

the inner-radius is set to 800 using std::uniform_real_distribution.

(h) galaxy. Points are generated in the shape of a spiral galaxy using std::rand() for

randomness; see [29].

For seeding the random number generators from C++, we have used the Mersenne twister

engine std::mt19937. Since some of the algorithms assume that no two points must have

the same value x or y-coordinates, the generated pointsets have been perturbed using the

CGAL::perturb_points_2 function with 0.0001, 0.0001 as the two required parameters.

4.2 Real-world pointsets

The following real-world pointsets are obtained from various publicly available sources. We

have removed duplicate points (wherever present) from the pointsets. The main reason

behind the use of such pointsets is that they do not follow the popular synthetic distributions.

Hence, experimenting with them is beneficial to see how the algorithms perform on them.

• burma [1]. An 33, 708-element pointset representing cities in Burma.

• birch3 [17,31]. An 99, 801-element pointset representing random clusters at random

locations.

• monalisa [1, 31]: A 100, 000-city TSP instance representing a continuous-line drawing

of the Mona Lisa.

– 28 –



• KDDCU2D [17, 31]. An 104, 297-element pointset representing the first two dimensions of

a protein data-set.

• usa [1, 31]. A 115, 475-city TSP instance representing (nearly) all towns, villages, and

cities in the United States.

• europe [17,31]. An 168, 896-element pointset representing differential coordinates of

the map of Europe.

• wiki2. An 317, 695-element pointset of coordinates found in English-language Wikipedia

articles.

• vlsi [1]. An 744, 710-element pointset representing a Very Large Scale Integration chip.

• china [17, 31]. An 808, 693-element pointset representing cities in China.

• uber3. An 1, 381, 253-element pointset representing Uber pickup locations in New York

City.

• world [1, 31]. An 1, 904, 711-element pointset representing all locations in the world

that are registered as populated cities or towns, as well as several research bases in

Antarctica.

4.3 Efficacy of AppxStretchFactor

We have seen in Section 3, it is quite challenging to measure stretch factor of large spanners.

This motivated us to design and use the AppxStretchFactor algorithm in our experiments

for estimating stretch factors of the generated spanners. In the following, we compare

AppxStretchFactor with the Dijkstra’s algorithm (run from every vertex) and show that
2https://github.com/placemarkt/wiki_coordinates
3https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
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for the eight distributions it is not only much faster than Dijkstra but can also estimate

stretch factors of plane spanners with high accuracy.

The main reason behind the fast practical performance of AppxStretchFactor is early

terminations of the breadth-first traversals (one traversal per vertex), which in turn makes

Dijkstra run fast to find the shortest paths to the vertices in all the levels. We have noticed

in our experiments that the pair that achieves the stretch factor for a bounded-degree plane

spanner are typically a few hops away and pairwise stretch factors (ratio of detour between

two vertices to that of their Euclidean distance) drop with the increase in hops. Consequently,

the breadth-first traversals terminate very early most of the time.

The total number of pointsets used in this comparison experiment is 11 · 8 · 10 · 5 = 4400

since there are 11 algorithms, 8 distributions, 10 distinct values of n (1K, 2K, ..., 10K),

and 5 samples were used for every value of n. Out of these many, the number of times

AppxStretchFactor has failed to return the exact stretch factor is just 8. So, the observed

failure rate is ≈ 0.18%. Interestingly, in the cases where AppxStretchFactor failed to

compute the exact stretch factor, the largest observed error percentage between the exact

stretch factor (found using Dijkstra) and the stretch factor returned by it is just ≈ 0.15. This

gives us the confidence that our algorithm can be safely used to estimate stretch factor of large

spanners. Refer to the Figure 4.3. As evident from these graphs, AppxStretchFactor is

substantially faster than Dijkstra everywhere. Henceforth, we use AppxStretchFactor

(Algorithm 34) to estimate the stretch factors of the spanners in our experiments.
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Figure 4.2: Points are generated using the uni-square distribution. For this particular experiment,
n is in the range 10K, 20K, . . . , 100K. The plots for BGHP10 and KPT17 have overlapped in this
figure.

4.4 Experimental comparison of the algorithms

We compare the 11 implemented algorithms based on their runtimes and degree, stretch

factor, and lightness4 of the generated spanners.

For synthetic pointsets, we vary n from 10K to 100K. For every value of n, we have used

five random samples to measure runtimes and the above characteristics of the spanners. In

the case of real-world pointsets, we run every one of them five times and report the average

time taken.

In our experiments, we find that BGHP10 and KPT17 are considerably slower than the other

algorithms considered in this work. The reason behind this is slow construction of TD-

Delaunay triangulations. Refer to Fig. 4.2 for an illustration. When n = 100K, both take

more than 150 seconds to finish. In contrast, other nine algorithms take less than 10 seconds.

Since real-world speed is an important factor for spanner construction algorithms, we do not
4The lightness of a geometric graph G on a pointset P is defined as ratio of the weight of G to that of a

Euclidean minimum spanning tree on P .
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consider them further in our runtime comparisons.

1. Runtime. Fast execution speed is highly desired for spanner construction on large

pointsets. We present the runtimes for all eight distributions in Fig. 4.4. As explained

above, we have excluded BGHP10 and KPT17 from these plots since they are consider-

ably slower than the other nine algorithms. Interestingly, we find that the relative

performance of these algorithms is independent of the point distributions. For all the

eight distributions, we find that BKPX15 is much slower than the others. This is mainly

due to the time taken to construct L∞-Delauanay triangulations. Among the ones

that use L2-Delauanay triangulations, BGS05 is the slowest due to the overhead of

creation of temporary geometric graphs needed to control the degree and stretch-factor

of the ouput spanners. Refer to Section 2 to see more details on this algorithm. The

fastest algorithms are KPX10, BSX09, LW04, and KX12. The main reason behind their

speedy performance is fast construction of L2-Delaunay triangulations and lightweight

processing of the triangulations for spanner construction. The BHS18, BCC12-7, and

BCC12-6 algorithms came out quite close the above four algorithms. Note that these

three algorithms also use L2-Delaunay triangulation as the starting point. The same

observations hold for the real-world pointsets used in our experiments. See Table 4.3

for the runtimes in seconds.

2. Degree. Refer to Table 4.1. In the tables, ∆ denotes the theoretical degree upper bound,

as claimed by the authors of these algorithms, max ∆observed denotes the maximum

degree observed in our experiments, avg ∆observed denotes the observed average degree,

and avg ∆vertex denotes the observed average degree per vertex. In our experiments,

we find that spanners generated by BGS05, LW04, and BSX09 have degrees much less

than the degree upper-bounds derived by the authors. While it cannot be denied that

there could be special examples where these upper-bounds are actually achieved, the

maximum degrees achieved in our experiments are 14, 11, and 9, respectively. Note that

the theoretical degree upper bounds are 27, 23, and 17, respectively. For the remaining
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eight algorithms, the claimed degree upper-bounds are achieved in our experiments

thereby showing the analyses obtained by the authors of those algorithms are tight.

However, the degree bound claimed by the authors of BCC12-6 appears incorrect. We

present an example in Appendix B where the degree of the spanner generated by this

algorithm exceeds 6 (in fact, it is 7 in this example). For every algorithm, we find

that the average degree of the generated spanners is not far away from the maximum

observed degrees. It shows that the algorithms are consistent in constructing the

spanners. The average degree per vertex is another way to judge the quality of the

spanners. In this regard, we find that it is always between 6 and 3 everywhere and is

quite reasonable for practical purposes. This shows that all these algorithms are very

careful when it comes to the selection of spanner edges. The lowest values are achieved

by BKPX15 and KPT17. For the real-world pointsets, we find similar performance from

the algorithms when it comes to the degree and degree per vertex of the spanners. This

is quite surprising since these real-world pointsets do not follow specific distributions.

Refer to Tables 4.4 and 4.5 for more details. Note that BSG05 has produced a degree-15

spanner for the vlsi pointset. In contrast, for the synthetic pointsets the highest degree

we could observe is 14.

3. Stretch factor. Refer to Table 4.2. In the tables, t denotes the theoretical stretch

factor, as derived by the authors of these algorithms; tmax denotes the maximum stretch

factor observed in our experiments, and tavg denotes the average observed stretch factor.

Among the eleven algorithms, KPX10 has the lowest guaranteed stretch factor - it is 2.9.

The stretch factors of the spanners generated by KPX10 are always less than 1.6, thereby

making it the best among the eleven algorithms in terms of stretch factor. In this

regard, BKPX15 turned out to be the worst; the largest stretch factor we have observed

is 7.242, although it is substantially less than the theoretical stretch factor upper bound

of 156.8. Its competitor KPX17 that can also generate degree-4 plane spanners has a

lower observed maximum stretch factor - it is 5.236 (theoretical upper bound is 20 for
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this algorithm). Overall, we find that the stretch factors of the generated spanners are

much less than the claimed theoretical upper bounds. This shows that the generated

spanners are well-constructed in practice. With the exception of BKPX15, we find that

the average stretch factors are quite close to the maximum stretch factors. Now let us

turn our attention to the real-world pointsets. Refer to Table 4.6. Once again KPX10

produced lowest stretch factor spanners. The stretch factors seem quite reasonable

everywhere except the two cases of vlsi and uber pointsets when fed to BKPX15. The

produced spanners have stretch factors of 11.535 and 27.929, respectively. The later is

interesting since the lower bound example constructed by the authors in [11] for the

worst-case stretch factor of the spanners produced by BKPX15 has a stretch factor of

7 + 7
√
2 ≈ 16.899. The uber pointset beats this lower bound.

4. Lightness. Since a minimum spanning tree is the cheapest (in terms of the sum of the

total length of the edges) way to connect n points, lightness can be used to judge the

quality of spanners. This metric is beneficial when spanners are used for constructing

computer or transportation networks. Refer to Table 4.2. Lightness is denoted by ℓ.

With a few exceptions, we find that lightness somewhat correlates with degree. This

is because using a lower number of carefully placed spanner edges usually leads to

lower lightness. The spanners generated by BGS05 are always found to have the highest

lightness. This is expected because of their high degrees. Although, the difference in

degree of the spanners generate by BGS05 and LW04 is marginal (around 2), the difference

between their lightness is substantial (approximately 6 for some cases). On the other

hand, the degree-4 spanners generated by KPT17 have the lowest lightnesses (less than

2.9 everywhere). Interestingly, although BKPX15 generates degree-4 spanners, their

lightness is found to be approximately twice that of the ones generated by KPT17. In

fact, their lightness turned out to be one of the highest. This shows that KPT17 is more

careful when it comes to placing long edges. The lightnesses of the spanners generated

for real-world pointsets follow a similar trend, and we did not observe anything special.
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Refer to Table 4.7 for more details.

Remark. In our experiments, we find that the spanners’ degree, stretch factor, and lightness

remained somewhat constant with the increase in n. Hence, we do not present plots for them.
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Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 13 11.580 5.745
LW04 11 9.820 5.148
BSX09 9 7.840 4.392
KPX10 14 12.980 5.994
KX12 10 9.960 5.449
BHS18 7 6.980 4.113

BCC12-7 7 7.000 4.337
BCC12-6 7 6.820 4.016
BGHP10 6 6.000 4.240
BKPX15 4 4.000 3.328
KPT17 4 4.000 3.140

(a) uni-square

Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 12 11.540 5.744
LW04 11 9.880 5.146
BSX09 9 7.760 4.389
KPX10 13 12.420 5.993
KX12 10 9.980 5.451
BHS18 7 6.200 4.109

BCC12-7 7 7.000 4.335
BCC12-6 7 6.020 4.012
BGHP10 6 6.000 4.239
BKPX15 4 4.000 3.319
KPT17 4 4.000 3.141

(b) uni-disk

Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 13 11.600 5.750
LW04 11 9.800 5.154
BSX09 9 7.860 4.392
KPX10 14 12.820 5.996
KX12 10 9.980 5.450
BHS18 7 6.100 4.110

BCC12-7 7 7.000 4.334
BCC12-6 6 6.000 4.010
BGHP10 6 6.000 4.245
BKPX15 4 4.000 3.327
KPT17 4 4.000 3.144

(c) normal-clustered

Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 13 11.740 5.751
LW04 11 9.760 5.158
BSX09 9 7.880 4.395
KPX10 14 12.320 5.997
KX12 10 9.940 5.452
BHS18 7 6.060 4.117

BCC12-7 7 7.000 4.346
BCC12-6 6 6.000 4.023
BGHP10 6 6.000 4.254
BKPX15 4 4.000 3.327
KPT17 4 4.000 3.150

(d) normal

Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 11 11.000 5.919
LW04 9 7.920 5.099
BSX09 9 7.660 4.412
KPX10 12 11.880 5.993
KX12 11 10.000 5.987
BHS18 7 7.000 4.825

BCC12-7 7 7.000 5.160
BCC12-6 7 6.960 4.361
BGHP10 6 6.000 4.979
BKPX15 4 4.000 3.350
KPT17 4 4.000 3.537

(e) grid-contiguous

Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 13 11.540 5.745
LW04 11 9.900 5.148
BSX09 9 7.980 4.391
KPX10 14 12.940 5.995
KX12 10 9.980 5.449
BHS18 7 6.960 4.114

BCC12-7 7 7.000 4.338
BCC12-6 7 6.740 4.016
BGHP10 6 6.000 4.240
BKPX15 4 4.000 3.327
KPT17 4 4.000 3.140

(f) grid-random

Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 13 11.520 5.730
LW04 11 9.740 5.130
BSX09 9 8.100 4.382
KPX10 14 13.180 5.987
KX12 11 10.300 5.448
BHS18 7 6.960 4.098

BCC12-7 7 7.000 4.313
BCC12-6 8 6.940 3.994
BGHP10 6 6.000 4.230
BKPX15 4 4.000 3.315
KPT17 4 4.000 3.130

(g) annulus

Algorithm max ∆observed avg ∆observed avg ∆vertex

BGS05 14 12.320 5.736
LW04 11 9.920 5.134
BSX09 9 8.180 4.384
KPX10 14 13.680 5.993
KX12 11 10.000 5.434
BHS18 7 6.580 4.090

BCC12-7 7 7.000 4.290
BCC12-6 7 6.120 3.970
BGHP10 6 6.000 4.228
BKPX15 4 4.000 3.326
KPT17 4 4.000 3.131

(h) galaxy

Table 4.1: Degree comparisons of the spanners generated by the eleven algorithms.
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Algorithm tmax tavg ℓ

BGS05 2.687 2.215 10.209
LW04 2.687 2.349 4.366
BSX09 4.284 3.666 3.585
KPX10 1.519 1.453 5.378
KX12 2.021 1.848 4.728
BHS18 2.812 2.548 3.315

BCC12-7 2.433 2.152 3.636
BCC12-6 2.894 2.494 3.298
BGHP10 3.204 2.755 3.429
BKPX15 4.692 3.505 4.824
KPT17 4.895 4.067 2.261

(a) uni-square

Algorithm tmax tavg ℓ

BGS05 2.409 2.202 10.014
LW04 2.525 2.325 4.310
BSX09 4.267 3.656 3.528
KPX10 1.497 1.450 5.279
KX12 2.034 1.857 4.661
BHS18 3.152 2.587 3.275

BCC12-7 2.460 2.167 3.597
BCC12-6 2.998 2.460 3.261
BGHP10 3.034 2.782 3.415
BKPX15 4.255 3.501 4.702
KPT17 5.050 4.052 2.259

(b) uni-disk

Algorithm tmax tavg ℓ

BGS05 2.555 2.214 12.802
LW04 2.522 2.327 5.220
BSX09 4.226 3.664 4.345
KPX10 1.489 1.448 6.752
KX12 2.126 1.856 5.611
BHS18 3.098 2.571 3.726

BCC12-7 2.457 2.161 4.031
BCC12-6 2.814 2.476 3.680
BGHP10 3.400 2.804 3.870
BKPX15 3.967 3.500 5.328
KPT17 4.852 4.032 2.545

(c) normal-clustered

Algorithm tmax tavg ℓ

BGS05 2.504 2.198 10.111
LW04 2.575 2.329 4.345
BSX09 4.172 3.701 3.553
KPX10 1.500 1.450 5.319
KX12 2.493 1.872 4.702
BHS18 3.090 2.538 3.288

BCC12-7 2.438 2.173 3.603
BCC12-6 2.737 2.447 3.264
BGHP10 3.178 2.731 3.431
BKPX15 4.344 3.507 4.748
KPT17 5.236 3.990 2.267

(d) normal

Algorithm tmax tavg ℓ

BGS05 3.000 2.812 6.911
LW04 3.000 2.965 2.820
BSX09 3.000 3.000 2.455
KPX10 1.414 1.414 3.506
KX12 1.414 1.414 3.480
BHS18 1.414 1.414 2.613

BCC12-7 1.414 1.414 2.850
BCC12-6 1.414 1.414 2.286
BGHP10 1.414 1.414 2.705
BKPX15 7.242 6.337 3.852
KPT17 3.000 3.000 1.915

(e) grid-contiguous

Algorithm tmax tavg ℓ

BGS05 2.413 2.199 10.213
LW04 2.707 2.364 4.367
BSX09 4.080 3.686 3.585
KPX10 1.508 1.452 5.382
KX12 2.153 1.838 4.730
BHS18 2.905 2.555 3.318

BCC12-7 2.349 2.126 3.637
BCC12-6 2.698 2.441 3.300
BGHP10 3.171 2.807 3.431
BKPX15 4.056 3.496 4.825
KPT17 4.777 4.036 2.261

(f) grid-random

Algorithm tmax tavg ℓ

BGS05 2.490 2.185 10.375
LW04 2.735 2.344 4.445
BSX09 4.294 3.668 3.675
KPX10 1.557 1.522 5.524
KX12 2.078 1.862 4.833
BHS18 3.286 2.559 3.351

BCC12-7 2.574 2.162 3.661
BCC12-6 2.922 2.466 3.321
BGHP10 3.077 2.756 6.154
BKPX15 4.226 3.527 7.273
KPT17 4.637 4.002 3.544

(g) annulus

Algorithm tmax tavg ℓ

BGS05 2.452 2.209 12.119
LW04 2.673 2.323 5.114
BSX09 4.077 3.716 4.250
KPX10 1.512 1.451 6.521
KX12 2.552 1.878 5.326
BHS18 3.147 2.587 3.686

BCC12-7 2.352 2.149 3.949
BCC12-6 2.803 2.483 3.608
BGHP10 3.309 2.773 4.398
BKPX15 6.833 3.615 5.806
KPT17 4.867 4.049 2.871

(h) galaxy

Table 4.2: Stretch-factor and lightness comparisons of the spanners generated by the eleven algorithms.
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Pointset n BGS05 LW04 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 2.888 0.711 0.627 0.599 0.832 1.101 1.569 1.549 173.528 5.885 173.447
birch3 99801 9.700 2.459 2.139 2.117 3.001 4.458 5.188 5.079 640.619 20.003 641.839

mona-lisa 100000 8.527 2.450 2.127 2.236 3.189 4.960 5.863 5.588 704.980 27.988 706.000
KDDCU2D 104297 10.024 2.579 2.252 2.250 3.146 4.837 5.569 5.460 811.921 21.424 812.665

usa 115475 10.575 2.878 2.497 2.521 3.559 5.600 6.426 6.258 1033.99 35.769 1035.64
europe 168896 15.516 4.520 3.985 3.968 5.685 8.386 9.402 9.230 1494.69 39.133 1497.09
wiki 317695 35.374 9.041 7.687 8.004 11.432 17.274 18.105 17.794 3507.06 98.975 3510.20
vsli 744710 81.461 21.655 19.457 19.693 28.165 46.630 47.297 46.183 13296.6 509.795 13312.2
china 808693 91.243 24.078 21.642 21.775 30.793 52.637 54.367 53.029 17028.4 451.383 17057.3
uber 1381253 170.493 42.199 38.227 38.268 54.486 89.577 94.444 92.359 29584.6 1689.042 29633.1
world 1904711 259.147 57.657 52.078 52.337 74.570 125.078 128.316 125.787 58707.7 1358.70 58780.3

Table 4.3: Average execution time (in seconds).

Pointset n BGS05 LW04 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 11 10 8 14 11 6 7 6 6 4 4
birch3 99801 13 10 8 13 11 6 7 6 6 4 4

mona-lisa 100000 11 8 8 12 10 7 7 7 6 4 4
KDDCU2D 104297 13 10 8 14 10 6 7 7 6 4 4
usa 115475 12 10 8 14 11 7 7 7 6 4 4

europe 168896 12 10 8 13 10 6 7 6 6 4 4
wiki 317695 14 10 9 14 11 7 7 7 6 4 4
vsli 744710 15 11 9 14 10 7 7 7 6 4 4
china 808693 13 11 9 14 11 7 7 6 6 4 4
uber 1381253 13 11 9 14 10 7 7 6 6 4 4
world 1904711 14 11 9 14 11 7 7 7 6 4 4

Table 4.4: Degree of the spanners.

Pointset n BGS05 LW04 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 5.761 5.192 4.454 5.994 5.512 4.166 4.292 4.068 4.347 3.346 3.187
birch3 99801 5.745 5.149 4.417 5.995 5.429 4.081 4.287 3.970 4.222 3.327 3.130

mona-lisa 100000 5.938 5.596 4.617 5.996 5.981 5.259 5.741 5.165 5.434 3.572 3.613
KDDCU2D 104297 5.720 5.127 4.399 5.985 5.390 4.047 4.294 4.015 4.216 3.325 3.122

usa 115475 5.761 5.208 4.447 5.993 5.529 4.248 4.493 4.132 4.398 3.366 3.211
europe 168896 5.745 5.160 4.427 5.997 5.438 4.090 4.310 3.991 4.234 3.325 3.135
wiki 317695 5.679 5.061 4.379 5.987 5.333 3.931 4.016 3.732 4.070 3.308 3.016
vsli 744710 5.749 5.152 4.416 5.994 5.438 4.096 4.334 4.007 4.277 3.316 3.176
china 808693 5.770 5.209 4.437 5.996 5.519 4.245 4.506 4.154 4.368 3.344 3.208
uber 1381253 5.742 5.147 4.394 5.996 5.437 4.086 4.288 3.968 4.232 3.326 3.130
world 1904711 5.748 5.171 4.438 5.991 5.489 4.151 4.371 4.020 4.318 3.344 3.168

Table 4.5: Average degree per vertex.

Pointset n BGS05 LW04 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 2.414 2.414 3.681 1.482 1.738 2.856 2.156 2.162 3.161 4.404 4.409
birch3 99801 2.233 2.234 3.520 1.481 1.923 2.719 2.318 2.460 2.933 3.624 4.102

mona-lisa 100000 2.523 2.237 3.373 1.413 1.609 2.872 1.778 2.278 2.872 4.190 3.768
KDDCU2D 104297 2.211 2.435 3.953 1.492 2.068 2.937 2.174 2.603 2.937 4.299 4.218
usa 115475 2.300 2.351 3.564 1.480 2.038 2.765 2.241 2.576 3.430 3.740 4.455

europe 168896 2.245 2.343 4.072 1.459 1.840 2.745 2.310 2.659 2.981 4.081 4.121
wiki 317695 2.408 2.421 3.926 1.458 1.978 2.757 2.350 2.610 3.222 4.353 4.017
vsli 744710 2.468 2.999 3.650 1.471 1.970 2.942 2.355 2.263 3.521 11.535 5.472
china 808693 2.478 2.421 4.082 1.511 2.055 2.731 2.237 2.711 2.981 4.061 4.506
uber 1381253 2.535 2.418 3.987 1.485 2.204 2.902 2.407 2.816 3.073 27.929 4.966
world 1904711 2.989 2.961 4.228 1.522 1.997 3.056 2.357 2.657 3.545 6.140 5.422

Table 4.6: Stretch factor of the spanners.

Pointset n BGS05 LW04 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 10.755 4.538 3.768 5.672 4.922 3.374 3.609 3.365 3.620 5.048 2.345
birch3 99801 11.008 4.660 3.845 5.805 4.989 3.453 3.770 3.434 3.699 5.124 2.426

mona-lisa 100000 7.070 3.259 2.656 3.574 3.542 3.012 3.326 2.934 3.147 3.934 1.994
KDDCU2D 104297 10.576 4.491 3.719 5.605 4.830 3.316 3.670 3.355 3.511 4.954 2.311
usa 115475 10.264 4.427 3.663 5.431 4.753 3.336 3.642 3.305 3.602 4.935 2.336

europe 168896 10.136 4.365 3.593 5.395 4.736 3.274 3.588 3.233 3.428 4.746 2.254
wiki 317695 12.137 5.087 4.227 6.555 5.385 3.607 3.877 3.525 3.860 5.477 2.481
vsli 744710 11.344 4.850 4.024 5.989 5.110 3.521 3.899 3.539 3.864 5.130 2.513
china 808693 9.918 4.304 3.531 5.232 4.605 3.286 3.594 3.247 3.445 4.719 2.263
uber 1381253 11.225 4.497 4.291 5.900 5.424 2.797 2.843 2.888 3.015 4.584 1.861
world 1904711 11.145 4.744 3.923 5.917 5.003 3.476 3.777 3.432 3.967 5.272 2.541

Table 4.7: Lightness of the spanners.
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Figure 4.3: Runtime comparison: Dijkstra (run from every vertex) vs AppxStretchFactor. For
every value of n, we have used 11 · 5 = 55 spanner samples since there are 11 algorithms and 5
pointsets were generated for that value of n using the same distribution.
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Figure 4.4: Runtime comparisons of the nine algorithms (BGHP10 and KPT17 are excluded).
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CHAPTER 5

Conclusions

Since there are various ways (speed, degree, stretch factor, lightness) to judge the eleven

algorithms, it is hard to declare the winner(s). So, based on our experimental observations,

we come to the following conclusions (are our recommendations as well):

• If speedy performance is the main concern, we recommend using KPX10, BSX09, LW04,

or KX12.

• When it comes to minimization of degree, we recommend using BCC12-7 or BHS18

since they produce spanners of reasonable degrees in practice. If degree-4 spanners are

desired, we recommend using BKPX15 since KPT17 is much slower in practice.

• In terms of stretch factor, we find the KPX10 as the clear winner. This is particularly

important in the study of geometric spanners since not much is known about fast

construction of low stretch factor spanners (t ≈ 1.6) in the plane having at most 3n

edges. However, the spanners produced by it have higher degrees compared to the ones

produced by some of the other algorithms such as BCC12 and BHS18.

• In our experiments, KPT17 produced spanners with the lowest lightnesses. But in

practice, we found it to be very slow compared to the other algorithms except for

BGHP10 (which is as slow as KPT17). If degree-4 spanners is not a requirement, we

recommend using BHS18 or BCC12-7 since they produced spanners of reasonable lightness

(less than 4 most of the times).

Acknowledgment. We sincerely thank Nicolas Bonichon (one of the authors of BKPX15)

for sharing the applet code for the algorithm BKPX15 [11]. The code has helped us to

understand the algorithm clearly and create a CGAL implementation of the algorithm.
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APPENDIX A

Sample outputs

Figure A.1: A 150-element pointset, drawn
randomly from a square.

Figure A.2: The spanner generated by BGS05
on the pointset shown in Fig. A.1; degree: 8,
stretch factor: 1.565763

Figure A.3: The spanner generated by LW04
on the pointset shown in Fig. A.1; degree: 6,
stretch factor: 2.602559

Figure A.4: The spanner generated by BSX09
on the pointset shown in Fig. A.1; degree: 6,
stretch factor: 2.602559
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Figure A.5: The spanner generated by KPX10
on the pointset shown in Fig. A.1; degree: 9,
stretch factor: 1.360771

Figure A.6: The spanner generated by KX12
on the pointset shown in Fig. A.1; degree: 8,
stretch factor: 1.440861

Figure A.7: The spanner generated by BHS18
on the pointset shown in Fig. A.1; degree: 6,
stretch factor: 1.879749

Figure A.8: The spanner generated by BCC12-7
on the pointset shown in Fig. A.1; degree: 6,
stretch factor: 2.302473
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Figure A.9: The spanner generated by
BCC12-6 on the pointset shown in Fig. A.1;
degree: 6, stretch factor: 1.735716

Figure A.10: The spanner generated by BGHP10
on the pointset shown in Fig. A.1; degree: 6,
stretch factor: 1.817045

Figure A.11: The spanner generated by BKPX15
on the pointset shown in Fig. A.1; degree: 4,
stretch factor: 2.525204

Figure A.12: The spanner generated by KPT17
on the pointset shown in Fig. A.1; degree: 4,
stretch factor: 2.582846
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APPENDIX B

A counterexample for BCC12-6

In the following, we present an 13-element pointset on which BCC12-6 fails to construct a

degree-6 plane spanner. Refer to Fig. B.1 for the pointset.
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1

1
Figure B.1: A set P of 13 points p1, . . . , p13. p1: (−4.98845, 0.22414), p2: (−4.23759, 0.08), p3:
(−3.98106, 0.10125), p4: (−2.82831, 0.02396), p5: (−2.44066,−0.46761), p6: (−2.37275, 0.12191),
p7: (−1.90395,−0.27187), p8: (−1.65373,−0.00109), p9: (−1.28739,−0.01854), p10:
(−0.642516, 0.02836), p11: (−0.019359, 0.02), p12: (0.850154, 0.14431), p13: (2.01517, 0.19194)

First, BCC12-6 creates the L2-Delaunay triangulation of P and initializes 7 cones around

every pi, oriented such that the shortest edge incident on pi falls on a boundary. See Figs. B.2

and B.3.
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Figure B.2: The L2-Delaunay triangulation of P .
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Figure B.3: The cones (dotted) of each point in P with α = 2π/7, oriented by the shortest edge
incident on that point (bold).

Next, in Fig B.4, we show the edges added by the main portion of the algorithm (excluding the

edges added by Wedge6 calls). Only Wedge6(p1, p2) and Wedge6(p12, p11) calls add new edges

to E∗ and thus to the final spanner as well. The former call adds the two edges p3p6, p6p12

(see Fig. B.5) and the later call adds the edge p6p10 (see Fig. B.6). The final spanner is shown

in Fig. B.7. Note that p6 has degree 7 in the spanner which violates the degree requirement

of the spanners produced by BCC12-6.
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Figure B.4: Edges added by the main portion of BCC12 (excluding calls to subroutine Wedge6).
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Figure B.5: The edge p1p2 (shown in red) is added during the main portion of the algorithm and
the call to Wedge6(p1, p2) adds the two blue edges p3p6 and p6p12.
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Figure B.6: The edge p12p11 (shown in red) is added during the main portion of the algorithm and
the call to Wedge6(p12, p11) adds the blue edge p6p10.
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Figure B.7: The resulting graph on P is a degree-7 plane spanner due to p6 whose degree is exactly
7. Note that this graph contains the edges shown in Fig. B.4 alongwith the blue edges shown in
Fig. B.5 and B.6.
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